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SM-UDE-803 2016



Eingegangen am 14.09.2016



MEAN CONVEXITY OF THE ZERO SET OF SYMMETRIC
MINIMAL SURFACES

TOBIAS TENNSTÄDT

Abstract. Let Ω ⊂ Rn be a bounded open set, α > 0 a given constant, and
u a bounded local minimizer of the functional

F(u) :=

∫
Ω
uα

√
1 + |Du|2 dx

in the class BV 1+α
+ (Ω) := {u ∈ Lα(Ω) : u ≥ 0, u1+α ∈ BV (Ω)}.

We show that minimizers are elements ofW 1,1
loc (Ω) and that the coincidence

set {u = 0} is a set of locally finite perimeter in Ω with nonnegative inward
mean curvature in the variational sense, i.e. is mean convex. In particular, we
prove the inequality∫

Ω
|Dχ{u=0}∩E | ≤

∫
Ω
|DχE | −

∫
E∩{u>0}

α

u
√

1 + |Du|2
dx

for all sets E ⊂⊂ Ω of finite perimeter.

1. Introduction

In this paper we consider the functional

(1) F(u) :=

∫
Ω

uα
√

1 + |Du|2 dx,

which was first investigated by J. Bemelmans and U. Dierkes [2] as the n-dimensional
generalization of the catenary problem, that is to find radially symmetric minimal
surfaces bounded by two disks in 3-dimensional space. It turns out that, for α ∈ N,
F(u) is equal, up to a constant factor, to the area of the surface of revolution

Mrot := {(x, u(x)ω) : x ∈ Ω, ω ∈ Sα ⊂ Rα+1} ⊂ Rn+α+1.

Therefore, solutions u, either local minimizers of F or positive solutions to the
corresponding Euler equation

(2) div

(
uαDu√

1 + |Du|2

)
=
√

1 + |Du|2,

or equivalently

(3) div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2
,
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2 T. TENNSTÄDT

are called symmetric or singular minimal surfaces respectively, cp. [7][8]. In ad-
dition to the results obtained in the paper [2], their properties were investigated
extensively in several papers by U. Dierkes [3][4][5][6], and U. Dierkes in collabora-
tion with G. Huisken [9][10].

The purpose of the present paper is to study the geometric and analytic proper-
ties of the boundary of the coincidence set {u = 0} of a local minimizer u. Observe
that here the natural free boundary condition

fp(x, u,Du) ·Du = f(x, u,Du) on Ω ∩ ∂{u = 0}

degenerates to the useless identity 0 = 0 for an integrand like f(x, z, p) = zα
√

1 + |p|2

as considered in our paper.

2. Definitions

In this section, let Ω be an open subset of Rn.
The functional F may be defined in the class

BV 1+α
+ (Ω) :=

{
u ∈ Lα(Ω) : u ≥ 0, u1+α ∈ BV (Ω)

}
by setting

F(u) := sup

{∫
Ω

uαφn+1 +
u1+α

1 + α

n∑
i=0

Diφi dx : φ ∈ C1
c (Ω,Rn+1), ||φ||∞,Ω ≤ 1

}
.

We further recall the standard definition of mean convexity of a Caccioppoli set.

Definition 1 (Mean Convexity). A Caccioppoli set E ⊂ Ω is called mean convex,
if

(4)
∫

Ω

|DχE | ≤
∫

Ω

|DχE∪F |

for all Caccioppoli sets F ⊂⊂ Ω.

Remark. Whenever ∂E ∈ C2, (4) implies the everywhere nonnegativity of the
inward mean curvature H∂E of E. This can easily be verified by calculating the
first variation of the area of ∂E (see e.g. [8]), which by (4) must be nonnegative.

However, mean convexity is not well defined by (4) in case E has only locally
finite perimeter. Because we have to consider such sets in the following, we are
going to use a different definition for local mean convexity.

Definition 2 (Local Mean Convexity). A Caccioppoli set E ⊂ Ω is called locally
mean convex, if

(5)
∫

Ω

|DχE∩F | ≤
∫

Ω

|DχF |

for all Caccioppoli sets F ⊂⊂ Ω.

Remark. Notice that by virtue of the inequality∫
Ω

|DχF∪E |+
∫

Ω

|DχF∩E | ≤
∫

Ω

|DχF |+
∫

Ω

|DχE |
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which holds for all Caccioppoli sets E,F ⊂ Ω, local mean convexity follows from
mean convexity. Also, whenever a locally mean convex set E ⊂⊂ Ω has finite
perimeter, we may test (5) with F ∪E to obtain (4), which means that E is mean
convex in this case.

Furthermore we adopt the following notation.

Definition 3. Let E ⊂ Ω have locally finite perimeter. Then we call

(i) FE :=

{
x ∈ Ω :

∣∣∣∣limρ→0

∫
Bρ

DχE∫
Bρ
|DχE |

∣∣∣∣ = 1

}
the reduced boundary of E,

(ii) int∗E :=
{
x ∈ Ω : limρ→0

|E∩Bρ|
|Bρ| = 1

}
the measure-theoretic interior of E,

(iii) ext∗E :=
{
x ∈ Ω : limρ→0

|E∩Bρ|
|Bρ| = 0

}
the measure-theoretic exterior of E,

and
(iv) ∂∗E := Ω \ (int∗E ∪ ext∗E) the measure-theoretic boundary of E.

For a detailed discussion of these sets and their properties we refer to the mono-
graphs [1] and [11].

3. Statement of main theorems

Let Ω ⊂ Rn be a bounded open region, α > 0 fixed, and u ∈ BV 1+α
+ (Ω) a

bounded local minimizer of the functional F in the class BV 1+α
+ (Ω).

Remark. The existence of minimizers in this class with given boundary values ψ ∈
L1+α(∂Ω) was proved in [2]. More precisely, it was shown that there exists a
minimizer u of

F(u) +
1

1 + α

∫
∂Ω

|u1+α − ψ1+α| dHn−1

in the class BV 1+α
+ (Ω). There it was also shown that such minimizers obey a weak

maximum principle, ||u||∞,Ω ≤ ||ψ||∞,∂Ω, which justifies our assumptions on the
boundedness of local minimizers.

Then the following two theorems hold:

Theorem 1. There exists a set S ⊂ Ω with dimH(S) ≤ n − 6 such that u ∈
C0(Ω \ S), as well as an open set R ⊂ Ω, which is identical to {u > 0} up to a set
of Lebesgue measure 0, such that u ∈ Cω(R). In addition we have u1+α ∈W 1,1(Ω)

and also u ∈W 1,1
loc (Ω).

Theorem 2. The set {u = 0} has locally finite perimeter in Ω and fulfills the
inequality

(6)
∫

Ω

|Dχ{u=0}∩E | ≤
∫

Ω

|DχE | −
∫
E∩{u>0}

α

u
√

1 + |Du|2
dx

for all Caccioppoli sets E ⊂⊂ Ω. If in addition {u = 0} ⊂⊂ Ω is known, we have

(7)
∫

Ω

|Dχ{u=0}| ≤
∫

Ω

|Dχ{u=0}∪E | −
∫
E∩{u>0}

α

u
√

1 + |Du|2
dx,

for all Caccioppoli sets E ⊂⊂ Ω, i.e. {u = 0} is mean convex in Ω.
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Remark. Note that Theorem 2 in particular implies the local integrability of the
mean curvature of the graph of the positive part of u,

αχ{u>0}

u
√

1 + |Du|2
,

4. Proof of Theorem 1

The proof requires the following regularity theorem by Bemelmans and Dierkes
[2].

Theorem 3 (Bemelmans, Dierkes). Let u be a local minimizer of F . Then, setting
Q := Ω × R+ and U := {y = (x, z) ∈ Ω × R : z ≤ u(x)}, FU ∩ int(Q) is an
analytic hypersurface in int(Q) and the set sing(∂U) := ∂U \ FU is compact in
every half-space of the type {z > δ}, δ > 0. In addition, the following holds:

(i) sing(∂U) = ∅ if n ≤ 6.
(ii) sing(∂U) is locally finite in int(Q) if n = 7.
(iii) Hn−7+γ(sing(∂U)) = 0 for all γ > 0 if n > 7.

The formulation of Theorem 3 given above somewhat differs from the one in [2]
where without loss of generality only the case α = 1 is considered.

In [2], the continuity of u in the case n ≤ 6 was immediately inferred from
Theorem 3. For n ≥ 7 we have

Proposition 1. Let u ∈ BV 1+α
+ (Ω) ∩ L∞(Ω) be a bounded local minimizer of F .

Then there exists a set S ⊂ Ω with dimH(S) ≤ n − 6, such that u ∈ C0(Ω \ S).
Additionally, there exists an open set R ⊂ Ω, with |{u > 0}∆R| = 0 and u ∈ Cω(R).
Finally we have u1+α ∈W 1,1(Ω).

Proof. We set

Ωδ := {x ∈ Ω : ∃z > δ ((x, z) ∈ ∂U)}

and define

Rδ := {x ∈ Ωδ : ∀z > δ ((x, z) ∈ ∂U ⇒ (x, z) ∈ FU)}

and Sδ := Ωδ\Rδ. Then dimH(Sδ) ≤ n−6, because Sδ = proj((∂U\FU)∩{z > δ}),
where proj : (x, z) 7→ x denotes the orthogonal projection of Rn+1 onto Rn.

At first we will show the following: If x0 ∈ Rδ, then there exists one and only
one z0 > 0 with (x0, z0) ∈ ∂U . Because if there existed another z1 > 0 with
(x0, z1) ∈ ∂U , then because of the definition of U the line g = (x0, z0)(x0, z1) would
be a subset of ∂U and since x0 ∈ Rδ, g ∩ {z > δ} ⊂ FU . But since FU is analytic,
g must then extend to infinity, a contradiction to the boundedness of u. Thus there
exists only one such z0.

Now we define R := R0 =
⋃
δ>0Rδ and set S := S0 = proj((∂U \FU)∩{z > 0}),

so that Ω0 = S ∪ R. In the following we will pick a representative of u that is
uniquely defined in Ω \S by the choice of U as a representative with the regularity
properties of Theorem 3.
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Next we show that u is continuous in R. Suppose on the contrary that for a
point x0 ∈ R,

u(x0) := lim sup
x→x0

u(x) > lim inf
x→x0

u(x) =: u(x0),

then also, because ∂U is closed, (x0, u(x0)) ∈ ∂U and (x0, u(x0)) ∈ ∂U , in con-
tradiction to what has been shown above, so that u is in fact continuous in x0.
Obviously we may use the same argument to prove the continuity of u in Ω \ Ω0,
since for every x0 in this set only the point (x0, 0) lies in ∂U . On the whole we get
u ∈ C0(Ω \S). This immediately implies |Dju1+α|(Ω) = |Dju1+α|(S) = 0 using [1]
(3.90).

It will now be shown that R is open. Because Rδ = Ωδ \ Sδ and Sδ is again
compact as the image of a compact set under projection, Rδ is relatively open
in Ωδ. We shall prove indirectly that Rδ ⊂ int Ωδ. Assume that there was an
x0 ∈ ∂Ωδ ∩ Rδ. Then there would exist only one z0 > δ with y0 = (x0, z0) ∈ ∂U .
Furthermore there would be a sequence of points xj ∈ Ω \ Ωδ with

lim
j→∞

xj = x0 und lim sup
j→∞

u(xj) ≤ δ.

However, this is a direct contradiction to the continuity of u in x0 ∈ R and u(x0) =

z0 > 0. So we have in fact Rδ ⊂ int Ωδ. Since Rδ is relatively open in Ωδ, it must
be open in Ω. Then as a union of open sets R must be open as well.

Inside this open set R we may apply the argument of [2] Theorem 14, which yields
u ∈ Cω(R). As a consequence we get |Dcu1+α|(R) = 0. Because dimH(S) ≤ n− 6

we already have |Dcu1+α|(S) = 0 and thus combined |Dcu1+α|(Ω0) = 0. Now [1]
Proposition 3.92 says that |Dcf |({f̃ = 0}) = 0 for every f ∈ BV , where f̃ denotes
the approximate limit of f . The set {ũ = 0} is a superset of Ω \Ω0, while {u = 0}
is identical to {u1+α = 0}, so that |Dcu1+α|(Ω\Ω0) vanishes as well and this finally
implies u1+α ∈W 1,1(Ω), which finishes the proof. �

The above proposition allows for a sensible selection of representatives of the
sets {u > ε}, which we may define as

{u > ε} := {x ∈ R : u(x) > ε}

for ε ≥ 0. In other words, we choose a representative of u given by continuity in
Ω \S and defined to be 0 in S. Then we have R = {u > 0} and u is analytic where
it is positive and fulfills the mean curvature equation (3). This will be the starting
point for the following estimates.

First we need some control of the singular set S.

Lemma 1. There is a sequence of open sets Uj ⊃ S with finite perimeter,

lim
j→∞

|Uj | = 0 and lim
j→∞

Hn−1(∂∗Uj) = 0.

Proof. We have Hn−1(S) = 0, so for all j ∈ N there exists a δ = δ(j) > 0,
such that Hn−1

δ(j) (S) < 1
2j+1 , as well as a sequence of open balls Bρk,j (xk,j) with
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k=1Bρk,j (xk,j) ⊃ S, ρk,j <

δ(j)
2 and

∞∑
k=1

ωn−1ρ
n−1
k,j ≤H

n−1
δ(j) (S) +

1

2j+1

≤ 1

2j
,

where

Hn−1
δ (S) := inf

{ ∞∑
k=1

ωn−1

(
diam(Bk)

2

)n−1

:

∞⋃
k=1

Bk ⊃ S, diam(Bk) < δ

}
,

so that Hn−1(S) = limδ→0Hn−1
δ (S).

We set Uj :=
⋃∞
k=1Bρk,j (xk,j) ⊃ S and observe∫

|DχUj | =
∫
|Dχ⋃∞

k=1 Bρk,j (xk,j)|

≤ lim inf
N→∞

∫
|Dχ⋃N

k=1 Bρk,j (xk,j)
|

≤ lim inf
N→∞

N∑
k=1

∫
|DχBρk,j (xk,j)|

=

∞∑
k=1

∫
|DχBρk,j (xk,j)|

= nωn

∞∑
k=1

ρn−1
k,j

=
nωn
ωn−1

∞∑
k=1

ωn−1ρ
n−1
k,j

≤ nωn
ωn−1

1

2j

→ 0, j →∞.

The Sobolev inequality thus yields |Uj | → 0, j →∞, as well. �

We begin with our estimates.

Lemma 2. Let ε > 0 be such that {u = ε} is a smooth hypersurface and

(8) Hn−1(∂{u < ε} ∩ ∂G) = Hn−1(∂{u < ε} ∩ ∂∗Uj) = 0 ∀j ∈ N.

Also let G ⊂⊂ Ω be an open set with smooth boundary. Then there holds∫
{0<u<ε}∩G\Uj

√
1 + |Du|2 dx ≤ α− 1

α

∫
{0<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx

+
ε

α

∫
{u=ε}∩G∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1 +
ε

α
Hn−1(∂G ∩ {0 < u < ε})

+
ε

α
Hn−1(∂∗Uj),

where the sets Uj are as in Lemma 1.
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Remark. Because of Sard’s theorem and [11] Proposition 2.16, Lemma 2 holds for
almost all ε > 0.

Proof. We start by rearranging the Euler equation (2) to get√
1 + |Du|2 =

|Du|2√
1 + |Du|2

+
u

α

∆u(1 + |Du|2)−Du ·D2uDu

(1 + |Du|2)
3
2

=
α− 1

α

|Du|2√
1 + |Du|2

+
1

α
div

(
uDu√

1 + |Du|2

)
,

in {u > 0}, which we will integrate over the set {δ < u < ε}∩G\Uj , where we want
to choose δ > 0 in such a way that the level set {u = δ} is a smooth hypersurface
and additionally Hn−1(∂{δ < u < ε} ∩ ∂G) = Hn−1(∂{δ < u < ε} ∩ ∂∗Uj) = 0 for
all j ∈ N. By the remark above this holds for almost all 0 < δ < ε. On these level
sets we then have |Du| 6= 0, so that their unit normals are given by ± Du

|Du| . The
outward unit normal of G will be designated νG, the one of Uj analogously νUj .
This yields∫

{δ<u<ε}∩G\Uj

√
1 + |Du|2 dx =

α− 1

α

∫
{δ<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx

+
1

α

∫
{δ<u<ε}∩G\Uj

div

(
uDu√

1 + |Du|2

)
dx.

We may now partially integrate the second term on the right hand side to get∫
{δ<u<ε}∩G\Uj

√
1 + |Du|2 dx

=
α− 1

α

∫
{δ<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx+
1

α

− ∫
{u=δ}∩G∩ext∗ Uj

u|Du|√
1 + |Du|2

dHn−1

+

∫
{u=ε}∩G∩ext∗ Uj

u|Du|√
1 + |Du|2

dHn−1 +

∫
{δ<u<ε}∩∂G∩ext∗ Uj

uDu · νG√
1 + |Du|2

dHn−1

−
∫

{δ<u<ε}∩G∩∂∗Uj

uDu · νUj√
1 + |Du|2

dHn−1 +

∫
{δ<u<ε}∩∂G∩∂∗Uj

uDu · νG√
1 + |Du|2

dHn−1


≤ α− 1

α

∫
{δ<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx+
1

α

 ∫
{u=ε}∩G∩ext∗ Uj

u|Du|√
1 + |Du|2

dHn−1

+

∫
{δ<u<ε}∩∂G∩ext∗ Uj

u|Du|√
1 + |Du|2

dHn−1 +

∫
{δ<u<ε}∩G∩∂∗Uj

u|Du|√
1 + |Du|2

+

∫
{δ<u<ε}∩∂G∩∂∗Uj

u|Du|√
1 + |Du|2

dHn−1

 .
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This implies∫
{δ<u<ε}∩G\Uj

√
1 + |Du|2 dx ≤ α− 1

α

∫
{δ<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx

+
ε

α

∫
{u=ε}∩G∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1 +
ε

α
Hn−1(∂G ∩ {0 < u < ε})

+
ε

α
Hn−1(∂∗Uj)

and δ → 0 proves the claim. �

Lemma 3. Under the assumptions of Lemma 2 the inequality∫
{0<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx ≤ ε
∫
{u=ε}∩G∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1

+ εHn−1(∂G ∩ {0 < u < ε}) + εHn−1(∂∗Uj)

holds true.

Proof. We proceed as in the proof of Lemma 2 before, this time starting with the
equation

udiv

(
Du√

1 + |Du|2

)
=

α√
1 + |Du|2

,

which we integrate like in Lemma 2 to get∫
{δ<u<ε}∩G\Uj

|Du|2√
1 + |Du|2

dx

= −
∫

{δ<u<ε}∩G\Uj

α√
1 + |Du|2

dx−
∫

{u=δ}∩G∩ext∗ Uj

|Du|u√
1 + |Du|2

dHn−1

+

∫
{u=ε}∩G∩ext∗ Uj

|Du|u√
1 + |Du|2

dHn−1 +

∫
∂G∩{δ<u<ε}∩ext∗ Uj

uDu · νG√
1 + |Du|2

dHn−1

−
∫

∂∗Uj∩{δ<u<ε}∩G

uDu · νUj√
1 + |Du|2

dHn−1 +

∫
{δ<u<ε}∩∂G∩∂∗Uj

uDu · νG√
1 + |Du|2

dHn−1

≤
∫

{u=ε}∩G∩ext∗ Uj

|Du|u√
1 + |Du|2

dHn−1 +

∫
∂G∩{δ<u<ε}∩ext∗ Uj

|Du|u√
1 + |Du|2

dHn−1

+

∫
∂∗Uj∩{δ<u<ε}∩G

|Du|u√
1 + |Du|2

dHn−1 +

∫
{δ<u<ε}∩∂G∩∂∗Uj

u|Du|√
1 + |Du|2

dHn−1

≤ ε
∫

G∩{u=ε}∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1 + εHn−1(∂G ∩ {0 < u < ε})

+ εHn−1(∂∗Uj).

Again, letting δ → 0 proves the lemma. �
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Lemma 4. Under the assumptions of Lemma 2 there holds
αχ{u>0}

u
√

1 + |Du|2
∈ L1

loc(Ω)

as well as the estimate∫
{u=ε}∩G∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1 ≤ Hn−1(∂G ∩ {u > ε})

−
∫
{u>ε}∩G\Uj

α

u
√

1 + |Du|2
dx+Hn−1(∂∗Uj).

Proof. This time we integrate the s.m.s.e. (3) directly over the set {u > ε}∩G\Uj .
Partial integration yields∫

G∩{u=ε}∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1

= −
∫
{u>ε}∩G\Uj

α

u
√

1 + |Du|2
dx+

∫
∂G∩{u>ε}∩ext∗ Uj

Du · νG√
1 + |Du|2

dHn−1

−
∫
∂∗Uj∩{u>ε}∩G

Du · νUj√
1 + |Du|2

dHn−1 +

∫
{u>ε}∩∂G∩∂∗Uj

Du · νG√
1 + |Du|2

dHn−1

≤
∫
∂G∩{u>ε}∩ext∗ Uj

|Du|√
1 + |Du|2

dHn−1 −
∫
{u>ε}∩G\Uj

α

u
√

1 + |Du|2
dx

+

∫
∂∗Uj∩{u>ε}∩G

|Du|√
1 + |Du|2

dHn−1 +

∫
{u>ε}∩∂G∩∂∗Uj

|Du|√
1 + |Du|2

dHn−1

≤ Hn−1(∂G ∩ {u > ε})−
∫
{u>ε}∩G\Uj

α

u
√

1 + |Du|2
dx+Hn−1(∂∗Uj),

which is the estimate to be proved. A rearranging of terms gives∫
{u>ε}∩G\Uj

α

u
√

1 + |Du|2
dx ≤ Hn−1(∂G ∩ {u > ε}) +Hn−1(∂∗Uj)

≤ Hn−1(∂G) +Hn−1(∂∗Uj).

On the left hand side we may, by the boundedness of the integrand on the set
{u > ε}, let j →∞ and then, using the monotone convergence theorem, let ε→ 0,
which, because of the arbitrariness in the choice of G, proves the first part of the
lemma. �

Proposition 2. Let u ∈ BV 1+α(Ω) ∩ L∞(Ω) be a bounded local minimizer of F .
Then u ∈W 1,1

loc (Ω), {u = 0} is a set of locally finite perimeter in Ω, and we have∫
G

|Dχ{u=0}| ≤ Hn−1(∂G ∩ {u > 0})−
∫
{u>0}∩G

α

u
√

1 + |Du|2
dx

for every open set G ⊂⊂ Ω with ∂G ∈ C1. Also, if Ω is simply connected with
∂Ω ∈ C2, u ∈W 1,1(Ω) and∫

Ω

|Dχ{u=0}| ≤ Hn−1(∂Ω)−
∫
{u>0}

α

u
√

1 + |Du|2
dx,

hold. In the latter case {u = 0} has finite perimeter in Ω.
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Proof. For almost every ε > 0 we may apply lemmata 2 to 4, which together yield
the estimate

1

ε

∫
{0<u<ε}∩G\Uj

√
1 + |Du|2 dx ≤ Hn−1(∂G ∩ {u > 0})

−
∫
{u>ε}∩G\Uj

α

u
√

1 + |Du|2
dx+ 2Hn−1(∂∗Uj).2

Letting j →∞ gives

(9)
1

ε

∫
{0<u<ε}∩G

√
1 + |Du|2 dx ≤ Hn−1(∂G ∩ {u > 0})

−
∫
{u>ε}∩G

α

u
√

1 + |Du|2
dx.

By choosing ε ≥ ||u||∞, we obtain u ∈ W 1,1({u > 0} ∩ G) for every G ⊂⊂ Ω.
Now choose a sequence εj → 0 such that the level sets {u = εj} are all smooth
hypersurfaces and (8) holds. The definition

uj(x) :=

u(x), if x ∈ {u > εj} \ Uj
εj , otherwise

gives a sequence of functions uj ∈ BV (Ω) with uj → u ∈ L1(Ω). Since also∫
G

|Duj | ≤
∫
G∩{u>εj}\Uj

|Du| dx+ ||u||∞Hn−1(∂∗Uj)

≤
∫
G∩{u>0}

|Du| dx+ ||u||∞Hn−1(∂∗Uj)

≤ ||u||∞
(
Hn−1(∂G) +Hn−1(∂∗Uj)

)
,

the lower semicontinuity of the total variation with respect to convergence in L1

implies u ∈ BV (G). The argument used in the proof of Theorem 1 to show u1+α ∈
W 1,1(Ω) may be applied again here to achieve u ∈ W 1,1(G) and thus also u ∈
W 1,1
loc (Ω), since G ⊂⊂ Ω is arbitrary.
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Now we may estimate using the lower semicontinuity of perimeter, the coarea
formula, (9), and the fact that u is weakly differentiable and thus |Du|({u = 0}) = 0:

lim inf
ε→0

∫
G

|Dχ{u>ε}|

=

∫ 1

0

lim inf
ε→0

∫
G

|Dχ{u>tε}| dt

≤ lim inf
ε→0

∫ 1

0

∫
G

|Dχ{u>tε}| dt

= lim inf
ε→0

1

ε

∫ ε

0

∫
G

|Dχ{u>t}| dt

≤ lim inf
ε→0

1

ε

∫
{0<u<ε}∩G

|Du| dx

≤ lim inf
ε→0

1

ε

∫
{0<u<ε}∩G

√
1 + |Du|2 dx

≤ Hn−1(∂G ∩ {u > 0})−
∫
{u>0}∩G

α

u
√

1 + |Du|2
dx.

Since χ{u>εj} → χ{u>0} in L1, χ{u>0} ∈ BV (G) follows and because χ{u=0} =

1 − χ{u>0}, the coincidence set {u = 0} also has finite perimeter, whence the first
assertion follows. To prove the second one, we choose G = Ωδ with δ > 0, where
Ωδ denotes the set of all points x ∈ Ω with dist(x, ∂Ω) > δ. As ∂Ω ∈ C2, for
sufficiently small δ, Ωδ ∈ C2 and it follows that∫

Ωδ

|Dχ{u=0}|

≤Hn−1(∂Ωδ ∩ {u > 0})−
∫
{u>0}∩Ωδ

α

u
√

1 + |Du|2
dx

≤Hn−1(∂Ωδ)−
∫
{u>0}∩Ωδ

α

u
√

1 + |Du|2
dx.

Letting δ → 0 thus completes the proof. �

Proof of Theorem 1. Theorem 1 is now simply a combination of results from Propo-
sitions 1 and 2. �

5. Proof of Theorem 2

Corollary 1. Let {u < ε} ⊂⊂ Ω for some ε > 0. Then {u = 0} has finite perimeter
in Ω.

Proof. Choose Ω ⊃⊃ G ⊃ {u < ε} in Proposition 2. Then {u = 0} ⊂ G and thus∫
G

|Dχ{u=0}| =
∫
|Dχ{u=0}| <∞.

�



12 T. TENNSTÄDT

Proof of Theorem 2. If G ⊂⊂ Ω is an open set with ∂G ∈ C1, then according to
Proposition 2, there holds∫

G

|Dχ{u=0}|

≤
∫
{u>0}

|DχG| −
∫
{u>0}∩G

α

u
√

1 + |Du|2
dx

≤
∫

ext∗{u=0}
|DχG| −

∫
{u>0}∩G

α

u
√

1 + |Du|2
dx,

as {u > 0} = ext{u = 0} ⊂ ext∗{u = 0}. We calculate∫
{u>0}∩G

α

u
√

1 + |Du|2
dx

≤
∫

ext∗{u=0}
|DχG| −

∫
G

|Dχ{u=0}|

Since ∂G ∈ C1 and therefore ∂∗G = ∂G:

=

∫
ext∗{u=0}

|DχG| −
∫

int∗G

|Dχ{u=0}|

= Hn−1(∂∗G ∩ ext∗{u = 0})−Hn−1(∂∗{u = 0} ∩ int∗G)

= Hn−1(∂∗G)−Hn−1(∂∗G ∩ int∗{u = 0})−Hn−1(∂∗G ∩ ∂∗{u = 0})

−Hn−1(∂∗{u = 0} ∩ int∗G)

≤
∫
|DχG| −

∫
|DχG∩{u=0}|,

where we have used [11] Theorem 16.3 for the last inequality. It states that for two
arbitrary sets A and B of finite perimeter,∫
|DχA∩B | = Hn−1(∂∗A ∩ int∗B) +Hn−1(∂∗B ∩ int∗A) +Hn−1({νA = νB}),

which implies the estimate used above.
If now E ⊂⊂ Ω is an arbitrary Caccioppoli set, then according to [11] Theorem

13.8 there exists a sequence of such smoothly bounded regions Gj ⊂⊂ Ω with
χGj → χE in L1 and

∫
|DχGj | →

∫
|DχE |. For these we have∫

{u>0}∩E

α

u
√

1 + |Du|2
dx

≤ lim inf
j→∞

∫
{u>0}∩Gj

α

u
√

1 + |Du|2
dx

≤ lim inf
j→∞

(∫
|DχGj | −

∫
|DχGj∩{u=0}|

)
≤ lim
j→∞

∫
|DχGj | − lim inf

j→∞

∫
|DχGj∩{u=0}|

≤
∫
|DχE | −

∫
|DχE∩{u=0}|

=

∫
Ω

|DχE | −
∫

Ω

|DχE∩{u=0}|.
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Here we assumed that also χGj → χE pointwise a.e., which may be realized by
choosing a suitable subsequence. Also we have applied Fatou’s Lemma. To ob-
tain the last estimate we used the lower semicontinuity of perimeter together with
χGj∩{u=0} → χE∩{u=0} in L1. �

Acknowledgment. Part of this work is contained in the author’s doctoral dissertation
[12]. He would like to thank his advisor, Professor Ulrich Dierkes.

References

[1] Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego Functions of bounded variation and free discon-

tinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University
Press, New York, 2000.

[2] Bemelmans, Josef; Dierkes, Ulrich On a singular variational integral with linear growth. I.

Existence and regularity of minimizers. Arch. Rational Mech. Anal. 100 (1987), no. 1, 83–103.
[3] Ulrich Dierkes, Minimal Hypercones and C0, 1

2 Minimizers for a Singular Variational Problem

Indiana Univ. Math. J. 37 (1988), no. 4, 841-863.
[4] Ulrich Dierkes, Boundary Regularity for Solutions of a Singular Variational Problem with

Linear Growth, Arch. Rational Mech. Anal. 105 (1989), no. 4, 285-289.
[5] Ulrich Dierkes, A Classification of Minimal Cones in Rn × R+ and a Counterexample to

Interior Regularity of Energy Minimizing Functions Manuscripta Math. 63 (1989), no. 2,
173-192.

[6] Ulrich Dierkes, On the regularity of solutions for a singular variational problem, Math. Z. 225
(1997), no. 4, 657-670.

[7] Ulrich Dierkes, Singular minimal surfaces Geometric analysis and nonlinear partial differential
equations, 177–193, Springer, Berlin, 2003.

[8] Dierkes, Ulrich; Hildebrandt, Stefan; Tromba, Anthony J. Global analysis of minimal surfaces.

Revised and enlarged second edition. Grundlehren der Mathematischen Wissenschaften, 341.
Springer, Heidelberg, 2010.

[9] Ulrich Dierkes, Gerhard Huisken, The n-dimensional analogue of the catenary: existence and

nonexistence. Pacific J. Math. 141 (1990), no. 1, 47–54.
[10] Ulrich Dierkes, Gerhard Huisken, The N-dimensional analogue of the catenary: prescribed

area. Geometric analysis and the calculus of variations, 1–12, Int. Press, Cambridge, MA,
1996.

[11] Maggi, Francesco Sets of finite perimeter and geometric variational problems. An introduc-
tion to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cam-
bridge University Press, Cambridge, 2012.

[12] Tennstädt, Tobias Untersuchungen zur singulären Minimalflächengleichung. Dissertation,
Universität Duisburg-Essen, 2016.

Fakultät für Mathematik, Universität Duisburg-Essen, 45127 Essen, Germany

E-mail address: tobias.tennstaedt@uni-due.de



IN DER SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK ZULETZT ERSCHIENENE 
BEITRÄGE: 
 
Nr. 769: Mali, O., Muzalevskiy, A., Pauly, D.: Conforming and Non-

Conforming Functional A Posteriori Error Estimates for Elliptic 
Boundary Value Problems in Exterior Domains: Theory and 
Numerical Tests, 2013 

Nr. 770: Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym- 
DevCurl-Inequalities for Incompatible Square Tensor Fields with 
Mixed Boundary Conditions, 2013 

Nr. 771: Pauly, D.: On the Maxwell Inequalities for Bounded and Convex 
Domains, 2013 

Nr. 772: Pauly, D.: On Maxwell's and Poincaré's Constants, 2013 
Nr. 773: Fried, M. N., Jahnke, H. N.: Otto Toeplitz's "The problem of 

university infinitesimal calculus courses and their demarcation 
from infinitesimal calculus in high schools" (1927), 2013 

Nr. 774: Yurko, V.: Spectral Analysis for Differential Operators of 
Variable Orders on Star-type Graphs: General Case, 2014 

Nr. 775: Freiling, G., Yurko, V.: Differential Operators on Hedgehog-type 
Graphs with General Matching Conditions, 2014 

Nr. 776: Anjam, I., Pauly, D.:	Functional A Posteriori Error Equalities 
for Conforming Mixed Approximations of Elliptic Problems, 2014 

Nr. 777: Pauly, D.: On the Maxwell Constants in 3D, 2014 
Nr. 778: Pozzi, P.: Computational Anisotropic Willmore Flow, 2014 
Nr. 779: Buterin, S.A., Freiling, G., Yurko, V.A.: Lectures on the Theory 

of entire Functions, 2014 
Nr. 780: Blatt, S., Reiter. Ph.: Modeling repulsive forces on fibres via 

knot energies, 2014 
Nr. 781: Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-

logarithmic strain energy. Part I: Constitutive issues and rank-
one convexity, 2014 

Nr. 782: Neff, P., Münch, I., Martin, R.: Rediscovering G.F. Becker's 
early axiomatic deduction of a multiaxial nonlinear stress-
strain relation based on logarithmic strain, 2014 

Nr. 783: Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A 
unifying perspective: the relaxed linear micromorphic continuum, 
2014 

Nr. 784: Müller, F.: On C1,1/2-regularity of H-surfaces with a free 
boundary, 2014 

Nr. 785: Müller, F.: Projectability of stable, partially free H-surfaces 
in the non-perpendicular case, 2015  

Nr. 786: Bauer S., Pauly, D.: On Korn's First Inequality for Tangential 
or Normal Boundary Conditions with Explicit Constants, 2015 

Nr. 787:  Neff, P., Eidel, B., Martin, R.J.: Geometry of logarithmic 
strain measures in solid mechanics, 2015 

Nr. 788: Borisov, L., Neff, P., Sra, S., Thiel, Chr.: The sum of squared 
logarithms inequality in arbitrary dimensions, 2015 

Nr. 789: Bauer, S., Pauly, D., Schomburg, M.: The Maxwell Compactness 
Property in Bounded Weak Lipschitz Domains with Mixed Boundary 
Conditions, 2015 

Nr. 790: Claus, M., Krätschmer, V., Schultz, R.: WEAK CONTINUITY OF RISK 
FUNCTIONALS WITH APPLICATIONS TO STOCHASTIC PROGRAMMING, 2015 

Nr. 791: Bauer, S., Pauly, D.: On Korn's First Inequality for Mixed 
Tangential and Normal Boundary Conditions on Bounded Lipschitz-
Domains in RN, 2016 

Nr. 792: Anjam, I., Pauly, D.: Functional A Posteriori Error Control for 
Conforming Mixed Approximations of Coercive Problems with Lower 
Order Terms, 2016 

Nr. 793: Herkenrath, U.: "ARS CONJECTANDI" UND DIE NATUR DES ZUFALLS, 
2016 

Nr. 794: Martin, R. J., Ghiba, I.-D., Neff, P.: Rank-one convexity 
implies polyconvexity for isotropic, objective and isochoric 
elastic energies in the two-dimensional case, 2016 



Nr. 795: Fischle, A., Neff, P.: The geometrically nonlinear Cosserat 
micropolar shear-stretch energy. Part I: A general parameter 
reduction formula and energy-minimizing microrotations in 2D, 
2016 

Nr. 796: Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified 
indeterminate couple stress model: Why Yang et al.'s arguments 
motivating a symmetric couple stress tensor contain a gap and 
why the couple stress tenso may be chosen symmetric nevertheless, 
2016 

Nr. 797: Madeo, A., Ghiba, I.-D., Neff, P., Münch, I.: A new view on 
boundary conditions in the Grioli-Koiter-Mindlin-Toupin 
indeterminate couple stress model, 2016 

Nr. 798: Claus, M.: ON STABILITY IN RISK AVERSE STOCHASTIC BILEVEL 
PROGRAMMING, 2016 

Nr. 799: Burtscheidt, J., Claus, M.: A Note on Stability for Risk Averse 
Stochastic Complementarity Problems, 2016 

Nr. 800: Pauly, D., Picard, R.: A Note on the Justification of the Eddy 
Current Model in Electrodynamics, 2016 

Nr. 801: Pauly, D., Yousept, I.: A Posteriori Error Analysis for the 
Optimal Control of Magneto-Static Fields, 2016 

Nr. 802: Zimmermann, A.: Martingale solutions for a pseudomonotone 
evolution equation with multiplicative noise, 2016 

Nr. 803: Tennstädt, T.: MEAN CONVEXITY OF THE ZERO SET OF SYMMETRIC 
MINIMAL SURFACES, 2016 

 


