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Abstract

Let (Q, F,P) be a complete, countably generated probability space, T > 0, D C R?
be a bounded Lipschitz domain, Qr := (0,7) x D and p > 2. Our aim is the study of
the problem

du — div(|Vu|P"2Vu + F(u)) dt = H(u) dW in Q x Qr
(P)su=0 on Q x (0,T) x dD
u(0,-) = uo € Wy (D) inQxD

for a cylindrical Wiener process W in L?(D) with respect to a filtration (F) satisfying
the usual assumptions and F' : R — R? Lipschitz continuous. We consider the case
of multiplicative noise with H : L*(D) — HS(L?*(D)), HS(L?*(D)) being the space of
Hilbert-Schmidt operators, satisfying appriopriate regularity conditions. By an implicit
time discretization of (P), we obtain approximate solutions. Using the theorems of
Skorokhod and Prokhorov, we are able to pass to the limit and show existence of
martingale solutions. Using an argument of pathwise uniqueness, we show existence
and uniqueness of strong solutions.

Keywords: pseudomonotone problem, multiplicative noise, cylindrical Wiener process,
martingale solution, pathwise uniqueness, strong solution

AMS Classification: 35K92, 35K55, 60H15

1 Introduction

Let (92, F, P) be a complete, countably generated probability space (for example the classical
Wiener space), D C R? be a bounded Lipschitz domain, 7' > 0, Q7 := D x (0,T) and p > 2..
For a separable Hilbert spaces U, H, we denote the space of Hilbert-Schmidt operators from
U to H by HS(U;H). We are interested in existence and uniqueness of a solution to

du — div(|Vu|P2Vu + F(u)) dt = H(u) dW  in Q x Qr
u=0 on Q2 x (0,T) x 9D
u(0,) =ug € WyP(D) (1)

for F: R — R9 Lipschitz continuous. We will give the precise assumptions on H : L?(D) —
HS(L?(D)) in the next section. W (t) is a cylindrical Wiener process with values in L?(D)
with respect to a filtration (F;) satisfying the usual assumptions. More precisely: Let
(en)nen be an orthonormal basis of L?(D) and (8, (t))nen & sequence of independent, real-
valued brownian motions adapted to (F;). We (formally) define

W(t) = enfnl(t). (2)

n=1
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It is well-known that the sum on the right-hand side of (2) does not converge in L?(D),
therefore we have to give a meaning to (2) following the ideas of [8] and [18]: For u =

Yoo June, and v =37 vpe,

o

UnV.
(U7U)U = Z%

n=1

is a scalar product on L?(D). Now we define the (bigger) Hilbert space U as the completion
of L?(D) with respect to the norm || - ||y induced by (-,-)y7. It is then easy to see that (ne,,)
is an orthonormal basis of U. Note that

ad 1

Z enﬁn Z E ’/l@n ﬁn (3)

and therefore W (t) can be interpreted as @-Wiener process with covariance Matrix Q =
diag(-%;) with values in U. Since Q2 (U) = L%(D), for all square integrable and predictable
®:Q x (0,7) - HS(L?(D)) the stochastic integral with respect to the cylindrical Wiener
process W (t) can be defined by

/Otcpdw = Z/ (en) dBn

n=1

1
= Z/ O(— - ney,) dB,
n=1"0 "
0ot
= Y [@0Q () din o
n=1"0
Since ® 0 Q2 € HS(U; L2(D)),
0ot
> [ 20" 2(0ne,) 5, € L@ (0T LA (D)).
n=170
In particular, for all n € N, ®(e,,) € L2(Q2 x (0,T); L?(D)) is predictable process, i.e. ®(e,,)
is Py /B(L?(D))-measurable where Pr is the predictable o-field on Q x (0,T) generated by
(s,t] x A, 0<s<t<T, AeF,.

1.1 Strong and martingale solutions

In the theory of stochastic evolution equations two notions of solutions are typically consid-
ered for equations with multiplicative noise namely strong solutions and martingale solutions.
A strong solution to (1) is defined as follows:

Definition 1.1. A solution to (1) is a predictable process u : Q x [0, T] — L?*(D) with a.e.
paths ,
u(w,-) € C([0, T W=7 (D)) N L*(0,T; L*(D)),

such that u € LP(Q; LP(0,T; W, *(D))), u(0, ) = ug in L*(D) and

¢ ¢
u(t) —ug — / div(|VulP2Vu + F(u)) ds = [ H(u) dW,
0 0

in L?(D) for all t € [0,T), a.s. in .



Remark 1.1. According to [24], Lemma 1.4, p.263,
w(w,-) € C([0,T); W~ (D)) N L>®(0,T; L*(D)) a.s in

mmplies
u € Cy ([0, T]; L*(D)) a.s. in Q

where Cy, ([0, T]; L?(D)) denotes the Bochner space of weakly continuous functions with values
in L?(D). Therefore, u(t) is in L2(D) for all t € [0,T] and u is a stochastic process with
values in L*(D).

In the former definition, the probabilistic quantities (£, F, P), (F;) and W are fixed. In
many cases, it is necessary that (2, F, P), (F;) and W enter as unknowns into the problem,
for example, if one uses the theorems of Prokhorov and Skorokhod to obtain a.s convergence
of approximative solutions. More precisely,

Definition 1.2 (see, e.g. [8], [9], [11]). We say that (1) has a martingale solution, iff there

exist a probability space (), F, P), a filtration (F;), a cylindrical Wiener process W and a
predictable process u : Q x [0,T] — L*(D) with a.e. paths

u(w,-) € ([0, T); W=7 (D)) N L>(0,T; L*(D)),

such that u € LP(Q; LP(0,T; W, *(D))), u(0, ) = ug in L*(D) and
¢ ¢ o
u(t) — g — / div(|VulP2Vu + F(u)) ds = / H() diV (5)
0 0
holds in L*(D) for allt € [0,T], a.s. in Q.

1.2 Main results and outline
Our aim is to prove the following results:

Theorem 1.1. For any ug € Wy*(D) and any H : L*(D) — HS(L*(D)) as defined in
Section 2 there exists a martingale solution to (1).

Theorem 1.2. For any ug € Wy*(D) and any H : L*(D) — HS(L*(D)) as defined in
Section 2 there exists a unique strong solution to (1).

The proof of Theorem 1.1 is based on a approximation procedure by an implicit time
discretization corresponding to (1), which will be introduced in Section 3.1. Since there is a
lack of compactness with respect to w € €2, we use the theorems of Prokhorov and Skorokhod
to get a.s. convergence of a sequence of approximate solutions (@) to a measurable function
Uso ON a new probability space (€, F, P) (see Subsection 3.4). Passing to the limit we have
to face two different difficulties: Firstly, we have to show that the limit of the stochastic
integrals is a stochastic integral with respect to a cylindrical Wiener process defined on a
possibly enlarged probability space. This can be done using the martingale representation
theorem from [8]. Secondly, since weak convergence is not compatible with nonlinear oper-
ators, we have to identify the weak limit of |Vuy|[P~2Vuy with |Vie|P 2Vus. Once we
have identified the stochastic perturbation at the limit, we may use the Itd6 formula for the
identification of the nonlinearity. Subsection 3.5 is devoted to the solution of these two prob-
lems. The proof of Theorem 1.2 is contained in Section 4. We adapt the argument of [14]:
Firstly, we prove uniqueness of solutions (see Proposition 4.1) and secondly we construct
two sequences of approximate solutions which converge on the same probability space. We
adapt the technique of [17], [6], [5] (see also [15], [16], [3]) and advoid the application of the
martingale representation theorem.



2 Technical assumptions
For an orthonormal basis (e,,) of L?(D), u € L?(D) let us define

H(u)(en) = {2 = hn(u())},

where, for any n € N, h,, : R — R is a Lipschitz continuous function such that h,(0) =0
satisfying

(H1) There exists C7 > 0 not depending on p, A such that
Z [in ( n(W)? < CLA = pf?

for all u, A € R.
(H2) There exists Cy > 0 such that

oo
i < Co.
n=1

For example, h,,(\) = a,A or h,(A\) = a,sin(\) with n € N and (a,,) € [*(N) are satisfying
(H1) and (H2). In particular for any u € L?(D) thanks to (H1) we have

sz = SN = [ S I de

ClllUHsz) (6)

and herefore H(u) is a Hilbert-Schmidt operator in L?(D) and H : L?(D) — HS(L?(D)) is
continuous. Thanks to (H2), we also have the following result:

IN

Proposition 2.1. H : W, *(D) — HS(L*(D); H} (D)) is continuous.

Proof: Let us fix (u;) C W, P(D) such that there exists u € W,”(D) with u; — u in
W,*(D) for j — co. Then,

1 () = H (u) 352y Z 1 (1) = P () 3.

3 /D W ()9 () + V(B () — B ()2 . (7)

We can extract a not relabeled subsequence (u;) such that |Vu;| < gae. in D forall j € N
and some g € LP(D) and
uj —» U,

Vu; = Vu

for j — oo a.e. in D. For any fixed n € N, since h/, is continuous we have,
[ (1) V (g — ) + Vu(hy, (u;) — b, (w)]? = 0 (8)

for 5 — oo a.e. in D. Let C > 0 be a constant not depending on j and n that may change
from line to line. By (H2) we have

[ () V (g — w) + Vu(hi, (ug) — hy (u)[?

Clitn I3 (IVu; — Vul* + | Vul?)

COy(g* + [Vul?) 9)

IN A



and the right-hand side of (9) is in L!(D). Therefore, by Lebesgue dominated convergence
theorem,

lim |hL, (u;)V (uj —u) + Vu(hl (u;) — bl (u))]* dz =0 (10)

j— Jp

for every n € N. Since such a subsequence with can be extracted from every subsequence of
(uj), (8) holds for the whole sequence (u;). In particular, for any N € N, we have

N
Jim ; /D I ()Y (1 — ) + Va(l, (u;) — b ()2 da = 0. (1)

Jj—oo

Let us fix ¢ > 0. For any N € N, we have

Tg/D [ (5)V (5 = ) + Vo, () = Ry (w))[”

< Y4 / L1219 (= )2 + 4|Vl |12, da
n=N D
< 3 16 (/D V(g — ) + |Vuf? dx). (12)

n=N

By (H2),
D IR < oo,
n=1

thus there exists Ny € N such that
dolbli <e
n=N

for all N > Ny. Therefore, now we get

-3 / 11 () (a5 — 1) + V(B () — B ()2
+ o, (u;)V(u; — u) + Vu(h — h,(w)]? dz
n_%oj+1/D| () ¥ (. — 1) + VB () — By ()

No
<y /D W (43)V (a1 — ) + Vel (1) — B () ?

+ € </ IV (u; —w)|? + |Vul? dx) (13)
D
using (11) in (13) now it follows that

lim || H (u;) — H(“)H%IS(LZ(D);H(%(D)) =0. (14)

j—oo



In particular, for any u € LP(Q x (0, T); W, *(D)), using (H2) we get

T
E/O 1H ()57 5L2 (s 0y U

T/ p/2
= E/O (2—:1 ||hn(u)||§13(D)> dt
T / o0 p/2
< E/ Znh;nz/ |Vu|? da
0o \,— D

T
< acE [ |valydi (15)
0
where C}, > 0 is a constant which is independent of u.

3 Proof of Theorem 1.1

3.1 Time discretization

For N e Nlet 0 =ty < t; < ... <ty =T be an equidistant subdivision of the interval
[0,T) with 7 := T/N = tp11 —ty forall k =0,..., N — 1. For ug € L?(D), we introduce the
implicit Euler scheme

uFt — b — 7 div(|VeP P2V 4 F(uPT) = H(uP) AR W (16)
with Ak+1W = W(tk+1) - W(tk) for k = 0, PN ,N — 1.

Remark 3.1. Since A1 W takes values in the Hilbert space U, we have

tht1
/ H(uk) dw =

tr

= nen)(ﬂn(tkﬂ) Bn(tk))

1

Q7 (nen)(Bn(te+1) — Bn(te)) (17)

i

forallk =0,...,N — 1. Since H(u*) o Qs € HS(U; L*(D)), the last expression converges
in L?(Q;C([0,T]; L3(D))). Therefore we will use the formal notation

trt1
Hu*) A W = / H(uF) dW = H(u") o Q2 (W (ty1) — W (te)).
t

Lemma 3.1. For any k =0,...,N — 1 and any ug € L*(D) there exists a unique, Ftrs1-
measurable function w1 : Q@ — W'P(D) such that for a.e. w € Q

uFt — b — 7 div(|VeP P2V 4 F(uPTY) = H(uF) A W (18)
in L*(D).

Proof: We fix 7 > 0. Since p > 2, the operator A : Wol’p(D) — W‘l’p/(D) defined by
(Ar W), Vb1 oy gy = (0 +7 [ (V9w Flw) - Vo da

for u, v € WO1 "P(D) is a pseudomonotone operator and therefore, by Brezis’ theorem, A is

onto W~17'(D).
In order to show that A, is injective, we fix f € W~ (D) and assume that uj, us are two



solutions to A,u = f in W~1#' (D). Then we take v = sign; as a test function, where signs
is a Lipschitz continuous approximation of the sign function and obtain u; = us by passing
to the limit when § goes to 0.

It is left to show that A7 : W~=1¢ (D) — Wy (D) is continuous. For f € W~ (D) and
u such that A, (u) = f, using the Gauss-Green theorem on the convection term we get

T ’
13 + 71V ully = (w10 oy wirpy < SIVUIE+ColF I ar ) (19)

Let (f,) € W=2#'(D) be a sequence converging to f in W12 (D). For for all n € N, we
define

Uy = A7 (f). (20)
From (19) it follows that there exists a not relabeled subsequence of (u,), u € Wy?(D) and
B in L” (D)% such that u, — u in Wy?(D), u, — u in LP(D) and |Vu,[P~2Vu, — B in
o () for n — oco. Using these convergence results and (20), we get

Jull2 + 7 limsup / T [PV, - Vu, di
n—oo D

= (L Ww-rw )win (D)

= Hu||§+7’/ B - Vu dz, (21)
D
thus from (21) it follows that

lim sup (A(un), uy — u>w—1,p/ (D),Wk?(D)
n—oo

= limsup/ |V, P2V, - Vu, dm—/ B -Vu dx
D D

n—oQ

-0 (22)

and since A, is pseudomonotone, (22) implies A,u = f. In particular, B = |Vu[P~2Vu and

lim / |[Vu — Vu,|P dz
D

n—oo

< or2 limsup/ (|Vun P2V, — [VulP~2Vu) - V(u, — u) dx
D

n— oo

_ (23)

From (23) it follows that our not relabeled subsequence (u,) converges strongly to w in
WP (D) for n — co. Since u is unique it follows that the whole sequence (u,) converges to
w in Wol’p(D) for n — oo and A;! is continuous.
Since, for all k=0,...,N — 1,
uF —uF 7 — div(| Ve T PPV PP = H(uM) A W
& upy = AT HWR) A W+ ub), (24)

T

and the argument on the right-hand side of (24) is 73, , -measurable assuming that uF is
Fi,-measurable, the assertion follows by induction.

3.2 Estimates
Lemma 3.2. Forug € L?>(D), and k =0,1,...,N —1 let u**! be a solution to (16). Then,

1 1
32 (104 B = IF13) + Bt =B+ [ Vaip o

< TE|H M) Fs22(py) (25)



k+1

Proof: Taking the L?-scalar product with u in (16), we get

R = () — r(div((Va PV Fh), ),

= (HW")ApWub ),
<~ 11+I2+I3:I4 (26)
where
1

L= T = e = 5 (B — e I+ et = wt)3))
I, := 7'/ \Vuk+1|p dx,

D
I; = 7'/ Fu*)Vurt do =0,

D

I4 (H(uk)Ak_,_lVV, uk+1 - uk)g + (H(Uk)Ak+1W, ’U,k)g.

Taking expectation on both sides of (26) we arrive at
1
3B (I3 = b3+ o = 43) + 7 [ (9 do
D
= E(HW") AW, u T —ub)y + B(H (u*) Ap i W, u?)s. (27)

Since uy, is Fi,-measurable and W (ty41) — W (tx) is Fy, -independent, we have

E(H(u")Ap1W,u")s = EE [(H(Uk) °© Ql/Q(W(tml) - W(tk)),uk)2 ]]-"tk]

- E(uk,E /tkHH(uk) detkD =0. (28)

ty
Using Holder and Young inequality it follows that for any a > 0

E(H(u?) Mg WuM T — )y < B(|@rAp i Wlla - [ — o)
2

-l-aEHuk'Irl —ukH% (29)
2

tht1

! H(u®) dw

< Hle
T 2\« th

By It6 isometry and for o = £ from (29) it follows that

B(HuP)Ap W, ulf Tt — o)

tht+1 1
< B[ IH@ sy d+ GBI - B
tr
1
= TEHH(uk)”%{S(L%D)) +ZE||UH1 —u¥|l3 (30)

and therefore we arrive at

1
5B (I 113 = b3 + ot = u3) + 7B /D VUt da
1
< TEIHWM sy + 7B — a3, (31)

hence (25) holds.



Definition 3.1. For N € N, 7 > 0 we introduce the right-continuous step function

N-1

UN(t) = Uk+1X[tk’tk+1)(t)7 t e [O,T],
k=0

the left-continuous, Fi-adapted step function

N-1

U X (i) () 1 € (0,71, ur(0) = up,
k=0

the continuous, square-integrable Fi-martingale
t
By() = [ Hiur) aW, e 0.7
0

and the piecewise affine functions

-1 +1 k
UN = Z ( t_ tk) + k) X[tk,tk+1)(t), te [O,T), ﬂN(T) = uN7

k=0

Nz_:l <BN(tk+1) — By (tx)

T

Ba(t) = (t—to) + Bwk)) Nt (), t€ 0,71,

k=0

Lemma 3.3. There exists a constant K > 0 not depending on the discretization parameters

such that
max |[lu"[|5 < K,
=1,...,.N

yeeey

=

Blluf* = uf||3 < 4K + 2]uo|3.
0

In particular, by (H1) there exists K(C1, Ca, ||uo|,T) > 0 such that

>
Il

T
E / 1 H () 21022yt < K (Ch, oy o], T).

Moreover we have

E sup |unl; =E sup |lun]3 < K,
te[0,7] te[0,T]

1
E/ / Vun|? dz dt < K + ~|Juo|2.
0 D 2

Proof: We fix n € {1,..., N}, take the sum over 0,...,n — 1 in (25) to get

n—1

1
*E|| "I - E||Uo||2 42:1’3||Uk+1 k||2+ZTE/ [Vu P da
k=0
n—1
< ZTEHH(uk)H?{S(L?(D)) ds
k=0
Discarding nonnegative terms by (H1) it follows that
n—1
E||u"||2 < Elluon + ) CirEl|u®||3
k=0

(32)

(33)



Applying the discrete Gronwall inequality in (38) yields
Bllu"|3 < [luol3e** (39)

and (32) follows from (39) with K := |jug|3e2“*T. Now (33) follows from (32) and (37) by
taking n = N and keeping the nonnegative term

n—1
1
T3 Bl - a3
k=0
(34) is a direct consequence of (H1) and (32). Moreover,

E sup |in|3=FE sup |uyll3 <E max [u*]3 < K. (40)
te[0,T] te[0,T) k=1,..,N

Finally, (36) follows now from (37) and (32) by keeping the nonnegative term 31—} 7E [ o [Vuk P da
and taking n = N.

Lemma 3.4. There exists C > 0 not depending on N € N such that
E/ 19 i = By

< C < / unll3 + [Vunlh dt + 1) ) (41)
0

Proof: For all ¢t € (tg,tg41), and all k =0,...,N — 1

d uFtl — b — H(uF)Ap W
- B =
dt —(un N) -
= div(|VuF T P2 vt ¢ Fuf ). (42)

Since p > 2, there exists a constant C' > 0 not depending on N € N that may change from
line to line such that

H*(UN BN)HW—LP'(D)

sup / [|Vuk+1 P2Vt 4 F(ukﬂ)} Vo dx
<1Jp

llell waP(D)=
< sw (Ve el, + IF W) ] Vel
HSDHWI,p(D)Sl
0
< s (VeGP Vel )
el 1,0y <1
0
< IVaET [ F (43)

Therefore, for p’ < 2, L > 0 the Lipschitz constant of F'

’

/ _ P
||—<uN By < (Ve 5+ CIP@™ )
< 2(|VuFHE 4+ CL|u R
< 2|V £ O+ |ut Y R).

Hence

/O 15 iy = BT,y

N-1 N-1
< 27y Vet p 4o (1 ) Iu“ll‘é‘) :

k=0 k=0

10



and

’

T g _
e p
B[ G = Byl

N-1 N-1
< 27 Y BV P+ O+ 7Y Elutt3)
k=0 k=0
<

T
¢ (E/ lun |3 + [IVun b dt + 1) :
0

From Lemma 3.3 and Lemma 3.4 we get

Lemma 3.5. There exists a constant C' > 0 not depending on N € N such that

T
d =
— — , <C.
B [ G = Bl < C (14
Lemma 3.6. For T >0, N € N we define an equidistant subdivision of [0,T] by
O=to<ti <...<ty=T

with T = % =tgp1—tg fork=0,...,N—1. Let K, H be separable Hilbert spaces and W be
a Wiener process in KC with covariance operator Q. For a Fi, -measurable random variable
®y, with values in HS(QY?(K),H) we define the left-continuous, F;-adapted process

N—-1
P, = Z chX(tk7tk+1]'
k=0

For any p > 2, there exists constants v > 0 and C, > 0 not depending on N € N and an
integrable, real-valued random variable X such that

S
sup sup ||/ O dW ||y
k€{0,....N—1} s€[tx,trt1] th

< Cy17 ( sup TH(I)kHZ;{s(/c ) T 1+ X) :
ke{o,...,N—1} ’

Moreover, there exists a constant C' > 0 such that
E(X) < Ctr(Q). (45)

Proof: Let us fix s € [tg, tg+1] and k € {0,..., N — 1}. Then we have
I [ 0 Wl < 1@lmscean W () = Wt
k

Now, from [13], [23, Ex. 2.4.1] (see Lemma 5.6 in the Appendix) for any ¢ > 1 and « > %
it follows that

W (s) = W (t)llx

1/q
t t q
caggon ([ [ IO WO,
' t ty ‘t - Tlaq+

T T a
Cé/gTafl/q / / ”W(t) — W(T)HqIC dt dr
’ o Jo |t — 7ot

1 ~1/q 31
— Ca{gTa laxt/a (46)

IN

IN

11



where

T rT o q
xo [ [ OO,
o Jo [t —rfeatt

is a real-valued random variable. Thus,

sup sup || [ @ dW|n
ke{0,...,N—1} s€[tx,trt1] th
< sup sup || Pxllmsic ) [W(s) — W(t)llx
ke{0,...,N—1} s€[tr,tr+t1]
< < sup q)k|HS()C,’H)> sup sup  [[W(s) — W(tk)|lx
ke{o,....N—1} ke{0,....,N—=1} s€[tw,tr1]

and from (46) it follows that

bup sup H/ O dW ||y
ke{0,..., —1} s€[tr,trt1]
S Cé’/qu“ 1/QX1/q sup ||(b]€HHS(K:H)
ke{0,...,N—1}
= Céﬁ?f“””’”( sup Tl/pH(I)kHHS(IC,H)Xl/q>
ke{0,...,.N—1}
< Ci,/gTafl/qfl/p ( sup TH(I)k”I;IS(lC,H) + X /q>

ke{0,...,N—1}

< C«(ly)/gTa—l/fI—l/P ( sup T”q)kH?{S(KZ,H) +1+ X)
ke{0,...,N—1}

where ¢ > 1 is such that

vi=a—1/g-1/p>0, p'/g<1.

E|[W (1) ~ W ()
dt dr.
/ / R

W(t) = W(s) ~N(0,Q(t - s)),
it follows that there exists C; > 0 such that

Moreover,

Since

E|W(#) = W(r)[lf < Catr(Q)]t — |2,

and one gets, choosing ¢ such that ¢ >p > 2 and a € (% + é, %)
T T
lﬂX)gOﬁdQ%/ / |t — 7|92 gt dr =: Ctr(Q).
0 0
3.3 Regularity of approximate solutions

Lemma 3.7. There exists a constant K1 > 0 not depending on the discretization parameters
such that

T
EAIW%M%Wwwwmﬁsm. (47)
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Proof: We fix an orthonormal basis (e, ) C L?(D). Then,

T
E / V)2 2ot oy 0= EZTHH [ p——

00 p/2
= br Z (Z [ H (u”)(en ||H1(D)> : (48)

Since, for all n € N,
1H (u®) (en) 213 oy = IV An ()13 < 115 12 IV R (u®)13, (49)
we can use (H2) to estimate

N-1 / o p/2 N-1
ErY (Z |H<u’“><en>||%,é<m> < BCYr Y Vb3
k=0

k=0 \n=1

N—-1
2
< C3*rE (Z Vuk+1||§+||vuo|g>
k=0
9 T
< CVC,E / IVunl? + | Vuol di
0

T
= Cg/QCpE/ Vun ||y dt + T[|Vuoll} dt (50)
0

where C, > 0 is a constant not depending on the discretization parameters. According to
Lemma 3.3, (36), from (50) it follows that

T
E/O I (ur) g2y 2 () 9 < K (51)

with K := max(C5/*Cp(K + [|uo|3), C5>C, | Vuo||1).

Definition 3.2. For a Banach space V, T > 0,0 < a <1 and 1 < p < oo we recall the
definition of the fractional Sobolev space (see also [1], p.111, [22] for more information):

Wa’p(ong V) = {f € Lp(07T§ V) | ||f||W‘*»P(O,T;V) < +OO}7

£ lwesozw) = i dih

Lemma 3.8. For any o € (0,1) there exists a constant C(a,p) > 0 such that

where

EH/ HU-,- dW”W“l"OTHl(D Sc(avp)Kla (52)

where K1 > 0 is defined in Lemma 8.7. In particular, [j H(u,) dW is bounded in LP(; W*P(0,T; Hy(D))).

Proof: We recall that u, is a left-continuous, F}V-adapted process with values in W1 (D)
and H : Wy ?(D) — HS(L*(D); HA(D)) is continuous. Thus, H(u,) is a left-continuous,
F}V-adapted process and therefore it is progressively measurable. From [11], Lemma 2.1.,
p-369 (Lemma 5.7 in the Appendix) it follows that there exists C(«,p) > 0 such that

Bl [ ) Wy

T
< Clap)E /O A" (53)

Now, the assertion is a direct consequence of Lemma 3.7.

13



Lemma 3.9. (By) is uniformly bounded in LP(Q:; WP(0,T; HL(D))) for any o € (0,7)
and v = % - %,

Proof: We have to verify the assumptions of Lemma [2], Lemma 3.2 (Lemma 5.8 in the
Appendix) for G = By: For any [ € {0,..., N} we have

N—I
3 B (trst) = B ) sy o
k=0

N-I tr41
= T B[ Hlu) Wiy,
k=0 b
N-—I thoil
= TN [ H X Wy (54)
k=0

We use the Burkholder-Davies-Gundy and the Hélder inequality to get

NI
T Z 1B (k1) — BN(tk)Hizp(Q;Hé(D))
k=0

IN

N-I tr41 p/2
) E (/ 1 (wr)llzrs 220yt (0 dt)
k=0 tk

N—1 T
ET Z(tk-‘rl - tk)%il (/0 ||H(UT)HI;[5'(L2(D);H3(D)) dt) . (55)
k=0

From (54) and Lemma 3.7 it follows that there exists a constant K7 > 0 not depending on
the discretization parameters such that

IA

N—-I
T Z ||BN(tk?+l) - BN(tk)”iz(Q,Hé(D))
k=0

T
2
< (N - E/O L AR—

—2
< (T+t)tf 'Ky <2TK L7 (56)
>0, and C := (2T K;)'/? from (56) it follows that

(NS

1
p
N—-I ~ ~
™3 1B () = By ()l 0,y < €71 67)
k=0

According to Lemma [2], Lemma 3.2 (Lemma 5.8 in the Appendix), from (57) it follows that
(Bn) is uniformly bounded in the Nikolskii space

N7P(0,T; LP(Q; Hy(D))) < W*P(0,T; LP(Q x Hy(D)))

with continuous imbedding for any o € (0,7) (see [1], p.111, [22]). Thanks to the Fubini
theorem this implies

BNl e @iwero,r:m1 (D)) < C
for all N € N and a constant C' > 0 not depending on N € N.

Remark 3.2. It is well-known (see, e.g. [20], Lemma 7.1, p.202 and Lemma 7.7, p.208)
that the space

d , ,
W= {v e L?(0,T; H} (D)) | TR LP (0, T; W~1P (D))}

is continuously embedded into C([0, T); W= (D)) and compactly embedded into L2 (0, T; L*(D)).

14



Lemma 3.10. There exists a constant C > 0 such that

HaNHLP(Q;LP(O,T;Wol"’(D))) + [lin — BN”LP’(Q;W) <C (58)
for all N € N.

Proof: Elementary calculations yield that there exists a constant C' > 0 not depending
on the discretization parameters such that

N
~ P S kp
Elan 0 zawirpy < CET];OHU oy 2.2y

IN

T
cw</|wW%ﬁ+w%m> (59)
0

and by Lemma 3.3 the right-hand side of (59) is bounded. From Lemma 3.9 it follows
that (By) is bounded in LP(Q; W*?(0,T; Hg(D))) for a € (0,5 — ). Thus, (iy — By) is
bounded in LP(; LP(0,T; H}(D))). Now, the assertion is a direct consequence of Lemma

3.5.

3.4 Tightness

Next, we set

X :=C([0,T]; L*(D)) x L*(0,T; L*(D)).
For N € N, we denote the law P o (uy)~! of uy on L%(0,T;L?*(D)) by ug, and the
law P o (By)~! of By on C([0,T]; L?>(D)) by ppy- Their joint law on X is denoted by
UN = (IU'BN’FLEN)'
Proposition 3.11. The sequence (g, ) is tight on L2(0,T; L?(D)) and the sequence (up, )
is tight on C([0,T); L*(D)). In particular, the sequence of their joint laws (un) is tight on
X.

Proof: For a € (0, %), the linear space
Vi={u=v+w, veW, we W*P(0,T; Hy(D))}
endowed with the norm

lulvi= it max(folw, fuwllwes)

weW*P(0,T;Hy (D)),
u=v+w

is a Banach space which is compactly embedded into L?(0,T; L?(D)) (see Lemma 5.9 in the
Appendix). Since
iy = (iiy — By) + By
for all N € N, it follows from Lemma 3.9 and Lemma 3.10 that (Zy) is bounded in L? (€; V).
Now, let us fix € > 0. For any R > 0 the set
By(R,0):=={uecV||luly < R}

is compact in L?(0,T; L?(D)). There exists a constant C' > 0 not depending R > 0, such
that for any R > 0, and any N € N

My (BV(R7 O)) = 1- Ky (B\C}(R7 O))

- 1 —/ 1dP
{we | |[anllv>R}
1 / o

> 1-— [anlly, dP
RP" Jiwea | Jawnlv>Ry
1 C

> - =Bl =1- (60)
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and from (60) it follows that we can find R, > 0 such that
piy (By(Re,0)) > 1 —¢

for all N € N.
According to [21], p.82, Corollary 2,

WP (0,T; Hy (D)) — €([0,T]; L*(D))

1
p?

Bye.r(R,0) := {u € W(0,T; Hy (D)) | ||ullwenro,r;my(py < R}

with compact imbedding for all @ € (1, 1). Thus, for any R > 0 and any a € (%, o)

is compact in C([0, T; L?(D)). By Lemma 3.8 (By) is uniformly bounded in LP(Q; WP (0, T; H} (D)))
for o € (0, %), hence there exists a constant C' > 0 not depending R > 0 such that

piy (Bwer(R,0)) =1 — ppy (Biye.r(R,0))

. C
— p -  Rp
> 1= BUBN ooy =1~

(61)
Thanks to (61), for any € > 0 we can find R, > 0 such that
wBy (Bwear(Re,0)) >1—¢.

Remark 3.3. From Prokhorov theorem (see Theorem 5.1 and 5.3 in the Appendix for ref-
erences) and Proposition 3.11 it follows that the sequence (un) = (LB, tay) 5 Telatively
compact, i.e. there exists a (not relabeled) subsequence of (un) and a probability measure
too = (pl, p2) on X, such that

lim v duny = [ by, (62)
N=oo Je((0,11:L2(D)) c([0,T);L?(D))

for all bounded, continuous functions v : C([0,T]; L*(D)) — R,

lim @ dpzy = /  d,
N=o0 Jp2(0,1;L2(D)) L2(0,T;L2(D))

for all bounded, continuous functions ¢ : L?(0,T; L?(D)) — R. In particular,

/ o duny = / o(@in) dP = Elp(an)],
L2(0,T;L2(D)) Q

/ ¥ gy = / $(By) dP = E[$(By)],
C([0,T);L?(D)) Q

hence (62) implies By Z_.ul, and (63) implies iy L u2, .

3.5 Existence of martingale solutions

Now, we use the following version of the theorem of Skorokhod (see [25], Theorem 1.10.4
and Addendum 1.10.5, p.59 and [1], Theorem 2.3, p.119-120), which can be found in the
Appendix, to conclude:

There exists a probalility space (Q, A,P), a sequence of measurable functions

on: (QF) = (Q,F), NeN
such that P = Po gb;vl for all N € N and measurable functions
(Boos o) 1 (2, F, P) = X,

having the following properties:
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i.) Un = TN 0 O — Uso in L2(0,T; L3(D)) for N — oo a.s. in Q,
ii.) By := By o ¢n — Bo in C([0,T]; L2(D)) for N — oo a.s. in
141.) L(Boo, Uoo) = fhoo-
Definition 3.3. For N € N we define Wy := W o ¢n and
¥ =uFopn, k=0,... N.

For allt € [0,T), we introduce the left-continuous function

N-1
ve(t) =Y Xt (), € (0,T], v-(0) = ug,
k=0

the right-continuous function

=

-1

on() ==Y V@), tE[0,T]
0

>
Il

and the piecewise affine function

N-1 / A A
() = 3 <BN(tk+1)T_ By (tr) (t— ) + BN(tk)> Xiteotrsn) (£), t € [0,T].
k=0

Lemma 3.12. For any N € N, Wy is a Q-Wiener process in U with @ = diag(#),
thus a cylindrical Wiener process in L*(D) = QY?(U) adapted to the filtration (F}'™) :=
O'(W (¢] (I)N(S))ogsgt.

Proof: For all t € [0,T] and all N € N, Wy (t) is F/B(L?(D))-measurable as the com-
position of the F/F-measurable function ¢n with the F/B(L?(D))-measurable function
QY2 o W(t). Thus, Wy : Q x [0,T] — L%(D) is a stochastic process. For an orthonormal
basis (e, ) of L?(D) we have the representation

(nen) By (t)

3=

Wy (@,t) =

with BN (t) := (B, 0 ®n)(t) for all n, N € N and t € [0,7], where (3,(t)) is a sequence of
real-valued F;-Brownian motions on (2, F, P). Since

Po (B (t)—BY(s)™ = Po(Bult) = Buls) ™

for all Nyn € N, all ¢ € [0,T] and all 0 < s < ¢, it follows that () (t)) is a sequence of
ftWN—Brownian motions on (€, F, P).

Lemma 3.13. For any N € N and any k=0,...,N — 1 we have
P — o — rdiv (| VR P2V 4 P TY)) — H(o®)Ap 1 Wy =0 (64)
a.s. in Q.

Proof: Since P = Po ¢>;,1, by definition of the image measure for any A € F we have
/A R —oF — 2 div(|VoR P2 V0R T 4 P(0FY)) — H(0F)Ap W dP
A
_ / Pk div([ Va2V 4 F(uEY)) — H(uF) Ay W dP
o~ (A)

= 0 (65)
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Lemma 3.14. We have

t
Ba(t) = / H(v.) dWy, (66)
0
for all t € 0,T], a.s. in ),
k+1 _ ok
() = ————(t — ta) + 0", (67)

forallt € [ty,ty41), K =0,...,N =1 and un(T) = oV a.s. in Q. Moreover, there exist
constants K, K1 > 0 such that

E sup |lan(t)|3=E sup [on(t)[l3 < K, (68)
te[0,T] t€[0,T)
T N |
E/ / VonlP da dt < K + [luo|2. (69)
o Jp 2
T ~
B [ IRy ) i< Fy (70)

for all N € N.

Proof: For any t € [tg,tg+1) and k =0,..., N — 1 we have
By(t) = (BN o on)(1)

ZHU o ¢n) 0 QYW (ti1) o dn — W(t) o o)
=0
+ H(uFo¢n)oQ2(W(t)opn — W(t) o ¢n)

— ZH(vl) 0 QY2 (Wi (tip1) — W (t))

=0

+ HW") o QV2(Wy(t) — W (ty))

— [ H(v,) dwy. (71)
0
(67) follows since
QAI,N(L:),t) = UN(¢N( )at)
- O W ONED () 1t g (@) (72)

for a.e. w € Qallt e [tkytk+1), K =0,... N — 1. Moreover
an(@,T) = un(on (@), T) = u™ (¢n(@)) = v™.

Thanks to (64), (68) and (69) follow repeating the arguments in the proof of Lemma 3.3
with recpect to v**1. Then, (70) follows repeating the arguments in the proof of Lemma
3.7 with respect to v,.

Lemma 3.15. For N — oo, we have the following convergence results:
1.) By — By in LU(;C([0,T); L2(D))) for all1 < q < p,
2.) By — By in LP(Q; WP(0,T; H} (D)),
3.) AN — oo in LIS L2(0,T; L2(D))) for all1 < ¢ < p,

18



4.) un = s i L2(Q X Qr),
5.) vr = Uso in L2 x Q).

6.) iy = uso in L2,(Q; L°(0,T; L3(D))), where

~—

12,05 120, T5 L(D))) = (L@ 110, T3 13(D)) )
and the space on the left-hand side contains all weak-x measurable mappings
w: Q= L>(0,T; L*(D)), EluLe(o.r:12(py) < o0
(see [10], Th. 8.20.3, p.606).
Proof: For o € (%7 1),

LP(Q; WP (0, T; Hy (D))) — LP(;C([0,T]; L*(D)))

with continuous imbedding. Thus, using Lemma 3.14, (70) and [11], Lemma 2.1., p.369
(Lemma 5.7 in the Appendix) it follows that there exists C' > 0 such that

HBN”LP(Q‘C([O T);2(D))) T 1Bl (Q;Wep(0,T;H (D S ¢ (73)

for all N € N and therefore (By) is equi-integrable in L9(€); c([o, T] L2( ))) foralll <g¢<

p. Since By — By in C([0,T]; L3(D)) for N — oo a.s. in €, 1.) follows from the Vitali

theorem. Passing to a not relabeled subsequence, from (73) also follows that there exists

g € LP(Q; WP(0,T; H}(D))), such that

By — g in LP(Q; W*(0,T; Hy (D)))

for N — oo. Since R R
LP (5 WP(0,T; Hy (D)) = L2($;

with continuous imbedding and By — By in L2(Q) x Q

g = By as. in Q x Q. Thus, the whole sequence (Bx

LP(Q; W*P(0,T; Hj(D))) and we have shown 2.).

There exists a constant C' > 0 not depending on N € N such that

L*(Q))
)

for N — oo, it follows that
) converges weakly to B, in

T
E||uN||Lp 0,T;W2 7 (D)) <CE (/0 [Von B dt + ||Vuo||£> . (74)

By Lemma (69) and the Poincaré inequality it follows that (@) is bounded in LP(); L2(Q))
and therefore equi-integrable in LQ(Q;LZ(Q)) for all 1 < g < p. Together with the a.s.
convergence of (fiy) to us in L?(Q) for N — oo, 2.) follows from the Vitali theorem.
From Lemma 3.13 and Lemma 3.14 it follows with similar arguments as in Lemma 3.3 that
there exists a constant C > 0 such that

N-1
OB k3 < C (75)
For any N € N we have

E / i () — v (8)]3 dt

N-1 tet1 vk+1 _ ’Uk 2
= EZ/ (t —t) + 0% —oF L at
t T
k=0 "'k 2
N-1 ther /4y 2
= FE [|ok+t —vk||§/ < b 1) dt
k=0 t T
N-—1
C
— g Eo* ! — ok < T (76)
k=0

19



therefore 3.) follows. Finally, from (75) we also have

T N—-1
E/ v —on|2 dt = EZ/
0 k=0 VYt

k

tht1
o+ — o2 dt

N-1
= Er Z |oF L — k|2 < O (77)
k=0

and 4.) follows from (77).

Using Lemma 3.14, (68), from the Banach-Alaouglu theorem it follows that there exists
f e L2 (€ L>(0,T; L2(D))) such that, passing to a not relabeled subsequence, @iy — f in
L2(Q; L>®(0,T; L*(D))) for N — oo. Now, taking test functions y 4t with ¢ € D(Qr) and
A € F, it follows that [ = s a.s. in QO x Qr.

Lemma 3.16. u., € L>®(0,T; L2(D)) a.s. in €.
Proof: Since uq, € L2(€; L°(0,T; L2(D))), the mapping
Q3@ [Ju(@)ll =12y €R
is F-measurable and therefore the assertion follows.

The next lemma is a direct consequence of Lemma 3.14, (69):

Lemma 3.17. There exists a not relabeled subsequence of (vn) such that
Voy — Ve in LP() x Qp)? (78)
for N — co. Moreover, there exists G € LPI(Q x Qr)¢ such that
IVon[P2Voy — G in L (0 x Qr)? (79)
for the same subsequence and N — oo.

Lemma 3.18. There exist constants v > 0, C, > 0, C > 0 such that

E sup | Bn(t) = bn(t)]mi(p)
te[0,T]

T
< C (E /0 [LZACS ] A——— dt+1+C’tr(Q)>, (80)

for all N € N, where Q = diag(#).
Proof: We fix N € N. For k€ {0,...,N —1} and t € [ty t;,1) we have a.s. in Q)
1B (8) = b (&)l 113 ()

l /Ot H(v,) dWy — BN(tk+1)T_ BN(tk)

th+1
/ H(v;) dWNHHg(D)

ty

(t = tx) = Bn(tr) |l 1 ()

t— 1t
T

t
||/ H(v;) dWy —
ty

IN

t tet1
I [ Hen) Wiy +1 [ Hor) Wyl o
tr tr
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and therefore

sup || B (t) = by (D)l )
t€[0,T]

= sup sup ||BN (t) — by (t)”H(}(D)
k=0,....N—1tE[ty,tpt1)
t

< 2 sup sup || [ H(vr) dWn|lmy(p) (82)
kIO,...,Nflte[tk,t]H,l) tr

By Lemma 3.12, Wy is a @-Wiener process on U, thus according to Lemma 3.6, there exists
v >0, Cy > 0 not depending on IV € N such that

E sup || By(t) = by (8)ll 2 (p)
te[0,T)

IN

¥ ky(1P
20, (E k:O,S.l.l.,pN—lT”H(v )||HS(L2(D);H3(D)) + 1+ Ctr(Q)>

IN

T
20,77 <E /0 Vo) s oy oy U+ 1 +Ctr(Q)> . (83)

Corollary 3.19. From Lemma 8.14, (70) and Lemma 3.18 it follows that

E S[up] BN (t) = b (8) | 111 (py < Cy7 (K1 + 1+ Ctr(Q))
te|0,T

for all N € N.

Proposition 3.20. us, : Q x [0,T] — L2(D) is a stochastic process with u.(0) = ug such
that

¢
Uoo (t) = Boo(t) + ug —|—/ div(G + F(us)) ds (84)
0
holds in L*(D) a.s. in Q for all t € [0,T].
Proof: For all k =0,..., N — 1 from (64) it follows that

Pt — ok — (By(tesr) — By (te))

:div(|Vvk+1\”_2Vvk+1+F(vk+1)) (85)

-
Multiplying (85) with x4 for A € F, ¢ € Wy *(D), £ € D(0,T), integrating over { x
[tkstr+1] X D and summing over k = 1,..., N — 1 it follows that
T A
/ / / (in — bn)&p dx dt dP
AJo Jp
T A
= / / / (|Von[P~2Voy + F(uN)) - V¢ dz dt dP (86)
Ao Jp

Let us write (86) as
L+ 1 =13+ 1y, (87)

where
n = /A/OT/D@NBN)&M@ dx dt dP,

/A/OT/D(BN—bN)ftw(.T) dz dt dP

Iy = /A/OT/D|VUN|p2VUN'V1/J§ dz dt dP

/A/OT/DF(UN) Ve da dt dP (88)
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Since By — iy — Boo — oo in L2(€2 x Qr) for N — oo, it follows that

T
Jim 1 = /A /O /D (tso — Boo)&ut0(z) da dt dP. (89)

Moreover, by Hélder inequality,

T
L] < // léeabll2|| By — b ||2 dt dP
AJO
R . T
- /sup 1By — by (1) dP/ 1€z dt
O te[0,T) 0
R T
< CpE swp [B(®) - bn(0)lm o) / el dt (90)
te[0,7] 0

where Cp > 0 is a constant not depending on N € N. From Corollary 3.19 it now follows
that

T
L) < CpCyr (B + 1+ Cta(Q)) / €]l dt. (01)
0
therefore limy_, o Io = 0. Since
IVoy [P 2Voy — G in L' (O x Qr)?

for N — oo (see Lemma 3.18), we get

T
lim I3 = / / / G - V¢ dx dt dP. (92)
N—oo AJo D

From Lemma 3.15 it follows that vy — e in L2(€2 x Q) for N — co, thus we can extract
a not relabeled subsequence such that

UN — Ugo a.€. In Q X Qr

and there exists g € LZ(Q X Q) such that |uy| < g for all N € N a.e. in Q) x Q7. Since F
is Lipschitz continuous, it follows by Lebesgue dominated convergence theorem that

lim F(vy) = F(uso). (93)

N—oo

in L2(Q x Qr)?. Since this argument can be repeated with any arbitrary subsequence of
(vn), (93) holds for the whole sequence and therefore

T
lim I, = / / / Flus) - VY& dx dt dP. (94)
N—o00 AJo D
Now from (89)-(94) it follows that

// / oo — Boo)&tth + (G + F(uno)) - V€ da dt dP = 0 (95)

for all A € F, &€ € D(0,T) and all ¢ € W, P(D). (95) implies that

d
a(uoo — Boo) = div(G + F(ux)) (96)
in L¥' (Q; LY (0, T; W% (D))). Moreover, from Lemma 3.18, (78) and Lemma 3.15, 2.) it
follows that A

Uoe — Boo € LP($4 LP(0, T Hy (D)),
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thus e, — Boo € LP (Q;C([0, T); W—1#'(D))) and, since
By € L2(;¢([0,T); L*(D)))

(see Lemma 3.15), it follows that us is in L? (Q;C([0,T]; W~#'(D))). Thanks to Lemma
3.16 and [24], Lemma 1.4, p.263, it follows that u. is weakly continuous with values in
L?(D) a.s. in €. Consequently,

(oo = Boo)(t) € L*(D)
for all ¢ € [0,T], a.s. in Q), hence
(Boe = 0 )(O )0y = [ (10 = Boc) ()0 d (97)
for all 1 € Wy'(D), a.s. in Q for all t € [0,T]. With this information we may fix ¢ € [0,T)

and choose a test function ¢ € D([t, T)) with £(t) = 1. Then, for any ¢ € W;?(D), a.s. in
Q using (96) and (97) we get

/ / Uoo — Boo)&tp dx dr

/t 6{(Bo — o) (1), )y oy i )

= [ 6l B+ [ an(@ P s ar,

WL’ (D), W, " (D)

and using Fubini theorem we get

/ / Uso — Boo )&t dx dr + /D( — Boo) ()Y dx

/t / §(r) (AIV(G + F (1)) (8), )1 () ayion iy 3

T
[ @G + P91y g / &) dr ds

//G—i—Fuoo Ve dr. (98)

From (98) it follows that

_/A/tT/D(aN—bN)gﬂp dz dt dp_/A/D(ﬂN_bN)(tw i P

T
+/ / / (|Vun[P~2Vun + F(oy)) - V¢ da dt dP =0

///uoo— Ve dx dr dP — // ()¢ dx dP
+/A/t /D(G+F(uoo))-v¢g dz dr dP. (99)

From Lemma 3.14, (68) it follows that there exists a subsequence (i, (t)) of (in(t)) con-
verging weakly some x(t) in L?(Q x D). With respect to this subsequence we have

/ / bNt ’L/J dxr dP =1L+ 1 (100)
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where, for N — oo,

h= [ [ tan = B dedP = [ ] ()= But) do ap

and, using Corollary 3.19,

L < /A 1B, () — b, ()2} ]2 dP

< |[¢ll2CpE sup B, (s) = bn,(5)|lm3(p)
s€[0,T]

< CpC,7(K; 41+ Ctr(Q)) — 0.

Passing to the subsequence Ny, we can pass to the limit with Ny — oo in (99) and it follows
that

/Dx(t)w dx :/ oo ()0 da (101)

D

a.s. in Q, thus x(t) = uw(t) for all t € [0, T]. In particular, for t = 0, we get U (0) = ug in
L?(D) and equation (84) holds true. Moreover, for any ¢ € [0,7) the weak convergence to
x(t) holds for the whole sequence (uy(¢)). With this information, using the weak continuity
of us and diy we can prove that x(T') = uso(T) a.s. in Q x D and we have

Corollary 3.21. For allt € [0,T], tn(t) — uso(t) in L2(2 x D).
With the proof of the following lemma the proof of Proposition 3.20 is completed:
Lemma 3.22. uo, is a stochastic process with values in L*(D).
Proof: Since o is weakly continuous with values in L2(D) a.s. in €2, it follows that
Q30— us(@)(t) € L*(D)

for all t € [0,T]. We fix t € [0,7] and prove that u(¢) is a random variable: By Pettis
theorem, u(t) is measurable, if it is weakly measurable, i.e. the mapping

Q30— (u(t)(@),h)s
is measurable for all h € L?(D). Recall that
B € L*(Q;C([0,T; L*(D)))

and . ,
Boo — s € L7 (:C([0,T); W17 (D)),

hence it follows that u., € L? (€;C([0, T}; W=7 (D))), thus for all h € W, *(D)
056 (u(t)(@). h)o = (W()@). by (py w2 )

is measurable. Now, the assertion follows since any h € L?(D) can be approximated by a
sequence (h,) C WyP(D) in L*(D).

Proposition 3.23. B is a F°-martingale with respect to the augmentation (F7°) of
the filtration Fi° := 0(Boo(S), Uoo(8))o<s<t, t € [0,T] (i.e. the smallest complete, right-
continuous filtration containing (F7°)) with quadratic variation process

t
K By = / H(uso) o H*(uso) ds (102)
0
for all t € [0,T], where we use the formal notation

H(u) o H*(u) == (H(u) 0 Q"/?) o (H(u) 0 Q"/)", u € L*(D).
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Proof: To show that By is a FP°-martingale, it is enough to show that it is a ﬁfo—
martingale (see [7], p.75). By definition, B, is adapted to (F7°). Thus we have to prove
that

E((Bso(t) = Boo(s))xa) =0 (103)

for all A € F° and all 0 < s < t. (103) is equivalent to
E[(Boo(t) - Boo(s)v h)2w(Booauoo)] =0 (104)

for all t € [0,T], 0 < s < t, 1 € Cy(C([0, s]; L2(D)) x L?(0,s; L*>(D))) and all h € L*(D). By
Lemma 3.15, 4.), we may pass to a not relabeled subsequence of (v;), such that v, — ue
for N — oo in L?(%; L%(Qr)) and a.s. in L?(Q7). We will show that

E[(BOO(t)A_ BOO(S): h)2t¢) (B, “fO)]
= Jim E[(By(t) - Bu(s). Mot (B v,)] = 0. (105)
for all t € [0,7], 0 < s < t, 9 € Cy(C([0, s]; L*(D)) x L*(0,s; L?>(D))) and all h € L?(D).
For any N € N, for t € [0,T] the process

Bt = | CH(o,) AW (106)

is a continuous, square-integrable martingale with respect to (FV~). Moreover, By is
FT = 0(Bn(s),v-(5))o<s<t C F;'N-adapted and for all t € [0, T, for all A € F] we have

S

El(By(t) = By (s))xa] = E[B(Bx(t) - ( )xalF)]
= BlxaB((Bn(t) - By(s))|F7)]
= ENaE(E(By(t) — By ()| F2™)|F])]
0. (107)
Thus By is also a F{-martingale with
< By >= /t H(v,) o H*(v,) ds. (108)
0
For any N € N, (107) is equivalent to
E[(Bx(t) = By (s), )2t (B, vr)] = 0 (109)

for any t € [0, 7], 0 < s < t, ¥ € C,(C([0, s]; L2(D)) x L?(0,s; L*(D))), h € L*(D).
We fix t € [0,7], 0 < s <t, 9 € Cp(C([0, s]; L>(D)) x L*(0,s; L?(D))) and h € L?(D). Our
aim is to pass to the limit with NV — oo on the left-hand side of

E[(Bn(t) = Bx(s), h)2¢(By, vr)] = 0. (110)
To this end, we will show that
i.) (Bn(t) = Bn(5),h)2 = (Boo(t) — Boo(s), h)2 in L*(Q),
ii.) Y(Bn,vr) = ¥(Boo, Uiso) in L2(12).

For all t € [0,T], 0 < s < t, &, : L*(Q;C([0,T); L*(D))) — L*(Q x D) defined by
6—s(f) = f(t) — f(s) is a continuous, linear mapping. We recall hat by Lemma 3.15, 1.),
By — B in L2(Q;C([0,T); L*(D))) for N — oo, thus

Bn(t) — Bn(s) = 0¢—s(Bn) = 6t—s(Bos) = Bao(t) — Bao(s)
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for N — oo in L2({) x D) and we have shown i.). R
To show 4i.), we recall that ¥(By,v;) = ¥(Boo, Uso) a.s. in § for N — co. With Lebesgue’s
dominated convergence theorem it follows that

Jim 9 (By, vr) = $(Boo, tioo)

in L2(2). The convergences in i.) and ii.) are sufficient to pass to the limit with N — oo in
(110) and we obtain (105). In particular, (105) implies that By, is a martingale with respect
to (F7°).

Now let us calculate the quadratic variation process of Boo: Let (e,) be an orthonormal
basis of L?(D). To prove (102), we recall that for any N € N (108) is equivalent to

0= E[((BN, er,er)(t) — (BN, er,er)(s) — A(s, t,vr, ex, ej))w(BN,vT)] (111)

forall k,j € N, t € [0,7], 0 < s < t, ¢ € Cp(C([0, s]; L*>(D))) x L?(0,s; L*(D)), where
(Bn,er,e)(r) = (By(r),ex)2(Bn(r),¢)2, 7 € [0,T]
and .
A(s,t,u, ex, ) := ([/ H(u)o H*(u) dr] (ek),e]) (112)
for u € L?*(D). We show that
lim E[((BN,ek,el)(t) — (Bw,ex,e1)(s) — A(s,t7vT,ek,ej)) V(Bn,vr)]

N —o0
= E[((Boo,ek,el)(t) — (Boos ks €1)(8) — A(s,t,uoo,ek,ej)) w(Boo,uoo)]
(113)

for all k,j € N, t € [0,7], 0 < s < t, ¥ € C(C([0,s]; L3(D)) x L*(0,s; L*(D))) for a
suitable, not relabeled subsequence. To this end, we fix k,j € N, ¢ € [0,7], 0 < s < ¢,
P € Cyp(C([0, s]; L2(D)) x L?(0,s; L?(D))) and pass to a not relabeled subsequence of (v, ),
such that v, — us for N — oo in L*(; L?(Qr)) and a.s. in L?(Qr). Since ¥(By,v,) is

uniformly bounded in L*(£2) and ¢ (By,v;) = (B, Uoo) a.8. in €2,

¢(BNaUT) = Y(Boo, Uso) (114)

for N — oo in L>°(£2). We will show

(B (t),ex)2(Bn(t),€5)2 — (Bn(5), ex)2(Bn(5), €5)2 — Als, t, v, ek, €5)
—  (Boo(t),er)2(Bss(t),€5)2 — (Boo(5), €x)2(Boo(5),€5)2 — A(S, T, Uoo, €k, €5)
(115)
for N — oo in L'(€2). For any n € N, the mapping
L2 x D) > urs (u,e,)2 € L2(Q)

is continuous. Since By (r) = Boo(r) for N — oo in L2(Q2 x D) for any r € [0,T], it follows
that

(B (), er)2(Bn (1), €5)2 = (Boo (), ex)2(Boo (1), €5)2
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for any 7 € [0,T] and N — oo in L*(€2). Now, the term A(s,t,v,,ex,e;) deserves our

A(s,t,vr,er,€5) ([/ H(v;)o H*(v;) dr] (ex), e )

attention a.s. in Q:

2
t
= </ H(vr) o H*(v-)(ex) dr, 6j>
s 2
¢
= / (H(vr) o H*(v:)(er), €5)2 dr. (116)
Now from Cauchy inequality it follows that
E|A(s,t,vr,ex,€j) — A(s, t, uso, €k, €5)]
< B [ 100 0 B (00) ~ Bl o H il (er) )]
E/ I[H (v7) o H"(vr) = H(uoo) 0 H" (oo)](ex) 2 dr
t
< CE/ I H (0,) 0 H* (v;) — H(uso) 0 H* (o)l srs(22(0) dr (117)

for a constant C' > 0. Therefore,

E|A( L, U‘Helmej) - A(Sut7uooyekuej)|

< OE/ HH ’UT [H*(UT)_H*(Uoo)]HHS(LQ(D)) dr
+ CE/ |[H (vr) — H(uoo)] © H* (too) || s (22(D)) dr
< CE / 1H (o) Lz oy | H () — B (oo ms(z2 oy dr

t
+ CE/ | H (vr) — H(uoo)|| msr2 (o) |1 H ™ (too) || ms(L2(DY) dr
(118)
Using Hoélder inequality, from (117) we get

E|A(s,t,vr,ex,€5) — A(s, T, Uso, €k €5)|

1/2
< c( / V)220 dr)
1/2
( / VH*(07) — H (100) 115220 dr>
1/2
" c( / I (o) 250220y dr)

1/2
( /||H vr) — H(uoo)l| Hs(L2(D)) d?") (119)

By Parseval identity it follows that a.s. in Q x (0,7) we have

1" (v7) = H* (uco) | s (z2(py) = [1H (vr) = H(too) | 5r5(22(D)) (120)
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and from (120) using (H1) we get
t
E / VH(0r) — B (o)1 12
t
. / 1H (0r) = Hoo) 25020
- / Znh (02) = o (t100) 2

< OF / lor — a2 dr. (121)
0

Since v; — Uy in L2(Q x Q) for N — oo, from (121) it follows that
H*(v;) = H" (uoo) and H(vy) = H(ueo) (122)

in L2(Q x (s,t); HS(L*(D))) for N — co. In particular, there exists C' > 0 such that

t
I soamsizom = B [ 1@ sy dr < C (123)

for all N € N. Using (119), (122) and (123), it follows that
E|A(57tav'r;ek76j)7A(Sat7uooaekaej)| —0 (124)

for N — oo and therefore (115) holds true. The convergences in (114) and (115) are enough
to conclude (113).

Proposition 3.24. There erists a probability space (Q, F, P), a filtration (F;) and a cylin-
drical Wiener process W with values in L*(D), defined on the probability space

Q:=0xQ, F:=FxF, P:=PxP)
adapted to (F;) == (F° x F;), such that for the extension of Bs to 0 defined by
Boo(t,@,0) := Boo(t,®) a.s. (0,@) € Q

we have the representation
oo (t, W) / H(uoo (@) dW (5,0)

for all t € [0,T] and almost every @ in €.

Proof: According to Proposition 3.23, By, is a Fy°-martingale with quadratic variation
process

t
& By >= / (H(uoo) © Q1/2) o (Hx(us) © Ql/z)* ds
0

Since uq, is a Fp°-adapted process with values in L?(D) and it is a.s. weakly continuous,
for any h € L?(D) the process (us, h)2 is Ff°-adapted with values in R and a.s. continuous
trajectories. Therefore, (uq,h)o is a predictable process for all h € L?(D) and by Pettis
theorem one gets that us, is a predictable process with values in L?(D). Now, with this
measurability and Proposition 3.23 in hand, we can apply the martingale representation
theorem of [8], Theorem 8.2, p.220 (see Theorem 5.5 in the Appendix).

28



Remark 3.4. Without changing notation, we can identify any random variable X in Q to
a random variable in Q by setting X (©,0) = X(@) a.s. in Q. In particular, all previous
estimates and convergences remain true with respect to the probability space Q. Moreover,
Uoo : QX [0,T] — L?(D) is a predictable process with a.e. paths

toolw,) € C(10,T]; W12 (D)) N L= (0,75 LX(D)),

such that us, € LP(Q; LP(0,T; Wy (D)), teo(0,-) = ug in L*(D) and
Uoo () = up +/O div(G(s) + F(us(s))) ds +/0 H(uoo) dW (125)

in L2(D) for all t € [0,T] a.s. in Q.
Lemma 3.25. G = |V [P 2Vuy, in LP (Q x Qr)*
Proof: Taking the scalar product with v**! in (64), we get
(0" — 0" 0* )y — (B (tra1) — B (tr), 0" 1)s

+ o7 / (VoA P20eh 4 FF ) . Vbt da
D

= 0. (126)
Using the identity
(a—b)a= 3(ja ~ o + |a—bP), a,bE R
Gauss-Green theorem on the convection term and taking expectation we get
0 = 3B (I3~ JMIB + o — oH13) — B(Bu(br11) — B (i), o)
+ TE/D |VoF T P=2wph . vkt dy, (127)

Since v* is .7-'22/”—measurauble7 E(By(tii1) — By (t),v*)2 = 0, thus using
TR T o, L o
ab = 2(|a| +|b\)+2|a b*, a,b R

we can write
—E(Bn(tit1) — B (te), v"™)2 = =E(Bn (ti41) — By (), 0" — vF),

1 N A 1
= —§E||BN(tk+1) — By (te)]3 - §E||karl — "3

1 N N
+ SEIBN (1) = By () — (@ =M (128)
and therefore
1
0 = B (IF3 = oF I3 + o+ — b3 — o+t —o¥|3)

1 A . 1 . A
- §E||BN(tk+1) — Bn(tn)|3 + §E||BN(tk+1) — By (ty) — (0" —o")[I3

+ TE/ |Vor P2 9phtl . bt dy
D

1 1 N .
> B (03 = 1041) = 3B Bx (tei1) = B (0ol
+ 7E / AR L VAT VAT L 7 (129)
D
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Summing over k = 0,..., N — 1 and using that iy (T) = vV a.s. in Q, from (129) it follows
that

v

1 1. T _
5||uo||§ 7E||uN(T)||§+E/ / |Vun P2V - Vo da dt
D

-1 tet1

1
- 5ZEH H(v;) dWyll3 (130)
k=0

where, by It6 isometry,

trt1
ZEH / H(o,) dWy|2 = ZE / T LCR "

- & / ) s e o . (131)
On the other hand, by Ito formula from (125) it follows that

1 o 1 2 ’
§||Uoo(T)||2 = 5”“0”2 - G - Vs dx dt
o JbD

1

T T

a.s in Q, therefore

1 T 1 ("
SN+ E [ [ 6V dodt= 5B [ ) s ooy
0 D 0
1
= §||U0||§ (133)
From (130), (131) and (133) it follows that
1 ) T I )
SElu@BE [ [ G Vudodt= 5B [ 1) siueo de
0 D 0

1 T
> Bylax@E+E [ [ [VonP Yoy oy de d
0 D

1 T
= 58 | I oy (134)
hence
g 1 2 2
B[ [ @ Vuw dnar= 38 (Jan()5 - fun()1B)
1 T
= 58 | NHE Brssoy = 1 o) Brsaaoy
T
+ E/ / |Vun P2V - Vo dz dt. (135)
o Jp
Since the mapping || - ||3 : L2(2 x D) — [0, 00) is continuous and convex, it is weakly L.s.c.

and from Corollary 3.21 it follows that

0 < timinf Blan(T)[3 - Elluse(T)[3 (136)
—00
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Moreover, from (121) in particular it follows that
lim H(v,) = H(us) in L*(Q x (0,T); HS(L*(D))),
N—oco

thus . -
E / VH @) 2rszo () dt = E / 1 (o) 2y (137)

for N — oo. Therefore from (135) and (137) it follows that
T 1
E/ / G Ve dx dt > — <liminfEﬂN(T)||§ - E||uoo(T)||§>
0 D 2 N—o00

T
+ limsupE/ / |Vun|P~2Voy - Voy dz dt
o JD

N—oc0

1. T
— g m E (/0 1H () Erscrzpy) — 1H (uoo) [ Frs L2 () dt)

T
> limsup F / / |Von|P~2Vuy - Vo de dt. (138)
0 D

N—oc0

Since p > 2, there exists a constant C' > 0 not depending on N € N such that

T
ClimsupE/ / |Voy — Vueo|? dz dt
o Jp

N—o00

T
< limsupE/ / (IVon[P2Von — |Viieo|P 2 Vius) - V(UN — Us) da dt
N—o0 0 D
T T
< limsupE/ / |VvN|p72VvN -Voy dx dt — E/ / G - Vs dr dt
N—oo o Jp o Jp
< 0, (139)

where the last inequality is a consequence of (138). From (139) it now follows that Vuy —
Vi in LP(Q x Qr)? for N — oo and therefore

[Von[P72Von = [Vie [P 2V, in L (2 x Qr).

4 Existence of strong solutions and uniqueness

In this section, we show existence of strong solutions by adapting the argument of [14] in the
spirit of [17], [6], [5] (see also [15], [16], [3]), which makes it possible to avoid the application
of the martingale representation theorem. To this end we first show uniqueness of two
martingale solutions with respect to the same stochastic basis:

Proposition 4.1. Assume that W is a cylindrical Wiener process with values in L*(D)
on the stochastic basis (Q, F, (F;), P) and u1, us are two martingale solutions to (1) with
respect to (0, F, (F¢), P). Then, u; = us.

Proof: For § > 0, let ns be an approximation of the absolute value, i.e.

—r if r < =26,
2

ns(r) = o 2057 <2,
r if r > 24.
Using the It6 formula, it follows that
Lh=0L+1Is+1,+I5, (140)
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for all t € [0,T] a.s. in £, where
L = / ns(u1 — ug)(t) dx,
D
t
I, = / / (|vul‘p*2vul - ‘VU2|P*2VU,2) . V(ul _ U2)77(/5'(U1 . U2) dz ds,
0 D

I = /0 /D(F(Ul) — F(u2)) - V(ur — u2)njs (u1 — ug) dz ds,

o= [ (e — ), ) - H) d)e

0

I, = 1 o — H - H 2 d
5 = 35 0775(U1 ug) || H (u1) (U2)||HS(L2(D)) S

(141)

For all t € [0,T], a.s. in Q, Iy > 0. Moreover, E[I4] = 0 for all ¢t € [0,T]. Therefore, from

(141) it follows that

E[LL] < E[I3] + E|I5].

(142)

Since, for any ¢ € [0,T], ns(u1 — u2) converges to |(u1 — u2)(t)| for 6 — 0" ae. in Q x D,
| <]

and |ns(u1 — u2)(t)] < |(u1 — u2)(t)] for all § > 0 a.s. in Q x D, it follows that
Jim (L] =B [ =) (0)] do

for any ¢t € [0,T]. For any § > 0 we have

1
0 (ug — ug) = 55 Xlu1—ua|<25}

a.s. on X Qr, thus for L > 0 being the Lipschitz constant of F' we have

1
B[] < —E/ () = Flug) - Vi(ug —us)| dar ds
26 {lu1—u2|<26}
L
< —FE lug — u2||V(uy — uz)| dz ds
20 J{jur —uz|<26)
< LE/ |V (ug — ug)| do ds.
{lu1—uz|<26}
Simirlarly, by (H1)
1 o0
Els]] < o= [ (ur) = ho(u2)[? dz ds
20 J{jur—uz|<26) ,;1
< ﬁ lup — up|?® da ds
20 J{jur—ua| <26}
< 26C

where C' > 0 is a constant not depending on § > 0. Thus from (144) it follows that
lim E[Is]=F |V (u; —ug)| de ds =0
d—0+ {ur=us}
and from (145) it follows that
lim E[I5] = 0.

§—0+
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In particular, Proposition 4.1 implies that whenever a strong solution to (P) exists, it is
unique. Moreover, if u!? is the joint law of (uy,us) on L?(0,T; L?(D))?, then Proposition
4.1 implies that

p2({(€,0) € L*(0,T; L*(D))? | € = ¢}) :/ X{uy=up} AP ©® dP =1
QxQ

and we can use the following Lemma (see, e.g. [14] and also [15]) to get existence of strong
solutions:

Lemma 4.2. Let V' be a Polish space equipped with the Borel o-algebra. A sequence of
V-valued random variables (X,,) converges in probability if and only if for every pair of
subsequences X,, and X, there exists a joint subsequence (X, , Xm,) which converges for
k — oo in law to a probability measure p such that

p{(w,2) eV XV |w=2z})=1.
Let (pr, Bar, W) and (ar, B, W) be a pair of subsequences of (uy, By, W). Since
(Uns U, Ba, Br, W)

is tight on
(L*(0,T; L*(D))* x C([0, T}:; L*(D))* x C([0, T}; U),

it is relatively compact, thus we can extract a joint subsequence
,U/J = (ﬂMJ ) aLj 5 BMj 5 BLJ' ) W)
which converges in law to some probability measure x. Applying the theorem of Skorokhod
to (un,,ur,, By, Br,, W) we find a probability space (€2, F, P), a sequence of measurable
functions o
®,: (QF)—=(Q,F), jeN

such that P = Po ®; for all j € N and measurable functions ul_, u2 , Bl , B% W, having
the following properties:

i.) G, = U, 0 @5 — ul, in L2(0,T5 L2(D)) for j — oo a.s. in Q,
ii.) g, =g, o ¢; = v, in L*(0,T;L*(D)) for j — oo a.s. in Q,
iii.) Bar, := B, o ¢; — Bl in C([0,T); L*(D)) for j — oo a.s. in ,
iv.) BLj := By, 0 ¢; — BZ in C([0,T]; L*(D)) for j — oo a.s. in Q,
v.) Wj:=Wo¢; — W in C([0,T);U) for j — oo as. in Q.
vi.) L(ul,,u?,,BL,B%,W)=pu.
Definition 4.1. Let us denote the augmentation of the filtration
o(un, (), ur,;(s), Wi(s))o<s<t, t € [0,T]
by (F7) and the augmentation of the filtration
0 (5 (5), U3 (8), Woo(8) Jo<s<t, t € [0, 7]

by (FV).
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As in the prevous section, we can now recover the structure of the equation on the new

probability space (Q, F, ]5) using the functions ¢;: If we define 7, := %, M, = %,
J - J

vh, = ufody, k=0,..., M,

Ufj = ukoqu7 k=0,...,Lj,

then ay, (T) = o™i, 4, (T) = v™ and

Ungy (1) = ————(t —tu) + i,
for ¢ € [ty,tk41) and k=0,...,M;,
k+1 k
. Vp, — UL
i, (t) = — - =(t—tk) +vf
for t € [ty,te1) and k =0, ..., L;. Moreover, we introduce the left-continuous, ]-'tj—adapted
functions
M;—1
Ur, ()= 0 Xt (8, €€ (0,7, vry, (0) = ug,
k=0

Li—1
Uy, (t) Z vkx(tk’tkﬂ](t), t € (0,7, Uy, (0) = wg
k=0

and find that

W
=
I

t
/ H(UTMj) de, te [O,T]
o ;

oy
~
—
~
~

|

t
/ H(vs, ) dW;, t € [0,T].
O J

Now we repeat the arguments of Lemma 3.13-3.18, Corollary 3.19, Proposition 3.20, Corol-
lary 3.21 and Lemma 3.22 to obtain that

lim v, =ul, lim v, =u’
Jj—ro0 J Jj—o0 J

in L2(Q x Q) and, for i = 1,2, the function uf, : Q% [0,T] — L?(D) is a stochastic process
with ul_(0) = up and there exists G* € L? ({2 x Qr)? such that

ul (t) = Bl (t) + uo + /Ot div(G* + F(u'))) ds (148)

holds in L2(D) a.s. in € for all t € [0, T].
Lemma 4.3. We have the following convergence results for j — oo:
i.) By, — Bl and By, — B2, in L*(Q;C([0,T); L*(D)))

1.) EMj (t)—BMj(s) — BL (t)—BL (s) and ELj (t)—BLj(s) — B2 (t)—B2 (s) in L*((1x D)
forallt €]0,T],0<s<t

iii.) W; — Wao in L2(Q;C([0,T); U))

iv.) W;(t) — W;(s) = Wao(t) = Wao(s) in L2(Q;U) for allt € [0,T], 0< s <t
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Moreover, passing to a (not relabeled) subsequence if necessary,

lim ) (vry, vr,  Wy) = Yul,u? , Wao) (149)

0o Yoo
j—o0

in L2(Q) for allt € [0,T], 0 < s <t and all ¢ € Cy(L2(0,s; L2(D))? x C([0, s]; U)).

Proof: Since the sequences (BMJ) and (BLj) respecively converge a.s. in C([0, T]; L%(D))
and are uniformly bounded in L?(€);C([0,T); L*(D)) (with the same arguments as used in
the proof of Lemma 3.15), 4.) is a direct consequence of Vitali theorem. ii.) follows from i.)
since

B]\/[j (t) — BMJ- (8) = 5,5_5(BMJ.) and BLj (t) — BLJ- (8) = 5,5_5(BLJ.)
for all ¢ € [0,T], 0 < s < t. By equality of law and Burkholder inequality we have

p/2
E sup [|[W;(t)|l5; =E Sup WOl < CE (TZ ) : (150)

tE[O, ] n=1

where C' > 0 is the constant from Burkholder inequality which is not depending on j € N.
Together with the a.s. convergence of W; to W, for j — oo, it follows from Vitali theorem
that W; — W in L2(Q;C([0,T);U)) for j — oo, thus in particular

Wj(t)_W< >_6t s( >_>6t s( oo):WOO(t)_WOO(S)

for j — oo, all t € [0,7) and all 0 < ¢ < s in L2 U). We fix t € [0,7], 0 < s < ¢ and
P € Cy(L3(0,s; L2(D))? x C([0, s]; U)). Since (vra, ) converges to ul, and Ur,, converges to

u?, in L? (Q x Qr) for j — oo, we may pass to a (not relabeled) subsequence Wthh converges
in L2(0 T; L*(D)) for a.e. & € Q. Then,

w(Uer’UrL ) )_>w( Uoo) oanOO) (151)

a.s. in  for J — oo. Thus, with Lebesgue’s dominated convergence theorem we get the
convergence of (149) in L?(£2) for j — oo.

Lemma 4.4. Fori=1,2, Bi_isa ftW’oo—martingale with quadratic variation process
< Bl >= / H(ul,)o H(ul,)* ds (152)
0

for all t € [0,T], where we use the formal notation
H(u) o H* (u) = (H(u) 0 QY2) o (H(u) 0 Q/2)", u € L(D).

Proof: Let (e;) be an orthonormal basis of L?(D). We choose (not relabeled) subse-
quences of (v,, ) and (UTL respectively that converge a.s. in Q and fix t € [0,7],0 < s <t

J

and ¢ € Cy(L*(0,s; L*(D ))2 x C([0,s];U)), n,m € N. Moreover, for u € L?*(D), and
B(r) € L*(D), r € [O T] we define

(B> €n, em)(r) = (B(T), en)Q(B(T), em)Q,

A(s,t,u, en,em) = (l/ H(u) o H*(u) dr] (en),em>

With the convergence results of Lemma 4.3 we are able to show

2

0 = lim B[(Bu,(t) — Bu,(s), en)2¥(Vry, , vry , W5)]
Jj—o0 J J

= E[(B})o(t) _B;o( ) 6n)2w( Uoso) oovWOO)]a (153)
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0 = hm E[(BL ( ) BLj (5),€n)2w(vTMj7UTLj7Wj)]

= E[(Bgo(t)_B ( ) en)ﬂ/)( Uoos oo7Woo)]7 (154)
0 = [((BM venvem)(t) - (BMjaenaem)(S) - A(Svtav‘eraenvem))
w(U‘Fij'UTL ) )]
— E[((Béo,en,em)(t) - (B;O,en,em)(s) A(S t,uoo,en,em))z/)(uio,uio,woo)]

(155)
for j — oo and
0 = E[((Br;sensem)(t) = (Br,,en em)(s) = Als,t,vr, s €ns€m))
(v Ury, W)
= Bl((B, en,em)(t) = (Ba, en, em)(s) = Als, 1, uls, ey ) ¥ (g, e, Woo)].

for j — oo.
Lemma 4.5. W, is a (}'WOO) martingale.

Proof: By definition of (F}"">), W, is adapted to (F">). We choose (not relabeled)
subsequences of (vTMj) and (UTLJ_) respectively that converge a.s. in Q and fix ¢ € [0,7T],

0 <s<tand ¢ € Cp(L*0,s;L*(D))? x C([0,s];U)) and h € U. Since Ury, and vr, = are
.Ftwj -adapted for all j € N, we have

E[(W;(t) = Wj(s), A)ub(vry,, vr,,, Wj)] = 0 (157)

for all j € N. Using the convergence results of Lemma 4.3, we may pass to the limit with
Jj — oo in (157) and find that

E[(Woo(t) - W ( ) )Ul/]( Uso> oovWOO)] =0. (158)

W,OO)

Lemma 4.6. W, is a Q- Wiener process in U, adapted to (F,
W(s), 0 <s <t<T, independent of FV->°.

, with increments W (t) —

Proof: Since we have already know that W is a F, *°-martingale with W (0) = 0,
according to [8], Theorem 4.4, p. 89 it is left to show that

K Weo >=1Q for all t € [0,T]. (159)

Recall that < W; >= tQ for all t € [0,7] and all j € N. Let (g;) be an orthonormal
basis of U. We choose (not relabeled) subsequences of (UTMJ) and (UTLJ) respectively that
converge a.s. in  and fix t € [0,7], 0 < s <t and ¢ € C(L2(0,s; L2(D))2 x C([0, s]; U)),
n,m € N. Using the convergence results of Lemma 4.3 we show that

0 = E[((Wj,gnsgm)®t) — (Wi, gny gm)(s) — ((t = $)Q(gn), gm)v)
w(rUTM yUrp s W;)l
- E(( oo’gmgm)(t) Woss gns gm) () — ((t = $)Q(gn): gm)v)
(U, e, Woo)] (160)

for j — oo, where
(W gn, gm)(r) := (W(r), gn)u (W (r), gm)v
for W(r) € U, r € [0,T], thus (159) holds true.
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Corollary 4.7. Fori=1,2, the processes
t .
M;(t) ::/ H(ul,)) dWy, t €]0,T]
0
are ]-'tW ' _martingales with quadratic variation process
t
<M= [ (Hlk) 2 Q) o (Hluk) 0 Q)" ds
0
for all t €10,T).
Lemma 4.8. For i = 1,2 we have the cross quadratic variation process
t
< Bl Wy, = / H(u')oQ ds. (161)
0
Proof: For all j € N and ¢ € [0,7] we have

t t
€ Bu Wy 1= [ Hon,)) a0, W= [ H(n) d <183

t
= /H(UTM.)OQd& (162)
0 J
and

t t
< BLj, Wj > =<K / H(U-,—LJ_) de, Wj >= / H(U,,-Lj) d <K Wj >
0 0

= /Ot H(vTLj) o @ ds. (163)

We choose orthonormal bases (g;) of U and (e;) of L?(D), (not relabeled) subsequences
of (’U-,—Mj) and (’U-,—Lj) respectively that converge a.s. in Q and fix ¢t € [0,7], 0 < s < ¢

and v € Cp(L?(0,s; L3(D))? x C([0,s];U)) and n,m € N. Using the convergence results of
Lemma 4.3 we show that

0 = E[(Bagys Wi ens gn) (6) = (Batys Wy, 0y g )(5)
-/ (Hwm, ) 0 Qom)sen)s dr(vray, v, W)
o BI(B Waer e g)(0) — (B, W, e 95
-/ (B (L) 0 Qo) en)s drb(ul, e, Woo) (164)
and
0 = El(Br, Wysen gm)() — (Brys Wysens gm)(s)
[ )0 QUam) en)er dr)en v, W)
- E[(EBZO, Weos €ns gm) (t) = (B, Woo, €ns gim) (5)

- / (H(2,) 0 Q(gm). en)a dr)b(uly, i, Wao)] (165)

for j — oo, where
(Ba VV, €n, gm)(r) = (B(’I“), en)Q(W(T)v gm)U
for r € [0,7] and W(r) € U, B(r) € L*(D).
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Lemma 4.9. Fori=1,2 and all t € [0,T] we have
< B, / Hul)dWae = 0, (166)
Proof: For i = 1,2 from (152), Corollary 4.7 and Lemma 4.9 it follows that
< B, / H(ul,) dWso >y

= < B'_>» -2< B /H ) dWao >>t+<</H ) dWa >4

_ ‘ W) o 02 o 1/2 i .
72/0(1{(00)@ )o (H(ul.)oQ /H )d< B, Wa >
(167)

where, according to Lemma 4.8

/H Yd< Bl Wa >, = /H Wl )oQ ds
= /H ul,) o Q%) o QY2 ds
- / H(u W) o QYo (QY2) ds

- / (H(us) 0 Q12) o (H(ul,) 0 QV2)" ds
(168)
Now, (166) follows from (167) and (168).

Corollary 4.10. We have ul, = u2 and therefore convergence of (tn) in probability on
the initial probability space (0, F, P), hence existence and uniqueness of strong solutions to

(1).

Proof: From Lemma 4.9 it follows that for ¢ = 1,2
/ H(ul,) dW, t € [0,T]

thus ul , u?, are martingale solutions to (1) with respect to (Q, F, (F¥*°),, W,,). Now,
from Proposition 4.1 it follows that ul, = u? and thus Bl = B2 and, by Lemma 4.2
and equality of laws this implies convergence in probablhty of the initial approximating
sequence (uy) in probability on the initial probability space (2, F, P) to a strong solution
of (1), which is, again by Proposition 4.1, unique.

5 Appendix

5.1 On Prokhorov compactness theorem

Definition 5.1 (see [4], p.59). Let II be a family of probability measures on the metric space
V' with the Borel o-algebra B(V'). The family 11 is tight iff, for every ¢ > 0, there exists a
compact set K. such that

P(K)>1—¢

for every P € II.
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Tightness can be used as a compactness criterion in the narrow topology, this is the
direct half of Prokhorov theorem:

Theorem 5.1. [see [4], Theorem 5.1., p.59] If 11 is tight, then it is relatively compact with
respect to the narrow topology o(Cp(V)',Co(V)), i.e. for any subsequence (P,) C II there
exists a subsequence (Py, ) and a probability measure p such that

lim /V fdp,, = /v fdu (169)

k—o0

for all f € Cp(V).
We have the following subsequence principle:

Corollary 5.2. If the sequence of probability measures (P, )nen is tight, and if each sub-
sequence that converges narrowly at all in fact converges narrowly to p, then the entire
sequence converges narrowly to fi.

If, in addition, V is a Polish space, then the converse part of Prokhorov theorem also
holds true:

Theorem 5.3. [see [4], Theorem 5.2, p.60] Suppose that V is separable and complete. If T
is relatively compact with respect to the narrow topology o(Co(V')',Co(V)), then it is tight.

5.2 On Skorokhod representation theorem

Definition 5.2 ([25] p.17). Forn € N, let X,, : (0, F, P) — (V,B(V)) be a random variable
with values in a metric space V.. We say that (X,,) converges to a Borel measure p® in law,
(or distribution), and write X, L ., iff

Ef(X,) = /V f dp

for any bounded, continuous function f on V.

Remark 5.1. Note that X,,.Z_,u is equivalent to P o X% >y with respect to the narrow
topology on the bounded Borel measures where P o X, ! is the image measure of X,, for all
n € N.

Theorem 5.4 (see [25], Theorem 1.10.4, p.59). Let (Q,F,P) be a probability space, V
a separable metric space and X, : Q — V be a sequence of random wvariables such that
X, Z . Xo. Then there exists a sequence of random variables Xn 0= V, n e NU{oc0},
on some probability space (Q.ﬁ P) with the following properties:

i.) X, = Xeo inV for N — oo a.s. in )

1i.) The laws of X,, and X, are the same for alln € NU {Aoo}. In particular, for any
bounded measurable function f .V — R, Ef(X,) = Ef(X,,) for alln € N.

Remark 5.2. According to [25], Addendum 1.10.5. p.59, there exist random variables
b Q0 — Q such that X, = X, 0 ¢, and P = Pog¢, .

3

i.e. a measure on the Borel sets, finite on the compact ones.
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5.3 Martingale representation theorem
Theorem 5.5 (see [8], Theorem 8.2, p.220). Assume U, H are separable Hilbert spaces, M
s a square-inegrable martingale with

t
<<M>>t:/ (®oQY?) o (®oQV?)* ds, tel0,T],
0

where Uy = QY2(U), ® is a predictable, HS(Uy, H)-valued process and Q a given, bounded,

symmetric_nonnegative operator in U. Then there exists a probability space (Q,ﬁ]—" , P) , a
filtration (F¢) and a Q-Wiener process W with values in U, defined on (2 x Q, F x F, P x P)
adapted to (Fy x Fy), such that

t
M(t,w,w)z/ (s, w,7) AW (s,w,3), t € [0,T],
0

for a.e. (w,w) € (2 x Q) where
M(t,w,w) = M(t,w), O, w,w)=d(t,w)
for all t € [0,T), a.s. in Q x Q.

5.4 Technical lemmas

5.4.1 On the Garsia-Rodemich-Rumsey inequality

Lemma 5.6. (Garsia-Rodemich-Rumsey inequality, see [13],[23, Fx. 2.4.1]) Let q¢ > 1,
a>1/q and f:[a,b] = V be continuous, then

b b _ q
1£6) = SN < Cagls =0 [ W dt d. (170)

5.4.2 W™P-regularity

Lemma 5.7 ([11], Lemma 2.1., p.369). Let K, H be separable Hilbert spaces and W be a

cylindrical Wiener process in K. Assume p > 2, a € (0, %) Then, for any progressively

measurable process f € LP(Q2 x (0,T); HS(K; H)) we have
/0' f AW € LP(Q; WoP(0,T; H))
and there exists a constant C(p,«) > 0 such that
: T
Bl [ £ Wy g < Can)E [ 1F s
Lemma 5.8 ([2], Lemma 3.2). Let V be a Banach space. Assume that T > 0 and that I, =

{tx }, is an equidistant mesh of size T > 0 covering [0, T]. Assume that G € C([0,T); V)
is such that, for every k € {0,..., N — 1} the function

[tk tit1) Dt G(t)
is affine. Assume that, for somep > 1, @« >0 and C > 0 and everyl € {1,... N},

N—I
Ty IG(tr) = G < CPHT
k=0

Then, G is uniformly bounded in the Nikolskii space N*P(0,T; V) and there exists a constant
C =C(T) > 0, which does not depend on 7 > 0 such that

G| Nor 0,17y = Sl>110)s_a||g(~ +8) = GO pr(—s,r—sv) < C.
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5.4.3 Further results

Lemma 5.9. Let W be a Banach space which is compactly embedded into L*(0,T; L*(D))
and p > 2. For a € (0, %), the linear space

Vi={u=v+w, veW, wecW*(0,T; H} (D))} C L*(0,T; L*(D))
endowed with the norm

ullv = inf max(||v|lw, [|w|lwe.r)
wWEW P (0,T5L3(D)),
u=v+w

is a Banach space which is compactly embedded into L?(0,T; L?(D)).

Proof: It follows from [12], Remark 5.13, p.12-13 that (V.|| - ||v) is a Banach space.
There exists C' > 0 such that for any u € V and any v € W, w € W*P(0,T; H} (D)) with
u=v+w

[ull20,7522(py) < € max([[v]lw, [[wllwer) (171)

and therefore the imbedding V < L?(0,T; L*(D))) is continuous. Let (u,) be a bounded
sequence in V', i.e. there exists R > 0 such that ||u,|lvy < R for alln € N. Let n € N be
fixed. According to the definition of the norm in V, for any k € N, there exist v¥ € W,
wk € W*P(0,T; H (D)) such that u,, = v¥ +wk and

1 1
lokllw < B+ . [whllwes < R4 2.

Consequently, choosing k = n we can construct (v7*) C W, (w?) C W*P(0,T; H}(D)) such
that u, = v} +w) and

vl < R+ 1, |[w?||lwez < R+1

for all n € N. Passing to a not relabeled subsequence if necessary, there exists v €
L2(0,T; L*(D)) such that v — v in L2(0,T; L*(D)). Following [21], Corollary 2, p.82,

WeP(0,T; Hy(D)) — L*(0,T; L*(D))

with compact imbedding. Therefore passing to a not relabeled subsequence if necessary,
there exists w € L?(0,T; L?(D)) such that w? — w in L?(0,T; L?>(D)). Therefore, passing
to a not relabeled subsequence if necessary,

Up =V, +w,, = v+w

in L2(0,T; L?(D)) and therefore the imbedding V < L?(0,T; L?(D)) is compact.
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