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Time-Harmonic Electro-Magnetic Scattering
in Exterior Weak Lipschitz Domains with Mixed Boundary Conditions

FRANK OSTERBRINK AND DIRK PAULY

ABSTRACT. This paper treats the time-harmonic electro-magnetic scattering or radiation problem gov-
erned by Maxwell’s equations, i.e.,

rot B 4+ iwuH = F in Q, Exv=0 only,
rot H —iweE =G in €, Hxv=0 onlg,

where w € C\ {0} and Q C R3 is an exterior weak Lipschitz domain with boundary I' := 9§ divided
into two disjoint parts I'1 and N's. We will present a solution theory using the framework of polynomially
weighted Sobolev spaces for the rotation and divergence. For the physically interesting case w € R\{0} we
will show a Fredholm alternative type result to hold using the principle of limiting absorption introduced
by Eidus in the 1960’s. The necessary a-priori-estimate and polynomial decay of eigenfunctions for the
Maxwell equations will be obtained by transferring well known results for the Helmholtz equation using
a suitable decomposition of the fields £ and H. The crucial point for existence is a local version of
Weck’s selection theorem, also called Maxwell compactness property.
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1. INTRODUCTION

The equations that describe the behavior of electro-magnetic fields in a region 0 C R3, first completely
formulated by J. C. Maxwell in 1864, are

—rot H+0:D = -1, rot B4+ 0; B=0, in Q,
divD = p, divB =0, in Q,

where E, H are the electric resp. magnetic field, D, B represent the displacement current and magnetic
induction and I, p describe the current density resp. the charge density. Excluding, e.g., ferromagnetic
resp. ferroelectric materials, the parameters linking ' and H with D and B are often assumed to be
of the linear form D = ¢F and B = puH, where ¢ and p are matrix-valued functions describing the
permittivity and permeability of the medium filling 2. Here we are especially interested in the case of
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an exterior domain Q C R3, i.e., a connected open subset of with compact complement. Applying the
divergence to the first two equations we see that the latter two equations are implicitly included in the
first two and may be omitted. Hence, neglecting the static case, Maxwell’s equations reduce to

—rot H 4+ 0;(¢E) = F, rot E + 9, (uH) = G, in ©,

with arbitrary right hand sides F', G. Among the wide range of phenomena described by these equations
one important case is the discussion of “time-harmonic” electro-magnetic fields where all fields vary
sinusoidally in time with a single frequency w € C\ {0}, i.e.,

E(x,t) = E(x)e™", H(z,t) = H(z)e™", G(x,t) = G(x)e™", F(x,t) = F(x)e™".

Substituting this ansatz into the equations (or using Fourier-transformation in time ) and assuming that
€ and p are time-independent we are lead to what is called “time-harmonic Mazwell’s equations™:

rot E +iwpH = G, —rot H +iweE = F, in Q. (1.1)

This system equipped with suitable boundary conditions describes, e.g., the scattering of time-harmonic
electro-magnetic waves which is of high interest in many applications like geophysics, medicine, electrical
engineering, biology and many others.

First existence results concerning boundary value problems for the time-harmonic Maxwell system in
bounded and exterior domains have been given by Miiller [13], [12]. He studied isotropic and homogeneous
media and used integral equation methods. Using alternating differential forms, Weyl [29] investigated
theseequations on Riemannian manifolds of arbitrary dimension, while Werner [28] was able to transfer
Miiller’s results to the case of inhomogeneous but isotropic media. However, for general inhomogeneous
anisotropic media and arbitrary exterior domains, boundary integral methods are less useful since they
heavily depend on the explicit knowledge of the fundamental solution and strong assumptions on boundary
regularity. That is why Hilbert space methods are a promising alternative. Unfortunately, Maxwell’s
equations are non elliptic, hence it is in general not possible to estimate all first derivatives of a solution.
In [9] Leis could overcome this problem by transforming the boundary value problem for Maxwell’s
system into a boundary value problem for the Helmholtz equation, assuming that the medium filling €2,
is inhomogeneous and anisotropic within a bounded subset of 2. Nevertheless, he still needed boundary
regularity to gain equivalence of both problems. But also for nonsmooth boundaries Hilbert space methods
are expedient. In fact, as shown by Leis [10], it is sufficient that {2 satisfies a certain selection theorem, later
called Weck’s selection theorem or Mazwell compactness property, which holds for a class of boundaries
much larger than those accessible by the detour over H!. (cf. Weck [24], Costabel [2] and Picard, Weck,
Witsch [20] ). See [11] for a detailed monograph and [1] for the most recent result and an overview. The
most recent result regarding a solution theory is due to Pauly [16] (see also [14]) and in its structure
comparable to the results of Picard [18] and Picard, Weck & Witsch [20]. While all these results above
have been obtained for full boundary conditions, in the present paper we study the case of mixed boundary
conditions. More precisely, we are interested in solving the system (1.1) for w € C\ {0} in an exterior
domain Q C R3, where we assume that I := 9 is decomposed into two relatively open subsets [ and
its complement Iy := I\ T; and impose homogeneous boundary conditions, which in classical terms can
be written as

vxE=0onTy, vx H=0onTy, (v : outward unit normal). (1.2)

Conveniently, we can apply the same methods as in [15] (see also Picard, Weck & Witsch [20], Weck
& Witsch [27],[25]) to construct a solution. Indeed, most of the proofs carry over practically verbatim.
For w € C\ R the solution theory is obtained by standard Hilbert space methods as w belongs to the
resolvent set of the Maxwell operator. In the case of w € R\ {0}, i.e., w is in the continuous spectrum of
the Maxwell operator, we use the limiting absorption principle introduced by Eidus [4] and approximate
solutions to w € R\ {0} by solutions corresponding to w € C\ R. This will be sufficient to show a
generalized Fredholm alternative (cf. our main result, Theorem 3.10) to hold. The essential ingredients
needed for the limit process are

e the polynomial decay of eigensolutions,



TiME-HARMONIC ELECTRO-MAGNETIC SCATTERING IN EXTERIOR WEAK LIPSCHITZ DOMAINS 3

e an a-priori-estimate for solutions corresponding to non-real frequencies
e a Helmholtz-type decomposition,
e and Weck’s local selection theorem (WLST), that is,

Rr, (2) Ne D, () — L () is compact.

While the first two are obtained by transferring well known results for the scalar Helmholtz equation to
the time-harmonic Maxwell equations using a suitable decomposition of the fields £ and H, Lemma 4.1,
the last one is an assumption on the quality of the boundary. As we will see, WLST is an immediate
consequence of Weck’s selection theorem (WST), i.e.,

R, (©)Ne™'Dp,(0) — L*(O) is compact,

which holds in bounded weak Lipschitz domains © C R3, but fails in unbounded like exterior domains ( cf.
Bauer, Pauly, Schomburg [1] and the references therein ). For strong Lipschitz- domains see Jochmann
[7] and Fernandes, Gilardis [5].

2. PRELIMINARIES AND NOTATIONS

Let Z, N, R and C be the usual sets of integers, natural, real and complex numbers, respectively.
Furthermore, let 7 be the imaginary unit, Re z, Im z and Z real part, imaginary part and complex conjugate
of z € C, as well as

Ry:={seR|s>0}, Ci:={z€C|Imz>0} and I:={(2m+1)/2|meZ\{0}}.

For z € R™ with = # 0 we set r(z) := |z | and &(z) :=z/|z| (| - |: Euclidean norm in R™ ). Moreover,
U(7) resp. B(7) indicate the open resp. closed ball of radius 7 in R™ centered in the origin and we define
S(7) =B\ UF), UFE):=R*\B(), G #):=0FnU®#),
with 7 > 7. If f: X — Y is a function mapping X to Y the restriction of f to a subset U C X will be

marked with f|,; and D(f), N(f), supp f resp. R(f) denote domain of definition, kernel, support and
range of f. Given two functions f,g: R* — C* we write

f=0(g) for r — o0 ifandonly if Je>037>0VaeUF): |f(x)|<c-g(x).

For X,Y subspaces of a normed vector space V, X+Y, X+Y and X®Y indicate the sum, the direct sum
and the orthogonal sum of X and Y, where in the last case we presume the existence of a scalar product
(-,-)von V. Moreover, (-, )xxy resp. || - |lx4y denote the natural scalar product resp. induced
norm on X X Y and if X =Y, we stay “with X instead of X x X.

2.1. General Assumptions and Weighted Spaces. Unless stated otherwise, from now on and through-
out this paper it is assumed that © C R? is an exterior weak Lipschitz domain with weak Lipschitz
interface in the sense of [1, Definition 2.3, Definition 2.5], which in principle means that [ := 9 is a
Lipschitz-manifold and 'y resp. I'; are Lipschitz-submanifolds of I'. For later purpose we fix ro > 0 such
that R®\ Q € U(rg) and define for arbitrary ¥ > rg

QF) :=QNnUF).
With 74 := 2¥rg, k € N and 77 € C*°(R) such that
0<p<1, supp 7 C (—00,2 — 4), M—oon+s) =1 (2.1)
for some 0 < § < 1, we define functions 7,7, g, fx € C(R?) by
(@) =q(r(z)/ro), i) =1-n), mz):=qa(r(@)/re), resp. ik(z):=1-mn(z),
meaning

suppn C B(r1) with n=1on U(rg), supp Nk C U(rg41) with np =1 on U(ry),
5 5 resp. 5 5
suppn C U(rg) with 7 =10nU(r), supp 7, C U(rk) with 7 =1 on U(rgsq).
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These functions will later be utilized for particular cut-off procedures.

Next we introduce our notations for Lebesgue and Sobolev spaces needed in the following discussion.
Note that we will not indicate whether the elements of these spaces are scalar functions or vector fields.
This will be always clear from the context. The example'

E:=Vin(r) € Hi, (U(1)), vxElg; =0, 1otE=0€eL*U(1), divE=r2¢el*U(1),

shows that a standard L2-setting is not appropriate for exterior domains. Even for square-integrable
right hand sides we cannot expect to find square-integrable solutions. Indeed it turns out that we have
to work in weighted Lebesgue and Sobolev spaces to develop a solution theory. With p := (1 + r? )1/ 2
we introduce for an arbitrary domain Q C R3, t € R and m € N:

12(92) = {w € Lo(@) | plw e LX)}
HE () i= {w € LAQ) |V ol <ms 0w e LA@)
HR(©) = {w e Q)| Vol <m: 0" wel?, (@)},
R,(Q) = {E = LE(Q)( rot E € L;?(Q)}, R,(Q) := {E e L2(Q) ] ot E € LEH(Q)},
D,(Q) := {H e L2(Q) ‘ divH € Lf(Q)}, D, () := {H € LE(Q)’ div H € LEH(Q)}.

where a = (a1, a2,a3) € N? is a multi-index and 0%w := 97 952 05w, rot E resp. div H are the usual
distributional or weak derivatives. Equipped with the induced norms

2 || ot |12
lwlliz ) =l w0 |2 g »
2 o 2
| w ”H{“(Q) = Z 9% HL?(Q) ’
|a|]<m
2 o 2
lwlhpoy = 22 10wl o)
|la|]<m
2 2 2 2 2 2
” E HRt(Q) = H E |||_§(Q) + || rot £ |||_?(Q) ) ” E ”Rt(Q) = H E ”LE(Q) + || rot £ ”L?Jrl(ﬂ) ’
2 2 . 2 2 2 . 2
|| H ||DC(Q) = H H |||_§(Q) + ” divH HL?(Q) ) ” H HDC(Q) = H H ||L§(Q) + ” divH ‘IL?+1(Q) ’

they become Hilbert spaces. As usual, the subscript “loc” resp. “vox” indicates local square-integrability
resp. bounded support. Please note, that the bold spaces with weight ¢ = 0 correspond to the classical
Lebesque and Sobolev spaces and for bounded domains “non-weighted” and weighted spaces even coincide:

H, () = H{(Q) = Hy ()

QcR3bounded = VteR: R.(2) =R, () =R,(Q) .
D, (€2) = D,(£2) = D,(2)

Besides the usual set C(€2) of test fields (resp. test functions) we introduce
Q) = { ¢la ‘g@ € C°(R?) and dist(suppp,T;) > O} , 1=1,2
to formulate boundary conditions in the weak sense:

I 1ym -l
HI () R, (€2)

o () == G () v Ryn () :=Cr(Q) v Den(Q):=Crr (@)

I o g N M

Q) == CR(Q) . Ren(Q) = CZ(Q) . Do (Q)i=Cr(Q)

iAlthough the right hand sides 0 and 72 are L2(U(1))-functions, we have E = ¢/r ¢ L2(U(1)), but E € L2 (U(1))
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These spaces indeed generalize vanishing scalar, tangential and normal Dirichlet boundary conditions
even and in particular to boundaries for which the notion of a normal vector may not make any sense.
Moreover, 0 at the lower left corner denotes vanishing rotation resp. divergence, e.g.,

oR(Q) :={E € R{(Q) | rot E = 0}, oDy, () :={H €D, ()| divH =0}, ,
and if ¢t = 0 in any of the definitions given above, we will skip the weight, such that, e.g.,
H™(Q) = Hg'(2), R, (€) = Ro,rl(Q)7 Dr, Q) = Dor, (),
Finally, in order to shorten notation, we declare

><<S:=ﬂ><t and x>s:=U><t (s €R),

t<s t>s
for X; being any of the spaces above and write, e.g.,

HY =HQ), Ry, =R, (Q), D =D(Q), HY, =H (@), ..
if Q = R3.

For the material parameters € and p we suppose that they are x- admissible with x > 0.
Definition 2.1. Let k > 0. We call a transformation v k-admissible, if

o v:Q — R3>*3 s an L®-matriz field,

e v is symmetric, i.e.,

VE,Hel?*Q): (E,vH) vE,H)

L2() = L2(Q)
e v is uniformly positive definite, i.e.,

Fe>0VEELXQ): (B AE)ug >c || Bk

L2(©) Q)
e v is asymptotically a multiple of the identity, i.e.,

Y="0-1+% with v € Ry and&z(’)(rﬂ‘) as r — 00.

Then &, 41 are pointwise invertible and ¢!, ;=1 defined by
1 -1

e Nz) = (e(z))” and  p'(2) = (pl)) x e,
are also k-admissible. Moreover,
<-7.>E::<E.’.>L2(Q) and <-’.>N::<M.7->L2(Q)
define scalar products on L%(£2) inducing norms equivalent to the standard ones. Consequently,
L2() = (L2, (-, )e )y La(@):= (LX), (-, )u) and LF(Q):=LE(Q) x Lh(Q)
are Hilbert spaces and we will write
Flles -0 T-lla s @6y @y @4 and Ley Ly L

to indicate the norm, the orthogonal sum and the orthogonal complement in these spaces. For further
simplification and to shorten notation we also introduce for e = ¢ -1+ € and pu = pp - 1 + 4 the formal
matrix operators

(e 0 (10 ~ (€ 0
A'(O u) , A '<0 /fl) : A'<0 M> :

A(E,H) = (¢E,uH) A Y EH)=(¢'E,p " H) A(E,H) = (¢E, uH)

(0 —rot T . 0 —ie~trot
Rot := <r0t 0 > , M :={A7" Rot = (i,u_lrot 0 > ’

Rot (E,H) = (—rot H,rot E) M (E,H) = (—ie ' rot H,ip ' rot F)
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- ._ 0 —fX (€0 0 X . (Mo 0
H._(sx O) | Ao._<0 uo) | AO._(O EO)

E(EH)=(-¢{xH{xE) Ao (E,H) = (e0E, poH) Ao (E,H) = (noE,e0H)
Recall &(z) = z/r(x).
We end this section with a Lemma, showing that the spaces defined in (2.2) indeed generalize vanishing
scalar, tangential and normal boundary conditions.
Lemma 2.2. Fort € R and i € {1,2} the following inclusions hold:

(a) H?,]ri(ﬂ) - H?}ri(Q)a Rt,ri(Q) - Rt,ri(Q)’ D; r, Q) c Dt,ri(Q)

(b) VH{r(Q) CoRr(Q), VH{(Q) CoRyyy (D)

(¢) 1otR,r(R2) CoDyr (), 1otR () CoDyyr, ()
Additionally we have fori,j € {1,2}, i # j:

Hir () = Hip (@)= {w e HIQ) | VO € CR(Q): (w,dive), o = —(Vu,®)

L2(Q) }a
Rr(Q) = Rin(9) = { E€R(Q) ‘ VO ECE(Q): (B rot®), ) = (10t B, &) }
D, () = Dor,(Q) == { H e D(2) ‘ Vo ECRQ): (H, V) = —(divH ,6)q |

HLE () = Hir (@) = { w e HI() ’ Vo e CR(Q): (w,dive), g = —(Vuw, @),

{

and {

{ © j

Ror, () = R, (Q) = {E €R,(Q) ‘ VO ECE(Q): (B 1ot®),q = (10t B, @) } :

D (Q) =Dy, (Q) := {H € D,(Q) ‘ VoeCR(Q): (H V). = —(divH . o) }
where ( using continuity of the L2-scalar product ) we may also replace C‘FT(Q) by

Hi,rj ), Rs,rj(Q)a Ds,rj () resp. Hsl,rj (@), Rs,rj ), Ds,rj(Q)a

with s+t >0 resp. s+t > —1.

Proof. As representatives of the arguments we show
(i) rot Ry, (22) C oDy, (2) and (i) Ryr, (2) = Rer, (2).
For E € rot R, ,(€2) there exists a sequence (£,)nen C CF;(2) such that rot &, — E in L2(©2). Then
Vpe CT(Q): (E, V¢>L2(Q) = n11_>H;O< rot &, , v¢>|_2(g) == nli_)H;Q(diV (I“Ot gn) ) ¢>L2(Q) =0,
hence E has vanishing divergence and (E,),en defined by E,, := rot &, satisfies

)

; L2, (Q
OB and  divE, = div (1ot &,) =0~ 0

(En)nen C CE(Q), E, ——

Thus E € oD, ,(©2) and we have shown (i). Let us show (ii). We clearly have R () C Ry, (9).
For the other direction, let E € Ry, (2) and § > 0. Using the cut-off function from above we define
(Ek)keN by Ep :=nE. Then E; € Rfl (Q(Q’/‘k-)), fl =T u S(Q’/‘k), since for & € C(FX; (Q(Qrk)) it holds
by ne® € CF ()

<Ek,rot<1>> <77kE7rOt(I)>|_2(Q)
<E,I‘Ot(’l7k(1>) >L2(Q) — <E7v77k X (I)>|_2(Q)

= (nrrot E 4+ Vi x E,@)LQ(QQW) = (rot B, ®)

L2((2r)) —

L2(Q(2r))
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Now observe, that by means of monotone convergence we have "
| E — Ex ||Rt(Q) = ”nkEHRt(Q) <c- (HE”R U(rk))+ HE”Lz ) >0,

hence we can choose k > 0 such that |E - E; HR @ < d/2. Moreover Q(2r;) = QNU(2r;,) is a bounded

weak Lipschitz domain and therefore (cf. [1, Section 3.3]) R¢ (2(2r;)) = Ry, (Q(2r;,)), yielding the
existence of some ¥ € C?T(Q(Qr,;)) such that

<c-|E <d/2.

1B = ¥ |z ary)) i~ Yllreary)

Extending ¥ by zero to Q we obtain ( by abuse of notation) ¥ e C(2) with

§+,:57

12 =¥l (00 S35

(@ S B = Billg, o) + 1 B = g

which completes the proof.
O

2.2. Some Functional Analysis. Let H; and Hs be Hilbert spaces. With L(H;,Hz) and B(Hy, Ha) we
introduce the sets of linear resp. bounded linear operators mapping Hy to Ha. For A : D(A) C H; — Hy
linear, closed, and densely defined, the adjoint A* : D(A*) C H, — Hj is characterized by

(Az,y)n, = (z,A%y)n, VazeD(A), yeDA").
By the projection theorem we have the following Helmholtz type decompositions
Hi =R(A") a N(A), and Ho = R(A) e N(A"),

which we use to define the corresponding reduced operators A := A|N(A)L, A* = A*|N(A*)La ie.,

A:D(A) € R(A") — R(A) A* i D(A*) € R(A) —> R(A)

resp.

D(A) = D(A) NR(A¥) D(A*) = D(A*)NR(A).

These operators are also closed, densely defined and indeed adjoint to each other. Moreover, by definition
A and A* are injective and therefore the inverse operators

A1 R(A) — D(A) and  (A")7':R(AY) — D(AY)

exist. Moreover, the pair (A, A*) satisfies the following result of the so called Functional Analysis Toolboz,
see e.g. [17, Section 2], from which we will derive some Poincaré type estimates for the time-harmonic
Maxwell operator (M — w ) (cf. Remark 3.11 and Remark 3.7).

Lemma 2.3. The following assertions are equivalent:
(1) Jea € (0,00) Ve eDA): [ally, <ecall Az,
) Fear €(0,00) Yy e DA [yl < car | A"yl
(2) R(A) =R(A) is closed in Ha.
(2%) ( *) = R(A*) ist closed in Hy.
3) A
(3) (A*)

Note that

(1

R(A) — D(A) is continuous.

! i R(A*) — D(A") is continuous.

[ HR(A),R(A*) =ca=car = |[[(A)7 HR(A*),R(A) .

liere and in what follows, ¢ resp. ¢(...) always denotes some constant changing from step to step.
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3. SOLUTION THEORY FOR TIME-HARMONIC MAXWELL EQUATIONS
As mentioned above we treat the time-harmonic Maxwell equations with mixed boundary conditions
—rot H +iweE =F in €, Exv=0 on Iy,
rot £ +iwpH =G in Q, Hxv=0 on [y, 3.1)

in an exterior weak Lipschitz domain Q C R?® and for frequencies w € C\ {0}. Moreover, we suppose
that the material parameters € and p are k-admissible for k > 0. Using the abbreviations from above
and rewriting

u:=(E,H) , f=iAN"Y~F,QG),

the weak formulation of these boundary value problem reads:
For f € L3 () x L .(Q) find u € Rige.r, () X Ry, (Q) such that (M —w)u = f. (3.2)

We shall solve this problem using polynomially weighted Hilbert spaces. In doing so we avoid additional
assumptions on boundary regularity for €2, since only a compactness result comparable to Rellich’s selec-
tion theorem is needed. More precisely, we will show that  satisfies ”Weck’s (local) selection theorem”,
also called ”(local) Mazwell compactness property”, which in fact is also an assumption on the quality of
the boundary and in some sense supersedes assumptions on boundary regularity.

Definition 3.1. Let vy be k-admissible with k > 0.  satisfies ”Weck’s local selection theorem” (WLST)
(or has the "local Mazwell compactness property” ), if the embedding

Rr, () N7~ "Dy, (©) — L, (@) (3.3)

loc

18 compact. A bounded weak Lipschitz domain © with weak Lipschitz Interface satisfies ”Weck’s selection
theorem” (WST) (or posses the ”Mazwell compactness property” ) if the embedding

Rr, (€) N7 'Dy, (0) — L2(8) (3.4)
18 compact.

Remark 3.2. Note that Weck’s (local) selection theorem is essentially independent of v meaning that a
domain Q C R? satisfies WST resp. WLST, if and only if the imbedding

R, (2)ND,(Q) — L2(Q)  resp.  Rr, (2 ND,(Q) — L2.(Q)

loc
is compact. The proof is practically identical with the one of [19, Lemma 2] ( see also [24],[22] ).
Lemma 3.3. Let v be k-admissible with k > 0. Then the following statements are equivalent:
(a) Q satisfies WLST
(b) For all ¥ > rq the imbedding

R, (7)) Ny~ ' Dr, (7)) — L3(Q(7)

with Ty := [ US(7) is compact.
(¢) For all ¥ > 1 the imbedding

Rr, (2(7) N ’y_lDfQ(Q(f)) — L2(Q(7))

with Ty := Ty US(7) is compact.
(d) For all s,t € R with t < s the imbedding

R.r,(2)N77'D, r, Q) — L2(Q)

s,M 1

18 compact.

Proof.
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(a) = (b):
Let 7 > rp. By Remark 3.2 it is sufficient to show the compactness of

R: (2(7)) N D, (7)) — L2(Q(7)) .

Therefore let (Fy,)nen C Rfl(Q(f)) N D, (£2(7)) be bounded, choose 9 < # < 7 and a cut-off
functiony € éOO(RS) with supp x € U(7) and X|B(f) = 1. Then, for every n € N we have

E,=FE,+E, = xE,+(1—-x)E,, supp E,, C Q(7), supp E, C G(ro,7),

splitting (Ey,)nen into (En)neN and (E‘n)neN. Extending E,, resp. E, by zero, we obtain ( by abuse
of notation ) sequences

(Ep)nen C Rr, () NDr, () and (Ey)nen C Ry (B(7)) N D(B(7))
which are bounded in the respective spaces. Thus, using Weck’s local selection theorem and
Remark 3.2, we can choose a subsequence (Eﬂ(n))neN of (E,)nen converging in L2.(Q). The
corresponding subsequence (EAW(n))neN is of course also bounded in Ry (B(7)) N D(B(7)) and
by [23, Theorem 2.2], even in H!(B(7)), hence (Rellich’s selection theorem ) has a subsequence
(EA;r(n))neN converging in L2(B(7)). Thus

| Bz = Bz |l 20y

< e L IX(Brmy = Bxom) Iz + 1 =20 (Brn) = Bxem) Iz §

m,n—oo

<ec: { | Exny = Erom) l2aeyy + 1 B2 = By [l 20y }

meaning (Ez(n))nen C (Ey)nen is a Cauchy sequence and therefore converging in L?(€(7)).

0,

(b) = (d):

Let s,t € R with s > ¢ and (Ep)nen C Ry, () Ny~ 'D, r, () be bounded. Then there exists a
subsequence (Er(n))nen C (En)nen converging weakly in R - (©2) N 7*1DS7|-2 (Q) to some vector
field £ € R (2) N 7*1D57r2(ﬂ). We now construct a subsequence (Ez(,))nen of (Er(n))nen

s,

converging in L? () to the same limit E. Therefore, observe that

(ETr(n),l)nGN with Eﬂ'(n),l = nlETr(n)

is bounded in er (Q(r2) Ny~ D, (Ar2)), Iy := 1 U S(ry) such that by assumption there exists a
subsequence (Ey, (n)1)nen converging in L?(Q(r2)). Then (Er, (n))nen C (Ex(n))nen is converging
in L2(Q(r1)) and as (Er, (n))nen is also weakly convergent in L?(Q(r1)), we have

Eryny — E in L*(Q(r)).
Multiplying (Exr, ())nen With 12 we obtain a sequence (Er, () 2)neN, Er, (n),2 = N12E5, (n) bounded
in Rfl (Q(rs)) N 77D, (Q(rs)), [ := I, U S(r3) and as before we construct a subsequence
(Ery(n),2)nen converging in L*(€(r3)), giving a subsequence (Er,(n))nen C (Er, (n))nen With

Eryny — E in L*(Q(r2)).

Continuing like this, we successively construct subsequences (Er, (n))nen With Er, ) — E in
L2(€(rx)) and switching to the diagonal sequence we indeed end up with a sequence (Ez(n))nen,

7(n) := mp(n), with Ez,) — E in L (Q). Now Lemma A.1 implies for arbitrary 6 > 0

H Ezmy — E ||Lg(n) sc: || Ermy — E ||L2(Q(6)) +0,
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with ¢,0 € (0, 00) independent of Ex,). Hence

limsup || Bz () — E HL?(Q) <9,
n—00 ¢
and we obtain Ez(,,) — E in L7 ().

(4) = (a):
For (Ep)nen bounded in Rp () Ny~ 'Dr () assertion (c) implies the existence of a subsequence

(Er(n))nen converging in L2 (Q) to some E € L2 (). Then E € L} (©) and as

loc

Vi>0: || Erm) = B2 < (1 + A2 Brny — B HLEI(Q) ,

we obtain (Er(n))neny — E in L (Q).

loc

Similar arguments to those corresponding to (b) show the assertion for (c).
(|

As shown by Bauer, Pauly & Schomburg [1, Theorem 4.7], bounded weak Lipschitz domains satisfy
Weck’s selection theorem and by Lemma 3.3 (a) this directly implies:

Theorem 3.4. Ezxterior weak Lipschitz domains satisfy Weck’s local selection theorem.
A first step to a solution theory for (3.2) with arbitrary w € C\ {0} is the following result
Theorem 3.5. The Maxwell operator

M :Rp () x R (Q) CLX(Q) — LF(Q), ur— Mu,

1s self-adjoint and reduced by the closure of its range

R(M) = e 'rot Rp,(2) x ptrot R, ().
We note that here, in the case of an exterior domain €2, the respective ranges are not closed.

Proof. The proof is straightforward using Lemma 2.2, i.e., the equivalence of the definition of weak and
strong boundary conditions.
|

Thus o(M) C R, meaning every w € C\R is contained in the resolvent set of M and for given f € L% (Q)
we obtain a unique solution of (3.2) by u = (M — w)flf € Rr, () x R, (Q). Moreover, using the
resolvent estimate || (M —w)™! || < |Imw|~! and the differential equation we obtain

1+ |w]

. [Imw | .”fH'—?\(Q)’

lullgey < ¢ { Nullia oy + 1l + 10 lwllz g | <e
and hence:
Theorem 3.6. For w € C\ R the solution operator
Lo=(M=-w)":13(Q) — R, (Q) xR (Q)

1+ |w]|

Q)R <c- W} where ¢ is independent of w and f.

is continuous with || Ly, ||
A

Remark 3.7. Let w € C\ R. By Lemma 2.3 the following statements are equivalent to the boundedness
of L:
o (Frierich/Poincaré type estimate) There exists ¢ > 0 such that

||uHR(Q) <c-| (M_W)UHLi(Q) Vu € R (Q) xR, ().
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o (Closed range) The range
RM=-w)=(M-w) (er(Q) X RFQ(Q))

is closed in L% ().

The case w € R\ {0} is much more challenging, since we want to solve in the continuous spectrum
of the Maxwell operator. Clearly this cannot be done for every f € L3 (£2), since otherwise we would
have R(M —w) = L3 (Q2) and therefore (M — w)~! would be continuous (cf. Lemma 2.3) or in other

words w & o(M). Thus we have to restrict ourselves to certain subspaces of L% or generalize our solution
concept. Actually, we will do both and show existence as well as uniqueness of weaker, so called “radiating
solutions”, by switching to data f € L2(Q) x L2() for some s > 1/2.

Definition 3.8. Let w € R\ {0} and f € L2 (). We call u ,(radiating) solution® of (3.2), if

loc

weR__, () xR__i (O

and satisfies
(M—w)u=f, (3.5)
(Ao—l—\/é‘o,uo E)UE Li_%(Q) (36)

Remark 3.9. Since

(A0+./750u05)uA0<E+1/’Z§§><H,H Z‘z)ng>,

the last condition is just the classical Silver-Mdiller radiation condition which describes the behavior of the
electro-magnetic field at infinity and is needed to distinguish outgoing from incoming waves (interchanging
+ and — in (3.6) would yield incoming waves ).

In order to construct such a solution u we follow the “limiting absorption principle” introduced by Eidus
and approximate u by solutions (u,),en associated with frequencies (wp)nen € C \ R converging to
w € R\ {0}. This leads to statement (4) of our main result, where the following abbreviations are used:

Ngen(M = w) := {u|u is a radiating solution of (M —w)u =0} (generalized kernel of M —w),
Ogen(M) 1= {w € C\ {0} | Ngen(w) # {0} } (generalized spectrum of M).

Theorem 3.10 (Fredholm alternative). Let Q C R? be an exterior weak Lipschitz domain with bound-
ary T and weak Lipschitz boundary parts Ty and Ty := [\ Ty. Furthermore let w € R\ {0} and €, 1
k-admissible with k > 1. Then we have:

(1) Ngen(M —(U) C ﬂ (thl (Q) ﬂ5_1th7rz(Q)) X (Rt,rz(Q) m‘u—lth’rl (Q))iii'

teR

(2) dimNgen(M —w) < o0

(3) ogen(M) C R\ {0} and ogen(M) has no accumulation point in R\ {0} .

We even have

Neen(M =) € () (Rep, (N 10t R, 1, () ) % (Ryp, (@) N rot Ry p, () ) -
teR
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(4) For all f € Li%(ﬂ) there exists a (radiating ) solution u of (3.2), if and only if
Ve Ngen(M—w): <f’U>L§\(Q):O' (3.7)
Moreover, we can choose u such that
VveNgen(M—w): (u,v>|_/2\(ﬂ):0. (3.8)

Then u is uniquely determined.
(5) For all s,—t > 1/2 the solution operator

Lo L) 0 Ngen(M =) — (R, (@) % Ry, () ) 0 Ngen(( M — )2

defined by (4) is continuous.

Remark 3.11. Under the conditions of Theorem 3.10 the following statements are equivalent to the
boundedness of L., (cf. Lemma 25’)

o (Frierich/Poincaré type estimate) For all s,—t > 1/2 there exists ¢ > 0 such that
”u”Rt(Q) <c || (M —w)u HLg(Q) Vue (Rt,rl(Q) X Rt,r2(9)> N Neen(M —w)tr.
o (Closed range) For all s,—t > 1/2 the range
R(M —w) = (M=w) (Rer, (@) xR, ()
is closed in L2(9).

By the same indirect arguments as in [15, Corollary 3.9] ( see also [14, Section 4.9] ), we get even stronger
estimates for the solution operator L,,.

Corollary 3.12. Let Q C R? be an exterior weak Lipschitz domain with boundary I and weak Lipschitz
boundary parts T1 and Ty := [\ T1. Furthermore let s,—t > 1/2, e, 1 k-admissible with k > 1 and
K € Cy \ {0} with K Nogen(M) =0. Then

(1) there exist constants ¢ >0 and t > —1/2 such that for allw € K and f € L2(Q)
|| ﬁwf ”Rc(Q) + H (AO + VEoMo = )‘wa HL2E(Q) S c- || f |||_§(Q)
holds, implying that L., : LZ(Q) — Ry () x R, ,(Q) is equicontinuous w.r.t. w € K.
(2) the mapping

— B(Lg(Q) R, () x Rt,rg(Q))
— L,

D
€ X

is uniformly continuous.

4. POLYNOMIAL DECAY AND A-PRIORI ESTIMATE

As stated before, we will construct a solution u in the case of w € R\ {0} by solving (3.2) for w,, =
w+io, € CL\R and sending o,, — 0 (using (wy, )neny € C_\R instead will lead to “incoming” solutions ).
The essential ingredients to generate convergence are the polynomial decay of eigensolutions, an a-priori-
estimate for solutions corresponding to non-real frequencies and Weck’s local selection theorem. While
the latter one is already satisfied (cf. Theorem 3.4 ), we obtain the first two in the spirit of [27] using the
following decomposition Lemma introduced in [14] ('see also [15],[16] ).
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Lemma 4.1. Let w € K € C\ {0}, ¢, u k-admissible with > 0 and s,t € R such that 0 < s € R\ and
t < s <t+ k. Moreover, assume that u € R,(Q) satisfies (M —w)u = f € L2(Q). Then we have

fr o= (Crot — iwih )u — ifAf € L2
and by decomposing

fi=fr+ fo+fs €oRs+0Ds + Ss
according to [26, Theorem 4], we obtain

7 ~—1
f2 = fD + ;AO ROtf,s S ODs'

Additionally, v may be decomposed in

U =nu-+u; +uz +us,

where
(1) nu € R, (Q) and for all t € R

Inellg, o) =< e { I Nz ey + leliz <Q>}’

K

(2) up = —gAal(fR—i—fs) € R, and

furllg <ec-[[filles
(3) up:=F (p2(1—irZ) F(f2)) € H N oD, and
PAMETR AN
(4) ug :=10 —uy € H2 N oD, and for all t <t
s e < e { s s + lluz s}
where @ = iw‘lAal( Rot iju — fp ) € Hf N D,
with constants ¢ € (0,00) independent of u, f or w. These fields solve the following equations:
(Rot+iwA0)771u:f1, (Rot—l—ioJAo)ﬂ:fg, (Rot—l—ion)u?,:(l—on)uz,
(A+w250u0)U3 = (1 —iw/NXO) fo— (1 —|—w250,u0)u2.
Moreover the following estimates hold for all t <t and uniformly w.r.t. A € K, u and f:
o N falls < el fills < e {1 F s + e o)

o lluly oy < e {1 ooy + 11wl (o) +lluslls
o [ (A+wsouo)uslp e {11 lay +ulls (o}

o || (Rot —iAy/Zopo = )uHLQE <c- { 1 f Ny Hluells o) + | (Rot — iAy/Eotto E ) us ||L2E }
Here S, is a finite dimensional subspace of éoo(R?’), F the Fourier-transformation and
Cap:=AB—-BA
the commutator of A and B.

Basically, this lemma allows us to split « into two parts. One part ( consisting of nu, u; and ug ) has better
integrability properties and the other part (consisting of ugz ) is more regular and satisfies a Helmholtz
equation in the whole of R®. Thus we can use well known results from the theory for Helmholtz equation
(cf. Appendix, Section B) to establish corresponding results for Maxwell’s equations. We start with
the polynomial decay of solutions, especially of eigensolutions, which will lead to assertions (1) - (3) of
our main theorem. Moreover, this will also show, that the solution u we are going to construct, can be
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chosen to be perpendicular to the generalized kernel of the time-harmonic Maxwell operator. As in the
proof of [16, Theorem 4.2] we obtain (see also Appendix, Section C) the following.

Lemma 4.2 (Polynomial decay of solutions ). Let J C R\ {0} be some interval, w € J, €, u k-admissible
with k > 1 and s € R\ T with s > 1/2. If
u € R>_%(Q) satisfies (M —w)u=: f € L2(Q),
we have
weR Q) and  ully g e {1F o + 14l |-
with ¢, € (0,00) independent of w, u and f.
In short: If a solution u satisfies u € Ry () for some ¢ > —1/2 and the right hand side f = (M —w ) u has

a better integrability properties, meaning f € L2(2) for some s > 1/2, then u is also better integrable,
ie., u € R, (). Especially, if

ueR,_,(Q) and feL?() VseR,
then u € Ry(Q) for all s € R, which is called “polynomial decay”.
Corollary 4.3. Let w € R\ {0} and assume €, i are k-admissible with k > 1 and
u e R<7%7r1(Q) X R<7%’r2(Q)
is a radiating solution (cf. Definition 3.8) of (M —w ) u=0. Then:

we (Rm (Q) x Rm(m) :

teR

Proof. According to Lemma 4.2 it suffices to show u € R,(2) for some t > —1/2. Therefore remember
that u is a radiating solution, hence the radiation condition (3.6) holds and there exists £ > —1/2 such
that

(Ao + VEopo 2 )u € L3(Q). (4.1)

On the other hand we have
— 2
| (Ao + VEoro E)u HLQE(G(TO,F))

2 - -
= || Aou |||-2E(G(T0f)) +2/eopo Re (Zu,Aou >|_2E(G(T07f)) +eopo [[Eu ”LQE(G(TO’F))
and using Lemma A.3 (cf. Appendix, Section A) with

o(s) = (1457, ®i=gor, ¢<s>=/T o(c)do, W =ror,

nax{rg,s}

as well as the differential equation, we conclude

Re(Eu,Agu) =Re(P=Zu,Aou)

L% (G(ro,7)) L2(G(ro,7))

= Re ((WRotu,Aou)p(Q(m + (Wu, Ay Rot u>L2(Q(m)

= Re ((—z’w\IfAonu}LQ(Q(;_)) +(Vu, —iwlNXOAu>L2(Q(m)

= Re iw(lllAu,(Ko—Ao)u> 0,

L2(Q(r) —

€iR
hence
| w HLZE(G(TO,F)) <c- || (Ao + Voo E ) u ||L2€(G(roi))

with ¢ € (0,00) independent of 7. Now the monotone convergence theorem and (4.1) show
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IXC HL%(IVJ(To)) <c-[[ (Ao + vEoho E)u ||L2;(ﬁ(m) < 0,

which already implies u € L3(Q) and completes the proof.
(Il

The next step is an a-priori estimate for solutions corresponding to non-real frequencies, which will later
guarantee that our solution satisfies the radiation condition (3.6) and has the proper integrability. The
proof of it is practically identical with the proof of [16, Lemma 6.3] ( cf. Appendix, Section C).

Lemma 4.4 (A-priori estimate for Maxwell’s equations). Let J € R\ {0} be some interval, —t,s > 1/2
and €, i k-admissible with k > 1. Then there exists constants ¢, 6 € (0,00) and some t > —1/2, such that
for all w € Cy with w?> =X +iXo, A€ J, 0 € (O, ./ao,uofl] and f € L2(Q) we have:

” ‘wa ||Rt(Q) + || (AO + Veolo E)wa HL";(Q) <c- { ” ! ||L§(Q) + ” ‘wa HLQ(Q(5)) } '

5. PROOF OF THE MAIN RESULT

Before we start with the proof of Theorem 3.10 we provide some Helmholtz type decompositions, which
will be useful in the following. These are immediate consequences of the projection theorem and Lemma
2.2.

Lemma 5.1. We have
L2(Q) = VH{, (2) @ e 'oDr, (), L2(1) = VHI,(Q) &, 1D, (Q)
R, (2) = VHE (Q) . (R, (9 Ne™0Dr, Q) Re, () = VHE,(Q) @, (Rr, (2) N1 0Dr, (),
where the closures are taken in L%(Q).
Proof. Let v € {e,pu} and 4,5 € {1,2} with ¢ # j. The linear operator
Vi:HL(Q) CcL?(Q) — L2(Q)
is densely defined and closed with adjoint (cf. Lemma 2.2)
—div;y: ’y*lDrJ_ Q) C L%(Q) — L3(Q).
The projection theorem yields
L2(0) = R(V3) @, N(div; 7).

The remaining assertion follows by VH}i () C R (Q).

Proof of Theorem 3.10. Let w € R\ {0} and ¢, u be k-admissible for some k > 1.
(1): The assertion follows by Corollary 4.3 and the differential equation
(M—w)u:O — u=1iw A 'Rotu,

using the fact that (cf. Lemma 2.2)

rot Ry r, Q) C oDer, Q) resp. rot Ry r, Q) C th’l—2(Q) .
(2): Assume dimNgen(M — w) = oo. Using (1) there exists a L%-orthonormal sequence (uy)nen C
Ngen(M — w) converging weakly in L?(Q2) to 0. By the differential equation this sequence is bounded
in (Rp, () NeoDr, () x (Rp_ () N p~'oDy (2)). Hence, due to Weck’s local selection theorem, we

can choose a subsequence, (Ur(n))nen converging to 0 in L2.(Q) ((tr(n))nen also converges weakly on
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every bounded subset ). Now let 1 < s € R\ 1. Then Lemma 4.2 guarantees the existence of ¢,d € (0, 00)
independent of (Ur(n))nen such that

n—oo

U= [ tn(o) iz gy < € [luem lr ) < ¢ trm) lizgaey = 0

holds; a contradiction.

(3): M is a selfadjoint operator, hence we clearly have ogen(M) C R\ {0}. Now assume w € R\ {0} is
an accumulation point of ogen(M). Then we can choose a sequence (wp)nen C R\ {0} with w,, # wp,
for n # m, w, — @ and a corresponding sequence (uy)nen With u, € Ngen(M —w;, ) \ {0}. As M is
selfadjoint, eigenvectors associated to different eigenvalues are orthogonal provided they are well enough
integrable (which is given by (1)) and thus by normalizing (u,)neny we end up with an L3 -orthonormal
sequence. Continuing as in (2), we again obtain a contradiction.

(4): First of all, if a solution u satisfies (3.8), it is uniquely determined as for the homogeneous problem
U € Ngen(M — w) together with (1) and (3.8) implies uv = 0. Moreover, using Lemma 2.2 and (1), we
obtain

<f’v>Li(Q) :<(M—w)u,v>|_i(ﬂ) :<“7(M_W)U>L§(Q) =0 VoueNgen(M—-w),

meaning (3.7) is necessary. In order to show, that (3.7) is also sufficient, we use Eidus’ principle of limiting
absorption. Therefore let s > 1/2 and f € L2(Q) satisfy (3.7). We take a sequence (0y,)neny C Ry with
o, — 0 and construct a sequence of frequencies

(wn)neNa Wn = \/m S C+ \R,

converging to w. Since M is a selfadjoint operator we obtain ( cf. Section 3) a corresponding sequence of
solutions (tn)nen, Un := Lu, f € Rr, (Q) x Rp, (Q) satisfying (M — wy, )ty = f. Now our aim is to show
that this sequence or at least a subsequence is converging to a solution u. By Lemma 5.1 we decompose

Up = Gn +Tn and  f=f+f,
with

iin, f € VHE, (Q) x VHE,(2) C Ry, (2) x oRr, (2)
in, f € (er (Q) NetoDp, () ) X (er(Q) oDy, (Q)) .

Inserting these (orthogonal) decompositions in the differential equation we end up with two equations

(5.1)

—wWply, = f and (M—wn)ﬁn:f,

noting that the first one is trivial and implies L?-convergence of (i, )nen. For dealing with the second
equation we need the following additional assumption on (uy,)nen, which we will prove in the end:

Vt<—1/2 Fce(0,00) VneN: ||un||L2(Q)§c (5.2)
Let £ < —1/2 and ¢ € (0,00) such that (5.2) holds. Then, by construction and (5.1)z, the sequence

(@n)nen is bounded in ( R Q) 05_10D£7r2(Q) ) % ( R: . Q) ﬂu‘lon’rl (Q) ). Hence ( Theorem 3.4 and

Lemma 3.3), (in)nen has a subsequence (i (n))nen converging in L2(Q) for some t < tand by (5.1),
even in RE,r1<Q) xR o, (©2). Consequently, the entire sequence (ur(n))nen converges in R:(2) to some u
satisfying

u€ R () xRy () and (M—w)u=f.
Moreover, with Corollary 4.3 and Lemma 2.2 we obtain for n € N and arbitrary v € Ngen(M —w)
0= <f>’U>|_i(Q) = <(M—wﬂ(n) ) Un(n) 7U>L?\(Q)

= () s (M = @) ) V)13 ) = (@ = wrim) ) - () 5013 ) 5



TiME-HARMONIC ELECTRO-MAGNETIC SCATTERING IN EXTERIOR WEAK LIPSCHITZ DOMAINS 17

hence (ur(n),v) =0and as (-,v) is continuous on LZ(Q2) x L2(2) by (1) we obtain

L3 (@) L ()

(00 = i (i) V)3 o) = 0

Thus, up to now, we have constructed a vector field u € Ngen (M — w )*4, which has the right boundary

conditions and satisfies the differential equation. But for being a radiating solution, it still remains to

show, that u € R__, () and enjoys the radiation condition (3.6). For that let ¢ < —1/2. Then, by
2

Lemma 4.4, there exist ¢,d € (0,00) and some £ > —1/2, such that for n € N large enough we obtain
uniformly in o (), Ur(n), f and 7 > 0:

| tnn) ||Rt(Q(F)) +1| (Ao + vEoro E) tn(n) HLg(Q(f)) se { 1 Wiz oy + 1 2m) sy }

Sending n — oo and afterwards ¥ — oo (monotone convergence ) we obtain

H u ||Rt(Q) + H (AO + Vv oMo E’)u HLE(Q) S ¢ { H f |||_3(Q) + ” u |||_2(Q(5)) } < oo, (53)
yielding

u€ R<7%(Q) and (Ao + Veomo E)u el 1 (Q).

2

This completes the proof of existence, if we can show (5.2). To this end we assume it to be wrong, i.e.,
there exists t < —1/2 and a sequence (un)nen C R, 1 () X R, 1, (Q), uy := Ly, f with [ uy, HLQ(Q) — 00
; , 2
for n — oo. Defining
. -1 o -1
Un = [l un HL%(Q) Un and fr=lun HLE(Q) I
we have

|| @, ||L?(Q) =1, f—0 in L2(Q) and (M—wn)ﬁn = fn.

Then, repeating the arguments from above, we obtain some £ < t and a subsequence (Tix(n) )nen converging
in L2(€2) to some % € Ngen( M —w ) NNgen( M —w )4, hence @ = 0. But Lemma 4.4 ensures the existence
of ¢, € (0,00) (independent of (), tr(n) and fﬂ(n)) such that

n—oo

Tty Iz + 1 mioy oy | =20

1= || tirn |||_§(Q) e { |
holds; a contradiction.
(5): Let —t,s > 1/2. By (4) the solution operator

Lot L) N Ngen( M = 0) ™ —5 (R, () X Ry, () ) N Ngen( M — )=

=:D(L,)

=R(L,)

is well defined. Furthermore, due to the polynomial decay of eigensolutions, D(L,,) is closed in L2(£2).
Thus, the assertion follows from the closed graph theorem, if we can show that L, is closed. Therefore,
take (fn)nen C D(Ly) with

fn — f in L2(Q) and Up = Lyfn —>u in Ry (2) xR, ().

Then clearly f € D(L,), u € R(L,,) and as (M —w ) u, = fn, we obtain (M —w)u = f. Now estimate
(5.3) (along with monotone convergence ) shows as before

u€R<_%(Q) and (Ao—i—\/aouoE)ueLi_%(Q),

meaning u is a radiating solution, i.e., u = L, f, which completes the proof.
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Remark 5.2. During the discussion at AANMPDE10 ( 10th Workshop on Analysis and Advanced Nu-
merical Methods for Partial Differential Equations ), M. Waurick and S. Trostor{f pointed out, that it is
sufficient to use weakly convergent subsequences for the construction of the (radiating ) solution. This is
in fact true (the radiation condition and regularity properties follow from Lemma (4.4) by the bounded-
ness of the sequence and the weak lower semicontinuity of the norms ), but it should be noted, that Weck’s
local selection theorem is still needed to proof (5.2), since here norm convergence is indispensable in order
to generate a contradiction. Anyway, we thank both for the vivid discussion and constructive criticism.
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APPENDIX A. TECHNICAL TOOLS

Lemma A.1. Let Q C R? be an arbitrary exterior domain and s, t, 0 € R witht < s and 8 > 0. Then
there exist constants ¢,0 € (0,00) such that

” w |||_?(Q) <c- ” w HLZ(Q((;)) +6- H w |||_3_(Q)
holds for all w € L2(Q2).
Proof. Let R\ Q C U(rg). For # > rg we obtain:

2 2 2
itz @) = M iz @y + 1w )

< (1 i 7,:2>max{0,i&} ) ||

2 ~2\t—s 2
Wil gy + (1+7) w5

9\ max{0,t} 52\ t—s
< (147) ‘||w||i2(9(f))+(1+r2) Nl

—S

Since t < s we can choose 7 such that (1 + Fz)t < 62, which completes the proof.

O
Lemma A.2. For7 >0 and f € LY(R") we have
lim inf r/ | fldAxm~t =0.
r—>00 S(?")
Proof. Otherwise there exists # > 0 and ¢ > 0 such that
[oaftanst=S v
S(r) r
and using Fubini’s theorem we obtain
n— > n— * 1
||f||ﬁl(Rn)2[ f] dAn 1:/ / F] dA? 1d7“Zc~/ L = oo,
U(#) 7 JS(r) P T
a contradiction.
O

Lemma A.3. Let Q C R? be an exterior weak Lipschitz domain with boundary I' and weak Lipschitz
boundary parts Ty and Ty := [\ T1. Furthermore let 7,7 € Ry with 7 > # and R*\ Q C U(+) as well as

¢ € CO([f,F] ,(C). Ifu:=(FE,H) € Rir, (Q) x Rt7r2(Q) for some t € R, we have

(U Rotu,A0u>L2(Q(;)) + (Pu, Rot A0u>L2(Q(5)) = <<I)Eu,A0u>L2(G(ﬁF)) , (A1)
where ® :=gor, W:=tor
¥ :[0,7] — C, 5|—>/ “ }¢(0)da and Ay = (500 l?o) , €0, o € Ry .

Proof. As CZ () resp. CF; (Q2) are dense in Ry (€2) resp. R, () it is enough to show equation (A.1)

for u € Ccrxf (Q) x C?‘;(Q) Using Gauss’s divergence theorem we calculate
< P=u s AQU >L2(G(f,7:)) = /7; ¢(T) <EU ; AOU >L2(S(r)) dr
= /r o(r) (,uo(§ X E L H ) o) — (& X H B gy ) dr

:/;(b(r)/w) (1o div (B x TT) — 2o div (H x E) ) d* dr-
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Note, that
o div (E x H) — e div (H x B)
= uo(ﬁrotE — Erotﬁ) — go(ErotH — HrotE)
= ((noM) ot B~ (eF) rot i ) — ( Hrot (oF) ~ Evot (uoH) )
= Apu - Rotu + u - Rot Agu

and additionally suppu = supp E N supp H, meaning dist(supp u, 92) > 0 and we may extend wu|

supp u

by zero to the whole of U(#). Thus (by abuse of notation )

T
<<I>Eu,A0u>L2(G(f,f)) = /T o(r) ((Rotu,Amc)Lz(U(T)) — (u,Rot A0u>L2(U(T)) ) dr

and using Fubini’s theorem we obtain:

<(PE’U, R A0u>L2(G(fi)) = / ¢(7") ( <R0tu 5 AOU >L2(Q(r)) - <7-L ) Rot AO'LL>|_2(Q(T)) ) dr

T ( o 0 1
_—/ / { }()( )<<]=() u,1&0u> Q(S( ))—<U7R{) /\Ou> Q(S( )))d do.
0 max{7,0 o o

:/0 'l/)(a)(<R0tu’A0u>L2(S(o—))_<u’ROtAOu>L2(S(U)))dU

= (¥ Rotu,Agu) Yu, Rot Agu )

L) L2(0(7) °

]

We end this section with a Lemma, which will be needed to proof the polynomial decay and a-priori-
estimate for the Helmholtz equation and can be shown by elementary partial integration.

Lemma A.4. Let w € HZ _(R"), 0 ¢ suppw, m € R and 7 > 0. Then we have:

loc

(1) Re/ ™ Aw 0,0
U(F)

_1 ™ (n+m—2) |Vw|? - 2m|d,w|* ) + pmtl |(’9rw\2—1|Vw|2 ,
2 2
U(#) S(7)

T

(2) Re/ r"Aww
U(7)
_ m 2 m _ —21,12 m B LS
= /U(;)r (\Vw| 5 (n+m—2)r—=w| )—}—/S(;)r (Re(arww) 5" |w] ),

1
(3) Im rAwT = —m/ r™m (9,ww) + f/ r w]?
UG U7 S(7)

) 2

1
(4) Re / ™o, = —7/ ™ (n 4 m) |w|? + 7/ P w2
U(#) 2 Juw 2 Jsm

where 0, :=§€ - V.
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APPENDIX B. POLYNOMIAL DECAY AND A-PRIORI ESTIMATE FOR THE HELMHOLTZ EQUATION

In this section we present well known results for the Helmholtz equation, which we will use to achieve
similar results for Maxwell’s equations. We start with a regularity result (cf. [27, Lemma 4]) and the
polynomial decay (cf. [27, Lemma 5] )

Lemma B.1. Lett € R. If w € LZ(R") and Aw € L2(R™) we have w € HZ(R") and

10 la ey < € 1AW iz + 10z gy b
with ¢ € (0,00) independent of w and Aw.
Proof. For t = 0 we have w, Aw € L2(R") and using Fourier-Transformation we obtain
2 2
H Aw HLQ(]R") + H w ||L2(Rn)
2
= | F @) |2y + 1 F ) 2 ey (B.1)

— [ G DIF@PE 2 5 04 F) [,

yielding w € H*(R™) and the desired estimate. So let us switch to ¢t # 0. Then, using a well known result
concerning inner regularity (e.g.7 [3, Chapter VII, §3.2, Theorem 1] ), we already have w € HZ (R").
Now let 7 > 1 and define 5= € C°(R") by n;(x) := p'n(r(z)/7). Then nrw € H2(R™),

(Vs < c-p'™! with ¢ = c(t) >0,
and
(V(n7w) , V (n7w) >L2(R")
=Re (Vuw, V (17w) @) T | (Vnz)w ||f2(w)
< e L 1m0 la oy 150 oy 110 s oy }
<o {1 AW gy + 10 2y}
with ¢ = ¢(n,t) € (0,00), hence

IV lliagsgeyy = I F050) = (V000 sy < ) {1 AW gy + 110 gy -

Sending 7 — oo (monotone convergence ) shows w € HL(R") and

[ w HH%(R”) <c(n,t)- { | Aw HLg(Rn) +[Jw |||_§(Rn) } . (B.2)
Moreover,
¢ r’ t—2 t—2 ¢
Ap'w) = t(n—!— (t— 2)m)p w+2rp' T 0,w + p'Aw,

such that with (B.2) we obtain

H A(ptw> HL2(R”) <c- { H Aw |||_§(Rn) + H w ”L'g’(]R") } ’ (B3)
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with ¢ € (0,00) independent of w and Aw. Hence A(p'w) € L*(R") and we may apply the first case.
This shows p'w € H*(R") and using (B.1), (B.2) and (B.3), we obtain (uniformly w.r.t. w and Aw)

0 g e

<c: { | p'w HHQ(R") + (Vo) Vu ||L2(]R") +| (Vo) w ||L2(]R") + Z | (0%")w ||L2(]R") }

lal=2

<c: { H A(ptw) ||L2(1R") + H plw ||L2(1R") + [ Vw HL%_l(Rn) + [lw HLf_l(an) }

Sc-{

yielding w € H2(R™) and the required estimate.

| AW [ gy + 10 iy

O

Lemma B.2 (Polynomial decay). Let J € R\ {0} some interval, v € J and s,t € R with t > —1/2 and
t<s. Ifwel}R") and g:= (A+~%)w e L2, (R") it holds

2 n
weHRY)  and Wl S {19l g+ 1w le @ )
with ¢ = ¢(n, s, J) € (0,00) not depending on v, g or w.
Proof. The assertion follows directly from Lemma B.1, if we can show
2 n .
wel2®Y)  with Wl e { gl @ Il g}

Therefore let v := yw, where ¥ € C*°(R") with y =1 on [vJ(l) and vanishing in a neighbourhood of the

2
loc

origin. By assumption we already have w € HZ(R™) (cf. Lemma B.1), hence v € H2 (R™) and we may

apply the partial integration rules from Lemma A.4 to
Re [ (Bwtnw)(@0,m+ i)
G(#7)
:Re/ (Av+720)(r2t+larl7+ﬂr2t17):...,
G(7,7)

with 7 > 7 > 1 and
Bi=max{(n—1)/2,t+(n—-1)/2}.

After some rearrangements this leads to

/Gv ) P ({8 = n 2t —2)/2}[Vul* + {(n+20)/2= 5} |ul* )

+2t/ r2t|8rw|2+/ 2 vaw|?
G(#,7) S(7)

e [ (@) (P g 4tk 2203 [
G(7,7) G(7,7) (B4)
[ (s - 5 Re (0,0) — [orl?)
S(#)
+/ 72+ ( |0,w|* + BF ' Re (0,ww) — Bti—? \w|2>
S(7)

1 1
+,/ f2t+1(|Vw|2+72\w|2)+7/ f2t+1(|Vw\2—’yz|w|2>'
2 Jso) 2 Js(#)
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Let us first have a look on the left hand side of this equation. For ¢t > 0 (i.e., 8 =t+ (n—1)/2) we skip
the second and third integral to obtain

/G(A_ . r”({ﬁ— (n+2t_2)/2}\vw\2+{(n+2t)/2—ﬁ}72|w\2)

+2t/ r2t|8rw|2+/ 2 T)?
G(7,7) S(7)

1 t
> Q/G(w)rZ ({257(n+2t72)}|vw|2+{(n+2t)725}72|w|2>

1
=5 [ (vl ),
2 Jaem

while in the case of t < 0 (i.e., 8= (n—1)/2) we just skip the third integral and end up with

[ 7 ({8 2= 2723 190 4 (s 20)/2- 53

+2t/ r2t|87~w|2+/ 72 Vw2
G(#,7) S(7)

> /G(f‘”:) 7«2t<{ﬁ_ (n+2t—2)/2+2t}|Vw|2+ {(n+2t)/2—ﬁ}’)/2|w‘2)

1
= {+t}/ 7‘2t<|Vw|2—|—72|w|2),
2 G(#,7)
since |9,w| < [Vw|. Thus for arbitrary ¢t € R the left hand side of (B.4) can be estimated from below by
11 2 2 2002
ming =, = +¢ r <|Vw| + 7| w| )
2°2 G(#,7)
For the right hand side we have (7 > 1)
[ P10 + 5 Re (0, ww) — gt )
S(7)

< [ P(jonwP + slo,ww|+ siful ) e [PVl +ul?).
S(#)

(7)

as well as

/ P2 (B2 wf? ~ B Re (0,ww) — |0pwf? )
S(#)

g/ f2t+1(5|t|f—2|w|2 +Bf_1|8rwﬁ|) < c-/
s(7)

52t+1<7¢—2‘w|2 + |Vw|2) 7
S(7)

such that equation (B.4) becomes
Ll 2t 2 4 A20,(2
ming -, - +1¢ < | Vw|” + 77 |w|
2°2 G(#.7)

g/ rt+1|g|(rt|w|+ﬂr“\wl)+ﬂ|t(n+2t—2)|/ T
G(#,7) G(

7,7)

+c<n,t>-{ [ 9uP = 2 ) + [PVl )
S(7) S(7)

By assumption we have w € H2(R"), such that according to Lemma A.2 the lower limit for # — oo of
the last boundary integral vanishes. Hence we may replace G(7,7) by U(#) and in addition use Young’s
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inequality to obtain
|7t Vw ||i2(ﬁ(f)) +7 [ w ||i?(ﬁ(f))
< c(n,t) { 170 gy + 17 0 ey + /S(f) th“<|Vw|2 — 2|w|? + 72 |w|2)§B.5)

2 2 A2t "
S C(n)t) . { H g HLE+1(R") + || w ||L%,1(R") + /S(A) 7~2f+1 ( |V’U}|2 _ ,}/2|u)|2 —+7r 2|w‘2)} .

Now suppose first that s = ¢. Then the assertion simply follows by choosing 7 := 1 as the trace theorem
bounds the surface integral by || w |||2_|2(U(1)) and therefore (using Lemma B.1)

|| w ”H%(R") S C(n,sa J) : { H g HL?—%—I(Rn) + || w ||[_?_1(Rn) + || w ||H2(U(2)) }
<5, ) { 190,y + 10l oy + 10 e sy }
<5, ) {190,y + 10l ooy + 180 Is o }

< (s, ) {190y + 101z ey -

For the case w & L2(R™) let § :=sup {m € R|u € L2 (R")}. Then, w.l.o.g."V, we may assume
§—1/2<t<s<s<t+1/2,

hence § := 1 — 2(s — t) € (0,1). Multiplying (B.5) with 7% and integrating from 1 to some 7 > 1 leads

to:
/ f*‘s/v r2t<|Vw|2—|—72|w|2) dA" dr
1 ()
(n,t) { [ [ g ax di (B.6)
1 (#)

i /G(1 ) T2t+175<|vw|2 2wl \w|2) A" }

By Fubini’s theorem we have for arbitrary h € L*(R")

/ P / h dA"™ dF
1 U(#)
:/ / / 770 h d\* Y do dr
1 7 S(o)
oo pmin{o,7}
:/ / f*ﬁ/ h d\"~t di do
1 1 S(o)

(oo}
= / (1—0)'min{c! ™% —1,77° -1} h d\""tdo
S(o)

/ / (1 =8 min{r'=° —1,77° =1} hd\" "1 do = / 7 h d\"
U()

=:05

VOtherwise we replace s and t by ¢ := t + k/4 resp. s := tg41, k = 0,1,2,... and obtain the assertion after finitely
many steps of the type t < s <t + 1/2 (cf. Appendix, Section C, Proof of Lemma 4.1,).
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such that (B.6) becomes (note that 6 < (1—¢8)~'-r!%and 1 -6 =2(s — 1))
/ 9f7"2t(|Vw|2+’y2|w|2)
U(1)
< ¢(n,t) - {/ 97:(7,275-&-2‘9'2 + 7,2t—2|w|2) +/ r2t+1_5(|Vw|2 — 2|w[? 42 \w|2) ]EB~7)
U(1) G(1,7)

2 2 ;

<elms) -3 1905 oy + 10 gy + [ ([Fwf = 22w ) dA" §.
HRED RTLO R ST

Finally, look at

1,7

Re/ 2% g = Re/ 259 .
G(1,7) G(1,7)

Applying Lemma A.3 we obtain (after some rearrangements)
[ (1wl -2
G(1,7)
= —Re / 725 g0 + s(n + 25 — 2)/ 72572 |2
G(1,7) G(1,7)
+/ fzs(Re (0,ww) 757‘*1|w|2) 7/ (Re (0,ww) 75|w|2)
S(#) S(1)

S(1)

<c(n,s)~{ /G(1 : (7272192 4 r22fuf? ) +/ (1w + wf?*) +/S(v) 72 ([l + wf?)

T

hence (using the trace theorem and Lemma B.1)
[ (1l =27l
G(1,7)
2 2 2 <25 2 2
el ) { Doy ey + 100 oy + D0y + [ 72 (190 1) b

2 2 ~25
<c(n,s,J) - { llg |||_52_+1(R") + || w ||L§71(Rn) + /S(') 72 (|Vw|2 + |w|2) }

and inserting (B.8) into (B.7) we end up with

[ ger (1Vul? + 47wl
U(1)
<c(n,s,J)- { llg ||i§+1(Rn) + [ w ||i§_1(Rn) JF/S )f23(|Vw\2 + \w|2> } .

Again the lower limit for # — oo of the boundary integral vanishes (cf. Lemma A.2 and observe that

(7

w € Hf_l(R"), since 0 < s —t < 1/2 by assumption ), such that passing to the limit on a suitable
2
subsequence we obtain

0 ey < el ) § J R e (AR T R o |

= elm s, J)- { A /6(1) e (190 + 770 ) + 1wy }
2 2
<elmos, ) { N9l gy + 1015 oy }-

showing w € L2(R™) and the required estimate.

b
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Lemma B.3 (A-priori estimate). Letn € N, t < —1/2,1/2 < s <1 and J € R\ {0} an interval. Then
there exists ¢,§ € (0,00), such that for all B € Cy with 82 =v? +ivr,ve J, 7 € (0,1] and g € L2(R™)
| (A+8)" 9HL2 R7) + || exp(—ivr)(A+ )~ gHH1 ,(R™)
(B.9)
<o {119l + [ (A+8)7 |l agaey }

holds.

Tkebe and Saito [6] proved this estimate for the space dimension n = 3 and with ¢ = —s, which already
shows the result also for any ¢ < —1/2 as the norms depend monotonic on the parameters s and ¢t. For
arbitrary space dimensions we follow the proof of Vogelsang [21, Satz 4].

Proof. First of all, observe that

A H*R™) c L2(R") — L*(R"), w— Aw
is self-adjoint and therefore w := (A + 3)~tg € H?(R") well defined. Moreover, as mentioned above,
due to the monotonic dependence of the norms on the parameters s and t, it is enough to concentrate on
the case t = —s. With w, := exp(—ivr)w and g. := exp(—ivr)g, we have w, € H*(Q2) and

-1
Aw, + iy(Twe + Lwe + 28rwe> = ge-
r

Applying Lemma A.4 to
2s—19 — -1 P22 T og—1—
Re ge( 0, w e—i— We + =T we):...,
G(1,7) 2 2

with 7 > 1 and using the same techniques as in the proof of Lemma B.2 we obtain

1 1
,/ r2s=2 ( (45 — 4)[0rwe|? — (25 — 3)\Vwe|2) + 7/ 27 V|
2 Jaa,m 2 Jaa,m

-1
=—Re/ ge( 25— 181“*64_ 25— 2We+ 25— 1@6)
G(1,7) 2 2"

-1
P e s - 4)/ P24 2 4 T (25 — 1)(n + 25 — 3)/ P23=3) |2
2 1,7 4 G(1,7)
1 2s —1
+ f/ P71 2|0,we|* + T Re (0;wewe) — [Vwe[* — MT lwe |
2 S(7) T
-1 —1
+ M/ ~25 2 Re (8rweme) _ S _ |we|2
2 S(7) r
1

- f/ (2 |0,we|* + 7 Re (0,wewe) — [Vwel* — (2s — 1) 7 |w€|2)
2 Jsn)

(n—1)

_ /s<1> (Be (9em.) — (s~ Dl ).

Since 4s — 4 < 0 and |9,w,| < |[Vwe|, the left hand side can be estimated from below

1 1
f/ 7“23_2((48—4)|8rwe|2 - (25—3)|Vwe\2) —i—*/ r2 | Va,|?
2 Ja@m 2 Jaq,m

1 1
> 7/ ’I“QS_Q((4S—4)—(28—3))|vwe‘2: (3—)/ r25—2|Vwe|2,
2 Jaam 2/ Jaan
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while for the right hand side we obtain

-1
—Re / Je (erS*larm LT sy 4 T r25*1m) + ...
G(1,7) 2 2

n—1 T
S/ 7°|ge| (r571|Vwe\—|— 5 7’572|we|+§r571\we\>
G(1,7)

+c- / T2s_4|’we|2—‘r7'/ 7“3_2|’U)e|7"8_1‘we|
G(1,7) G(1,7)

)

+/ (|Vwe|2+|8Tweﬁe|+|we|2) +/ f25‘1<|Vw6|2+\aTweme\+|we|2) } ,
s(1)

S(7)

yielding

1
(s - ) / 2572 Vaw, |2
2) Jaq,m
n—

1 T
< / 7°|ge| (rs_1|Vwe| + 572w, | + = rs_1|we|) +ec- / 2574w, |?
G(1.7) 2 2 G(1L,7)

,T

+7/ 7"25’2|we|+/ (\Vwe|2+|we|2)+/ ;2571(|vwe‘2+|we|2) .
G(1,7) s(1) S

In the above, as well as in the sequel, ¢ € (0,00) denotes a generic constant independent of v, 7, w and
g. According to Lemma A.2 the lower limit for 7 — oo of the last boundary integral vanishes. Thus we
may omit it and replace G(1,7) by U(1), such that using Young’s inequality we end up with

o 2
|7 'V, ||L2(ﬁ(1))

s s— 2 s— 2
S C:- { || T e ||i2(6(1)) + 7 || T 1'u)e HLQ([VJ(l)) + H T 2'106 ||L2(6(1)) + A(l) (|V'w6|2 + |wc|2) }

2 2 2
<c- { Il ge ||L2(Rn) +7 || we ||L§71(Rn) + || we ||L372(Rn) + /S(l) (|vwe|2 + |we|2> } :

In addition the surface integral is bounded by || w, ||,2*2 wa) (trace theorem ) and Lemma B.1 yields,

e s ogzyy < € N0 ey < € {100 gy + e lia gy |
showing
2 2 2 2 2
| Vwe ‘|L§71(R"r) <c- { lg ||L2(]R") + 7 || we ||L§71(R") + || we ||L§72(R”) + || we ”H"’(U(l))
2 2 2 2
<o {10 gy + 7101 oy 100y + 101 e -

Now, the differential equation implies

||g||L2(Rn) ||w||L2(Rn) > |Im<g,w>L2(Rn) } = |’[;VT<U),U}>L2(R") =7lv||w ||i2(Rn) )

hence (—s > s — 2)
Jexp(=ivr)w s gny < e {Iellis gy + 1 V00 s oy }
2 2 2
<c { Nglta@n +7 1wl @y + 1wl gy } (B.10)

<c- { ”g ||L§(Rn) + ”w ||L35(Rn) } )
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and it remains to estimate || w|| . (n)- For that we calculate

—1
Im geWe = Im / Aw W, + / v (Twe + nwe> wWe + 2v Re / O WeWe = ... ,
G(1,7) G(1,7) G(1,7) r G(L,7)

using Lemma A.4 and obtain

y/ v (25— Do + rfue]?)
G(1L,7)

=TIm 29, W, — (25 — 1)/ r~2 Im (arweﬁe)
G(1,7) G(1,7)

+/ T1_25<T|U}e|2+1m (arwewe)> _/ (T|w€|2+1m (arwewe))
S(7) s(1)

< / P90 5 e | + (25 — 1) / P10 1|
G(1,7) G(1,7)

+e- { /S(F) rl—zs( lwe|? + \6,.105@6\) + /S(l) (|we|2 n |5’rwe@e|> }

< ( 17°ge HL?(G(LF)) +(25-1) H rT HL2(G(1,F)) ) : H T, HLZ(G(LF))

e { /S(l) (|we|2 + |Vwe|2) +/S(F) 7:1_25(|we|2 + |Vwe|2)} .

As before the lower limit for # — oo of the last boundary integral vanishes (cf. Lemma A.2 and observe
that w, € H2(Q2), s > 0), such that we may omit it and replace G(1,7) by U(1), yielding ( with (B.10))

H T we Hiz(ﬁu))

= { (17 ge sy + 17 Vel ) - I we e, + /s<1> (el +1we?) }

<e L (Nelliagn + 1 Vel g ) lwells g + /S o (el 9w ) }.

Moreover, the surface integral is bounded by || w. ||a2(U( (trace theorem ) and with (B.10) we obtain

)
2 2
e iz ey < 0 { (100 Mgy +1 Vel any ) -l iz gy + ot Biaqooy }
2
< e { (e Doy + el ooy ) -1 iz ooy 1 By § -

hence ( Young’s inequality )

2 2
H We ||LES(R7L) <c- { H Je HLg(Rn) + H We ||L§735(R") + H We ||H2(U(2)) } ’

Now, using once again Lemma B.1 we arrive at

2
el oy < € {9 Mgy + ey gaoy }
which together with (B.10) and Lemma A.1 implies
(| w HLES(R") + || exp(—ivr) w HHifz(R") <c- { g HL?(R") +[|w |||_2(Q(5)) }7 (B.11)

with ¢,d > 0 independent of v, 7, w and g.
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APPENDIX C. PROOFS IN THE CASE OF THE TIME-HARMONIC MAXWELL EQUATIONS

This section deals with the proofs of the decomposition lemma, the polynomial decay and the a-priori
estimate we omitted in the main text of this paper.

Proof of Lemma 4.1. We start with v = nu + 7ju, noting that 5ju € R,. Moreover
Rot 5ju = Crot, 7t + 1 Rot u = Crot,5u — A f — iwijAu
and we have
(RotJrion)ﬁu = (CROt,ﬁ - iwﬁ]\)u —inAf = f1 € L2,

since supp V7 is compact and ¢ + k > s. According to [26, Theorem 4]

fi=fr+ fo+fs €oR+0Ds +Ss
holds and we obtain

iwnAou = f1 — Rotju = fp — Rotju + fr + fs -
Defining
oy = —éAal(fR + fs) €R,,

o U:=TNu—uy = gAal(Rotﬁu—fD) € R, NyD,,
[8, Lemma 4.2] shows @ € H} and we have
(Rot+iwAg )@ = Rot (7ju — u1 ) +iwhAoti = fp + éKO*IRoth = f2 € oD,
Next we solve ( Rot+1 ) us = fo. Using Fourier-transformation we look at
iy = (14+72) (1 —irZ) F(fo)

Since s > 1/2 and f» € L2, we obtain @ € L2, hence us := F~'(d2) € H'. Moreover, F(F(f2)) =
P(f2) € L2 ('P: parity operator ) yielding F(f2) € H® and as product of an H5-field with bounded C>-

functions, @ € H® (cf. [30, Lemma 3.2] ), hence uy € L2. In addition a straight forward calculation shows
F((Rot+1)uz) = F(f2), which by [8, Lemma 4.2] implies

(R0t+1)u2:f2 and UQEH;HODS.
Then (t <s)
U3 :=U— Us € H%ﬂth
satisfies
(Rot+iwA0)U3
= (R0t+z'wA0)11— (Rot+iwA0)u2
= fo— (Rot—l—l)uQ—i— (1 —iwAO)ug = (1—iwA0)u2 S Hsl,ﬁODs
and using once more [8, Lemma 4.2] we get
uz € HZ N D, .
Finally
Auz = Rot ( Rot us)

=(1- z'w/~\0) Rot uy — iwhg Rot us

= (1 —iw?\o)(fg—ug) —ino((l—ion)ug—ionu;),)

=(1- ino) f2=(1 +w2€ouo)u2 — weopo U3
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holds, hence
(A+w250u0)u3 = (1 —iw/~\0) f2 — (1 +w250u0)u2

The asserted estimates follow by straight forward calculations using [8, Lemma 4.2] and the continuity
of the projections from L2 into oRg, oD, and S;.
O

Proof of Lemma 4.2. As for t > s — 1 there is nothing to proof, we concentrate on the case
ueR(Q) with —-1/2<t<s—1.
Therefore assume first that in addition
s—K<t = t<s<t+k.
Then we may apply Lemma 4.1 and decompose the field u in

U =nu-+uy +u2 +us,

with nu +u; +uz € Ry(Q) and uz € H? satisfying (A +w?egpo ) ug € L2. Thus the polynomial decay for
Helmholtz equation (cf. Appendix, Section B, Lemma B.2) shows

upe M2, and  ugllye <o { (A +weono)uslla + lus | b

c=c(s,J) >0, yielding u = nu + uy + uz + uz € R;_;(2). Moreover, using the estimates of Lemma 4.1
we obtain uniformly with respect to w, v and f

lulle, oy S e {1 Iy + Nl o+ lusl b

< {1 sy +lulls oy + I (A +weomo)us [, + luslls |, }

< c-{ [ fllzy T lulle (o }

where m := min{k, 2} and applying Lemma A.1 we end up with:

lulle, o e {1 gy + 1 sy |
for ¢,d € (0,00) independent of w, u and f. So let’s switch to the case
t<s—r = t+r<s.

Here, the idea is to approach s by overlapping intervals to which the first case is applicable. For that, we
choose some k € N, such that with v := (k —1)/2 > 0 we have

t+r+(k—1) y<s<t+r+k-v,
andfork:z(),l,...,fcwedeﬁne
tp:=t+k-vy as well as Spi=tpr1+ 1=t +(k+1)/2.
Then (as k > 1)
thp1 <Sp=tpr1+1=t+r+(k—1)-v<s and tp<tp1+l=sp=tr+(k+1)/2<tp+k,

such that we can successively apply the first case, ending up with u € Rsr1(Q)- If s = s; we are done.
Otherwise we choose t;, 41 = 8; — 1 and apply the first case once more, since
lpg <sg <s§t+n+l§:'7:t@+1+n.

Either way we obtain u € R,_;(€2) and now the estimate follows as in the first case.
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Proof of Lemma 4.4. Without loss of generality we assume s € (1/2,1). Then s € R\ITwith0 < s < k
and we can apply Lemma 4.1 (with ¢ = 0) to decompose u := L, f € R (22) into

U =nNu+up + uz +us
with uz € H? solving
(A +weouo Jug = (1 —iwho) fo — (1 +weopo )uz =: f5 € L2,
where f5 is defined as in Lemma 4.1. Moreover, the estimates from Lemma 4.1 along with

(Rot—iw\/eouo = )u = —iAf — iw(Ao + Veouo 2 )u —iwAu
yield

lullg, () + | (Ao + v/Eomo E)u ||LZ_71(Q)
<c- { H u ||Rt(Q) + H (ROt_Z.Wv&:OMO E )u HLf,l(Q) + ” f |||_§(Q) + ” U |||_:7R(Q) } (C.l)

<c- { H us |||_% + H (ROt_iWVEOMO E )US HL?—I + H f |||_§(Q) + ” u||inn(Q) }7

with ¢ = ¢(s,t,J) > 0. Due to the monotonicity of the norms with respect to ¢ and s, we may assume ¢
and s to be close enough to —1/2 resp. 1/2 such that 1 < s — ¢ < k holds. Hence, the assertion follows
by (C.1) and Lemma A.1, if we can show

[| us |||_§ + H (ROt —iw/Eopo = )U3 HLf_l <c- { | f |||_§(Q) +[[u HLSiN(Q) } )

with ¢ € (0,00) independent of w,u and f. Therefore note thatthe self-adjointness of the laplacian
A:H?CL? — L?yields (A+w?eouo )_1f3 = ug and applying Lemma B.3 componentwise, we obtain

s s + lexp(— ixyEszmr)us s . < e { I les + 110 laqogey b
With Rot (exp(—i)\\/fMT)u;g) = exp(—iAy/EofioT) ( Rot —i\\/gopio = )’LL3 this leads to
| us ||L§ + || (Rot — iAy/Eopo = ) us HLi1
< flus |2 + || Rot (exp(— iAy/zommr)us ) o ©2)
< flus s + 1l exp(—iAvEaO s s < e LI Al + 105 sy )

where ¢ > 0 is not depending on w, uz and f3. But we would like to estimate (Rot —w./Eopp = )u;;.
For that we need some additional arguments, starting with the observation that

w=AM1+«ﬂM””“{ explip/?)  for A>0

T
with ¢ :=arctan(c/A) e | — =, =],
exp(i(p/2+m)) for A<O0 4 (/) ( 2 )

hence |Re (w)| > v/2/2 - |A|. Thus |w + A| > /3/2- || and we have

w? — 22| iox |22
—\2 = = < Z.o2%
o = A WA wrr =37
From this and the resolvent estimate
I £5 1l = || (A + w00 ) us || 2 > [Tm (weopo)| - || us Il = copoa| Al - || uz . -

we obtain (s > 1/2)
I (Rot — i /Zojio =) us | 2
< | (Rot —iA Voo ) us |2+l (w = A)v/Eoro Zusllz |
< || (Rot —id Voo E)us |z | +e- AT 1 fsllys -
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such that with (C.2) and the estimates from Lemma 4.1 uniformly with respect to w,w and f:

[| us HL% + H (ROt —iw+/Eofto E)UB ||L§_1 <c- { | f |||_§(Q) +lu ‘|L§7N(Q) } .
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