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ADAPTIVE OPTIMAL CONTROL OF THE OBSTACLE PROBLEM

CH. MEYER∗, A. RADEMACHER∗, AND W. WOLLNER†

Abstract. The article is concerned with the derivation of a posteriori error estimates for opti-
mization problems subject to an obstacle problem. To circumvent the nondifferentiability inherent
to this type of problem, we introduce a sequence of penalized but differentiable problems. We show
differentiability of the central path and derive separate a posteriori dual weighted residual estimates
for the errors due to penalization, discretization, and iterative solution of the discrete problems. The
effectivity of the derived estimates and of the adaptive algorithm is demonstrated on two numerical
examples.
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1. Introduction. This paper is concerned with the adaptive approximation of
optimal control problems governed by the obstacle problem. The construction of the
algorithm is based on a regularization approach in combination with an adaptive finite
element discretization of the regularized problems. The two errors induced in this way,
i.e., the regularization error and the discretization error, are equilibrated by means of
suitable error estimators based on the dual weighted residual (DWR) method.

Regarding the adaptive approximation of the obstacle problem itself, there is a
large amount of contributions regarding a posteriori error estimates available in the
literature, see for instance [6, 30] for dual weighted error estimates, [17, 12, 32, 8, 9]
for residual type estimates. In particular, we refer to [13] where residual type error
estimates for a penalized obstacle problem where derived.

In contrast to the solution of the obstacle problem itself, consideration of opti-
mization problems subject to the obstacle problem is complicated by the nondifferen-
tiability of the solution operator of the obstacle problem, see e.g. [21]. To this end, we
consider a sequence of penalized obstacle problems as constraints for our optimization
problem. Such an approach is classical and has been investigated by various authors
before. We only refer to [3, 15, 29] and the references therein. For the penalized
but differentiable problems, we derive DWR error estimates following the pioneering
work of [4], see also [5, 2]. More precisely, we utilize the DWR estimates for control
constrained problems proposed in [33]. To simultaneously control the error due to
penalization and discretization, we extend the ideas of [36, 35] for optimization prob-
lems with regularized pointwise state constraints to regularization in the constraining
equation, see also the survey [24]. Finally, we include the possibility to balance the
former two errors with the error due to the iterative solution of the problems adapting
the work of [26, 25].

There are only few contributions in the field of adaptive approximation of opti-
mal control problems governed by variational inequalities [10, 16, 14]. While standard
residual a posteriori error estimators are derived in [14], the DWR method is consid-
ered in [16, 10]. Both papers apply adaptive finite elements to the original problem
without regularization or penalization. In contrast to this, as mentioned before, our
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strategy is to regularize the problem by penalization, which allows to derive error
estimates for the penalized problems by the classical DWR method. Afterwards, we
will equilibrate the discretization error and the regularization error by means of a
regularization error estimator which is based on the path derivative of the solution of
the regularized problems w.r.t. the penalization parameter.

The paper is organized as follows: After introducing the specific optimal control
problem under consideration and stating the standing assumptions in Section 2, we
present the regularization, in Section 3, and perform a limit analysis for penalty
parameter tending to infinity. Section 4 is then devoted to the estimation of the
regularization error by means of the path derivative, while Section 5 deals with the
a posteriori error estimation of the discretization error for the regularized problems.
Numerical experiments illustrating the efficiency of our approach are presented in
Section 6. The paper ends with some concluding remarks in Section 7.

2. Problem formulation and standing assumptions. Throughout this pa-
per, we consider the following optimal control problem governed by the obstacle prob-
lem

min J(q, u)

s.t. a(u, v − u) ≥ 〈q, v − u〉 ∀ v ∈ K
u ∈ K, q ∈ L2(Ω)

 (P)

where Ω ⊂ Rd, d = 2, 3, is a bounded domain.
We suppose the following standing assumptions on the data in (P):

The feasible set K is given by

K = {v ∈ H1
0 (Ω) : v ≥ ψ a.e. in Ω}

with ψ ∈ H1
0 (Ω) given. The dual pairing between H1

0 (Ω) and H−1(Ω) := H1
0 (Ω)∗

is denoted by 〈., .〉. Moreover, the bilinear form a : H1
0 (Ω) × H1

0 (Ω) is given by the
following second-order elliptic operator

a(u, v) =

∫
Ω

d∑
i=1

( d∑
j=1

aij
∂u

∂xj

∂v

∂xj
dx+ bi

∂u

∂xi
v
)

+ a0 u v dx (2.1)

where aij , bi, a0 ∈ L∞(Ω), i, j = 1, .., d, are such that a is coercive, i.e.,

a(u, u) ≥ β ‖u‖2H1(Ω) ∀u ∈ H1
0 (Ω) (2.2)

with a constant β > 0. In addition, we require

a0 ≥ 0. (2.3)

By A : H1
0 (Ω)→ H−1(Ω), we denote the operator induced by a, i.e., 〈Au, v〉 = a(u, v)

for all u, v ∈ H1
0 (Ω). Finally,

J(q, u) = j(u) + g(q), (2.4)

where g : L2(Ω)→ R and j : H1
0 (Ω)→ R are supposed to be three times continuously

differentiable. Moreover, j is assumed to be bounded from below and, further, that
there is a constant α > 0 such that

g′′(q)h2 ≥ α ‖h‖2L2(Ω) ∀ q, h ∈ L2(Ω). (2.5)
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It is well known that the variational inequality (VI) in (P), i.e.

u ∈ K, a(u, v − u) ≥ 〈q, v − u〉 ∀ v ∈ K, (2.6)

can equivalently be reformulated by a complementarity system, since K−ψ is a convex
cone. The optimal control problem then reads

(P) ⇔


min J(q, u)

s.t. Au = q + λ

u ≥ ψ a.e. in Ω, λ ≥ 0 in H−1(Ω), 〈λ, ψ − u〉 = 0,

where λ ∈ H−1(Ω) is the corresponding slack variable.
Based on the maximal monotony of A + ∂IK , where IK denotes the indicator

functional associated with K, one shows by standard arguments that (2.6) admits
for every q ∈ H−1(Ω) a unique solution u ∈ H1

0 (Ω). Furthermore, it is easily seen
that the corresponding solution operator S : H−1(Ω) 3 q 7→ u ∈ H1

0 (Ω) is globally
Lipschitz continuous with constant L. Based on this result and the special structure
of J in (2.4) and (2.5), it is shown by standard arguments that (P) admits at least
one globally optimal solution. However, due to the nonlinearity of S, the problem is
not convex in general so that uniqueness of the global minimizer cannot be expected.

3. Regularization: Known and preliminary results. Although S is glob-
ally Lipschitz, it is not Gâteaux-differentiable, since the directional derivative at q in
direction h is itself a solution of a VI of first kind, as shown by Mignot [21]. Therefore
a standard adjoint approach to tackle (P) is not possible and various regularization
approaches have been introduced to smooth the control-to-state map S. Our regular-
ization of (P) is given by

min J(q, u)

s.t. Au+ r(γ;u) = q

}
(Pγ)

where r : R+ × R→ R is given by

r(γ;u) := −
[
max

(
γ(ψ − u), 0

)]3
. (3.1)

This choice of r stems from a bi-quadratic penalization of the energy functional as-
sociated with (2.6). Of course, other choices of r are frequently in use such as e.g.
r(γ;u) = −γmaxγ(ψ − u), where maxγ denotes a suitable smoothed version of the
max-function, see for instance [19]. An advantage of our particular choice for the
regularization is that the Nemyzki operator associated with the nonlinearity in (3.1)
is twice continuously Fréchet-differentiable in L∞(Ω), which allows to solve the reg-
ularized optimal control problems by standard second-order methods such as SQP.
Since

H1
0 (Ω) ↪→ L4(Ω) 3 u 7→ r(γ;u) ∈ L4/3(Ω) ↪→ H−1(Ω)

is a locally Lipschitz continuous and monotone operator, Browder and Minty’s theo-
rem on monotone operators yields existence and uniqueness of a solution to the PDE
in (Pγ), i.e.

Au+ r(γ;u) = q (3.2)
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for every γ > 0. The associated solution operator is denoted by Sγ : H−1(Ω) →
H1

0 (Ω). Furthermore, using again the monotonicity of t 7→ max{t, 0}3, one easily
deduces that Sγ is Lipschitz continuous with the same Lipschitz constant L as S,
hence independent of γ. Thus, by completely identical arguments as in case of (P),
one deduces the existence of a global solution to (Pγ).

Owing to the monotonicity of r(γ; . ), we can apply Stampacchia’s classical tech-
nique, cf. [18], to prove the following

Lemma 3.1. For every q ∈ L2(Ω) the unique solution u of (3.2) is essentially
bounded.

The differentiability of r(γ; . ) in L∞(Ω) for fixed γ then allows to derive first-
order necessary optimality conditions for the regularized problems in a standard way,
see, e.g., [31]. In this way one obtains the following result:

Proposition 3.2. Let qγ be a local optimum of (Pγ) with associated state uγ =
Sγ(qγ). Then there exist λγ , µγ ∈ L2(Ω) and pγ , θγ ∈ H1

0 (Ω) such that

Auγ = qγ + λγ , (3.3a)

λγ + r(γ;uγ) = 0, (3.3b)

A∗pγ = ∇j(uγ)− µγ , (3.3c)

pγ +∇g(qγ) = 0, (3.3d)

pγ − θγ = 0, (3.3e)

µγ − ∂ur(γ;uγ)θγ = 0. (3.3f)

Note that pγ and thus θγ and µγ are uniquely defined by (3.3d).

Observe that pγ is nothing else than the adjoint state. Note further that µγ and
θγ can be eliminated directly from the system, but we introduced them for reasons of
comparison with later optimality systems.

We now address the behavior of solutions to (Pγ) for γ → ∞. Concerning the
state equation, the following approximation result holds true:

Lemma 3.3. Let q ∈ H−1(Ω) be given and denote by u, uγ ∈ H1
0 (Ω) the solutions

to (2.6) and (3.2), respectively. Then uγ → u strongly in H1
0 (Ω) as γ → ∞. If we

further assume that q, Aψ ∈ L4/3(Ω), then there exists a constant c > 0 so that

‖u− uγ‖H1(Ω) ≤ c
1
√
γ
‖q −Aψ‖2/3

L4/3(Ω)
.

The proof follows by classical arguments and is thus postponed to Appendix A.
With the above result at hand, it is straightforward to prove the following first-
order necessary optimality conditions for (P), the so-called Clarke(C)-stationarity
conditions:

Theorem 3.4.

1. For every γ > 0 there is a globally optimal solution of (Pγ), denoted by qγ .
If γ → ∞, then every sequence {qγ} of global minimizers of (Pγ) admits a
weak accumulation point q̄ ∈ L2(Ω). Every weak accumulation point is also a
strong accumulation point, i.e., qγ → q̄ strongly in L2(Ω), and each of these
accumulation points is a global minimizer of (P).
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2. If qγ → q̄ in L2(Ω), then the associated sequence of solutions to (3.3) fulfills

uγ → ū in H1
0 (Ω), (3.4)

λγ → λ̄ in H−1(Ω), (3.5)

pγ ⇀ p̄ in H1
0 (Ω), (3.6)

θγ ⇀ θ̄ in H1
0 (Ω), (3.7)

µγ ⇀ µ̄ in H−1(Ω), (3.8)

and the limit satisfies the following optimality system:

Aū = q̄ + λ̄, (3.9a)

ū ≥ ψ a.e. in Ω, λ̄ ≥ 0 in H−1(Ω), 〈λ̄, ū− ψ〉 = 0, (3.9b)

A∗p̄ = ∇j(ū)− µ̄, (3.9c)

p̄+∇g(q̄) = 0, (3.9d)

p̄− θ̄ = 0, (3.9e)

〈θ̄, λ̄〉 = 0, 〈µ̄, ψ − ū〉 = 0, 〈θ̄, µ̄〉 ≥ 0. (3.9f)

Proof. The proof follows by standard arguments known from other types of regu-
larization, cf. e.g. [29]. For our particular regularization, the verification of the com-
plementarity relations in (3.9f) becomes astonishingly easy, so we present the proof
in detail for convenience of the reader.

Convergence of the primal variables:
Owing to (2.4), (2.5), and the Lipschitz continuity of Sγ from H−1(Ω) to H1

0 (Ω),
one deduces the existence of at least one global minimum of (Pγ) for every γ > 0.
Moreover, due to their optimality and (2.5), every sequence of global minimizers
{qγ} is bounded in L2(Ω). Hence there exists a weakly converging subsequence, also
denoted by {qγ}. From the Lipschitz continuity with constant L of Sγ , independently
of γ, and Lemma 3.3, we infer

‖Sγ(qγ)− S(q̄)‖H1(Ω) ≤ ‖Sγ(qγ)− Sγ(q̄)‖H1(Ω) + ‖Sγ(q̄)− S(q̄)‖H1(Ω)

≤ L ‖qγ − q̄‖H−1(Ω) + c
1
√
γ
‖q̄ −Aψ‖2/3

L4/3(Ω)
.

Thus the compact embedding L2(Ω) ↪→ H−1(Ω) yields strong convergence of the
state, i.e., (3.4). Thanks to (2.5), g is continuous and convex, hence weakly lower
semicontinuous. This and the strong convergence of the states yield

J(q̄, S(q̄)) ≤ lim inf
γ→∞

J(qγ , Sγ(qγ)) ≤ lim sup
γ→∞

J(qγ , Sγ(qγ))

≤ lim
γ→∞

J(q, Sγ(q)) = J(q, S(q)) ∀ q ∈ L2(Ω),

which is just global optimality of q̄ for (P). Furthermore, inserting q = q̄ in the
above inequality implies convergence of the objective, which, together with the strong
convergence of the states, gives in turn

g(qγ)− g(q̄) = J(qγ , S(qγ))− J(q̄, S(q̄))−
(
j(S(qγ))− j(S(q̄))

)
→ 0 (3.10)
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as γ →∞. Since g is twice continuously differentiable, there is a t ∈ [0, 1] so that

g(qγ)− g(q̄) = g′(q̄)(qγ − q̄) + 1
2g
′′(q̄ + t(qγ − q̄)

)
(qγ − q̄)2

≥ g′(q̄)(qγ − q̄) + α
2 ‖qγ − q̄‖

2
L2(Ω),

where we used (2.5) for the last estimate. Thanks to g′(q̄) ∈ L2(Ω)∗, the weak
convergence qγ ⇀ q̄ in L2(Ω) and (3.10) imply strong convergence of qγ to q̄. Since q̄
was an arbitrary weak accumulation point, this gives the first claim.

Convergence of the dual variables:
The convergence of the slack variables is an easy consequence of the continuity of
A : H1

0 (Ω)→ H−1(Ω) and the compact embedding L2(Ω) ↪→ H−1(Ω):

λγ = −r(γ;uγ) = Auγ − qγ → Aū− q̄ = λ̄ in H−1(Ω).

As ū = S(q̄) is the solution of (2.6), λ̄ is the associated slack variable fulfilling the
complementarity system in (3.9b).

To prove the weak convergence of the adjoint state, insert θγ and µγ in (3.3c) to
obtain

A∗pγ + ∂ur(γ;uγ)pγ = ∇j(uγ)

with

∂ur(γ;uγ) = 3 γ
[
max

(
γ(ψ − uγ), 0

)]2
. (3.11)

Testing this equation with pγ itself yields

‖pγ‖H1(Ω) ≤
1

β
‖∇j(uγ)‖H−1(Ω) (3.12)

and

∫
Ω

[
max

(
γ(ψ − uγ), 0

)
pγ
]2
dx ≤ 1

3γ
〈∇j(uγ), pγ〉 → 0 as γ →∞, (3.13)

where we used (3.12) and the boundedness of {uγ} in H1
0 (Ω) for the passage to the

limit. From (3.12) we infer the existence of a subsequence, weakly converging in
H1

0 (Ω) to p̄. For simplicity we denote this subsequence by pγ , too. Moreover, the
convergence of µγ and (3.9c) follow from

µγ = ∇j(uγ)−A∗pγ ⇀ ∇j(ū)−A∗p̄ =: µ̄ in H−1(Ω).

As g is assumed to be continuously differentiable, we can pass to the limit in (3.3d) to
obtain (3.9d). The weak limit is therefore unique, namely −∇g(q̄), and consequently
the whole sequence {pγ} converges weakly to p̄, i.e., (3.6) is shown. Hence, the whole
sequence µγ converges weakly, too, which shows (3.8).

It remains to verify the complementarity relations in (3.9f). Due to the definition
λγ = ∂ur(γ;uγ) and the construction of r in (3.1), we find

|〈λγ , pγ〉| =
∣∣∣ ∫

Ω

[
max

(
γ(ψ − uγ), 0

)]3
pγ dx

∣∣∣
≤ ‖max

(
γ(ψ − uγ), 0

)
‖2L4(Ω)‖max

(
γ(ψ − uγ), 0

)
pγ‖L2(Ω).

(3.14)
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To estimate the L4-norm, test (3.3a) with max(γ(ψ − uγ), 0) ∈ H1
0 (Ω) such that,

similarly to the proof of Lemma 3.3 in Appendix A,

‖max(γ(ψ − uγ), 0)‖4L4(Ω)

= a
(
uγ − ψ,max(γ(ψ − uγ), 0)

)
− 〈qγ −Aψ,max(γ(ψ − uγ), 0)〉

= −γ a(uγ − ψ, uγ − ψ)− 〈qγ −Aψ,max(γ(ψ − uγ), 0)〉
≤ ‖q −Aψ‖L4/3(Ω)‖max(γ(ψ − uγ), 0)‖L4(Ω).

is obtained. Thus {max(γ(ψ−uγ), 0)}γ>0 is bounded in L4(Ω) and, in view of (3.14)
and (3.13), the strong convergence of λγ in H−1(Ω) and the weak convergence of pγ
in H1

0 (Ω) yield

〈λ̄, p̄〉 = lim
γ→∞

〈λγ , pγ〉 = 0,

i.e., the first equation in (3.9f). To derive the second equation, observe that the
definition of µγ in (3.3f) implies

〈µγ , ψ − uγ〉 = 3

∫
Ω

[
max

(
γ(ψ − uγ), 0

)]2
pγ γ(ψ − uγ) dx

= 3

∫
Ω

[
max

(
γ(ψ − uγ), 0

)]3
pγ dx = 3 〈λγ , pγ〉 → 0.

Since µγ ⇀ µ̄ in H−1(Ω) and uγ → ū in H1
0 (Ω), this gives the claim. In order to prove

the sign condition in (3.9f), we test (3.3c) and (3.9c) each with pγ − p̄ and subtract
the arising equations to obtain

〈µγ − µ̄, pγ − p̄〉 =
(
j′(uγ)− j′(ū)

)
(pγ − p̄)− a(pγ − p̄, pγ − p̄)

≤
(
j′(uγ)− j′(ū)

)
(pγ − p̄).

Employing again the definition of µγ in (3.3f), we find

〈µγ , pγ〉 = 3

∫
Ω

γ
[
max

(
γ(ψ − uγ), 0

)]2
p2
γ dx ≥ 0 ∀ γ > 0.

Thus we arrive at

〈µ̄, p̄〉 = 〈µγ − µ̄, pγ − p̄〉 − 〈µγ , pγ〉+ 〈µγ , p̄〉+ 〈µ̄, pγ〉
≤
(
j′(uγ)− j′(ū)

)
(pγ − p̄) + 〈µγ , p̄〉+ 〈µ̄, pγ〉.

Because of uγ → ū in H1
0 (Ω), pγ ⇀ p̄ in H1

0 (Ω), and µγ ⇀ µ̄ in H−1(Ω), the right
hand side converges to 2〈µ̄, p̄〉, which gives the desired sign condition. Introducing θ̄
by (3.9e) finally completes the proof.

Remark 1. Using a classical localization argument, see e.g. [11], one can show
that every strict local minimizer of (P) can be approximated by local minimizers
of (Pγ). Thus every strict local minimizer satisfies (3.9). Furthermore, by using
the following obvious modification of the objective in (Pγ)

J̃(q, u) = J(q, u) +
1

2
‖q − q̄‖2L2(Ω),

one can show that even every local optimum of (P) satisfies the optimality sys-
tem (3.9), cf. [22]. Of course the associated regularized problems are only of academic
interest, and cannot be used numerically, since they involve the unknown solution q̄.
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We underline that the complementarity relations as well as the sign condition
in (3.9f) can be sharpened as shown in [29, Def. 1.1, Thm. 3.9, and 3.10].

In view of (3.9e) the multiplier θ̄ can directly be eliminated from the system (3.9).
We introduced this additional variable for reasons of comparison with C-stationarity
conditions for finite dimensional mathematical programs with equilibrium constraints
(MPECs), cf., e.g., [28]. This comparison shows that θ̄ is the MPEC-multiplier for
the constraint λ̄ ≥ 0, while µ̄ is the MPEC-multiplier associated with ū ≥ ψ, cf., also
the complementarity relations in (3.9f). A more rigorous first-order system is given
by the strong stationarity conditions. These involve in addition to (3.9) the following
sign conditions

θ̄(x) ≥ 0 q.e., where ū(x) = ψ(x) (3.15a)

〈µ̄, v〉 ≥ 0 ∀ v ∈ H1
0 (Ω) : 〈λ̄, v〉 = 0, v(x) ≥ 0 q.e., where ū(x) = ψ(x), (3.15b)

where q.e. stands for quasi-everywhere meaning up to a set of capacity zero. Note
that the complementarity relations in (3.9f) together with (3.15a) and (3.15b) imply
〈θ̄, µ̄〉 ≥ 0. Indeed strong stationarity is the most rigorous stationarity concept. In case
of (P) it can be verified to be necessary for local optimality as proven in [22], provided
that ū ∈ H1

0 (Ω), which follows from (3.9d), if g = α/2‖.‖2L2(Ω). However, if, for
instance, additional control constraints are present or boundary control is considered,
this is not true in general. For further details on this topic we refer to [34]. We
point out that our construction of a posteriori error estimators for the regularization
error is only based on the C-stationarity conditions in (3.9), which can be verified to
be necessary for local optimality in very general situations allowing for instance also
pointwise constraints on the control or boundary control problems.

To complete this introduction, we finally comment on a priori estimates concern-
ing the regularization error that have been proven in the literature. We only refer
to [29], where the error estimates are shown for the regularization of (P) based on
the locally smoothed version of the max-function. To be more precise, if ū is a strict
local optimum of (P) so that it can be approximated by a sequence of local optima
of (Pγ), then for all γ > 0 sufficiently large this sequence satisfies

|J(q̄, ū)− J(qγ , uγ)| . 1

γ
and ‖q̄ − qγ‖L2(Ω) .

1
√
γ
,

provided that (3.3) fulfills a certain regularity condition, see [29, 19] for details.

4. A posteriori estimation of the regularization error. In this section, we
will derive an identity for the regularization error w.r.t. the objective, i.e., J(q̄, ū) −
J(qγ , uγ). The idea is based on the DWR-method. We begin by defining the following
MPEC-Lagrangian:

L : L2(Ω)×H1
0 (Ω)×H−1(Ω)×H1

0 (Ω)×H−1(Ω)×H1
0 (Ω)→ R;

L (q, u, λ, p, µ, θ) := J(q, u)− 〈Au− q − λ, p〉+ 〈µ, ψ − u〉 − 〈θ, λ〉.
(4.1)

We will sometimes consider L with different domain denoted by the same symbol
for simplicity. Note that we do not introduce a multiplier associated with the com-
plementarity relation 〈λ, u − ψ〉 = 0, which is typical for MPECs. In the following,
we abbreviate ξ := (q, u, λ, p, µ, θ). Due to (3.9a) and (3.9f), we have J(q̄, ū) = L (ξ̄)
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such that (3.3a) yields

J(q̄, ū)− J(qγ , uγ) = L (ξ̄)−L (ξγ) + 〈µγ , ψ − uγ〉 − 〈θγ , λγ〉

=
1

2
L ′(ξ̄)(ξ̄ − ξγ) +

1

2
L ′(ξγ)(ξ̄ − ξγ) +Rreg

+ 〈µγ , ψ − uγ〉 − 〈θγ , λγ〉

with

Rreg =
1

2

∫ 1

0

L ′′′(ξγ + t(ξ̄ − ξγ))(ξ̄ − ξγ)3 t(t− 1) dt

=
1

2

∫ 1

0

(
j′′′(uγ + t(ū− uγ))(ū− uγ)3 + g′′′(qγ + t(q̄ − qγ))(q̄ − qγ)3

)
t(t− 1) dt.

Note that, due to our assumptions on J , the Lagrangian L is three times continuously
Fréchet-differentiable, since every bounded bilinear form does so. If the trilinear forms
j′′′(u) and g′′′(q) are uniformly bounded, say by constants cj and cg, then

|Rreg| ≤
1

12

(
cj ‖uγ − ū‖3H1(Ω) + cg ‖qγ − q̄‖3L2(Ω)

)
such that Rreg can be neglected in a neighborhood of (ū, q̄). We point out that, due
to the non-convexity of (P), multiple local minima can occur such that one can in
general not expect that qγ → q̄ and uγ → ū, cf. Theorem 3.4. However, if J is of
tracking type, i.e., if j and g are squared norms, then Rreg = 0.

In view of (4.1), (3.3), and (3.9), we arrive at

J(q̄, ū)− J(qγ , uγ) =
1

2
〈ψ − ū, µ̄− µγ〉 −

1

2
〈λ̄, θ̄ − θγ〉

+
1

2
〈ψ − uγ , µ̄+ µγ〉 −

1

2
〈λγ , θ̄ + θγ〉+Rreg

Note that 〈µγ , ψ − uγ〉 and 〈θγ , λγ〉 can be interpreted as complementarity errors,
cf. (3.9f). Note further that we have not used any of the complementarity conditions
in (3.9f) so far. Now using these complementarity conditions we can switch the sign
of the multipliers µ̄ and θ̄ in the first two terms on the right to get

J(q̄, ū)− J(qγ , uγ) =

〈
ū− uγ ,

1

2
(µ̄+ µγ)

〉
+

〈
λ̄− λγ ,

1

2
(θ̄ + θγ)

〉
+Rreg. (4.2)

In view of the convergence results in Theorem 3.4, this seems to be a reasonable
splitting, since the differences on the left of the duality pairings converge strongly in
H1

0 (Ω) and the sum on the right is bounded in H−1(Ω), or, for the second summand,
the left converges strongly in H−1(Ω) while the right is bounded in H1(Ω).

In order to efficiently estimate the differences in the duality pairings in (4.2),
we aim to exploit a Taylor expansion w.r.t. the regularization parameter γ. To this
end, we show that, under suitable assumptions, the mapping γ 7→ (uγ , λγ) is at least
locally differentiable. Comparable path differentiability results have already been
proven in [19] for a different type of regularization. In [19], the authors exploit the
equivalence of the linearized optimality system to a (under suitable assumptions)
convex optimization problem. Here, we proceed along a different path by directly
proving the solvability of the linearized system, leading to comparable results.
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We will prove the differentiability of γ 7→ (uγ , λγ) by means of the implicit func-
tion theorem. For this purpose, observe first that λγ , µγ , and θγ are given by simple
algebraic relations and can thus be eliminated directly from the optimality condi-
tions (3.3). Moreover, because of (2.5), ∇g : L2(Ω)→ L2(Ω) is a strongly monotone
and continuous operator. Thus, (3.3d) can be resolved for qγ , i.e., there is a mapping
Q : L2(Ω)→ L2(Ω) such that

pγ +∇g(qγ) = 0 ⇐⇒ qγ = Q(pγ).

This leaves us with the semilinear elliptic system for finding the state uγ and adjoint
pγ solving

Auγ −Q(pγ) + r(γ;uγ) = 0,

A∗pγ −∇j(uγ) + ∂ur(γ;uγ)pγ = 0.
(4.3)

Since the bilinear form L2(Ω)2 3 (v, w) 7→ g′′(qγ)[v, w] ∈ R is bounded and coercive
by (2.5), the operator g′′(qγ) : L2(Ω)→ L2(Ω)∗ = L2(Ω) is a homeomorphism so that
the implicit function theorem yields that Q is continuously Fréchet differentiable, and
the application of the derivative to any direction ṗ ∈ L2(Ω) is given by

Q′(pγ)ṗ = −g′′(Q(pγ))−1ṗ. (4.4)

To apply the implicit function theorem, w.r.t. the mapping γ 7→ (uγ , pγ), to (4.3), we
need to show solvability of the linearized system associated to (4.3), which is given
by

Au̇−Q′(pγ)ṗ+ ∂ur(γ;uγ)u̇ = z1, (4.5a)

A∗ṗ− j′′(uγ)u̇+ ∂2
ur(γ;uγ)pγ u̇+ ∂ur(γ;uγ)ṗ = z2, (4.5b)

with arbitrary right hand sides z1, z2 ∈ H−1(Ω). To this end, we require the following
Assumption 1.
1. The first part j of the objective, acting on the state, is supposed to be convex.
2. We assume that uγ and pγ are such that ∂2

ur(γ;uγ)pγ ≤ 0 a.e. in Ω.
Lemma 4.1. Given Assumption 1 the linearized system (4.5) admits a unique

solution u̇ and ṗ for every right hand side z1, z2 ∈ H−1(Ω)2.
Proof. We start by reducing (4.5) to a single in equation in ṗ. For this pur-

pose, observe that ∂ur(γ;uγ) ≥ 0, see (3.11). Moreover, by Lemma 3.1, we have
∂ur(γ;uγ) ∈ L∞(Ω). Thus the bilinear form induced by A + ∂ur(γ;uγ) is bounded
and coercive in H1

0 (Ω) giving the existence of an operator S′γ : H−1(Ω) → H1
0 (Ω)

such that

w = S′γ f ⇐⇒ Aw + ∂ur(γ;uγ)w = f.

Then (4.5a) is equivalent to

u̇ = S′γQ
′(pγ)ṗ+ S′γz1 (4.6)

so that (4.5b) becomes a single equation in ṗ, namely

A∗ṗ+ ∂ur(γ;uγ)ṗ =
(
j′′(uγ)− ∂2

ur(γ;uγ)pγ
)
S′γQ

′(pγ)ṗ+ z̃

with

z̃ =
(
j′′(uγ)− ∂2

ur(γ;uγ)pγ
)
S′γz1 + z2 ∈ H−1(Ω).
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Utilizing that (A∗ + ∂ur(γ;uγ))−1 = (S′γ)∗ =: S∗γ , this equation is equivalent to

ṗ = Cṗ+ S∗γ z̃. (4.7)

where

C = S∗γ
(
j′′(uγ)− ∂2

ur(γ;uγ)pγ
)
S′γQ

′(pγ).

Since S∗γ : H−1(Ω) → H1
0 (Ω), there holds C : L2(Ω) → H1

0 (Ω) ⊂⊂ L2(Ω) so that C
regarded as an operator with range in L2(Ω) is compact by Rellich’s theorem. Thus
we can apply Fredholm’s alternative, i.e., either (I−C)ṗ = z admits a unique solution
ṗ ∈ L2(Ω) for every z ∈ L2(Ω) or the homogeneous equation

(I − C)ṗ = 0 (4.8)

has non-trivial solutions in L2(Ω).
By construction of C and S′γ , (4.8) is equivalent to the homogeneous counterpart

of (4.5), where z1 = z2 = 0. To see that this homogeneous system only admits the
trivial solution, we test the first equation in (4.5) with ṗ and the second one with u̇
and subtract the arising equalities to obtain

−(Q′(pγ)ṗ, ṗ) + j′′(uγ)u̇2 −
∫

Ω

∂2
ur(γ;uγ)pγ u̇

2 dx = 0.

Testing (4.4) with Q′(pγ)ṗ results in

g′′
(
Q(pγ)

)
[Q′(pγ)ṗ]2 = −(Q′(pγ)ṗ, ṗ).

Thus (2.5) and Assumption 1, i.e., the convexity of j and the sign condition, give

α ‖Q′(pγ)ṗ‖2L2(Ω) ≤
∫

Ω

∂2
ur(γ;uγ)pγ u̇

2 dx ≤ 0.

Consequently Q′(pγ)ṗ = 0 and thus ṗ = −g′′
(
Q(pγ)

)
Q′(pγ)ṗ = 0. Therefore (4.8)

indeed just admits the trivial solution, and thus Fredholm’s alternative implies that
(4.7) and hence also (4.5) are uniquely solvable.

Remark 2. Some comments concerning Assumption 1 are in order. Note first
that our analysis allows, for instance, for objectives of the form

j(u) = ‖∇u− z‖2L2(Ω;Rd) (4.9)

with given z ∈ L2(Ω;Rd) or

j(u) = ‖u− w‖2
L2(Γ̃)

,

where Γ̃ ⊂ Ω is a smooth manifold. The sign condition in Assumption 1 is an analogon
to [19, Assumption 2]. In view of

∂2
ur(γ;uγ) = −6 γ2 max

(
γ(ψ − uγ), 0

)
,

it is fulfilled, if

pγ ≥ 0 a.e. on {uγ < ψ}.
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Note that the strong stationarity conditions imply p̄ ≥ 0 q.e., where ū = ψ. As
mentioned above, these conditions hold in case of (P), if ū ∈ H1

0 (Ω), cf., [22].
Corollary 4.2. Let (qγ , uγ) with corresponding multipliers (pγ , λγ , θγ) satisfy

the optimality system (3.3). Assume that Assumption 1 is satisfied, then the tuple
(qγ , uγ , pγ , λγ , θγ) is locally unique. Furthermore, the solution variables are differ-

entiable with respect to γ and the derivatives (q̇γ , u̇γ , ṗγ , λ̇γ , θ̇γ) solve the following
system of linearized equations:

Au̇γ = q̇γ + λ̇γ , (4.10a)

λ̇γ + ∂γr(γ, uγ) + ∂ur(γ; γ)u̇γ = 0, (4.10b)

A∗ṗγ = j′′(uγ)u̇γ − µ̇γ , (4.10c)

ṗγ + g′′(qγ)q̇γ = 0, (4.10d)

ṗγ − θ̇γ = 0, (4.10e)

µ̇γ − ∂ur(γ;uγ)θ̇γ − ∂2
uγr(γ;uγ)θγ − pγ∂2

ur(γ;uγ)u̇γ = 0. (4.10f)

Proof. As demonstrated above, the optimality system (3.3) is equivalent to (4.3).
Local uniqueness and differentiability for (4.3) follow by the implicit function theorem
from invertibility of the linearized operator in (4.5) as shown in Lemma 4.1.

The derivative of R 3 γ 7→ (uγ , pγ) ∈ H1
0 (Ω)2 is given by the unique solution

(u̇γ , ṗγ) of the linearized version of (4.3):

Au̇γ −Q′(pγ)ṗγ + ∂ur(γ;uγ)u̇γ + ∂γr(γ;uγ) = 0,

A∗ṗγ − j′′(uγ)u̇γ + ∂2
ur(γ;uγ)pγ u̇γ + ∂ur(γ;uγ)ṗγ + ∂2

uγr(γ;uγ) = 0.

By setting q̇γ = Q′(pγ)ṗγ = −g(qγ)−1ṗγ , see (4.4), and introducing λ̇γ , θ̇γ , and µ̇γ
through (4.10b), (4.10e), and (4.10f), respectively, we obtain (4.10).

To obtain an estimator for the regularization error, which can be evaluated a
posteriori, we make the following ansatz for the unknown ū, λ̄ based on a first-order
Taylor expansion:

ū ≈ u∞ := uγ + γ u̇γ , (4.11a)

λ̄ ≈ λ∞ := λγ + γ λ̇γ . (4.11b)

Then, by (4.2), we arrive at the following approximation of the difference in the
objective

J(q̄, ū)− J(qγ , uγ) =

〈
ū− uγ ,

1

2
(µ̄+ µγ)

〉
+

〈
λ̄− λγ ,

1

2
(θ̄ + θγ)

〉
+Rreg

≈ γ
(
〈u̇γ , µγ〉+ 〈λ̇γ , θγ〉

)
=: ηγ . (4.12)

It is to be noted that the above approximation is by far not rigorous. First of all
Assumption 1(2) is fairly ad hoc. Moreover, the minimum of (P) need not be unique
so that convergence uγ → ū and λγ → λ̄ cannot be expected. Therefore the Taylor
approximations in (4.11) might be quite inaccurate. In addition the replacement of
1/2(µ̄+ µγ) and 1/2(θ+ θγ) by µγ and θγ , respectively, is even more critical, since the
dual variables only converge weakly, if they converge at all. Despite all these issues,
the proposed error estimator performs very well in the numerical tests, as we will see
in Section 6.
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5. Adaptive finite element discretization. In this section, we describe the
adaptive finite element discretization of the reduced and regularized optimality sys-
tem (4.3). Let Th be a triangulation of Ω consisting of quadrilateral elements for d = 2
and of hexahedral ones for d = 3. In our approach, we allow hanging nodes of degree
one to realize adaptive mesh refinement. For the evaluation of the later discussed a
posteriori error estimate, a special structure of the adaptively refined finite element
mesh is required. This so-called patch-structure is obtained through the refinement
of all sons of a refined element, provided that one of these sons is actually marked for
refinement. It is illustrated in Figure 5.1. The finite element ansatz space is given by

(a) Mesh with patch structure (b) Corresponding patch mesh

Fig. 5.1. Illustration of the patch structure of the finite element mesh

Vh :=
{
v ∈ H1

0 (Ω) : v|T ∈ Q1(T )∀T ∈ Th
}
,

where Q1(T ) consists of d-linear basis functions on the element T . This leads us to
the discrete problem: Find the discrete state uγ,h and the discrete adjoint pγ,h as
solution of the semilinear elliptic system

a(uγ,h, ϕh)−Q(pγ,h)(ϕh) + (r(γ;uγ,h), ϕh) = 0 ∀ϕh ∈ Vh
a(χh, pγ,h)−∇j(uγ,h)(χh) + (∂ur(γ;uγ,h)pγ,h, χh) = 0 ∀χh ∈ Vh.

(5.1)

Furthermore, qγ,h is given by qγ,h = Q(pγ,h). We use Newton’s method to determine
the discrete solution. However, this introduces an additional error such that we only
compute approximate solutions (ũγ,h, q̃γ,h, p̃γ,h).

The detailed solution algorithm, Algorithm 1, will be outlined in the end of this
section. Beforehand, we discuss an a posteriori error estimate of the discretization
error and the numerical error:

Proposition 5.1. Under the assumption that ψ, uγ ∈ L∞(Ω), the following error
representation holds for the error in the cost functional J

J(qγ , uγ)−J(q̃γ,h, ũγ,h)

=
1

2
ρ∗(q̃γ,h, ũγ,h, p̃γ,h)(u− ũγ,h) +

1

2
ρq(q̃γ,h, p̃γ,h)(q − q̃γ,h)

+
1

2
ρ(q̃γ,h, ũγ,h)(p− p̃γ,h)− ρ(q̃γ,h, ũγ,h)(p̃γ,h) +R(3)

h .

(5.2)

Here, the dual residual is given by

ρ∗(q̃γ,h, ũγ,h, p̃γ,h)(·) := j′(ũγ,h)(·)− a(·, p̃γ,h)− (∂ur(γ; ũγ,h)pγ,h, ·),

the control residual by

ρq(q̃γ,h, p̃γ,h)(·) := (q̃γ,h, ·)−Q(p̃γ,h)(·),
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and the primal residual by

ρ(q̃γ,h, ũγ,h)(·) := −a(ũγ,h, ·) + (q̃γ,h, ·)− (r(γ; ũγ,h), ·).

The remainder term R(3)
h arising from the application of the trapezoidal rule is of the

form

R(3)
h =

1

2

∫ 1

0

(
j′′′(ũγ,h + teu)(eu)3 + g′′′(q̃γ,h + teq)(eq)3

)
t(t− 1) dt

− 3γ3

∫ 1

0

∫
Iγ,h

t(t− 1)(p̃γ,h + t ep)(eu)3dx dt

+ 3γ3

∫ 1

0

∫
Iγ,h

t(t− 1)(ψ − ũγ,h − t eu)ep(eu)2dx dt

(5.3)

with the discretization errors eu := uγ − ũγ,h, eq := qγ − q̃γ,h, and ep := pγ − p̃γ,h and
the inactive set Iγ,h := {x ∈ Ω : (ũγh + teu)(x) < ψ(x)}.

Proof. In principle, the proof follows the classical arguments in [25] using the
standard arguments of the DWR approach based on the Lagrangian

Lγ : L2(Ω)×H1
0 (Ω)×H1

0 (Ω)→ R;

Lγ(qγ , uγ , pγ) := J(qγ , uγ)− a(uγ , pγ) + (qγ , pγ)− (r(γ;uγ), pγ).
(5.4)

As the first three expressions in (5.4) are sufficiently smooth, Proposition 4.1 in [25]
is directly applicable giving the first addend in (5.3). Since r(γ; . ) is not three times
continuously differentiable, the treatment of the last addend requires more care. Using
the trapezoidal rule and Fubini’s theorem we obtain

(r(γ;uγ), pγ)− (r(γ; ũγ,h), p̃γ,h)

= −3γ2

∫
Ω

∫ 1

0

d

dt
(t(t− 1))

(
max

(
γ(ψ − ũγ,h − t eu), 0

)
(p̃γ,h + t ep)(eu)2

)
dt dx.

Now let us define the function

f : [0, 1]× Ω→ R,

f(t, x) := max
(
γ(ψ(x)− ũγ,h(x)− t eu(x)), 0

)(
p̃γ,h(x) + t ep(x)

)(
eu(x)

)2
.

According to [18, Theorem A.1] and the Leibniz-rule for Sobolev-functions, which is
applicable due to ψ, uγ ∈ L∞(Ω) by assumption, the function f is weakly differen-
tiable. The weak partial derivative w.r.t. t reads

∂f

∂t
(t, x) = −γ χ

(
γ(ψ(x)− ũγ,h(x)− t eu(x))

)(
p̃γ,h(x) + t ep(x)

)(
eu(x)

)3
+ max

(
γ(ψ(x)− ũγ,h(x)− t eu(x)), 0

)
ep(x)

(
eu(x)

)2 (5.5)

with

χ : R→ R, χ(r) :=

{
1, r > 0,

0, r ≤ 0.

Integration by parts w.r.t. t is thus applicable and yields

(r(γ;uγ), pγ)− (r(γ; ũγ,h), p̃γ,h)

= −3γ2

∫
[0,1]×Ω

d

dt
(t(t− 1)) f(t, x) dt dx = 3γ2

∫
[0,1]×Ω

t(t− 1)
∂f

∂t
(t, x) dt dx.
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Inserting (5.5) finally gives (5.3).
Remark 3. Applying the well-known technique of Stampacchia [18, Theorem

B.2], it can be shown that uγ i.e., the solution of the elliptic equation (3.2), is es-
sentially bounded w.r.t. x, provided that data are sufficiently smooth, in particular
qγ ∈ Ls(Ω), s ≥ d/2. For d = 2, 3, one has L2(Ω) ↪→ Ls(Ω) so that the additional
assumption in Proposition 5.1 is not very restrictive.

Remark 4. An inspection of (5.3) shows that, for fixed γ > 0, one obtains∣∣∣R(3)
h

∣∣∣ ≤ cγ (‖eu‖3L3(Ω) + ‖ep‖3L3(Ω) + ‖eq‖3L3(Ω)

)
,

provided that j′′′(ũγ,h+teu), g′′′(q̃γ,h+teq), p̃γ,h, ep, ũγ,h, and eu essentially bounded
for fixed regularization parameter γ. For fixed γ > 0, the remainder term is thus of
third order in the discretization error. Unfortunately, because of the last two integrals
in (5.3), cγ depends on γ and might tend to infinity, if γ → ∞. However, these are
integrals over the inactive set, and one can easily see that the measure of Iγ,h tends
to zero, if eu tends to zero in L1(Ω). It is not clear yet whether this convergence can
compensate the factor 1/γ3 so that

|J(qγ , uγ)− J(q̃γ,h, ũγ,h)| � |R(3)
h |.

However, our numerical results indicate that neglecting the error term is acceptable,
at least in our test cases.

Since the error representation formula (5.2) is numerically not evaluable, we ap-
proximate it using patchwise quadratic interpolation, c.f., e.g., [2, Section 4.1] for

this well known procedure. Let i
(2)
2h be the corresponding interpolation operator. We

obtain neglecting the remainder term R(3)
h ,

J(qγ , uγ)− J(q̃γ,h, ũγ,h) ≈ ηh + ηit (5.6)

with the spatial and the numerical error estimator:

ηh :=
1

2
ρ∗(q̃γ,h, ũγ,h, p̃γ,h)(i

(2)
2h ũγ,h − ũγ,h) +

1

2
ρq(q̃γ,h, p̃γ,h)(i

(2)
2h q̃γ,h − q̃γ,h),

+
1

2
ρ(q̃γ,h, ũγ,h)(i

(2)
2h p̃γ,h − p̃γ,h)

ηit := −ρ(q̃γ,h, ũγ,h)(p̃γ,h).

Remark 5. For a distributed control with a Tikhonov-like term g(q) = α
2 ‖q −

qd‖2L2(Ω) with some qd ∈ L2(Ω), the control residual can also be approximated by

1

2
ρq(q̃γ,h, p̃γ,h)(qd),

since it vanishes for qd ≡ 0, c.f., [33].
Beside the remainder, the terms

1

2
ρ∗(q̃γ,h, ũγ,h, p̃γ,h)(u− i(2)

2h ũγ,h) +
1

2
ρq(q̃γ,h, p̃γ,h)(q − i(2)

2h q̃γ,h)

+
1

2
ρ(q̃γ,h, ũγ,h)(p− i(2)

2h p̃γ,h),
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are also neglected. In [2, Section 5.2], it is proven that the corresponding term for
the Poisson problem is of higher order in h assuming smooth solutions and uniform
meshes. In the general case, this is an open question. However, the numerical results
in Section 6 suggest that this approach also works in the situation considered here,
as it does in many other situations, see for instance [5].

Finally, the a posteriori error estimate of the regularization error (4.12) can not
be evaluated numerically, since it is based on the analytical values. Thus, we use the
discrete counterpart

γ
(
〈u̇γ,h, µγ,h〉+ 〈λ̇γ,h, θγ,h〉

)
=: ηγ (5.7)

as estimator. All in all, we have deduced the a posteriori error estimate

J(q̄, ū)− J(q̃γ,h, ũγ,h) ≈ η := ηγ + ηh + ηit.

We note that all of the three indicators are, in fact, functions evaluated in the current
iterate. To ease notation, we neglected the explicit statement of this fact.

To utilize ηh in an adaptive refinement strategy, we have to localize the error
contributions given by the primal, dual, and control residuals with respect to the
single mesh elements T ∈ Th leading to local error indicators ηh,T . Here, the filtering
technique developed in [7] is applied, which implies less implementational effort than
the standard approach using integration by parts outlined for instance in [2]. The
optimal mesh strategy developed in [27] is used as adaptive refinement strategy.

The adaptive solution procedure is described in the following Algorithm:
Algorithm 1. The adaptive solution algorithm consists of the following steps

using a stopping tolerance tol > 0, a safety factor cs > 1, an equilibration constant
ce > 1, and a factor cγ > 1 to steer the growth of γ during the algorithm:

(1) Choose an initial triangulation T 0
h and an initial regularization parameter γ0.

Set l = 0.
(2) Choose an initial value

(
q̃l,0γ,h, ũ

l,0
γ,h, p̃

l,0
γ,h

)
and set n = 0.

(3) Perform one step of Newton’s method:(
q̃l,nγ,h, ũ

l,n
γ,h, p̃

l,n
γ,h

)
→
(
q̃l,n+1
γ,h , ũl,n+1

γ,h , p̃l,n+1
γ,h

)
.

(4) Determine ηh and ηit.
(5) If cs|ηit| > |ηh| then increment n and go to (3).
(6) Determine ηγ .
(7) If |ηγ |+ |ηh| < tol then quit.
(8) If |ηh| > ce|ηγ | then adaptively refine, T lh → T

l+1
h , and set γl+1 = γl.

(9) If |ηγ | > ce|ηh| then enhance the regularization, γl+1 = cγγ
l, and set T lh =

T l+1
h .

(10) If ce|ηγ | ≥ |ηh| ≥ c−1
e |ηγ | then adaptively refine, T lh → T

l+1
h , and enhance the

regularization, γl+1 = cγγ
l.

(11) Increment l and go to (2).
Some comments on the adaptive solution algorithm are in order. We use cs = 103,

ce = 5, and cγ =
√

10 in our numerical experiments. Especially, the choice of cγ is cru-
cial, since one wants to stay in the quadratic convergence radius of Newton’s method.
In our numerical experiments the mentioned choice has worked well. Furthermore,
the initial values for Newton’s method are determined by extrapolation of the old
solution, if we increase γ, or by interpolation on the new mesh, if an adaptive mesh
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refinement is conducted. The stopping criterion in step (7) ensures that the regular-
ization as well as the discretization error are below the given tolerance, which also
holds for the numerical error due to step (5). It directly implies |η| < tol + c−1

s tol.
However, it is more secure to bound the different error sources.

6. Numerical results. In this section, we consider three challenging examples
to test the presented error estimator and the adaptive algorithm. To specify the
functional, we now consider

J(q, u) =
1

2
‖u− ud‖2L2(Ωu) +

α

2
‖q − qd‖2L2(Ωq)

with given subdomains Ωu,Ωq ⊂ Ω and functions ud ∈ L2(Ωu), qd ∈ L2(Ωq). For
comparison, a heuristic patch recovery estimator of the form

ηzz := ‖P (∇uh)−∇uh‖+ ‖P (∇qh)−∇qh‖+ ‖P (∇ph)−∇ph‖

for the discretization error in combination with the estimator

ηe,t := J(q̃∞,h, ũ∞,h)− J(q̃γ,h, ũγ,h) = γ(ũγ,h − ud, u̇γ,h) + γα(q̃γ,h − qd, q̇γ,h)

of the regularization error is used. Here, P denotes the usual recovery operator
described for instance in [1].

6.1. First example. We set Ω = (0, 1)2 with homogeneous Dirichlet boundary
conditions on ∂Ω and a(u, v) =

∫
Ω
∇u∇v dx. The obstacle ψ is given by ψ ≡ −0.25

and a volume force f by f = −2π2 sin(πx) sin(πy). As desired state ud, we choose
ud = − sin(πx) sin(πy) in the subdomain Ω1 = (0.375, 0.625)2. With α = 1, we obtain
the functional

J(q, u) =
1

2
‖u− ud‖2L2(Ω1) +

α

2
‖q‖L2(Ω),

i.e., Ωu = Ω1 and Ωq = Ω. Due to ud < ψ in Ω1, the optimal state in Ω1 is given by
u = ψ. Because of the volume force f , the optimal state is achieved at least for all
q ≤ 0. Consequently, the optimal control is q ≡ 0 and for the optimal value it holds

J(q, u) =
1

2
‖ψ − ud‖2L2(Ω1) =

5π2 + 16π
√

2 + 128
√

2− 224

512π2
.

In Figure 6.1, the solution is depicted. As the optimal control q is included in the
discrete ansatz space, i.e. q ∈ Vh, for all mesh sizes h, the discrete solution is qh = q
and does not depend on the mesh size h. Consequently, the adaptive algorithm should
only increase the regularization parameter without any adaptive mesh refinement.
Table 6.1 shows that the presented error estimator based on the DWR method really
gives the expected behavior, where

Erel :=
J(q, u)− J (q̃γ,h, ũγ,h)

J(q, u)

and

Ieff :=
J(q, u)− J (q̃γ,h, ũγ,h)

η
.

The only adaptive mesh refinements are carried out in the last steps of the solution
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Fig. 6.1. Setting of the first example.

N lg γ n Erel Ieff ηγ ηh ηit

64 1.0 5 5.74 · 10−1 0.27 2.40 · 10−3 −7.30 · 10−06 4.84 · 10−11

64 1.5 4 2.24 · 10−1 0.50 1.71 · 10−3 −1.63 · 10−06 2.32 · 10−13

64 2.0 3 7.45 · 10−2 0.60 6.91 · 10−4 −2.06 · 10−06 −1.09 · 10−09

64 2.5 3 2.37 · 10−2 0.65 2.37 · 10−4 −7.42 · 10−07 −1.40 · 10−10

64 3.0 3 7.52 · 10−3 0.67 7.73 · 10−5 −1.67 · 10−07 −5.82 · 10−11

64 3.5 3 2.38 · 10−3 0.68 2.47 · 10−5 −7.88 · 10−08 −4.14 · 10−12

64 4.0 3 7.53 · 10−4 0.67 7.83 · 10−6 −4.90 · 10−08 5.28 · 10−14

64 4.5 3 2.38 · 10−4 0.67 2.48 · 10−6 −4.35 · 10−08 3.86 · 10−15

64 5.0 2 7.44 · 10−5 0.65 7.84 · 10−7 −3.86 · 10−08 2.81 · 10−11

64 5.5 2 2.28 · 10−5 0.60 2.48 · 10−7 −3.71 · 10−08 −7.24 · 10−13

64 6.0 2 6.42 · 10−6 0.42 7.84 · 10−8 −3.69 · 10−08 1.69 · 10−14

208 6.5 16 2.25 · 10−6 0.39 3.03 · 10−8 −1.70 · 10−08 1.19 · 10−12

400 7.0 7 6.35 · 10−7 1.06 9.59 · 10−9 7.62 · 10−10 −2.31 · 10−13

400 7.5 2 1.16 · 10−7 2.14 3.03 · 10−9 7.72 · 10−10 −8.82 · 10−13

Table 6.1
Results of the adaptive algorithm based on the DWR error estimator for the first example with

coarse initial mesh.

algorithm. The number of Newton steps n is relatively large for the first adaptive
steps and when the mesh as well as the regularization parameter γ are simultaneously
enhanced. This behaviour is expected, since we have comparably bad starting values
for Newton’s method in these cases. We should remark here that cs|ηh| ≥ |ηit| does not
hold in every adaptive step because we have to stop the algorithm by reaching machine
precision. The corresponding adaptive mesh is depicted in Figure 6.2. In contrast to
the DWR estimator the heuristic estimator shows a completely different behavior
as outlined in Table 6.2. We observe mainly mesh refinements and no reductions
of the regularization parameter. Hence, the error is not efficiently reduced. The
adaptive mesh is depicted in Figure 6.3. The effectivity indices for the presented
error estimator given in Table 6.1 are not satisfactory due to the very coarse mesh.
Using a finer initial mesh, we obtain much better effectivity indices indepedent of the
regularization parameter α, c.f., Table 6.3. The reason for the problems in the case
α = 10−10 and γ = 108 lies in numerical problems since we reach machine precision
and observe relatively large rounding errors.
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Fig. 6.2. Adaptive mesh in the 13th step of
the algorithm based on the DWR estimator with
coarse initial mesh.

Fig. 6.3. Adaptive mesh in the 5th step of
the algorithm based on the heuristic estimator.

N lg γ Erel

64 1.0 5.74 · 10−1

160 1.0 5.74 · 10−1

400 1.0 5.72 · 10−1

1216 1.0 5.71 · 10−1

4624 1.5 2.22 · 10−1

13408 1.5 2.22 · 10−1

50656 2.0 7.41 · 10−2

Table 6.2
Results of the adaptive algorithm based on the heuristic error estimator for the first example.

6.2. Second example. For comparison with the results obtained simultane-
ously by [16], we apply our algorithm to [16, Example 5.2]. In [16] adaptive finite
elements are considered for a similar setting. However, the MPCC is solved up to a
prefixed, not discretization dependend, accuracy and the regularization error is not
considered in the a posteriori error estimates.

We consider the obstacle problem with a(u, v) =
∫

Ω
∇u∇v dx on the L-shaped

domain Ω = (−1, 0) × (−1, 1) ∪ (0, 1) × (0, 1) and homogeneous Dirichlet boundary
conditions. Furthermore, we set

ud =

{
−1, if |x| ≥ 0.1,

1− 100x2
1 − 50x2

2, else,

qd = ψ = 0,

f =
1

2
+

1

2
(x1 − x2) ,

α = 1.

The numerical solution in the 11th step of the adaptive algorithm is outlined in Figure
6.4 and Figure 6.5. The corresponding adaptive mesh is shown in Figure 6.6. We
observe mainly adaptive refinements in the reentrant corner and along the line, where
control and state switch between zero and nonzero values. In Table 6.4, the detailed
results of the adaptive algorithm are listed. Since [16] did not provide a reference value,
we have computed the error by extrapolating the values of the cost functional J on
uniformly refined meshes with a regularization parameter γ = 108. Our reference value
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α = 100 α = 10−5 α = 10−10

N lg γ Erel Ieff Erel Ieff Erel Ieff

16384 0.0 9.99 · 10−1 −0.00 1.00 · 10−0 0.00 1.00 · 10−0 0.00
16384 0.5 9.50 · 10−1 0.12 9.96 · 10−1 0.02 1.00 · 10−0 0.00
16384 1.0 5.71 · 10−1 0.47 7.25 · 10−1 0.46 1.00 · 10−0 −0.00
16384 1.5 2.22 · 10−1 0.69 2.73 · 10−1 0.80 9.78 · 10−1 0.10
16384 2.0 7.41 · 10−2 0.82 8.41 · 10−2 0.91 5.40 · 10−1 0.84
16384 2.5 2.38 · 10−2 0.90 2.53 · 10−2 0.95 1.66 · 10−1 1.09
16384 3.0 7.56 · 10−3 0.94 7.75 · 10−3 0.96 4.39 · 10−2 1.15
16384 3.5 2.40 · 10−3 0.96 2.42 · 10−3 0.97 1.12 · 10−2 1.16
16384 4.0 7.58 · 10−4 0.97 7.60 · 10−4 0.97 2.83 · 10−3 1.16
16384 4.5 2.40 · 10−4 0.98 2.40 · 10−4 0.98 7.15 · 10−4 1.16
16384 5.0 7.58 · 10−5 0.98 7.58 · 10−5 0.98 1.81 · 10−4 1.16
16384 5.5 2.40 · 10−5 0.98 2.40 · 10−5 0.98 4.63 · 10−5 1.15
16384 6.0 7.58 · 10−6 0.98 7.58 · 10−6 0.98 1.20 · 10−5 1.14
16384 6.5 2.40 · 10−6 0.98 2.40 · 10−6 0.98 3.12 · 10−6 1.13
16384 7.0 7.58 · 10−7 0.98 7.58 · 10−7 0.98 8.01 · 10−7 1.18
16384 7.5 2.40 · 10−7 0.98 2.40 · 10−7 0.98 1.70 · 10−7 1.57
16384 8.0 7.55 · 10−8 0.98 7.55 · 10−8 0.98 −1.07 · 10−8 −7.45

Table 6.3
Results of the adaptive algorithm based on the DWR error estimator for the first example with

different parameters α and fine initial mesh.

Fig. 6.4. Optimal control in the second ex-
ample.

Fig. 6.5. State in the second example.

for the calculation of the errors is J(q̄, ū) ≈ 1.54838525 . . .. The algorithm performs
as well as in the other examples including good effectivity indices. Furthermore,
the adaptive method is very efficient, since it achieves with 9900 Elements a better
accuracy than the uniform refinement with a relative error of 2.4 ·10−5 for 49152 mesh
elements and γ = 108.

In comparison with the results shown in [16], the obtained meshes and the error
decay in terms of the number of unknowns are comparable. However, possibly due to
the different choice of finite elements, the size of the error obtained in our calculations
is smaller, approximately by a factor ten.

Moreover, as we can see from the meshes given by our algorithm, compare Fig-
ure 6.6, the most prominent error source in this example is the singularity induced
by the reentrant corner and not the low regularity of the involved solution variables.
To change this setting, we consider a third example with known low regularity of the
optimal solution.
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Fig. 6.6. Adaptive mesh in the 11th step of the algorithm based on the DWR estimator for the
second example.

N lg γ n Erel Ieff ηγ ηh ηit

192 2.0 5 −1.95 · 10−3 −1.82 7.42 · 10−4 9.19 · 10−4 6.05 · 10−18

624 2.0 2 1.05 · 10−3 1.67 7.43 · 10−4 2.34 · 10−4 9.21 · 10−11

624 2.5 4 5.43 · 10−4 1.07 5.29 · 10−4 2.60 · 10−4 −5.24 · 10−13

624 3.0 4 2.76 · 10−4 0.88 2.18 · 10−4 2.66 · 10−4 −5.60 · 10−14

696 3.0 4 5.54 · 10−5 0.19 2.23 · 10−4 2.36 · 10−4 1.20 · 10−15

2352 3.0 3 4.48 · 10−5 0.24 2.25 · 10−4 6.37 · 10−5 8.44 · 10−17

2352 3.5 4 −6.02 · 10−5 −0.64 8.00 · 10−5 6.49 · 10−5 −1.88 · 10−16

2352 4.0 4 −9.63 · 10−5 −1.62 2.70 · 10−5 6.49 · 10−5 −5.64 · 10−17

2508 4.0 4 −1.01 · 10−4 −1.76 2.65 · 10−5 6.29 · 10−5 8.90 · 10−16

9552 4.0 5 2.46 · 10−5 0.88 2.70 · 10−5 1.61 · 10−5 1.35 · 10−15

9552 4.5 4 1.26 · 10−5 0.78 8.63 · 10−6 1.62 · 10−5 1.89 · 10−17

9900 4.5 2 1.15 · 10−5 0.74 8.63 · 10−6 1.54 · 10−5 1.42 · 10−17

Table 6.4
Results of the adaptive algorithm based on the DWR estimator for the second example.

6.3. Third example. The third example is mpccdist1 taken from the OPTPDE-
problem collection [23], it was introduced originally in [20, Example 7.1]. We use
the domain Ω := (0, 1)2 as well as the subdomains Ω2 := (0, 0.5) × (0, 0.8) and
Ω3 := (0.5, 1) × (0, 0.8). The subdomain Ω1 is a square with midpoint x̂ = (0.8, 0.9)
and edge length 0.1, which has been rotated about its midpoint by 30 degrees in
counter-clockwise direction. Hence, its boundary is not resolved by the mesh. The
four vertices of Ω1 can thus be obtained from

(
x̂ x̂ x̂ x̂

)
+Q

(
−0.05 0.05 0.05 −0.5
−0.05 −0.05 0.05 0.05

)
≈
(

0.7817 0.8683 0.8183 0.7317
0.8317 0.8817 0.9683 0.9183

)

with the rotation matrix

Q =

(
cos π6 − sin π

6
sin π

6 cos π6

)
.
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Note that Ω1 does not intersect Ω2 nor Ω3. Here, we set Ωu = Ωq = Ω, α = 1, and
a(u, v) =

∫
Ω
∇u∇v dx. The desired state is given by

ud(x) =


−400 (q1(y1) + q2(y2))|y=Q>(x−x̂)+x̂ , x ∈ Ω1,

z1(x1)z2(x2), x ∈ Ω2,
0, elsewhere,

and the desired control by

qd(x) =


p1(Q>(x− x̂), x ∈ Ω1,
−z′′1 (x1)− z′′2 (x2), x ∈ Ω2,
−z1(x1 − 0.5)z2(x2), x ∈ Ω3,
0, elsewhere,

where the remaining pieces of data are

z1(x1) = −4096x6
1 + 6144x5

1 − 3072x4
1 + 512x3

1,

z2(x2) = −244140625x6
2 + 585937500x5

2 − 468750x4
2 + 125x3

2,

q1(x1) = −200(x1 − 0.8)2 + 0.5,

q2(x2) = −200(x2 − 0.9)2 + 0.5,

p1(x1, x2) = q1(x1)q2(x2).

The analytical solution of this problem is given by

u =

{
z1 (x1) z2 (x2) , x ∈ Ω2

0, elsewhere,

q =


−z′′1 (x1)− z′′2 (x2) , x ∈ Ω2

−z1 (x1 − 0.5) z2 (x2) , x ∈ Ω3

0, elsewhere,

λ =

{
z1 (x1 − 0.5) z2 (x2) , x ∈ Ω3

0, elsewhere,

where the state u is two times continuously differentiable, the control q is discontin-
uous. Furthermore, p ∈ H1

0 (Ω) but not in C1(Ω), c.f. [20, Example 7.1]. From the
given solution, we calculate J(u, q) = 488889/1250. The main characteristics of this
example are a biactive set B = {x ∈ Ω : u(x) = λ(x) = 0} = (0.0, 1.0)× (0.8, 1.0) of a
measure larger than zero, low regularity and data not aligned along the finite element
mesh. We will show that the adaptive algorithm can cope with all these aspects and
lead to an efficient solution algorithm. The solution is illustrated in the Figures 6.7,
6.8, and 6.9. In Table 6.5, the results concerning a uniform mesh refinement are
summarized. There, the regularization parameter γ is chosen as the smallest value,
where the results do not change any more. We observe a coupled decrease of h and
increase of γ to obtain reasonable results. Furthermore, the effectivity indices of the
DWR error estimator are stated, which are close to one but with a minus sign. The
results of the adaptive algorithm based on the DWR error estimator are given in Ta-
ble 6.6. We achieve a similar accuracy as the uniform approach with far less mesh
elements and smaller values of γ, where the error is estimated accurately as well as
the estimated error constituents are properly balanced. We observe a small number of
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Fig. 6.7. Optimal control in the third example. Fig. 6.8. State in the third example.

Fig. 6.9. Adjoint state in the third example.

N lg γ Erel Ieff

100 1.0 -6.55·10−2 -0.33
400 3.0 -3.09·10−3 -0.88

1600 5.0 -1.54·10−4 -0.99
6400 6.0 -7.71·10−6 -1.04

25600 7.0 -4.24·10−7 -1.05
102400 7.5 -3.03·10−8 -0.85
409600 9.0 -1.37·10−9 -1.12

Table 6.5
Results considering uniform mesh refinement.

Newton steps in the first iterations of the adaptive algorihtm, where the mesh is adap-
tively refined. The number of needed Newton steps increases, when the regularization
parameter γ is modified, even more, when the mesh and the regularization parameter
γ is enhanced. The adaptively refined mesh in the 8th iteration is shown in Figure
6.10. We observe that mainly the lower left part is refined, whereas the upper right
part is much less refined, although one would at first sight expect refinements due to
the problem data not aligned to the grid there. However, the use of special quadrature
rules resolves this problem and so no additional refinements are needed. Furthermore,
the biactive set is resolved onyl barely by the meshes. For comparison, the results of
the adaptive algorithm based on the heuristic error estimator are outlined in Table
6.7. As in the first example, the regularization parameter γ is not increased because
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N lg γ n Erel Ieff ηγ ηh ηit

100 1.0 1 −6.55 · 10−2 −0.33 1.87 · 10−4 8.37 · 10−0 2.59 · 10−04

184 1.0 1 −2.46 · 10−2 −0.10 1.99 · 10−4 9.48 · 10−1 9.39 · 10−08

340 1.0 1 −2.59 · 10−3 −0.51 1.74 · 10−4 5.19 · 10−1 8.10 · 10−06

472 1.0 1 −3.64 · 10−4 −0.84 1.62 · 10−4 1.19 · 10−1 1.44 · 10−06

916 1.0 1 −4.88 · 10−5 −0.95 1.65 · 10−4 1.80 · 10−2 1.33 · 10−06

2248 1.0 1 1.39 · 10−5 0.60 1.71 · 10−4 3.08 · 10−3 7.39 · 10−07

4444 1.0 1 1.70 · 10−5 0.11 1.73 · 10−4 5.73 · 10−4 2.77 · 10−07

9640 1.0 2 2.35 · 10−5 0.03 1.74 · 10−4 1.16 · 10−4 2.33 · 10−13

20176 1.5 3 2.11 · 10−5 0.26 2.13 · 10−3 2.07 · 10−5 4.26 · 10−10

20176 2.0 4 1.26 · 10−5 0.61 2.99 · 10−3 2.29 · 10−5 6.58 · 10−10

20176 2.5 4 5.38 · 10−6 0.88 1.82 · 10−3 2.54 · 10−5 1.26 · 10−12

20176 3.0 3 1.74 · 10−6 1.14 7.44 · 10−4 2.67 · 10−5 2.45 · 10−09

20176 3.5 2 4.29 · 10−7 1.51 2.26 · 10−4 2.69 · 10−5 2.24 · 10−09

20176 4.0 4 6.18 · 10−8 3.56 5.89 · 10−5 2.70 · 10−5 2.68 · 10−11

43840 4.5 5 2.65 · 10−8 2.08 1.59 · 10−5 5.57 · 10−6 2.64 · 10−09

83512 5.0 6 9.67 · 10−9 1.51 4.38 · 10−6 1.33 · 10−6 3.59 · 10−11

185572 5.5 5 −3.08 · 10−9 −1.22 1.21 · 10−6 2.66 · 10−7 1.26 · 10−10

Table 6.6
Results of the adaptive algorithm based on the DWR estimator for the third example.

Fig. 6.10. Adaptive mesh in the 8th step of
the algorithm based on the DWR estimator for
the third example.

Fig. 6.11. Adaptive mesh in the 5th step of
the algorithm based on the heuristic estimator
for the third example.

of the overestimation of the discretization error by the heuristic estimator. Thus, the
error is not optimally reduced. The resulting adaptive mesh, c.f., Figure 6.11, shows
the same properties as the mesh based on the DWR error estimator.

7. Conclusions. We presented an adaptive algorithm for the finite element ap-
proximation of optimal control problems governed by variational inequalities of obsta-
cle type. The construction of the algorithm is based on a penalty-type regularization,
whose a priori approximation properties can be analyzed by standard techniques. To
obtain an efficient overall algorithm the most crucial point is to design an accurate a
posteriori estimator for the regularization error, which can be evaluated with reason-
able effort. Our construction relies on the path derivative, i.e., the derivative of the
optimal solution w.r.t. the penalization parameter. Under additional assumptions on
the regularized solutions, the path can indeed be shown to be differentiable. Unfor-
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N lg γ Erel

100 1 -6.55·10−2

196 1 -6.49·10−3

616 1 -3.54·10−4

1516 1 -5.51·10−6

2500 1 1.04·10−5

4648 1 1.71·10−5

9580 1 2.15·10−5

22084 1 2.30·10−5

38692 1 1.86·10−5

88336 1 1.87·10−5

155956 1 2.13·10−5

Table 6.7
Results of the adaptive algorithm based on the heuristic estimator for the third example.

tunately, these assumptions cannot be shown to be fulfilled in general. The major
advantage of this regularization error estimator is its low computational costs, since
one only has to solve the linearized system (4.10), which amounts to the same effort
as an additional Newton step for the nonlinear regularized optimality system (3.3).
The discretization error for the regularized problems is then estimated by the stan-
dard DWR method. For fixed values of the regularization parameter γ, the classical
results are obtained, but the estimator depends on γ. It is an open question, whether
the remainder term in (5.3) can be bounded independently of γ or one has to couple
mesh size and γ suitably to keep this remainder term negligible. This gives rise to
future research. Despite these open questions, the algorithm performs well in two
challenging numerical tests. It reliably detects when to keep the mesh constant and
to increase the penalty parameter as the first example shows. Furthermore, as seen
in the third example, the algorithm can cope with a biactive set of positive measure,
which induces a non-differentiability in the unregularized control-to-state mapping.
Finally, both examples show convincing efficiency indices.
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Appendix A. Proof of Lemma 3.3.
Proof. [Proof of Lemma 3.3] Although the proof is standard, we present the argu-

ments for convenience of the reader. By the Lipschitz continuity of Sγ , the sequence
{uγ} is bounded in H1

0 (Ω) such that there is a weakly converging subsequence, w.l.o.g.
the whole sequence itself. The weak limit is denoted by u ∈ H1

0 (Ω). Testing (3.2)
with ψ − uγ yields∫

Ω

max{ψ − uγ , 0}4 dx =
1

γ3

(
〈q, uγ − ψ〉+ a(uγ , ψ − uγ)

)
.

Thanks to the weak convergence the term in brackets is bounded so that the right
hand side converges to zero for γ →∞. The compactness of H1(Ω)→ L4(Ω) implies
that the left hand side converges to ‖max{ψ − u, 0}‖4L4(Ω), giving in turn that u ≥ ψ
a.e. in Ω, i.e., u ∈ K. Next we test (3.2) with v−uγ , where v ∈ K is arbitrary. Then,
due to∫

Ω

r(γ;uγ)(v − uγ) dx

= −γ3
(∫

Ω

max{ψ − uγ , 0}3 (v − ψ)︸ ︷︷ ︸
≥0

dx+

∫
Ω

max{ψ − uγ , 0}4 dx
)
≤ 0,

we arrive at

a(uγ , v − uγ) ≥ 〈q, v − uγ〉 ∀ v ∈ K

and the weak lower semicontinuity of a implies that the weak limit u is indeed the
unique solution of (2.6). By weak lower semicontinuity, we further infer that

0 ≤ lim inf
γ→∞

(
a(uγ , uγ)− a(u, u)

)
≤ lim sup

γ→∞

(
a(uγ , uγ)− a(u, u)

)
≤ lim
γ→∞

(
a(u, uγ − u)− 〈q, u− uγ〉

)
= 0.

Hence, due to coercivity of a, we have ‖uγ‖H1(Ω) → ‖u‖H1(Ω), and norm and weak
convergence imply strong convergence.

To verify the convergence rate, first note that, by the Stampacchia-Lemma, the
pointwise projection on K yields an element of H1

0 (Ω), i.e., max{v, ψ} ∈ H1
0 (Ω). If

one tests (3.2) with v = u−max{uγ , ψ} so that

a(uγ , u−max{uγ , ψ})

− γ3

∫
Ω

max{ψ − uγ , 0}3
(
u− (ψ + max{uγ − ψ, 0})

)
dx = 〈q, u−max{uγ , ψ}〉

is obtained. Since max{ψ−uγ , 0}3(u−ψ) ≥ 0 a.e. in Ω (due to u ∈ K) and max{ψ−
uγ , 0}3 max{uγ − ψ, 0} = 0 a.e. in Ω, this implies

a(uγ , u−max{uγ , ψ}) ≥ 〈q, u−max{uγ , ψ}〉.
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Adding this inequality to (2.6) tested with v = max{uγ , ψ} ∈ K gives

a(u− uγ ,max{uγ , ψ} − u) ≥ 0

such that the coercivity of a yields

β ‖u− uγ‖2H1
0 (Ω) ≤ a(u− uγ ,max{uγ , ψ} − uγ)

≤ c ‖u− uγ‖H1
0 (Ω) ‖uγ −max{uγ , ψ}‖H1

0 (Ω).
(A.1)

It remains to estimate the projection error uγ − max{uγ , ψ}. For this purpose,
test (3.2) with uγ −max{uγ , ψ} which gives

〈q −Aψ, uγ −max{uγ , ψ}〉
= a(uγ − ψ, uγ −max{uγ , ψ}) + γ3 ‖uγ −max{uγ , ψ}‖4L4(Ω). (A.2)

By defining –up to sets of zero measure– Ω̂ := {x ∈ Ω : uγ(x) < ψ(x)}, we obtain

uγ −max{uγ , ψ} = 0 a.e. in Ω \ Ω̂ and consequently

a(uγ − ψ, uγ −max{uγ , ψ})

=

∫
Ω̂

d∑
i=1

( d∑
j=1

aij
∂(uγ − ψ)

∂xj

∂(uγ − ψ)

∂xj
dx+ bi

∂(uγ − ψ)

∂xi
(uγ − ψ)

)
+ a0 (uγ − ψ)2 dx

= a(uγ −max{uγ , ψ}, uγ −max{uγ , ψ}).

Thus, (A.2) together with the coercivity of a and Young’s inequality yields

β ‖uγ −max{uγ , ψ}‖2H1(Ω)

≤ a(uγ −max{uγ , ψ}, uγ −max{uγ , ψ})

=

∫
Ω

(q −Aψ)
(
uγ −max{uγ , ψ}

)
dx− γ3 ‖uγ −max{uγ , ψ}‖4L4(Ω)

≤ c 1

γ
‖q −Aψ‖4/3

L4/3(Ω)
.

Plugging this into (A.1) yields the assertion.


