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PRECONDITIONERS FOR THE DISCONTINUOUS GALERKIN
TIME-STEPPING METHOD OF ARBITRARY ORDER

STEFFEN BASTING AND EBERHARD BANSCH

ABSTRACT. We develop a preconditioner for systems arising from space-time finite element
discretizations of parabolic equations. The preconditioner is based on a transformation of the
coupled system into block diagonal form and an efficient solution strategy for the arising 2 x 2
blocks. The suggested strategy makes use of an inexact factorization of the Schur complement
of these blocks, for which uniform bounds on the condition number can be proven. The main
computational effort of the preconditioner lies in solving implicit Euler-like problems, which
allows for the usage of efficient standard solvers. Numerical experiments are performed to
corroborate our theoretical findings.

1. INTRODUCTION

Using low order time discretization schemes like backward Euler or Crank—Nicolson is rather
standard practise when solving time dependent partial differential equations (PDE). However, in
most cases one can take great advantage of using higher order discretization schemes. Obvious
choices for such discretization schemes are those frequently used for discretizing ordinary differential
equations (ODE) like multistep or Runge-Kutta methods. These approaches have been studied for
instance in [23, 9] and the references therein.

Another approach is to use variational time discretization schemes, more particularly to use
continuous or discontinuous Galerkin schemes in time. Approximations of this type possess many
appealing features, let us just mention three of them:

e Stability: many variational time discretization approaches exhibit favourable stability
properties like A-stability. In particular, for the dG(k) method considered in this paper,
even strong A-stability can be shown to hold for arbitrary polynomial degrees k [14, 19].

e Convergence properties: many variational time discretization schemes exhibit super con-
vergence properties, for instance dG(k), which is super convergent of order 2k + 1 at the
nodal points [23].

e Generality: being of variational type, time discretization is treated similar to space
discretization. As a consequence, many of the techniques developed for space discretization
over the years are directly applicable to time discretization.

If combined with Galerkin schemes for spatial discretization like finite elements, they also offer a
clean way for a posteriori error control, see for instance [6, 16, 1]. Moreover they are in particular
well suited to discretize problems on time—-dependent domains, see [2, 3].

However, Galerkin time discretization is not that popular among practitioners. The reason for
the reluctance to use this type of discretization might be found in the considerably more complicated
discrete systems arising after full discretization. Using a Galerkin time discretization with, say,
r € N degrees of freedom per time step results in a coupled system of r (spatially discretized) PDEs
to be solved in each time step. At first glance it is not obvious how to solve or precondition these
systems efficiently.

For the numerical solution of the coupled system arising from variational time discretization
schemes, various techniques were proposed: Schétzau et al. [20, 21, 26] consider the dG(k) methods
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for time-independent linear operators and decouple the arising system into linear problems which
have the same structure as as an implicit Euler like discretization of the system, but are complex
valued. In [18] Richter et al. consider a solution strategy for nonlinear parabolic problems
discretized by the dG(k) method based on an inexact factorization of the block eliminated dG(k)
system. This approach turns out to be quite costly for linear problems, however. For the dG(1)
case, Hussain et al. consider an efficient solution approach based on a multigrid preconditioned
BiCGStab solver in [11].

At this point, it seems important to emphasize that variational time discretization schemes share
many similarities with implicit Runge-Kutta methods, see for instance [1] for a unified theoretical
treatment of these methods. Therefore, preconditioners used for the solution of systems arising
from implicit Runge-Kutta methods should be mentioned as well. Preconditioners based on the
W-transformation [9] of the Runge-Kutta coefficient matrix were discussed in [13, 12]. Mardal et
al. analyze a block diagonal preconditioner for A-stable Runge-Kutta schemes in [17] and show
order-optimality, i.e. no dependency of the condition number on space- and time discretization
parameters. However, the suggested preconditioner is not order-optimal with respect to the number
of Runge-Kutta stages. In a preceeding publication [22], the same authors showed numerically
that this dependency can be weakened by a Gauss-Seidel type preconditioner. We would like to
emphasize that in view of the aforementioned similarities between implicit Runge-Kutta and the
variational time discretization methods considered in this paper, our results carry over to implicit
Runge-Kutta methods as well.

In the present paper we propose a strategy to transform the arising systems such that only
decoupled problems of a single (spatially discretized) PDE or a block 2 x 2 system at most have to
be solved. Hereby, the single system or one block of the system is equivalent to an implicit Euler
discretization of the underlying parabolic problem. There is an abundance of efficient solvers like
for instance multi—grid to tackle such a problem.

Thus, assuming there is an optimal standard solver for the Fuler—discretized problem at hand,
it remains to effectively precondition the 2 x 2 systems. To this end, we propose a strategy based
on the ideas in [5] for preconditioning fourth order (in space) problems. The main ingredient is an
inexact factorization of the Schur complement of the 2 x 2 system for which uniform bounds with
respect to space and time discretization parameters as well as the degree of the method can be
proven. In this sense, the approach can be seen as a generalization of a similar Schur complement
approach for the dG(1) method proposed in [25].

Let us define the problem under consideration in more detail. Consider the following parabolic
equation on a given time interval I := (0,7) and a bounded domain Q C R¢,d € {2,3}: Find
u: I xQ — R such that

Ou(t,x) — V- (D(x)Vu(t,x)) + w(x) - Vu(t,x) = f(t,x) inIxQ
=0 on I x 02 (1.1)

u
u(0) = ug in .

Assume that D; j, w; € L*>((0,T),L>*(Q)),4,j = 1,...,d and that the coefficient matrix D is
symmetric and uniformly positive definite.

For the ease of notation we restrict ourselves to homogeneous Dirichlet boundary conditions,
the extension to more general boundary conditions is straightforward.

We will use a weak formulation of equation (1.1) in both space and time. For that purpose,
we consider the space of square integrable functions L?(£2), the Sobolev space of once weakly
differentiable functions V := H}(Q) = {u € H'(Q) : ujgq = 0}, its dual space V* = H~1(2) and
the bilinear form a : V xV — R:

a(u,v) = / DVu-Vuv+w- Vuvdz. (1.2)
Q

Furthermore, we define the parabolic function space
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X :={ve L*(0,T),V): 0w e L*((0,T),V*)}. (1.3)
With these notations problem (1.1) can be restated in a weak setting as follows: let f €
L2((0,T),V*) and ug € L*() be given. Find u € X such that
T T T
/ Dy, v) dt+/ o, v) dt + (u(0), v(0)) :/ () dt + (g, 0(0)) (1.4)
0 0 0
forallv e X.

Here, (-,-) denotes the L2-inner product and (-, -) is the duality pairing on V. Existence and unique-
ness of a weak solution can be proved (see e.g. [7]). In particular, since X — C°([0,T], L?(2)),
v(0) € L?(9) is well defined and the initial condition is also well defined in this sense.

The rest of this paper is organized as follows. Section 2 deals with the variational time
discretization of equation (1.4) by a discontinuous Galerkin (dG) method and space discretization
by conforming finite elements. For the resulting fully discrete system, an efficient solution strategy
is developed in Section 3. We begin by transforming the coupled system into a system of block
diagonal form consisting of single blocks of implicit Euler-like problems, and coupled 2 x 2 blocks
whose efficient treatment is crucial for the overall efficiency of the method. In order to circumvent
complex arithmetic, we make use of a preconditioned Schur complement formulation. The occurring
ill-conditioned fourth order operator is preconditioned by means of an inexact factorization for
which uniform bounds on the condition number can be derived. We touch on numerical realization
of the preconditioner and our implementation in Section 4 and conclude with numerical experiments
in Section 5.

2. VARIATIONAL TIME DISCRETIZATION FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

In order to discretize Eq. (1.4) in time, the time interval I = (0,7) is subdivided into N
subintervals I,, = (t,—1,t,], where 0 =tg < t; < --- <ty = T. The time step size is denoted by
Tn i =1tp —th_1.

The general idea of variational time discretization is to approximate the function v : I — V by
a piecewise polynomial function u, where u;|;, € Py (I,,V). To this end, define the space

P = {v € L*((0,T),V) : vy, € Py(l,,V)Vn=1,...,N}, (2.1)
where
k .
Pp(In, V) i={v: I, > V: v(t) =Y wit/ Vt € L,w; e VVj=0,... .k}
§=0

denotes the space of V-valued polynomials of order & in time. For functions v € ]P’g‘z7 we define the
jump at t,, as follows:

= tli/l?nv(t), vl = tl{‘rilnv(t), [V]n ==} — v,

v,

where v, is to be understood as v(0) := vy € L?(f2), i.e. given initial data.

2.1. Discontinuous Galerkin methods. The discontinuous Galerkin method of order k > 0
(denoted by dG(k)) to approximate problem (1.4) reads [23]:
For given u,(0) = ug and f € L?((0,T),V*), find u, € P{¢, such that

| @)+ aturv) dt+ (o o) =

/(f,v)dt VoePd 1<n<N
In
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This method is known to be strongly A-stable (L-stable) (Chp. 4.1.3, Lemma 3 + 5 in [19]).
While the method is convergent of order k+1 when measured in ||-|[ 2 ((0,1),v), it is super convergent
of order 2k 4+ 1 when only considering the solution at the nodal values w,(t,) (Thm. 12.3, p. 211
in [23]).

Notice that on each time interval I, u,|;, may be written as

k+1
ur(t) = udon;(t) VteIy, (2.3)
j=1

when {¢, ; € Py(I,,R),j =1,...,k+ 1} denotes a set of basis vectors for the space Py(I,,V) and
ud, € V. Correspondingly, any test function v; € P{¢ can be decomposed on the time interval I,, as
a sum of terms of the form:

v(@)e(t), (2.4)

where v € V is constant in time and ¢ € Py (l,,R).
In order to derive a practical method, a concrete basis of Py(I,,, V) has to be specified and the
time integrals in Eq. (2.2) need to be replaced by numerical quadrature. To this end, let

Wnqg €ER, thqg€ln,qg=1,...,N, (2.5)

denote quadrature weights and quadrature points, respectively, such that the resulting quadrature
operator

Q, : CO(I_n) — R,

Ny 2.6
Qnlp] == an,qp(tnyq) 20

is exact for p € Pyi(I,,,R). In particular, the terms (Oyu,,v) and (u,,v) are integrated exactly if
such a quadrature formula is used.

Replacing the integrals in Eq. (2.2) by numerical quadrature and using a (yet to be specified)
basis {¢n;,j =1,...,k+ 1} of Pi(l,,V) leads to the following time-discrete formulation of our
problem on each time interval I,,:

Let n € {1,...N}. For given u.|1, , from the previous time step (or initial data if n = 1), find
k+1 coefficients ul, ..., uktt € V such that the following equations hold for all v € V:

k+1
Z Vi.g (ugw v) + ai,ja(ugw v) =
j=1

(u;—l’ 'U)‘Pn,i(tnfl) + Qn[<f<t)’ U)‘pn,i(t)] for 1 <i< k+ 15

where ;5 1= Q@] ;(1)0ni(t)] + @nj(tn1)Pni(tn-1) and ;= Qulen j(t)en.(t)]-
(2.7)

Remarks:

o At this point, it is important to note that by definition the coefficients v; ; and «; ; are
computed exactly, due to the assumption that Q,, is exact for p € Por (I, R).
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e Transformation to a fixed reference interval I = (0,1) and using standard properties of
basis functions and their corresponding reference basis functions {¢;} on I yields

Yig = Qn[@%,j(t)ﬁpn,i(t)] + on,j(tn—1)@n,i(th—1) = / <P/n,j(t)50n,i(t) dt + @i (tn—1)n,i(tn-1)

n

- / B4():(0) di + 3;(0)1(0) = 415, and

15 = Onlipn s (Dpni(t)] = / o5 (Dps(t) dt =7, / 53 (Dpi(F) df = s,

(2.8)
for coefficients 4; ; and &; ; which depend on the particular choice of basis functions, but
not on 7,.

e Up to now, a basis for the space Py (I,,V) has not been specified yet, the reason being
that by construction our preconditioner will be insensitive to the particular choice of basis
functions (see the remarks for Lemma 3.1). Following [19], in this paper we choose Q,, to
be the (k + 1)-point right-sided Gaufi-Radau formula on I,, = (t,_1,t,], which is exact
for p € Py. With this choice, one of the quadrature points is given by ¢, (denoting
tn.kt+1 := t, for the sake of simplicity). Correspondingly, we select k + 1 Lagrange basis
functions ¢y, ; fulfilling

Pnj(tni) =0ij, 1<4,j<k+1 (2.9)
at the time quadrature nodes t,,; € I,,i = 1,...,k 4+ 1. Since t,, = t,, 41, this leads to

the property that w,(t,) = uf+l.

2.2. Space discretization and fully discrete problem. In order to derive a fully discrete
scheme let us denote by V;, C V a conforming finite element space. On Vj, we introduce the
operator Ay : Vy, — V;, and the identity operator I, : V;, — V by:
(Ah’UJ}“Uh) = a(u;“vh) Vu;“vh S Vh, (210)
2.11)
On each time interval I,,, we can now define our fully discrete problem based on Eq. (2.7) as a
matrix valued problem on V. To this end we introduce the operator-valued system matrices

(Inup,vn) = (un,vn) Vup,vy € Vi (

Y,1dn o0 viksidn
Gh = . s Bh = : (212)

Ye+1.1dn oo Ye+rk+1dn ar+114n oo kg1 g1 An

OleAh a1,k+1Ah

and the right hand side vector
(U1, 0)Pn1 (En—1) + Qul{f (1), V) pn,1 ()]
Fy = : . (2.13)
(Ur—1V)Pnk+1(tn—1) + Qul{f (1), V) on kr1(t)]
kL

The fully discrete solution Uy, = (u}z, RN T )T € (Vh)k+1 on I,, can now be computed from
solving the following problem:

Let u.|;, , be given from the previous time step or initial data, find Uy, € (Vi)' such that

‘ (Gn +Bp) Up =Fy. ‘ (2.14)

3. AN EFFICIENT SOLUTION STRATEGY FOR THE COUPLED SYSTEM

This section is concerned with the main objective of this paper, namely with deriving an efficient
solution strategy for the coupled problem (2.14).
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3.1. Transformation to block-diagonal form. In what follows, let the following tensor product
notation hold for C € R"™*",r € N and an operator L on Vp:

Cl,lL . Cl,rL
C®L:= : (3.1)
C.L ... C.,L
Using this notation, problem (2.14) can be recast in the form
‘(g®lh+7nb®Ah)Uh =Fh7‘ (3.2)

where the coefficients matrices g, b € RFt1**+1 are defined as 8, =% and by j := %ai,j =
&; j, with &,% as in Eq. (2.8). Note that by definition b and g do not depend on 7, but only on
the choice of the basis.

Since b is a mass matrix built from linearly independent functions, it is invertible. Then
multiplying Eq. (3.2) by b™! yields

(b 'lg@ I, + 1 ® Ap) Uy =b 'Fy,. (3.3)

One key idea, well-known in the Runge-Kutta community (see for instance [9], Chapter IV.8) due
to the pioneering work by Butcher [4], is to transform the matrix b~ !g into a matrix of simple
form, such as diagonal or block diagonal. To this end, for the rest of this paper we make the
following assumption:

Assumption 1. Matriz b~ 'g is diagonalizable.

For convenience the eigenvalues A1, ..., A, Apy1, ...y Aggq of b_lg may be ordered such that the
first r eigenvalues A1, ..., A, are real, while the remaining & — r + 1 eigenvalues are complex. Since
these eigenvalues appear as complex conjugates, for the sake of notation we let {\j41,..., g1} =

{)\T_H,XT_H, .. .,)\n,xn} for n = k‘;“, where $(A;) > 0 and S(\;) <0 for r+1<i<n.

Then there exists a real valued transformation matrix V € R¥t1xE+L gych that
Ay
Vi(blg V= : (3.4)

is block diagonal with A; = \; for ¢ < r and

a; By
() o

where o; = R(\;) and 8; = S(\;) for r + 1 < i < n. Introducing the transformed solution variable
W, = V'U;, and multiplying (3.3) by V! leads to the equivalent formulation

S W), =V b 'Fy, (3.6)
where
Al + T Ap
Aedn + TnAh
S — arprdn + T Ap Bri1ln
" —Bry1dn a1 In + T Ap
anIh + 7_nAAh BnIh

_ﬂn-[h anIh + TnAh
(3.7)
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We are thus led to the problem of solving a block diagonal system S; which reduces to solving r
standard 1 x 1 implicit Euler-like problems, and coupled 2 x 2 block systems of the form

adp + 1, Ap By wi) _ (f
( _ﬁIh th +T7LAh> (w2> o (g) ’ (38)

whose efficient solution will be subject of the next subsection. Note that due to the block diagonal
structure, the solution of the sub-problems (3.8) can be done in parallel.

A crucial point is the sign of the real part « of the eigenvalues. This is clarified in the following
lemma.

Lemma 3.1. Let \ be an eigenvalue of the matriz b~ g. Then it holds
R(A) > 0.

Proof. By definition of b and g, A is an eigenvalue iff there exists v € Py ([0, 1], C) with fol lv(#)|2dt =
1 and

1 1
/ v (H)w(t)dt + (vw)(0) = )\/ v(t)w(t)dt
0 0
for all w € Px([0,1],C). Here, w denotes the complex conjugate of w. Integrating by parts yields

/ o (By(§)dE + (v)(0) = — / v(@)' (B)dE + (vi)(1).
0 0

Adding the left side and the complex conjugate of the right side gives

/0 o (Dya(d) — o(@) ()di + [(vw)(0) + (Ew)(1)] = A /0 o(byw(@)di + /0 o(Eyw(i)df.

Setting w := v yields
0 < [v(0)* + [v(1)]* = 2R(N).

Remarks:

e As already mentioned earlier, the proof of the above lemma also showed that the eigenvalues
of b~!g are independent of the specific choice of the basis for Py (1,,V).

e The authors failed to prove that Assumption 1 is fulfilled for all £ € N. However,
computational tests clearly showed that the assumption is fulfilled for all N < 50, which
is far beyond practical needs. A similar result was reported in [20], and the question of
diagonalizability of the matrix b~ 'g seems to remain open.

e Note that Assumption 1 is not really needed. Our strategy outlined below would also apply
to the general situation. In this case one would have to replace transformation Eq. (3.4)
by a real Schur transformation, i.e. a transformation into a block tridiagonal form, see [8].
Of course it is more convenient and more effective to work with a block diagonal structure.

3.2. Solving the 2 x 2 block system by a preconditioned Schur complement formulation.
The solution of the 2 x 2 block system (3.8) can be achieved in numerous ways. In this paper, we
will make use of a Schur complement formulation: by block elimination, first ws is obtained by
solving

Spwo = Bf + (aly + T, An)g, where Sy, = (aly + 7, Ap)* + 521, (3.9)
and then w; is determined from (aly, + 7, Ap)wy = f — Bws. Clearly, the performance of the entire
process will depend on how efficient the Schur complement equation (3.9) can be solved, and some
remarks seem to be in order.
Remarks:

o If A, is symmetric positive definite, then also the Schur complement operator S} is
symmetric positive definite, and solvers exploiting this fact can be used (for instance, CG).
It is worth pointing out that the block system (3.8) does not possess this property since it
has saddle point structure.
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e S, is a (discretized) fourth order differential operator, which means that the conditioning
of problem (3.9) will be, in general, even worse than that of problem (3.8).

e An efficient solution strategy for (3.9) using iterative solvers will only be possible with a
suitable preconditioner that will be constructed in this section.

The preconditioner for (3.9) is based on ideas developed for a class of fourth order problems
presented and analyzed in [5]. The main ingredient is an inexact factorization of the Schur comple-
ment operator Sy, for which uniform bounds can be proved. A corresponding preconditioner for the
special case of dG(1) and ¢GP(2) time discretizations was already presented in [25]. Note that an ex-
act factorization for S, is also possible, but leads to complex-valued equations, as pointed out in [18].

The preconditioner will be derived from and analyzed under the assumption that Ay is symmetric,
positive definite. We will later show numerically that the performance of the preconditioner does
not degenerate when this assumption is violated. Consider the symmetric left-right preconditioned
operator

Ph(u) = (,LLIh + TnAh)ilsh(,U,Ih + TnAh)il, (310)

where 1 > 0 denotes a yet to be specified parameter. Note that the spectrum of ul, + 7,4y is
given by

o(pulp + 1 AR) ={un+X: 0< A€ a(mAn)} C (i, 00). (3.11)

Therefore, for fixed A € o(7,,Ap), the corresponding eigenvalue X\ of the preconditioned operator
Py, (1) reads:

< (a+ N2+ 32
A(A) = ——F—— 3.12
In order to highlight the role of the parameter p let us first assume that ¢ = . Then
~ ﬁg
AdN) =14+ —— 3.13
W =1+ (313
and since \ is monotonously decreasing in A, we have

~ ~ ﬂ2
sup. Aa(§) < Aa(0) =1+ —, (3.14)

£co(An) @
inf A (&) > lim A\,(\) =1 3.15
et | (€) 2 lim Aq(}) (3.15)

and consequently o(Pp(«)) C (1,1 + g—z) Hence, the condition number of the preconditioned
operator Py () is bounded by

K(Pp(a)) <1+ g—z. (3.16)

Note that this bound is already insensitive to spatial discretization (e.g. mesh size) and time step

size parameters. However, o and 3 still depend on the temporal basis. Experimental results show
2

(see Figure 3.2) that for increasing polynomial degree k, the ratio % increases as well. Consequently,

we aim at finding a parameter u which resolves this dependency and leads to uniform bounds.

We first note that
d ~

2 2
) = G s Lot N =) =47 (3.17)

which means that A, is monotonously decreasing in \ if < o. Therefore, in this case, x(Pp (1)) <

iy,(o) < Au(0) _ o?4p7

Mmoo Ap(A) — 1 2
bound (3.16).

, which is minimal if 4 = a and would result in the non optimal
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For 1 > a we are interested in extremal points of 5\#(/\). It is easy to check that

S =0e A = P and (3.18)
ax"" N T @ '
62

and, since Aj; was assumed to be positive definite, we need to check the behavior of 5‘# (\) for

a<pu<a+ %2 In this case, we have
~ 0(2 +,32 ) ~ _ . 62
)\M(O) = M2 y )\h_)n;o )\M(A) =1 and )\,U«(A ) = m

Direct computation shows that A,(0) > X,(\*) and therefore the condition number of Py, () can
be estimated by

<1 (3.20)

max (1, A, (0))
An()

We need to distinguish between two cases: A,(0) < 1 and A,(0) > 1. The first case requires

u2 > a? + B2 and yields

K(Pn(p)) < (3.21)

1 (p—a)
S(Pai) < s =1+ (3.22)
For the second case,
w(Pa) < 2l _ 2L BB (1= o)” (3.23)

Au(A%) p? iz
which is monotonously decreasing in p for y? < o? + 2. Both cases (3.22) and (3.23) yield that

k(Pp(w)) is minimized when
w=/a?+ 52, (3.24)
which finally gives
* (:U’* — a)z «
W(PU() S 1S =2 -2 (\/a2+62—a) (3.25)
The remaining case p > o + ’%2 leads to non optimal bounds, since from (3.17) one concludes
that ), is monotonously increasing in A, and therefore

Clmol AN e L
o) erp T

For the optimal parameter u* we have thus obtained the following estimate:

K(Pr(p))

Proposition 3.2. Let A; be symmetric and positive definite. For a > 0,8 € R given, let
Hopt = v/ a2 + B2. Then the preconditioned operator Pp,(fopy) has condition number

K(Ph(ttopt)) < 2 — 2% (\/oﬂ % - a) <2. (3.26)

For the sake of brevity, we will always write jopy to refer to the optimal value popy = /a2 + 52
for each block in (3.6), and will not distinguish between piopy, for different blocks, time discretization
methods or temporal polynomial degrees k.

This subsection is finished by a numerical experiment, indicating that the bounds (3.16) and
(3.26) are sharp in the sense that k(P (1)) is unbounded in the polynomial degree k for = « but
remains bounded for pt = pope. To this end, consider dG(k) and compute the eigenvalues A; of the
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cond(Py(a))
10| o
/ ° cond (P (kopt))
7 --- Bound for k(P («)) from eq. (3.16)
81 7 ® | |— Bound for x(Py(topt)) from eq. (3.26)
.7 O
6 o .
@ .
/// o
41 = -
/// []
2 P :
| | | | |
2 4 6 8 10
dG(k)

FIGURE 1. Condition numbers of the preconditioned operators Py (a) and P (1)
for increasing polynomial degree k together with their theoretical bounds given in
(3.16), (3.26).

corresponding coefficient matrix b~'g. The maximum condition numbers of the preconditioned
Schur complement operators Py (a) and P, (fopt) corresponding to each block are evaluated both
from a priori estimates (3.16), (3.26), and from a fully discretized 1d numerical example (i.e., a
concrete discrete operator 7, Ay corresponding to certain mesh size and time step size parameters,
see Section 5.3.1 for details). The latter is done by using the MATLAB function cond(). The
results are depicted in Figure 3.2. Clearly, increasing the temporal polynomial degree k leads to
an increase of the condition number of P, (), while it stays bounded for P, (topt) indicating the
optimality of the preconditioner with respect to all parameters.

4. NUMERICAL REALIZATION

In this chapter we elaborate on the choice of a concrete finite element space and comment on
our implementation.

4.1. Choice of finite element spaces. Note that except for conformity (V;, C V) so far no
special restriction on the finite element space was assumed. This makes our preconditioner suitable
for a broad class of finite element discretizations.

In our numerical realization, a standard polynomial ansatz on simplicial elements is chosen. To
this end, let 7, be a conforming triangulation of 2, and define the space of continuous, piecewise
polynomial functions on §2:

Vi =Vim = {veC’Q): vy € Pp(T,R) VT € Tp}. (4.1)

For a basis ¢;,7 = 1,...,ndor of V}, p,, define the mass matrix, stiffness matrix, and right-hand
sides by

M;; = (@5, i) 1,7 =1,...,Ndof (4.2)

Aij = a(pj, i) i, j=1,...,Ndot (4.3)

i = (f, i) 1=1,...,ngof (4.4)

Gi = (9, i=1,...,ndof, (4.5)

respectively, and also, for a parameter 6, the matrix

Ay =0M + T,A. (4.6)
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With the above defined matrices M, A, Ay and vectors F, G it holds:

(InUn, 1) = (Un, 1) = (MU, (4.7)
(AnUn, 1) = a(Un, 1) = (AU, (4.8)

((0In + T AR)Un, 1) = 0(Un, 1) + Tna(Un, 1) = (AgU), (4.9)
(fsp1) =Fy, (4.10)

(9,01) = Gy (4.11)

for I =1,...,ndof, where U € R"f U = (U;)i=1,... nyo; 1S the coefficient vector of Uy, € V}, .

To derive the matrix-vector equation that corresponds to the operator equation (3.9) in Vj,
we explain at first the isomorphism 7, : £(Vy,,Vy,) — R¥*N N = ny.¢, that assigns to a linear
operator A : V;, — V), its matrix representation r,,(A4) € RV*V in the following way (see [5]):
Let 7, : V;, — RY denote the finite element isomorphism that assigns to a function U, € V), its
nodal vector representation U = r,(Up,) € RY. Then, the matrix representation r,,(A) € RV*N is
defined by the property

ro(AUR) = 10 (A) 1, (Up) VYU, €V,

If we define as above the matrix M € RV*N and the matrix A € RV* assigned to A by means
of Ay := (Apj, ) for all k,j = 1,..., N, we can show that 7,,(A4) = M ' A. For two operators
Ay, Ay with corresponding matrices A1, Ay we get 7, (A1 43) = M 'A;M~'A,. Now, using the
fact that 7,(¢) = M~'G and the analog for f, we get that the operator equation (3.9) for U, € Vj,
is equivalent to the following matrix-vector equation for the nodal vector Wy = 7, (wz) € RV:

M 'AM A, + ) Wo =M 'F+ M 'AM'G (4.12)

or, by multiplying by M to save unnecessary inversions of M,
(AM ™A, + B*°M) Wy = BF + ALM™'G (4.13)
Correspondingly, the left and right sided preconditioner components have the matrix representation
Aope = HoptM + Tn A. (4.14)

Note that an operator Ap, has the same eigenvalues as its matrix representation 7, (Ap) such
that the results of Section 3 on the preconditioning can be applied to the iterative solution of the
corresponding matrix-vector equation (4.13) directly.

In the case of a symmetric operator Ay, the solution of equation (4.13) can be done using the
preconditioned Conjugate Gradient method (PCG). A pseudocode variant containing the operators
from our setting is shown in Algorithm 1.

Remark: The main numerical effort of Algorithm 1 lies in the evaluation of the preconditioner
(Hops M + 7,A)~1. This evaluation corresponds to solving one step of the implicit Euler method
with time step size #T" This problem is very well studied and can be solved efficiently with many
methods, e.g. multigrid methods, Krylov subspace methods etc. Additionally, one inversion of the
mass matrix M is necessary per application of the preconditioner, a problem that can be tackled
efficiently by the aforementioned methods.

4.2. Implementation. The implementation was done using the MATLAB based finite element
toolbox FELICITY [24]. FELICITY offers linear and quadratic finite elements on unstructured
simplicial grids in 1, 2 and 3 space dimensions. To allow for fair comparisons and having full
control over termination criteria of the linear solvers, we did not use the MATLAB built-in iterative
solvers pcg and bicg to realize Alg. 1, but relied on handcrafted versions instead.

The eigenvalues of the matrix b~'g and the transformation matrix V were directly obtained
from MATLAB (only once at the beginning of each computation) and each Schur complement
problem 3.9 was solved using Alg. 1.

As termination criterion for Alg. 1, we prescribed a relative tolerance tol = le — 10. The
application of the preconditioner (i.e. evaluatlon of A t and M~ in Alg. 1) was done using the
MATLAB operator \.
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Algorithm 1 PCG for the Schur complement equation (4.13)

Require: Parameters «, 3, right hand side vectors F, G and initial guess zq

Wopt — v/ a2 + [32 > Compute optimal parameter for preconditioner
T 4 X0 > Initial guess
S+ A M A, +52M > Define Schur complement operator
Aopt — WoptM + 7, A > Define preconditioner
b+ (BF + AaM_lG) > Compute right-hand side
ro T4+ Sr—> > Compute initial residual
h + Agl}tMA;pltro > Compute preconditioned residual
d+h
loop
1
bewm
z + Sd > Apply operator
(r,h)

=T

T+ ad > Update solution

réTr—az > Update residual

return if ||7||/||ro|| < tol

h + A;;tMA;pltr > Compute preconditioned residual

8« B(r,h)

d<+ h+pd > Update search direction
end loop
return z > Wy < x, solution to (4.13)

5. NUMERICAL RESULTS

In this chapter we demonstrate the efficiency and stability of our preconditioner on a number of
test problems which are introduced in the following.

5.1. Test problems. As a first test of our implementation, we consider the following 1d problem
with time independent coefficients: Let 2 = (0,1) C R and I = (0,1).

Problem 1 (P1). Find u such that
Ou —Au=f mn I xQ,

u=20 on I x 09, (5.1)
where
f(t,x) :== 107 cos(107t)z(1 — ) + 2sin(107t). (5.2)
The exact solution to this problem is given by
u(t, ) = sin(107t)x(1 — ). (5.3)

Remark: Note that for fixed ¢, both solution and right hand side are contained in the ansatz space
if second order polynomials are used for space discretization. This means that no spatial error
contribution is to be expected, and the error of the fully discrete solution will be due to time
discretization only.

Our second problem addresses the performance of the preconditioner when applied to anisotropic
diffusion problems in 2d. We consider the 2d unit disk 2 = B;(0) C R?, a time interval I = (0, 1)
and pose the following problem:
Problem 2 (P2). Given a parameter § > 0, find u such that
Ou —V - (DsVu) =0 m I x Q,
u=~0 on I x 09, (5.4)
u(0,) = ug on €,
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where

D =m0 mt o m= (S0 SO,

0 = 40° and the initial condition is given by ug(z,y) = 1 — x? — y%.

Remark: Varying the parameter § changes the anisotropy of the operator Dgs. A similar anisotropic
operator was considered in the benchmark paper [10] (Test 3). The aim of problem P2 is to study
sensitivity of the preconditioner on anisotropies, mesh and time discretization parameters.

The last problem features an additional convective term and the aim is to study the performance
of the preconditioner up to the convection dominated regime. The problem setting is inspired by a
widely used benchmark for transport equations [15]. To this end, we consider the 2d unit square
Q = (0,1)2, time interval I = (0,27) and the following problem:

Problem 3 (P3). Given a parameter € > 0 find u such that

Ou+w-Vu—eAu=0 mn I xQ,
u =0 on I x 09, (5.5)
u(0,) = ug on Q,

where w(x,y) = (25_0 g) . and the initial condition is a “smooth hump” given by

. B 1+cos(zr(x,y)) for r(x,y) — % (x — xO)Q ¥ (y _ yO)Q <1,
O(Iay) -
0 else,

with ro = 0.15 and (zg, yo) = (0.25,0.5).

Remark: Note that the operator in (5.5) is no longer symmetric. Consequently, the analysis
presented in Section 3.2 does not apply directly in this case. However, we will show that even
when § — 0, the preconditioner performs well.

5.2. Convergence results. We start by evaluating the correctness of our implementation. To
this end the following notion for the numerical errors is introduced. Let w;, be a numerical solution.

Define the L?(H") error
1/2

T
ez (un) = </0 N Uh)lli2<g)> (5.6)

and the discrete [°°(L?) error at the nodal points {t;}, 1< i < N,
o () = macJulta) — uf |20 (5.7)

Throughout this section, uniform time steps 7,, = 7 are used on each time interval I,,. First
consider problem P1 discretized by polynomial elements of second order in space. With this choice,
as mentioned above, the discretization error will only be due to time discretization and not space
discretization.

For time discretization we employ dG(k) for k£ = 0,...4. Accordingly, convergence rates of k + 1
in the ey norm and super convergence rates of 2k + 1 in the ey, norm are expected. On a relatively
coarse mesh with mesh size h = 0.1, we vary the time step size 7 and measure the error quantities.
The results are depicted in Figure 5.2

Clearly, one observes the predicted convergence rates of k£ + 1 in the es norm. The same holds
for the predicted super convergence rate of 2k 4+ 1 in the eo, norm. For e, the presentation is
restricted to 0 < k < 2, since for polynomial degrees k > 3 the error gets into the range of the
machine precision. This simple example impressively demonstrates the power of the dG method.

5.3. Computational costs.
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FIGURE 2. Convergence behavior of the dG(k) method in the ey (left) and e
norms (right).

5.3.1. Performance of the preconditioner for problem P1. We now come to the main obective of
our presentation, the efficient solution of the systems. We elaborate on the performance of the
preconditioner. To this end, we again consider problem P1, discretize in space using piecewise
quadratic polynomials and use different mesh sizes and time step sizes 7. To be precise, we choose
re{1071=1,...,4} and h € {0.2-27!,1 = 0,...4}. As time discretization schemes, we consider
dG(1), dG(2) and dG(3).

Recall that the main numerical effort in the solution process lies in solving implicit Euler-like
problems: For each block in Eq. (3.6) (corresponding to a pair of complex eigenvalues of the matrix
b_lg), the preconditioned Schur complement formulation Eq. (3.10) is solved using Algorithm
1. In each iteration, an application of the preconditioner requires the solution of two implicit
Euler like problems. Once the essential unknown ws of the block is obtained, one further solve
for the first unknown wy is needed. Also, for real eigenvalues in (3.6), only one additional solve is
required. To get an idea of the overall effort, all Euler-like solves are therefore recorded and also
the maximum number of required CG iterations in Algorithm 1.

For each dG(k) and each combination of 7 and h, these counts are shown in Table 1. As can be
seen, typically only a couple of iterations are needed for Algorithm 1 to converge. For instance,
for dG(1), whose discretization results in one 2 x 2 block needs at most 7 iterations for the Schur
complement PCG solve, each of which accounts for 2 implicit Euler-like solves, plus one solve for
the second unknown, which gives a total of 15 solves.

Comparing the total number of implicit Euler-like solves, from Table 1 we can also conclude
that the preconditioned dG(2) method is “relatively cheap” compared to the dG(1) method and
its successor dG(3). This is due to the fact that the block diagonal matrix S in (3.6) contains
only one additional “cheap” 1 x 1 block compared to dG(1). For dG(3) on the other hand, S, is
made up of two “expensive” 2 x 2 blocks requiring two Schur complement solves.
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7\h | 2.00e-01 1.00e-01 5.00e-02 2.50e-02 1.25¢-02
1.00e-01 | 5/11 5/11 5/11 5/11 5/11
1.00e-02 | 5/11 6/13 6/13 7/15 7/15
1.00e-03 | 5/11 6/13 6/13 6/13 6/13
1.00e-04 | 4/9 79 5/11 5/11 5/11

7\h | 2.00e-01 1.00e-01 5.00e-02 2.50e-02 1.25¢-02
1.00e-01 | 5/12 7/16 7/16 7/16 7/16
1.00e-02 | 5/12 7/16 7/16 8/18 8/18
1.00e-03 | 5/12 6/14 7/16 7/16 7/16
1.00e-04 | 4/10 5/12 6/14 6/14 6/14

7\h | 2.00e-01 1.00e-01 5.00e-02 2.50e-02 1.25¢-02
1.00e-01 | 5/20 8/28 8/28 8/28 8/28
1.00e-02 | 4/18 7/24 8/28 8/28 9/30
1.00e-03 | 5/20 7/24 7/24 7/24 7/24
1.00e-04 | 4/16 5/18 6,22 6/22 6/22

TABLE 1. Problem P1: From top to bottom: dG(1), dG(2), dG(3), each entry of
table: maximum number of CG iterations of Algorithm 1 per block/total number
of implicit Euler solves.

5.3.2. Performance of the preconditioner for problem P2. For the anisotropic test problem P2, we
discretize the unit disk using quasi uniform meshes of mesh sizes h € {0.1-271=0,...2} and
employ quadratic finite elements. The idea is to vary the anisotropy parameter § € {1,1le—1, le—3}
to study the influence of anisotropy on the performance of the preconditioner. Typical solution
profiles to problem P2 for different values of § are depicted in Figure 3.

AVA =
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K

FI1GURE 3. Solution of problem P2 at ¢t = 1 for the three anisotropy parameters
0=1,1le—1,1e — 3.

We also vary step size 7 € {107}, 1 = 1,...,4} and track the maximum total number of required
implicit Euler solves which our preconditioner needs to solve the coupled system (3.6). Results for
dG(k), k € {1,2,3} are shown in Table 2.

Clearly, the maximum number of required solves neither depends on the anisotropy parameter §
nor time and space discretization parameters, corroborating the uniform a priori result (3.16).

5.3.3. Performance of the preconditioner for problem P3. Finally, we elaborate on the performance
of the preconditioner when applied to convection dominated problems. In this case the analysis
presented in Section 3 does not apply directly. To account for the loss of symmetry, we change
Alg. 1 which was based on CG in favor of BiCG, applied to the same left-right preconditioned
operator (3.10). In contrast to CG, BiCG needs two applications of the preconditioner which
makes it approximately twice as expensive. To allow for a “fair” comparison with CG in terms
of the number of iterations required for Alg. 1 to converge (which is essentially determined by
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7\h | 1.00e-01  5.00e-02  2.50e-02
1.00e-01 | 11/11/11 13/13/13 13/13/13
1.00e-02 | 9/11/13 11/13/13 11/13/13
1.00e-03 | 11/9/9 11/11/11 11/11/11
1.00e-04 | 7/7/7 9/7/7 9/9/9

7\h | 1.00e-01  5.00e-02  2.50e-02
1.00e-01 | 12/14/14 14/16/16 16/16/16
1.00e-02 | 12/16/16 14/16/16 14/16/16
1.00e-03 | 12/12/10 14/12/12 14/14/14
1.00e-04 | 8/8/8 10/10/8 10/10/10

7\h | 1.00e-01  5.00e-02  2.50e-02
1.00e-01 | 20/24/24 24/24/28 28/26/283
1.00e-02 | 22/22/22 22/24/24 24/24/24
1.00e-03 | 18/16/16 20/18/18 22/22/22
1.00e-04 | 14/14/14 16/14/14 16/16/16

TABLE 2. Problem P2: From top to bottom: dG(1), dG(2), dG(3), each entry of
table: maximum number of implicit Euler solves for § =1/6 =1le —1/6 = le — 3.

7\h | 1.00e-01 5.00e-02 2.50e-02
1.00e-01 | 4/4/5/5 4/4/6/6 4/4/5/5
1.00e-02 | 4/3/3/3 4/4/3/3 4/3/3/3
1.00e-03 | 4/3/2/2 4/3/2/2 4/3/2/2

7\h | 1.00e-01 5.00e-02 2.50e-02

1.00e-01 | 5/5/7/7 5/5/3/8 5/5/8/7

1.00e-02 | 4/4/3/3 4/4/3/3 4/4/5/5

1.00e-03 | 4/3/2/2 5/3/2/2 5/4/2/2

7\h | 1.00e-01 5.00e-02 2.50e-02

1.00e-01 | 5/5/7/7 5/5/9/9 5/5/9/9

1.000-02 | 5/4/3/3 5/4/3/3 5/4/4/5

1.000-03 | 5/3/2/2 6/3/2/2 5/4/2/2
TABLE 3. Problem P3: From top to bottom: dG(1), dG(2), dG(3), each entry of
table: maximum number of BiCG iterations for e = 1/e = le—2/e = le—6/c = 0.

the condition number of the preconditioned system), we record the maximum number of BiCG
iterations in Alg. 1 this time.

Just as for problem P2, we employ quadratic finite elements on uniform triangulations of the
unit square for space discretization. For different mesh and time step sizes we vary the diffusion
coefficient € € {1,1e — 2,1e — 6,0}. The results are shown in Table 3, and a Figure corresponding
to the solution at t = 27 for different diffusion coefficients is shown in Figure 4.

We observe that the number of iterations does not show any particular dependency on both,
problem and discretization parameters, even when diffusion is very small. Clearly, this indicates
that the proposed preconditioning strategy also works in the convection dominated regime.

6. CONCLUSION

We have developed an efficient yet conceptually simple preconditioner for the solution of systems
arising from variational time discretization methods of arbitrary order. The main ingredients are a
transformation of the system into block diagonal form and a preconditioned Schur complement
approach for the solution of the resulting 2 x 2 block systems. The preconditioner is based on an
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FIGURE 4. Solution of problem P3 at t = 27 for the diffusion coefficients ¢ =
1,1e —2,1e — 6, 0.

inexact factorization of the Schur complement operator consisting of implicit Euler-like problems.
Consequently, the entire solution strategy reduces to solving simple Euler-like problems for which
common efficient solution techniques can be recycled. Analysis shows that in case of a symmetric,
positive operator Ay the preconditioned Schur complement operator has condition number < 2
independent of all space and time discretization parameters. Numerical experiments indicate the
robustness of our preconditioner.
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