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Abstract

In this paper we present a variational technique that handles coarse-graining and passing to a limit
in a unified manner. The technique is based on a duality structure, which is present in many gradient
flows and other variational evolutions, and which often arises from a large-deviations principle. It has
three main features: (A) a natural interaction between the duality structure and the coarse-graining, (B)
application to systems with non-dissipative effects, and (C) application to coarse-graining of approximate
solutions which solve the equation only to some error. As examples, we use this technique to solve three
limit problems, the overdamped limit of the Vlasov-Fokker-Planck equation and the small-noise limit of
randomly perturbed Hamiltonian systems with one and with many degrees of freedom.
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1 Introduction

Coarse-graining is the procedure of approximating a system by a simpler or lower-dimensional one, often in
some limiting regime. It arises naturally in various fields such as thermodynamics, quantum mechanics, and
molecular dynamics, just to name a few. Typically coarse-graining requires a separation of temporal and/or
spatial scales, i.e. the presence of fast and slow variables. As the ratio of ‘fast’ to ‘slow’ increases, some form
of averaging or homogenization should allow one to remove the fast scales, and obtain a limiting system that
focuses on the slow ones.

Coarse-graining limits are by nature singular limits, since information is lost in the coarse-graining
procedure; therefore rigorous proofs of such limits are always non-trivial. Although the literature abounds
with cases that have been treated successfully, and some fields can even be called well-developed—singular
limits in ODEs and homogenization theory, to name just two—many more cases seem out of reach, such as
coarse-graining in materials [dPC07], climate prediction [SATS07], and complex systems [FR07, NN12].

All proofs of singular limits hinge on using certain special structure of the equations; well-known ex-
amples are compensated compactness [Tar79, Mur87], the theories of viscosity solutions [CIL92] and en-
tropy solutions [Kru70, Smo94], and the methods of periodic unfolding [CDG02, CDG08] and two-scale
convergence [All92]. Variational-evolution structure, such as in the case of gradient flows and variational
rate-independent systems, also facilitates limits [SS04, Ste08, MRS08, DS10, Ser11, MRS12, Mie14].

In this paper we introduce and study such a structure, which arises from the theory of large deviations for
stochastic processes. In recent years we have discovered that many gradient flows, and also many ‘generalized’
gradient systems, can be matched one-to-one to the large-deviation characterization of some stochastic
process [ADPZ11, ADPZ13, DPZ14, DPZ13, DLZ12, MPR14]. The large-deviation rate functional, in this
connection, can be seen to define the generalized gradient system. This connection has many philosophical
and practical implications, which are discussed in the references above.

We show how in such systems, described by a rate functional, ‘passing to a limit’ is facilitated by
the duality structure that a rate function inherits from the large-deviation context, in a way that meshes
particularly well with coarse-graining.

1.1 Variational approach—an outline

The systems that we consider in this paper are evolution equations in a space of measures. Typical exam-
ples are the forward Kolmogorov equations associated with stochastic processes, but also various nonlinear
equations, as in one of the examples below.

Consider the family of evolution equations

∂tρ
ε = N ερε,

ρε|t=0 = ρε0,
(1)

where N ε is a linear or nonlinear operator. The unknown ρε is a time-dependent Borel measure on a state
space X , i.e. ρε : [0, T ]→M(X ). In the systems of this paper, (1) has a variational formulation characterized
by a functional Iε such that

Iε ≥ 0 and ρε solves (1) ⇐⇒ Iε(ρε) = 0. (2)

This variational formulation is closely related to the Brezis-Ekeland-Nayroles variational principle [BE76,
Nay76, Ste08, Gho09] and the integrated energy-dissipation identity for gradient flows [AGS08]; see Section 5.

Our interest in this paper is the limit ε → 0, and we wish to study the behaviour of the system in this
limit. If we postpone the aspect of coarse-graining for the moment, this corresponds to studying the limit
of ρε as ε→ 0. Since ρε is characterized by Iε, establishing the limiting behaviour consists of answering two
questions:

1. Compactness: Do solutions of Iε(ρε) = 0 have useful compactness properties, allowing one to extract
a subsequence that converges in a suitable topology, say ς?
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2. Liminf inequality : Is there a limit functional I ≥ 0 such that

ρε
ς−→ ρ =⇒ lim inf

ε→0
Iε(ρε) ≥ I(ρ)? (3)

And if so, does one have

I(ρ) = 0 ⇐⇒ ρ solves ∂tρ = Nρ,

for some operator N ?

A special aspect of the method of the present paper is that it also applies to approximate solutions. By this we
mean that we are interested in sequences of time-dependent Borel measures ρε such that supε>0 I

ε(ρε) ≤ C
for some C ≥ 0. The exact solutions are special cases when C = 0. The main message of our approach is
that all the results then follow from this uniform bound and assumptions on well-prepared initial data.

The compactness question will be answered by the first crucial property of the functionals Iε, which is
that they provide an a priori bound of the type

Sε(ρεt ) +

∫ t

0

Rε(ρεs) ds ≤ Sε(ρε0) + Iε(ρε), (4)

where ρεt denotes time slice at time t and Sε and Rε are functionals. In the examples of this paper Sε is a free
energy and Rε a relative Fisher Information, but the structure is more general. This inequality is reminiscent
of the energy-dissipation inequality in the gradient-flow setting. The uniform bound, by assumption, of the
right-hand side of (4) implies that each term in the left-hand side of (4), i.e., the free energy at any time
t > 0 and the integral of the Fisher information, is also bounded. This will be used to apply the Arzelà-Ascoli
theorem to obtain certain compactness and ‘local-equilibrium’ properties. All this discussion will be made
clear in each example in this paper.

The second crucial property of the functionals Iε is that they satisfy a duality relation of the type

Iε(ρ) = sup
f
J ε(ρ, f), (5)

where the supremum is taken over a class of smooth functions f . It is well known how such duality structures
give rise to good convergence properties such as (3), but the focus in this paper is on how this duality structure
combines well with coarse-graining.

In this paper we define coarse-graining to be a shift to a reduced, lower dimensional description via a
coarse-graining map ξ : X → Y which identifies relevant information and is typically highly non-injective.
Note that ξ may depend on ε. A typical example of such a coarse-graining map is a ‘reaction coordinate’ in
molecular dynamics. The coarse-grained equivalent of ρε : [0, T ] →M(X ) is the push-forward ρ̂ε := ξ#ρ

ε :
[0, T ]→M(Y). If ρε is the law of a stochastic process Xε, then ξ#ρ

ε is the law of the process ξ(Xε).
There might be several reasons to be interested in ξ#ρ

ε rather than ρε itself. The push-forward ξ#ρ
ε

obeys a dynamics with fewer degrees of freedom, since ξ is non-injective; this might allow for more effi-
cient computation. Our first example (see Section 1.3), the overdamped limit in the Vlasov-Fokker-Planck
equation, is an example of this. As a second reason, by removing certain degrees of freedom, some specific
behaviour of ρε might become clearer; this is the case with our second and third examples (Section 1.3),
where the effect of ξ is to remove a rapid oscillation, leaving behind a slower diffusive movement. Whatever
the reason, in this paper we assume that some ξ is given, and that we wish to study the limit of ξ#ρ

ε as
ε→ 0.

The core of the arguments of this paper, that leads to the characterization of the equation satisfied by
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the limit of ξ#ρ
ε, is captured by the following formal calculation:

Iε(ρε) = sup
f
J ε(ρε, f)

f=g◦ξ
≥ sup

g
J ε(ρε, g ◦ ξ)y ε→ 0

sup
g
J (ρ, g ◦ ξ)

(∗)
=: sup

g
Ĵ (ρ̂, g)

(∗∗)
= : Î(ρ̂)

Let us go through the lines one by one.
First, the inequality in the calculation above is due to reduction to a subset of special functions f , namely

those of the form f = g ◦ ξ. This is in fact an implementation of coarse-graining: in the supremum we decide
to limit ourselves to observables of the form g ◦ ξ which only have access to the information provided by ξ.
After this reduction we pass to the limit and show that J ε(ρε, g ◦ ξ) converges to some J (ρ, g ◦ ξ)—at least
for appropriately chosen coarse-graining maps.

In the step (∗) one requires that the loss-of-information in passing from ρ to ρ̂ is consistent with the loss-
of-resolution in considering only functions f = g ◦ ξ. This step requires a proof of local equilibrium, which
describes how the behaviour of ρ that is not represented explicitly by the push-forward ρ̂, can nonetheless
be deduced from ρ̂. This local-equilibrium property is at the core of various coarse-graining methods and is
typically determined case by case.

We finally define Î by duality in terms of Ĵ as in (∗∗). In a successful application of this method,
the resulting functional Î at the end has ‘good’ properties despite the loss-of-accuracy introduced by the
restriction to functions of the form g ◦ ξ, and this fact acts as a test of success. Such good properties should
include, for instance, the property that Î = 0 has a unique solution in an appropriate sense.

Now let us explain the origin of the functionals Iε.

1.2 Origin of the functional Iε: large deviations of a stochastic particle system

The abstract methodology that we described above arises naturally in the context of large deviations, and we
next describe this in the context of the three examples that we discuss in the next section. All three originate
from (slight modifications of) one stochastic process, that models a collection of interacting particles with
inertia in the physical space Rd:

dQni (t) =
Pni (t)

m
dt, (6a)

dPni (t) = −∇V (Qni (t))dt− 1

n

n∑
j=1

∇ψ(Qnj (t)−Qni (t))dt− γ

m
Pni (t)dt+

√
2γθ dWi(t). (6b)

Here Qni ∈ Rd and Pni ∈ Rd are the position and momentum of particles i = 1, . . . , n with mass m.
Equation (6a) is the usual relation between Qni and Pni , and (6b) is a force balance which describes the
forces acting on the particle. For this system, corresponding to the first example below, these forces are (a) a
force arising from a fixed potential V , (b) an interaction force deriving from a potential ψ, (c) a friction force,
and (d) a stochastic force characterized by independent d-dimensional Wiener measures Wi. Throughout
this paper we collect Qni and Pni into a single variable Xn

i = (Qni , P
n
i ).

The parameter γ characterizes the intensity of collisions of the particle with the solvent; it is present in
both the friction term and the noise term, since they both arise from these collisions (and in accordance with
the Einstein relation). The parameter θ = kTa, where k is the Boltzmann constant and Ta is the absolute
temperature, measures the mean kinetic energy of the solvent molecules, and therefore characterizes the
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magnitude of collision noise. Typical applications of this system are for instance as a simplified model
for chemical reactions, or as a model for particles interacting through Coulomb, gravitational, or volume-
exclusion forces. However, our focus in this paper is on methodology, not on technicality, so we will assume
that ψ is sufficiently smooth later on.

We now consider the many-particle limit n→∞ in (6). It is a well-known fact that the empirical measure

ρn(t) =
1

n

n∑
i=1

δXni (t) (7)

converges almost surely to the unique solution of the Vlasov-Fokker-Planck (VFP) equation [Oel84]

∂tρ = (Lρ)
∗ρ, (Lµ)∗ρ := −divq

(
ρ
p

m

)
+ divp ρ

(
∇qV +∇qψ ∗ µ+ γ

p

m

)
+ γθ∆pρ, (8)

= −div ρJ∇(H + ψ ∗ µ) + γ divp ρ
p

m
+ γθ∆pρ, (9)

with an initial datum that derives from the initial distribution of Xn
i . The spatial domain here is R2d with

coordinates (q, p) ∈ Rd × Rd, and subscripts such as in ∇q and ∆p indicate that differential operators act
only on corresponding variables. The convolution is defined by (ψ ∗ ρ)(q) =

∫
R2d ψ(q − q′)ρ(q′, p′)dq′dp′.

In the second line above we use a slightly shorter way of writing L ∗µ , by introducing the Hamiltonian

H(q, p) = p2/2m+V (q) and the canonical symplectic matrix J =
(

0 I
−I 0

)
. This way of writing also highlights

that the system is a combination of conservative effects, described by J , H, and ψ, and dissipative effects,
which are parametrized by γ. For future reference we also give the primal form Lµ explicitly:

Lµf = J∇(H + ψ ∗ µ) · ∇f − γ p
m
· ∇pf + γθ∆pf.

The almost-sure convergence of ρn to the solution ρ of the (deterministic) VFP equation is the starting
point for a large-deviation result. In particular it has been shown that the sequence (ρn) has a large-deviation
property [DG87, BDF12, DPZ13] which characterizes the probability of finding the empirical measure far
from the limit ρ, written informally as

Prob(ρn ≈ ρ) ∼ exp
(
− n

2
I(ρ)

)
,

in terms of a rate functional I : C([0, T ];P(R2d))→ R. Assuming that the initial data Xn
i are chosen to be

deterministic, and such that the initial empirical measure ρn(0) converges narrowly to some ρ0; then I has
the form, see [DPZ13],

I(ρ) := sup
f∈C1,2

b (R×R2d)

∫
R2d

fT dρT −
∫

R2d

f0 dρ0 −
T∫

0

∫
R2d

(
∂tf + Lρtf

)
dρtdt−

1

2

T∫
0

∫
R2d

Λ(f, f) dρtdt, (10)

provided ρt|t=0 = ρ0, where Λ is the carré-du-champ operator (e.g. [BGL+14, Section 1.4.2])

Λ(f, g) :=
1

2

(
Lµ(fg)− fLµg − gLµf

)
= γθ∇pf∇pg.

If the initial measure ρt|t=0 is not equal to the limit ρ0 of the stochastic initial empirical measures, then
I(ρ) =∞.

Note that the functional I in (10) is non-negative, since f ≡ 0 is admissible. If I(ρ) = 0, then by replacing
f by λf and letting λ tend to zero we find that ρ is the weak solution of (8) (which is unique, given initial
data ρ0 [Fun84]). Therefore I is of the form that we discussed in Section 1.1: I ≥ 0, and I(ρ) = 0 iff ρ
solves (8), which is a realization of (1).
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1.3 Concrete Problems

We now apply the coarse-graining method of Section 1.1 to three limits: the overdamped limit γ →∞, and
two small-noise limits θ → 0. In each of these three limits, the VFP equation (8) is the starting point, and we
prove convergence to a limiting system using appropriate coarse-graining maps. Note that the convergence
is therefore from one deterministic equation to another one; but the method makes use of the large-deviation
structure that the VFP equation has inherited from its stochastic origin.

1.3.1 Overdamped limit of the Vlasov-Fokker-Planck equation

The first limit that we consider is the limit of large friction, γ → ∞, in the Vlasov-Fokker-Planck equation
(8), setting θ = 1 for convenience. To motivate what follows, we divide (8) throughout by γ and formally let
γ →∞ to find

divp ρ
( p
m

)
+ ∆pρ = 0,

which suggests that in the limit γ →∞, ρ should be Maxwellian in p, i.e.

ρt(dq, dp) = Z−1 exp
(
− p2

2m

)
dp σt(dq), (11)

where Z is the normalization constant for the Maxwellian distribution. The main result in Section 2 shows
that after an appropriate time rescaling, in the limit γ → ∞, the remaining unknown σ ∈ C([0, T ];P(Rd))
solves the Vlasov-Fokker-Planck equation

∂tσ = div(σ∇V (q)) + div(σ(∇ψ ∗ σ)) + ∆σ. (12)

In his seminal work [Kra40], Kramers formally discussed these results for the ‘Kramers equation’, which
corresponds to (8) with ψ = 0, and this limit has become known as the Smoluchowski-Kramers approximation.
Nelson made these ideas rigorous [Nel67] by studying the corresponding stochastic differential equations
(SDEs); he showed that under suitable rescaling the solution to the Langevin equation converges almost
surely to the solution of (12) with ψ = 0. Since then various generalizations and related results have been
proved [Fre04, CF06, Nar94, HVW12], mostly using stochastic and asymptotic techniques.

In this article we recover some of the results mentioned above for the VFP equation using the variational
technique described in Section 1.1. Our proof is made up of the following three steps. Theorem 2.4 provides
the necessary compactness properties to pass to the limit, Lemma 2.5 gives characterization (11) of the limit,
and in Theorem 2.6 we prove the convergence of the solution of the VFP equation to the solution of (12).

1.3.2 Small-noise limit of a randomly perturbed Hamiltonian system with one degree of
freedom

In our second example we consider the following equation

∂tρ = −divq

(
ρ
p

m

)
+ divp(ρ∇qV ) + ε∆pρ on R× R2, (13)

where (q, p) ∈ R2, t ∈ R and divq, divp, ∆p are one-dimensional derivatives. This equation can also be
written as

∂tρ = −div(ρJ∇H) + ε∆pρ, on R× R2. (14)

This corresponds to the VFP equation (8) with ψ = 0, without friction and with small noise ε = γθ.
In addition to the interpretation as the many-particle limit of (6), Equation (14) also is the forward

Kolmogorov equation of a randomly perturbed Hamiltonian system in R2 with Hamiltonian H:

X =

(
Q
P

)
, dXt = J∇H(Xt) +

√
2ε

(
0
1

)
dWt, (15)
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(a) ε = 0.005 (b) ε = 0.00005

Figure 1: Simulation of (15) for varying ε. Shown are the level curves of the Hamiltonian H and for each
case a single trajectory.

where Wt is a 1-dimensional Wiener process. This system is a prototype for a large class of Hamiltonian
systems perturbed by random noise. When the amplitude ε of the noise is small, the dynamics (14) splits
into fast and slow components. The fast component approximately follows an unperturbed trajectory of the
Hamiltonian system, which is a level set of H. The slow component is visible as a slow modification of the
value of H, corresponding to a motion transversal to the level sets of H. Figure 1 illustrates this.

Following [FW94] and others, in order to focus on the slow, Hamiltonian-changing motion, we rescale
time such that the Hamiltonian, level-set-following motion is fast, of rate O(1/ε), and the level-set-changing
motion is of rate O(1). In other words, the process (15) ‘whizzes round’ level sets of H, while shifting from
one level set to another at rate O(1).

This behaviour suggests choosing a coarse-graining map ξ : R2 → Γ, which maps a whole level set to a
single point in a new space Γ; because of the structure of level sets of H, the set Γ has a structure that is
called a graph, a union of one-dimensional intervals locally parametrized by the value of the Hamiltonian.
Figure 2 illustrates this, and in Section 3 we discuss it in full detail.

After projecting onto the graph Γ, the process turns out to behave like a diffusion process on Γ. This
property was first made rigorous in [FW94] for a system with one degree of freedom, as here, and non-
degenerate noise, using probabilistic techniques. In [FW98] the authors consider the case of degenerate noise
by using probabilistic and analytic techniques based on hypoelliptic operators. More recently this problem
has been handled using PDE techniques [IS12] (the elliptic case) and Dirichlet forms [BvR14]. In Section 3
we give a new proof, using the structure outlined in Section 1.1.

Figure 2: Left: Hamiltonian R2 3 (q, p) 7→ H(q, p), Right: Graph Γ
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1.3.3 Small-noise limit of a randomly perturbed Hamiltonian system with d degrees of free-
dom

The convergence of solutions of (14) as ε→ 0 to a diffusion process on a graph requires that the non-perturbed
system has a unique invariant measure on each connected component of a level set. While this is true for a
Hamiltonian system with one degree of freedom, in the higher-dimensional case one might have additional
first integrals of motion. In such a system the slow component will not be a one-dimensional process but a
more complicated object—see [FW04]. However, by introducing an additional stochastic perturbation that
destroys all first integrals except the Hamiltonian, one can regain the necessary ergodicity, such that the
slow dynamics again lives on a graph.

In Section 4 we discuss this case. Equation (14) gains an additional noise term, and reads

∂tρ = − div(ρJ∇H) + κdiv(a∇ρ) + ε∆pρ, (16)

where a : R2d → R2d×2d with a∇H = 0, dim(Kernel(a)) = 1 and κ, ε > 0 with κ � ε. The spatial domain
is R2d, d > 1 with coordinates (q, p) ∈ Rd × Rd and the unknown is a trajectory in the space of probability
measures ρ : [0, T ] → P(R2d). As before the aim is to derive the dynamics as ε → 0. This problem was
studied in [FW01] and the results closely mirror the previous case. The main difference lies in the proof of
the local equilibrium statement, which we discuss in Section 4.

1.4 Comparison with other work

The novelty of the present paper lies in the following.

1. In comparison with existing literature on the three concrete examples treated in this paper: The results
of the three examples are known in the literature (see for instance [Nel67, FW94, FW98, FW01]),
but they are proved by different techniques and in a different setting. The variational approach of
this paper, which has a clear microscopic interpretation from the large-deviation principle, to these
problems is new. We provide alternative proofs, recovering known results, in a unified framework. In
addition, we obtain all the results on compactness, local-equilibrium properties and liminf inequalities
solely from the variational structures. The approach also is applicable to approximate solutions, which
obey the original fine-grained dynamics only to some error. This allows us to work with larger class of
measures and to relax many regularity conditions required by the exact solutions. Furthermore, our
abstract setting has potential applications to many other systems.

2. In comparison with recently developed variational-evolutionary methods: Many recently developed vari-
ational techniques for ‘passing to a limit’ such as the Sandier-Saferty method based on the Ψ-Ψ∗ struc-
ture [SS04, AMP+12, Mie14] only apply to gradient flows, i.e. dissipative systems. The approach of
this paper also applies to certain variational-evolutionary systems that include non-dissipative effects,
such as GENERIC systems [Ött05, DPZ13], as in the examples. Since our approach only uses the
duality structure of the rate functionals, which holds true for more general systems, we expect that
our method works for other limits in non-gradient-flow systems such as the Langevin limit of the
Nosé-Hoover-Langevin thermostat [FG11, OP11].

3. Quantification of the coarse-graining error. The use of the rate functional as a central ingredient in
‘passing to a limit’ and coarse-graining also allows us to obtain quantitative estimates of the coarse-
graining error. One intermediate result of our analysis is a functional inequality similar to the energy-
dissipation inequality in the gradient-flow setting (see (4)). This inequality provides an upper bound on
the free energy and the integral of the Fisher information by the rate functional and initial free energy.
This offers an alternative to the Talagrand and log-Sobolev inequalities used in the literature [LL10,
GOVW09] to obtain quantification of the coarse-graining error. To keep the paper to a reasonable
length, we address this issue in details separately in a companion article [DLP+15].

We provide further comments in Section 5.
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1.5 Outline of the article

The rest of the paper is devoted to the study of three concrete problems: the overdamped limit of the VFP
equation in Section 2, diffusion on a graph with one degree of freedom in Section 3 and diffusion on a graph
with many degrees of freedom in Section 4. In each Section, the main steps in the abstract framework are
performed in detail. Section 5 provides further discussion. Finally, detailed proofs of some theorems are
given in Appendices A and B.

1.6 Summary of notation

±kj ±1, depending on which end vertex Oj lies of edge Ik Sec. 3.1

F Free energy (22), (45)
Γ, γ The graph Γ and its elements γ Sec. 3.1
H(·|·) relative entropy (21)
H(q, p) H(q, p) = p2/2m+ V (q), the Hamiltonian
H n n-dimensional Haursdoff measure
I(·|·) relative Fisher Information (24)
Int The interior of a set
Iε Large-deviation rate functional for the diffusion-on-graph problem (46)
Iγ Large-deviation rate functional for the VFP equation (19)
J J =

(
0 I
−I 0

)
, the canonical symplectic matrix

L Lebesgue measure
M(X ) space of finite, non-negative Borel measures on X
P(X ) space of probability measures on X
ρ̂ push-forward under ξ of ρ (44)

T (γ) period of the periodic orbit at γ ∈ Γ (48)
V (q) potential on position
x x = (q, p) joint variable

ξγ , ξ coarse-graining maps (30), (43)

Throughout we use measure notation and terminology. For a given topological space X , the spaceM(X )
is the space of non-negative, finite Borel measures on X ; P(X ) is the space of probability measures on X . For
a measure ρ ∈M([0, T ]×R2d), for instance, we often write ρt ∈M(R2d) for the time slice at time t; we also
often use both the notation ρ(x)dx and ρ(dx) when ρ is Lebesgue-absolutely-continuous. We equip M(X )
and P(X ) with the narrow topology, in which convergence is characterized by duality with continuous and
bounded functions on X .

2 Overdamped Limit of the VFP equation

2.1 Setup of the system

In this section we prove the large-friction limit γ →∞ of the VFP equation (8). Setting θ = 1 for convenience,
and speeding time up by a factor γ, the VFP equation reads

∂tρ = L ∗ρ ρ, L ∗ν ρ := −γ div ρJ∇(H + ψ ∗ ν) + γ2

[
divp

(
ρ
p

m

)
+ ∆pρ

]
, (17)

where, as before, J =
(

0 I
−I 0

)
and H(q, p) = p2/2m + V (q). The spatial domain is R2d with coordinates

(q, p) ∈ Rd × Rd with d ≥ 1, and ρ ∈ C([0, T ];P(R2d)). For later reference we also mention the primal form
of the operator L ∗ν :

Lνf = γJ∇(H + ψ ∗ ν) · ∇f − γ2 p

m
· ∇pf + γ2∆pf. (18)

We assume

9



(V1) The potential V ∈ C2(Rd) has globally bounded second derivative. Furthermore V ≥ 0, |∇V |2 ≤
C(1 + V ) for some C > 0, and e−V ∈ L1(Rd).

(V2) The interaction potential ψ ∈ C2(Rd) ∩ L1(Rd) is symmetric, has globally bounded first and second
derivatives, and the mapping ν 7→

∫
ν ∗ ψ dν is convex (and therefore non-negative).

As we described in Section 1.1, the study of the limit γ →∞ contains the following steps:

1. Prove compactness;

2. Prove a local-equilibrium property;

3. Prove a liminf inequality.

Each of these results is based on the large-deviation structure, which for Equation (17) is

Iγ(ρ) = sup
f∈C1,2

b (R×R2d)

[ ∫
R2d

fT dρT −
∫

R2d

f0 dρ0−
T∫

0

∫
R2d

(
∂tft+Lρtft

)
dρtdt−

γ2

2

T∫
0

∫
R2d

|∇pft|2 dρtdt
]
. (19)

Alternatively the rate functional can be written as [DPZ13, Theorem 2.5]

Iγ(ρ) =


1

2

T∫
0

∫
R2d

|ht|2 dρtdt if ∂tρt = L ∗ρtρt − γ divp(ρtht), for h ∈ L2(0, T ;L2
∇(ρt)),

+∞ otherwise,

(20)

where Lν is given in (18), and L2
∇(ρt) is the completion of {∇pϕ : ϕ ∈ C∞c (R2d)} in the ρt-weighted L2

norm. This second form shows clearly how Iγ(ρ) = 0 is equivalent to the property that ρ solves the VFP
equation (17). It also shows that if Iγ(ρ) > 0 then ρ is an approximative solution in the sense that it satisfies
the VFP equation up to some error −γ divp(ρtht) whose norm is controlled by the rate functional.

2.2 A priori bounds

We give ourselves a sequence, indexed by γ, of solutions ργ to the VFP equation (17) with initial datum
ργt |t=0 = ρ0. We will deduce the compactness of the sequence ργ from a priori estimates, that are themselves
derived from the rate function Iγ .

For nonnegative measures ν, ζ on R2d we first introduce:

• Relative entropy:

H(ν‖ζ) =


∫
R2d

[f log f ] dζ if ν = fζ,

∞ otherwise.
(21)

• The free energy for this system:

F(ν) := H(ν|Z−1
H e−Hdx) +

1

2

∫
R2d

ψ ∗ ν dν =

∫
R2d

[
log g +H +

1

2
ψ ∗ g

]
gdx+ logZH , (22)

where ZH =
∫
e−H and the second expression makes sense whenever ν = gdx.
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The convexity of the term involving ψ (condition (V2)) implies that the free energy F is strictly convex and
has a unique minimizer µ ∈ P(R2d). This minimizer is a stationary point of the evolution (17), and has the
implicit characterization

µ ∈ P(R2d) : µ(dqdp) = Z−1 exp
(
−
[
H(q, p) + (ψ ∗ µ)(q)

])
dqdp, (23)

where Z is the normalization constant for µ. Note that ∇pµ = −µ∇pH = −pµ/m.

We also define the relative Fisher Information with respect to µ (in the p-variable only):

I(ν|µ) = sup
ϕ∈C∞c (R2d)

2

∫
R2d

[
∆pϕ−

p

m
∇pϕ−

1

2
|∇pϕ|2

]
dν. (24)

In the more common case in which the derivatives ∆p and ∇p are replaced by the full derivatives ∆ and
∇, the relative Fisher Information has an equivalent formulation in terms of the Lebesgue density of ν. In
our case such equivalence only holds when ν is absolutely-continuous with respect to the Lebesgue measure
in both q and p:

Lemma 2.1 (Equivalence of relative-Fisher-Information expressions for a.c. measures). If ν ∈ P(R2d),
ν(dx) = f(x)dx with f ∈ L1(R2d), then

I(ν|µ) =


∫
R2d

∣∣∣∇pf
f

1{f>0} +
p

m

∣∣∣2f dqdp, if ∇pf ∈ L1
loc(dqdp),

∞ otherwise,
(25)

where 1{f>0} denotes the indicator function of the set {x ∈ R2d | f(x) > 0}.

For a measure of the form ζ(dq)f(p)dp, with ζ 6� dq, I in (24) may be finite while the integral in (25) is
not defined. Because of the central role of duality in this paper, definition (24) is a natural one, as we shall
see below. The proof of Lemma 2.1 is given in Appendix A.

In the introduction we mentioned that we expect ργ to become Maxwellian in the limit γ → ∞. This
will be driven by a vanishing relative Fisher Information, as we shall see below. For a.c. measures, the
characterization (25) already provides the property

I(fdx|µ) = 0 =⇒ f(q, p) = f̃(q) exp
(
− p2

2m

)
.

This property holds more generally:

Lemma 2.2 (Zero relative Fisher Information implies Maxwellian). If ν ∈ P(R2d) with I(ν|µ) = 0, then
there exists σ ∈ P(Rd) such that

ν(dqdp) = Z−1 exp

(
− p2

2m

)
σ(dq)dp,

where Z =
∫
Rd e

−p2/2mdp is the normalization constant for the Maxwellian distribution.

Proof. From

I(ν|µ) = sup
ϕ∈C∞c (R2d)

2

∫
R2d

(
∆pϕ−

p

m
· ∇pϕ−

1

2
|∇pϕ|2

)
dν = 0 (26)

we conclude upon disintegrating ν as ν(dqdp) = σ(dq)νq(dp),

for σ-a.e. q: sup
φ∈C∞c (Rd)

∫
Rd

(
∆pφ−

p

m
· ∇pφ−

1

2
|∇pφ|2

)
νq(dp) = 0.

11



By replacing φ by λφ, λ > 0, and taking λ→ 0 we find

∀φ ∈ C∞c (Rd) :

∫
Rd

(
∆pφ−

p

m
· ∇pφ

)
νq(dp) = 0,

which is the weak form of an elliptic equation on Rd with unique solution

νq(dp) =
1

Z
exp

(
− p2

2m

)
dp.

This proves the lemma.

In the following theorem we give the central a priori estimate, in which free energy and relative Fisher
Information are bounded from above by the rate functional and the relative entropy at initial time.

Theorem 2.3 (A priori bounds). Fix γ > 0 and let ρ ∈ C([0, T ];P(R2d)) with ρt|t=0 =: ρ0 satisfy

Iγ(ρ) <∞, F(ρ0) <∞. (27)

Then for any t ∈ [0, T ] we have

F(ρt) +
γ2

2

∫ t

0

I(ρs|µ) ds ≤ Iγ(ρ) + F(ρ0). (28)

From (28) we obtain the separate inequality∫
R2d

H dρt ≤ F(ρ0) + Iγ(ρ)− log

∫
R2d

e−H . (29)

This estimate will lead to a priori bounds in two ways. First, the bound on the free energy gives tightness
estimates, and therefore compactness in space (Theorem 2.4); secondly, the relative Fisher Information is
bounded by C/γ2 and therefore vanishes in the limit γ → ∞. This fact is used to prove that the limiting
measure is Maxwellian (Lemma 2.5).

Proof. We give a heuristic motivation here; Appendix B contains a full proof. Given a trajectory ρ as in the
theorem, note that by (20) ρ satisfies

∂tρt = −γ div ρtJ∇(H + ψ ∗ ρt) + γ2
(

divp ρt
p

m
+ ∆pρt

)
− γ divp ρtht.

We then formally calculate

d

dt
F(ρt) =

∫
R2d

[
log ρt + 1 +H + ψ ∗ ρt

](
−γ div ρtJ∇(H + ψ ∗ ρt) + γ2

(
divp ρt

p

m
+ ∆pρt

)
− γ divp ρtht

)
= −γ2

∫
R2d

1

ρt

∣∣∣∇pρt + ρt
p

m

∣∣∣2 + γ

∫
R2d

ht

(
∇pρt + ρt

p

m

)
≤ −γ

2

2

∫
R2d

1

ρt

∣∣∣∇pρt + ρt
p

m

∣∣∣2 +
1

2

∫
R2d

ρth
2
t ,

where the first O(γ) term cancels because of the antisymmetry of J . After integration in time this latter
expression yields (28).

For exact solutions of the VFP equation, i.e. when Iγ(ρ) = 0, this argument can be made rigorous
following e.g. [BCS97]. However, the fairly low regularity of the right-hand side in (20) prevents these
techniques from working. ‘Mild’ solutions, defined using the variation-of-constants formula and the Green
function for the hypoelliptic operator, are not well-defined either, for the same reason: the term

∫∫
∇pG·h dρ

that appears in such an expression is generally not integrable. In the appendix we give a different proof,
using the method of dual equations.
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2.3 Coarse-graining and compactness

As we described in the introduction, in the overdamped limit γ → ∞ we expect that ρ will resemble a
Maxwellian distribution Z−1 exp

(
−p2/2m

)
σt(dq), and that the q-dependent part σ will solve the Vlasov-

Fokker-Planck equation (12). We will prove this statement using the method described in Section 1.1.
It would be natural to define ‘coarse-graining’ in this context as the projection ξ(q, p) := q, since that

should eliminate the fast dynamics of p and focus on the slower dynamics of q. However, this choice fails: it
completely decouples the dynamics of q from that of p, thereby preventing the noise in p from transferring
to q. Following the lead of Kramers [Kra40], therefore, we define a slightly different coarse-graining map

ξγ : R2d → Rd, ξγ(q, p) := q +
p

γ
. (30)

In the limit γ →∞, ξγ → ξ locally uniformly, recovering the projection onto the q-coordinate.
The theorem below gives the compactness properties of the solutions ργ of the rescaled VFP equation

that allow us to pass to the limit. There are two levels of compactness, a weaker one in the original space R2d,
and a stronger one in the coarse-grained space Rd = ξγ(R2d). This is similar to other multilevel compactness
results as in e.g. [GOVW09].

Theorem 2.4 (Compactness). Let a sequence ργ ∈ C([0, T ];P(R2d)) satisfy for a suitable constant C > 0
and every γ the estimate

Iγ(ργ) + F(ργt |t=0) ≤ C. (31)

Then there exist a subsequence (not relabelled) such that

1. ργ → ρ in M([0, T ]× R2d) with respect to the narrow topology.

2. ξγ#ρ
γ → ξ#ρ in C([0, T ];P(Rd)) with respect to the uniform topology in time and narrow topology on

P(Rd).

For a.e. t ∈ [0, T ] the limit ρt satisfies

I(ρt|µ) = 0 (32)

Proof. To prove part 1, note that the positivity of the convolution integral involving ψ and the free-energy-
dissipation inequality (28) imply that H(ργt |Z−1

H e−Hdx) is bounded uniformly in t and γ. By an argument
as in [ASZ09, Prop. 4.2] this implies that {ργt : t ∈ [0, T ], γ > 1} is tight, upon which compactness in
M([0, T ]× R2d) follows.

To prove (32) we remark that

0 ≤ sup
ϕ∈C∞c (R×R2d)

2

∫ T

0

∫
R2d

[
∆pϕ−

p

m
∇pϕ−

1

2
|∇pϕ|2

]
dργt dt ≤

∫ T

0

I(ργt |µ) dt ≤ C

γ2

γ→∞−→ 0,

and by passing to the limit on the left-hand side we find

sup
ϕ∈C∞c (R×R2d)

2

∫ T

0

∫
R2d

[
∆pϕ−

p

m
∇pϕ−

1

2
|∇pϕ|2

]
dρtdt = 0.

By disintegrating ρ in time as ρ(dtdqdp) = ρt(dqdp)dt, we find that I(ρt|µ) = 0 for (Lebesgue-) almost all t.
We prove part 2 with the Arzelà-Ascoli theorem. For any t ∈ [0, T ] the sequence ξγ#ρ

γ
t is tight, which

follows from the tightness of ργt proved above and the local uniform convergence ξγ → ξ (see e.g. [AGS08,
Lemma 5.2.1]).

To prove equicontinuity we will show

sup
γ>1

sup
t∈[0,T−h]

sup
ϕ∈C2

c (Rd)
‖ϕ‖

C2(Rd)≤1

∫
Rd
ϕ(ξγ#ρ

γ
t+h − ξ

γ
#ρ

γ
t )

h→0−−−→ 0. (33)
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Note that the boundedness of the rate functional, definition (20), and tightness of ργ imply that there
esxists some hγ ∈ L2(0, T ;L2

∇(ργt )) with

∂tρ
γ
t = (Lργt )∗ργt − γ divp(ρ

γ
t h

γ
t ). (34)

in duality with C2
b (R2d). Therefore for any f ∈ C2

b (R2d) we have in the sense of distributions on [0, T ],

d

dt

∫
R2d

fργt =

∫
R2d

(
γ
p

m
· ∇qf − γ∇qV · ∇pf − γ∇pf · (∇qψ ∗ ργ)− γ2 p

m
· ∇pf + γ2∆pf + γ∇pf · hγt )

)
dργt .

To prove (33), make the choice f = ϕ ◦ ξγ for ϕ ∈ C2
c (Rd) and integrate over [t, t+ h] to arrive at∫

Rd
ϕ(ξγ#ρ

γ
t+h − ξ

γ
#ρ

γ
t ) =

∫ t+h

t

∫
R2d

(
−∇V (q) · ∇ϕ

(
q +

p

γ

)
− (∇qψ ∗ ργs )(q) · ∇ϕ

(
q +

p

γ

)
+ ∆ϕ

(
q +

p

γ

)
+∇ϕ

(
q +

p

γ

)
· hγs (q, p)

)
dργs ds.

We estimate the first term on the right hand side by using Hölder’s inequality and growth condition (V1),∣∣∣∣∣
∫ t+h

t

∫
R2d

∇V (q) · ∇ϕ
(
q +

p

γ

)
dργs ds

∣∣∣∣∣ ≤ ‖∇ϕ‖∞√h
(∫ t+h

t

∫
R2d

|∇V (q)|2dργs ds

)1/2

≤‖∇ϕ‖∞
√
h

(∫ t+h

t

∫
R2d

C(1 + V (q))ργs ds

)1/2

≤ C̃‖∇ϕ‖∞h

where the last inequality follows from the free-energy-dissipation inequality (28). For the second term we
use |∇qψ ∗ ργs | ≤ ‖∇qψ‖∞ and the last term is estimated by Hölder’s inequality,∣∣∣∣∣

∫ t+h

t

∫
R2d

∇ϕ
(
q +

p

γ

)
hγs (q, p)dργsds

∣∣∣∣∣ ≤ ‖∇ϕ‖∞√h
(∫ t+h

t

∫
R2d

|hγs |2dργsds
) 1

2

≤‖∇ϕ‖∞
√
h (2Iγ(ργ))

1
2 ≤ C‖∇ϕ‖∞

√
h.

To sum up we have ∣∣∣∣ ∫
Rd
ϕ(ξγ#ρ

γ
t+h − ξ

γ
#ρ

γ
t )

∣∣∣∣ ≤ C√h h→0−−−→ 0,

where C is independent of t and γ.
Thus by the Arzelà-Ascoli theorem there exists a ν ∈ C([0, T ];P(Rd)) such that ξγ#ρ

γ → ν with respect

to uniform topology in time and narrow topology on P(Rd). Since ργ → ρ in M([0, T ] × R2d) and ξγ → ξ
locally uniformly, we have ξγ#ρ

γ → ξ#ρ in M([0, T ] × Rd) (again using [AGS08, Lemma 5.2.1]), implying
that ν = ξ#ρ. This concludes the proof of Theorem 2.4.

2.4 Local equilibrium

A central step in any coarse-graining method is the treatment of the information that is ‘lost’ upon coarse-
graining. The lemma below uses the a priori estimate (28) to reconstruct this information, which for this
system means showing that ργ becomes Maxwellian in p as γ →∞.

Lemma 2.5 (Local equilibrium). Under the same conditions as in Theorem 2.4 let us assume that ργ → ρ in
M([0, T ]×R2d) with respect to the narrow topology. Then there exists σ ∈M([0, T ]×Rd), σ(dtdq) = σt(dq)dt,
such that for allmost all t ∈ [0, T ],

ρt(dqdp) = Z−1 exp

(
− p2

2m

)
σt(dq)dp, (35)
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where Z =
∫
Rd e

−p2/2mdp is the normalization constant for the Maxwellian distribution. Furthermore ξγ#ρ
γ
t →

σt narrowly for every t ∈ [0, T ].

Proof. Since ργ → ρ narrowly inM([0, T ]×R2d), the limit ρ also has the disintegration structure ρ(dtdpdq) =
ρt(dpdq)dt, with ρt ∈ P(R2d). From the a priori estimate (28) and the duality definition of I we have
I(ρt|µ) = 0 for almost all t, and the characterization (35) then follows from Lemma 2.2. The compactness
results in Theorem 2.4 imply that ξγ#ρ

γ
t → ξ#ρt = σt for all t ∈ [0, T ].

2.5 Liminf inequality

The final step in the variational technique is proving an appropriate liminf inequality which also provides
the structure of the limiting coarse-grained evolution. The following theorem makes this step rigorous.

Define the (limiting) functional I : C([0, T ];P(Rd))→ R by

I(σ) := sup
g∈C1,2

b (R×Rd)

∫
Rd
gT dσT −

∫
Rd
g0dσ0 −

∫ T

0

∫
Rd

(
∂tg −∇V · ∇g − (∇ψ ∗ σ) · ∇g + ∆g

)
dσtdt

− 1

2

∫ T

0

∫
Rd
|∇g|2 dσtdt. (36)

Note that I ≥ 0 (since g = 0 is admissible); we have the equivalence

I(σ) = 0 ⇐⇒ ∂tσ = div σ∇V (q) + div σ(∇ψ ∗ σ) + ∆σ in [0, T ]× Rd.

Theorem 2.6 (Liminf inequality). Under the same conditions as in Theorem 2.4 we assume that ργ → ρ
narrowly in M([0, T ]× R2d) and ξγ#ρ

γ → ξ#ρ ≡ σ in C([0, T ];P(Rd)). Then

lim inf
γ→∞

Iγ(ργ) ≥ I(σ).

Proof. Write the large deviation rate functional Iγ : C([0, T ];P(R2d))→ R in (19) as

Iγ(ρ) = sup
f∈C1,2

b (R×R2d)

J γ(ρ, f), (37)

where

J γ(ρ, f) =

∫
R2d

fT dρT −
∫
R2d

f0dρ0 −
∫ T

0

∫
R2d

(
∂tf + γ

p

m
· ∇qf − γ∇qV · ∇pf − γ∇pf · (∇qψ ∗ ρt)

− γ2 p

m
· ∇pf + γ2∆pf

)
dρtdt−

γ2

2

∫ T

0

∫
R2d

|∇pf |2 dρtdt.

Define A := {f = g ◦ ξγ with g ∈ C1,2
b (R× Rd)}. Then we have

Iγ(ργ) ≥ sup
f∈A
J γ(ργ , f),

and

J γ(ργ , g ◦ ξγ) =

∫
R2d

gT ◦ ξγdργT −
∫
R2d

g0 ◦ ξγdργ0 −
∫ T

0

∫
R2d

[
∂t(g ◦ ξγ)−∇qV (q) · ∇g

(
q +

p

γ

)
+ ∆g

(
q +

p

γ

)
−∇g

(
q +

p

γ

)
· (∇qψ ∗ ργt )(q)

]
dργt dt−

1

2

∫ T

0

∫
R2d

|∇(g ◦ ξγ)|2 dργt dt. (38)
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Note how the specific dependence of ξγ(q, p) = q + p/γ on γ has caused the coefficients γ and γ2 in the
expression above to vanish. Adding and subtracting∇V (q+p/γ)·∇g(q+p/γ) in (38) and defining ρ̂γ := ξγ#ρ

γ ,
J γ can be rewritten as

J γ(ρ, g ◦ ξγ) =

∫
Rd
gT dρ̂

γ
T −

∫
Rd
g0dρ̂

γ
0 −

∫ T

0

∫
Rd

(∂tg −∇V · ∇g + ∆g) (ζ)ρ̂γt (dζ)dt− 1

2

∫ T

0

∫
Rd
|∇g|2 dρ̂γt dt

−
∫ T

0

∫
R2d

(
∇V

(
q +

p

γ

)
−∇V (q)

)
· ∇g

(
q +

p

γ

)
dργt dt+

∫ T

0

∫
R2d

∇g
(
q +

p

γ

)
· (∇qψ ∗ ργt )(q)dργt dt.

(39)
We now show that (39) converges to the right-hand side of (36), term by term. Since ξγ#ρ

γ → ξ#ρ = σ

narrowly in M([0, T ]× R2d) and g ∈ C2
b (R× Rd) we have∫ T

0

∫
Rd

(
∂tg −∇V · ∇g + ∆g +

1

2
|∇g|2

)
dρ̂γt dt

γ→∞−−−−→
∫ T

0

∫
Rd

(
∂tg −∇V · ∇g + ∆g +

1

2
|∇g|2

)
dσtdt.

Taylor expansion of ∇V around q and estimate (29) give∣∣∣∣∣
∫ T

0

∫
R2d

(
∇V

(
q +

p

γ

)
−∇V (q)

)
· ∇g

(
q +

p

γ

)
dργt dt

∣∣∣∣∣ ≤
≤ ‖D2V ‖∞‖∇g‖∞

√
T

(∫ T

0

∫
R2d

p2

γ2
dργt dt

)1/2

≤ C

γ

γ→∞−−−−→ 0.

Adding and subtracting ∇g(q) · (∇qψ ∗ ργt )(q) in (39) we find

∫ T

0

∫
R2d

∇g
(
q +

p

γ

)
· (∇qψ ∗ ργt )(q)dργt dt =

∫ T

0

∫
R2d

∇g(q) · (∇qψ ∗ ργt )(q)dργt dt

+

∫ T

0

∫
R2d

[
∇g
(
q +

p

γ

)
−∇g(q)

]
· (∇qψ ∗ ργt )(q)dργt dt.

Since ργ → ρ we have ργ ⊗ ργ → ρ ⊗ ρ and therefore passing to the limit in the first term and using the
local-equilibrium characterization of Lemma 2.5, we obtain∫ T

0

∫
R2d

∇g(q) · (∇qψ ∗ ργ)(q) dργt dt
γ→0−−−→

∫ T

0

∫
Rd
∇g · (∇ψ ∗ σ) dσtdt.

For the second term we calculate∣∣∣∣∣
∫ T

0

∫
R2d

[
∇g
(
q +

p

γ

)
−∇g(q)

]
· (∇qψ ∗ ργ)(q)dργt dt

∣∣∣∣∣
≤‖D2g‖∞‖∇qψ‖∞

√
T

(∫ T

0

∫
R2d

p2

γ2
dργt dt

)1/2

≤ C

γ

γ→∞−−−−→ 0.

Therefore ∫ T

0

∫
R2d

∇g
(
q +

p

γ

)
· (∇qψ∗ργ)(q)dργt dt

γ→∞−−−−→
∫ T

0

∫
Rd
∇g · (∇ψ ∗ σ) dσtdt.
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2.6 Discussion

The ingredients of the convergence proof above are, as mentioned before, (a) a compactness result, (b) a
local-equilibrium result, and (c) a liminf inequality. All three follow from the large-deviation structure,
through the rate functional Iγ . We now comment on these.

Compactness. Compactness in the sense of measures is, both for ργ and for ξγ#ρ
γ , a simple consequence

of the confinement provided by the growth of H. In Theorem 2.4 we provide a stronger statement for ξγ#ρ
γ ,

by showing continuity in time, in order for the limiting functional I(σ) in (36) to be well defined. This
continuity depends on the boundedness of Iγ .

Local equilibrium. The local-equilibrium statement depends crucially on the structure of Iγ , and more
specifically on the large coefficient γ2 multiplying the derivatives in p. This coefficient also ends up as a
prefactor of the relative Fisher Information in the a priori estimate (28), and through this estimate it drives
the local-equilibrium result.

Liminf inequality. As remarked in the introduction, the duality structure of Iγ is the key to the liminf
inequality, as it allows for relatively weak convergence of ργ and ξγ#ρ

γ . The role of the local equilibrium is to
allow us to replace the p-dependence in some of the integrals by the Maxwellian dependence, and therefore
to reduce all terms to dependence on the macroscopic information ξγ#ρ

γ only.

As we have shown, the choice of the coarse-graining map has the advantage that it has caused the (large)
coefficients γ and γ2 in the expression of the rate functionals to vanish. In other words, it cancels out the
inertial effects and transforms a Laplacian in p variable to a Laplacian in the coarse-grained variable while
rescaling it to be of order 1. The choice ξ(q, p) = q, on the other hand, would lose too much information by
completely discarding the diffusion.

3 Diffusion on a Graph, d = 1

In this section we derive the small-noise limit of a randomly perturbed Hamiltonian system, which corre-
sponds to passing to the limit ε→ 0 in (14). In terms of a rescaled time, in order to focus on the time scale
of the noise, equation (14) becomes

∂tρ
ε = −1

ε
div(ρεJ∇H) + ∆pρ

ε. (40)

Here ρε ∈ C([0, T ],P(R2)), J =
(

0 1
−1 0

)
is again the canonical symplectic matrix, ∆p is the Laplacian in the

p-direction, and the equation holds in the sense of distributions. The Hamiltonian H ∈ C2(R2d;R) is again
defined by H(q, p) = p2/2m + V (q) for some potential V : Rd → R. We make the following assumptions
(that we formulate on H for convenience):

(A1) H ≥ 0, and H is coercive, i.e. H(x)
|x|→∞−−−−→∞;

(A2) |∇H|, |∆H|, |∇pH|2 ≤ C(1 +H);

(A3) H has a finite number of non-degenerate (i.e. non-singular Hessian) saddle points O1, . . . , On with
H(Oi) 6= H(Oj) for every i, j ∈ {1, . . . , n}, i 6= j.

As explained in the introduction, and in contrast to the VFP equation of the previous section, equa-
tion (40) has two equally valid interpretations: as a PDE in its own right, or as the Fokker-Planck (forward
Kolmogorov) equation of the stochastic process

Xε =

(
Qε

P ε

)
, dXε

t =
1

ε
J∇H(Xε

t )dt+
√

2

(
0
1

)
dWt. (41)

For the sequel we will think of ρε as the law of the process Xε
t ; although this is not strictly necessary, it

helps in illustrating the ideas.
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Figure 3: Left: Hamiltonian R2 3 (q, p) 7→ H(q, p), Right: Graph Γ

3.1 Construction of the graph Γ

As mentioned in the introduction, the dynamics of (40) has two time scales when 0 < ε � 1, a fast and a
slow one. The fast time scale, of scale ε, is described by the (deterministic) equation

ẋ =
1

ε
J∇H(x) in R2, (42)

whereas the slow time scale, of order 1, is generated by the noise term.
The solutions of (42) follow level sets of H. There exist three types of such solutions: stationary ones,

periodic orbits, and homoclinic orbits. Stationary solutions of (42) correspond to stationary points of H
(where ∇H = 0); periodic orbits to connected components of level sets along which ∇H 6= 0; and homoclinic
orbits to components of level sets of H that are terminated on each end by a stationary point. Since we
have assumed in (A3) that there is at most one stationary point in each level sets, heteroclinic orbits do not
exist, and the orbits necessarily connect a stationary point with itself.

Looking ahead towards coarse-graining, we define Γ to be the set of all connected components of level sets
of H, and we identify Γ with a union of one-dimensional line segments, as shown in Figure 3. Each periodic
orbit corresponds to an interior point of one of the edges of Γ; the vertices of Γ correspond to connected
components of level sets containing a stationary point of H. Each saddle point O corresponds to a vertex
connected by three edges.

For practical purposes we also introduce a coordinate system on Γ. We represent the edges by closed
intervals Ik ⊂ R, and number them with numbers k = 1, 2, . . . , n; the pair (h, k) is then a coordinate for a
point γ ∈ Γ, if k is the index of the edge containing γ, and h the value of H on the level set represented
by γ. For a vertex O ∈ Γ, we write O ∼ Ik if O is at one end of edge Ik; we use the shorthand notation
±kj to mean 1 if Oj is at the upper end of Ik, and −1 in the other case. Note that if O ∼ Ik1 , O ∼ Ik2 and
O ∼ Ik3 and h0 is the value of H at the point corresponding to O, then the coordinates (h0, k1), (h0, k2)
and (h0, k3) correspond to the same point O. With a slight abuse of notation, we also define the function
k : R2 → {1, . . . , n} as the index of the edge Ik ⊂ Γ corresponding to the component containing (q, p).

The rigorous construction of the graph Γ and the topology on it has been done several times [FW93,
FW94, BvR14]; for our purposes it suffices to note that (a) inside each edge, the usual topology and geometry
of R1 apply, and (b) across the whole graph there is a natural concept of distance, and therefore of continuity.
It will be practical to think of functions f : Γ→ R as defined on the disjoint union tkIk. A function f : Γ→ R
is then called well-defined if it is a single-valued function on Γ (i.e., it takes the same value on those vertices
that are multiply represented). A well-defined function f : Γ→ R is continuous if f |Ik ∈ C(Ik) for every k.

We also define a concept of differentiability of a function f : Γ → R. A subgraph of Γ is defined as
any union of edges such that each interior vertex connects exactly two edges, one from above and one from
below—i.e., a subtree without bifurcations. A continuous function on Γ is called differentiable on Γ if it is
differentiable on each of its subgraphs.
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Finally, in order to integrate over Γ, we write dγ for the measure on Γ which is defined on each Ik as the
local Lebesgue measure dh. Whenever we write

∫
Γ
, this should be interpreted as

∑
k

∫
Ik

.

3.2 Adding noise: diffusion on the graph

In the noisy evolution (41), for small but finite ε > 0, the evolution follows fast trajectories that nearly
coincide with the level sets of H; the noise breaks the conservation of H, and causes a slower drift of Xt

across the levels of H. In order to remove the fast deterministic dynamics, we now define the coarse-graining
map as

ξ : R2 → Γ, ξ(q, p) := (H(q, p), k(q, p)), (43)

where the mapping k : R2 → {1, . . . , n} indexes the edges of the graph, as above.
We now consider the process ξ(Xε

t ), which contains no fast dynamics. For each finite ε > 0, ξ(Xε
t ) is

not a Markov process; but as ε → 0, the fast movement should result in a form of averaging, such that the
influence of the missing information vanishes; then the limit process is a diffusion on the graph Γ.

The results of this section are stated and proved in terms of the corresponding objects ρε and ρ̂ε, where
ρ̂ε is the push-forward

ρ̂ε := ξ#ρ
ε, (44)

as explained in Section 1.1, and similar to Section 2. The corresponding statement about ρε and ρ̂ε is that ρ̂ε

should converge to some ρ̂, which in the limit satisfies a (convection-) diffusion equation on Γ. Theorems 3.1
and 3.5 make this statement precise.

3.3 Compactness

As in the case of the VFP equation, equation (40) has a free energy, which in this case is simply the relative
entropy with respect to the Lebesgue measure L:

F(ρ) = H(ρ|L). (45)

The corresponding ‘relative’ Fisher Information is the same as the usual Fisher Information,

I(ρ|L) = sup
ϕ∈C∞c (R2)

2

∫
R2

[
∆pϕ−

1

2
|∇pϕ|2

]
dν,

and satisfies for ρ = fL,

I(fL|L) =

∫
R2

|∇p log f |2 f dqdp,

whenever this is finite.

The large deviation functional Iε : C([0, T ];P(R2))→ R is given by

Iε(ρ) = sup
f∈C1,2

c (R×R2)

[ ∫
R2

fT dρT −
∫
R2

f0dρ0 −
T∫

0

∫
R2

(∂tf +
1

ε
J∇H · ∇f + ∆pf)dρtdt−

1

2

T∫
0

∫
R2

|∇pf |2 dρtdt
]
.

(46)

For fixed ε > 0, ρε solves (40) iff Iε(ρε) = 0.

The following theorem states the relevant a priori estimates and the ensuing compactness properties for
any sequence ρε with supε I

ε(ρε) <∞.
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Theorem 3.1 (A priori estimates and compactness). Let ρε ∈ C([0, T ];P(R2)) with ρεt |t=0 =: ρε0 satisfy for
a suitable constant C > 0 and all ε > 0

Iε(ρε) + F(ρε0) ≤ C.

Then for any t ∈ [0, T ] we have

F(ρεt ) +
1

2

∫ t

0

I(ρεs|L) ds ≤ Iε(ρε) + F(ρε0) ≤ C. (47)

Moreover, there exist subsequences (not relabelled) such that

1. ρε → ρ in M([0, T ]× R2) in the narrow topology;

2. ρ̂ε → ρ̂ = ξ#ρ in C([0, T ];P(Γ)) with respect to the uniform topology in time and narrow topology on
P(Γ).

Finally, we have the estimate

F(ρt) +
1

2

∫ t

0

I(ρs|L) ds ≤ C for all t ∈ [0, T ].

The proof of this theorem follows along the lines of the proofs of Theorems 2.3 and 2.4, and we omit it here.
Note that the estimate (47) implies that H(ρεt |L) is finite for all t, and therefore ρεt is Lebesgue absolutely

continuous. We will often therefore write ρεt (x) for the Lebesgue density of ρεt .

3.4 Local equilibrium

Theorem 3.1 states that ρε converges narrowly on [0, T ]×R2 to some ρ. In fact we need a stronger statement,
in which the behaviour of ρ on each connected component of H is fully determined by the limit ρ̂.

Lemma 3.2 below makes this statement precise. Before proceeding we define T : Γ→ R as

T (γ) :=

∫
ξ−1(γ)

H 1(dx)

|∇H(x)|
, (48)

where H 1 is the the one-dimensional Hausdorff measure. T has a natural interpretation as the period of the
periodic orbit of the deterministic equation (42) corresponding to γ. When γ is an interior vertex, such that
the orbit is homoclinic, not periodic, T (γ) = +∞. T also has a second natural interpretation: the measure
T (γ)dγ = T (h, k)dh on Γ is the push-forward under ξ of the Lebesgue measure on R2, and the measure
T (γ)dγ therefore appears in various places.

Lemma 3.2 (Local Equilibrium). Under the assumptions in Theorem 3.1, assume that ρε → ρ inM([0, T ]×
R2d) with respect to the narrow topology. Let ρ̂ be the push-forward ξ#ρ of the limit ρ, as above.

Then for a.e. t, the limit ρt is absolutely continuous with respect to the Lebesgue measure, ρ̂t is absolutely
continuous with respect to the measure T (γ)dγ, where T (γ) is defined in (48). Writing

ρt(dx) = ρt(x)dx and ρ̂t(dγ) = αt(γ)T (γ)dγ,

we have

ρt(x) = αt(ξ(x)) for almost all x ∈ R2 and t ∈ [0, T ]. (49)

Proof. From the boundedness of Iε(ρε) and the narrow convergence ρε → ρ we find, passing to the limit in
the rate functional (46), for any f ∈ C1,2

c (R× R2)∫ T

0

∫
R2

J∇H · ∇f dρtdt = 0. (50)

20



Now choose any ϕ ∈ C2
c ([0, T ] × R2) and any ζ ∈ C2

b (Γ) such that ζ is constant in a neighbourhood of
each vertex; then the function f(t, x) = ζ(ξ(x))ϕ(t, x) is well-defined and in C2

c ([0, T ]× R2). We substitute
this special function in (50); since J∇H∇(ζ ◦ ξ) = 0, we have J∇H∇f = (ζ ◦ ξ)J∇H∇ϕ. Applying the
disintegration theorem to ρ, writing ρt(dx) = ρ̂t(dγ)ρ̃t(dx|γ) with supp ρ̃t(·|γ) ⊂ ξ−1(γ), we obtain

0 =

∫ T

0

∫
Γ

ζ(γ)ρ̂t(dγ)

∫
ξ−1(γ)

∇ϕ · J∇H
|∇H|

|∇H|ρ̃(·|γ)dH 1 =

∫ T

0

∫
Γ

ζ(γ)ρ̂t(dγ)

∫
ξ−1(γ)

∂τϕ|∇H|ρ̃(·|γ)dH 1dt,

where ∂τ is the tangential derivative. By varying ζ and ϕ we conclude that for ρ̂-almost every (γ, t),
|∇H|ρ̃t(·|γ) = Cγ,t for some γ, t-dependent constant Cγ,t > 0, and since ρ̃ is normalized, we find that

for ρ̂-a.e. (γ, t) : ρ̃t(dx|γ) =
1

T (γ)|∇H(x)|
H 1bξ−1(γ)(dx). (51)

This also implies that ρ̃t(·|γ) is in fact t-independent.
For measurable f we now compare the two relations∫

R2

fdρt =

∫
R2

f(y)ρt(y) dy =

∫
Γ

dγ

∫
ξ−1(γ)

f(y)

|∇H(y)|
ρt(y)H 1(dy)∫

R2

fdρt =

∫
Γ

ρ̂t(dγ)

∫
ξ−1(γ)

f(y)ρ̃(dy|γ) =

∫
Γ

ρ̂t(dγ)

T (γ)

∫
ξ−1(γ)

f(y)

|∇H(y)|
H 1(dy)

where we have used the co-area formula in the first line and (51) in the second one. Since f was arbitrary,
(49) follows for almost all t.

3.5 Continuity of ρ and ρ̂

As a consequence of the local-equilibrium property (49) and the boundedness of the Fisher Information, we
will show in the following that ρ and its push-forward ρ̂ satisfy an important continuity property. We first
motivate this property heuristically.

The local-equilibrium result Lemma 3.2 states that the limit measure ρ depends on x only through ξ(x).
Take any measure ρ ∈ P(R2d) of that form, i.e. ρ(dx) = f(ξ(x))dx, with finite free energy and finite relative
Fisher Information. Setting f̃ = f ◦ ξ, by Lemma 2.1, ∇pf̃ is well-defined and locally integrable.

Figure 4: Section Ω in which H−1(h) is transverse to p.

Consider a section Ωε of the (q, p)-plane as shown in Figure 4, bounded by q = a and q = b and level sets
H = h and H = h+ ε. The top and bottom boundaries γ and γε correspond to elements of Γ that we also
call γ and γε; they might be part of the same edge k of the graph, or they might belong to different edges.
As ε→ 0, γε converges to γ.
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By simple integration we find that∫
Ωε

∇pf̃ =

∫
γε∪γ

f̃np dr = (f(γε)− f(γ))(b− a),

where dr is the scalar line element and np the p-component of the normal n. Applying Hölder’s inequality
we find

|b− a| |f(γε)− f(γ)| =
∣∣∣∣ ∫

Ωε

∇pρ
∣∣∣∣ ≤ (∫

Ωε

1

ρ

∣∣∇pρ∣∣2) 1
2
(∫

Ωε

ρ

) 1
2
ε→0−−−→ 0.

This argument shows that f is continuous from the right at the point γ ∈ Γ.

The following lemma generalizes this argument to the case at hand, in which ρ also depends on time.
Note that Int Γ is the interior of the graph Γ, which is Γ without the lower exterior vertices.

Lemma 3.3 (Continuity of ρ). Let ρ ∈ P([0, T ] × R2), ρ(dtdx) = f(t, ξ(x))dtdx for a Borel measurable
f : [0, T ]× Γ→ R, and assume that ∫ T

0

I(ρt|L) dt+ sup
t∈[0,T ]

F(ρt) <∞.

Then for almost all t ∈ [0, T ], γ 7→ f(t, γ) is continuous on Int Γ.

Proof. The argument is essentially the same as the one above. For almost all t, ρt is Lebesgue-absolutely-
continuous and I(ρt|L) is finite, and the argument above can be applied to the neighbourhood of any point x
with ∇H(x) 6= 0, and to both right and left limits. The only elements of Γ that have no representative x ∈ R2

with ∇H(x) 6= 0 are the lower ends of the graph, corresponding to the bottoms of the wells of H. At all
other points of Γ we obtain continuity.

Corollary 3.4 (Continuity of ρ̂). Let ρ be the limit given by Theorem 3.1, and ρ̂ := ξ#ρ its push-forward.
For almost all t, ρ̂t � T (γ)dγ, and dρ̂t/T (γ)dγ is continuous on Int Γ.

This corollary follows by combining Lemma 3.3 with Lemma 3.2.

3.6 Liminf inequality

We now derive the final ingredient of the proof, the liminf inequality. Define

Î(ρ̂) :=


sup

g∈C1,2
c (R×Γ)

Ĵ (ρ̂, g) if ρ̂t � T (γ)dγ, ρ̂t(dγ) = ft(γ)T (γ)dγ with f continuous on Int Γ,

for almost all t ∈ [0, T ],

+∞ otherwise,

(52)

where

Ĵ (ρ̂, g) :=

∫
Γ

gT dρ̂T −
∫

Γ

g0dρ̂0 −
∫ T

0

∫
Γ

(
∂tgt(γ) +A(γ)g′′t (γ) +B(γ)g′t(γ)

)
ρ̂t(dγ)dt

− 1

2

∫ T

0

∫
Γ

A(γ)(g′t(γ))2ρ̂t(dγ)dt, (53)

and we use g′ and g′′ to indicate derivatives with respect to h. For γ ∈ Γ, the coefficients are defined by

A(γ) :=
1

T (γ)

∫
ξ−1(γ)

(∇pH)2

|∇H|
dH 1, B(γ) :=

1

T (γ)

∫
ξ−1(γ)

∆pH

|∇H|
dH 1, T (γ) :=

∫
ξ−1(γ)

1

|∇H|
dH 1.

(54)
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Note that for our particular choice of H(q, p) = p2/2m+ V (q), we have B(γ) = 1/m.
The class of test functions in (52) is C1,2

c (R × Γ); recall that differentiability of a function f : Γ → R is
defined by restriction to one-dimensional subgraphs, and C1,2

c (R×Γ) therefore consists of functions g : Γ→ R
that are twice continuously differentiable in h in this sense. The subscript c indicates that we restrict to
functions that vanish for sufficiently large h (i.e. somewhere along the top edge of Γ).

Note that again Î ≥ 0; formally, Î(ρ̂) = 0 iff ρ̂ satisfies the diffusion equation

∂tρ̂ = (Aρ̂)′′ − (Bρ̂)′,

and we will investigate this equation in more detail in the next section.

Theorem 3.5 (Liminf inequality). Under the same conditions as Theorem 3.1, let us assume that ρε → ρ
in M([0, T ];R2) and ρ̂ε := ξ#ρ

ε → ξ#ρ =: ρ̂ in C([0, T ];P(Γ)). Then

lim inf
ε→0

Iε(ρε) ≥ I(ρ̂).

Proof. Recall the rate functional from (46)

Iε(ρε) = sup
f∈C1,2

c (R×R2)

J ε(ρε, f), where (55)

J ε(ρε, f) :=

∫
R2

fT dρ
ε
T −

∫
R2

f0dρ
ε
0 −

∫ T

0

∫
R2

(
∂tf +

1

ε
J∇H · ∇f+∆pf

)
dρεtdt−

1

2

∫ T

0

∫
R2

|∇pf |2 dρεtdt.

Define Â :=
{
f = g ◦ ξ : g ∈ C1,2

c (R× Γ)
}

. Then we have

Iε(ρε) ≥ sup
f∈Â
J ε(ρε, f).

Since J∇H∇(g ◦ ξ) = 0, upon substituing f = g ◦ ξ into J ε the O(1/ε) term vanishes. Using the notation
g′ for the partial derivative with respect to h, ∂tg for the time derivative, and suppressing the dependence
of g on time, we find

J ε(ρε, g◦ξ) :=

∫
Γ

gT dρ̂
ε
T−
∫

Γ

g0dρ̂
ε
0−
∫ T

0

∫
R2

(
∂tg(ξ(x))+g′′(ξ(x))(∇pH(x))2+g′(ξ(x))∆pH(x)

)
ρεt (dx)dt

− 1

2

∫ T

0

∫
R2

|g′(ξ(x))∇pH(x)|2ρεt (dx)dt. (56)

The limit of (56) is determined term by term. Taking the fourth term as an example, using the co-area
formula and the local-equilibrium result of Lemma 3.2, the fourth term on the right-hand side of (56) gives

∫ T

0

∫
R2

g′′(ξ(x))(∇pH(x))2ρεt (dx)dt
ε→0−−−→

∫ T

0

∫
R2

g′′(ξ(x))(∇pH(x))2ρt(dx)dt

=

∫ T

0

dt

∫
Γ

g′′(γ)ρ̂t(dγ)

T (γ)

(∫
ξ−1(γ)

(∇pH(y))2

|∇H(y)|
H 1(dy)

)
=

∫ T

0

∫
Γ

A(γ)g′′(γ)ρ̂t(dγ)dt,

where A : Γ→ R is defined in (54). Proceeding similarly with the other terms we find

lim inf
ε→0

Iε(ρε) ≥ sup
g∈C1,2

c (R×Γ)

Ĵ (ρ̂, g). (57)

This concludes the proof of Theorem 3.5.
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3.7 Study of the limit problem

We now investigate the limiting functional Î from (52) a little further. The two main results of this section
are that Ĵ can be written as

Ĵ (ρ̂, g) =

∫
Γ

gT dρ̂T −
∫

Γ

g0dρ̂0 −
∫ T

0

∫
Γ

[
∂tgt dρ̂t +

(
(TAg′t)

′ +
1

2
TAg′t

2
)dρ̂t
T

]
dt, (58)

and that Î satisfies
Î(ρ̂) ≥ sup

g∈A
Ĵ (ρ̂, g) for all ρ̂ ∈ C([0, T ];P(Γ)), (59)

where A is the larger class

A :=

{
g : C1,0(R× Γ) : g

∣∣
Ik
∈ C1,2

b (R× Ik), ∀ interior vertex Oj ∀t :
∑

k:Ik∼Oj

±kj g′t(Oj , k)TA(Oj , k) = 0

}
.

(60)

The admissible set A relaxes the conditions on g at interior vertices: instead of requiring g to have identical
derivatives coming from each edge, only a single scalar combination of the derivatives has to vanish. (In fact
it can be shown that equality holds in (59), but that requires a further study of the limiting equation that
takes us too far here.)

Both results use some special properties of T , A, and B, which are given by the following lemma. In
this lemma and below we use TA and TB for the functions obtained by multiplying T with A and B; these
combinations play a special role, and we treat them as separate functions.

Lemma 3.6 (Properties of TA and TB). The functions TA and TB have the following properties.

1. TA ∈ C1(Ik) for each k, and (TA)′ = TB;

2. TA is bounded on compact subsets of Γ;

3. At each interior vertex Oj, for each k such that Ik ∼ Oj, TA(Oj , k) := lim
h∈Ik
h→Oj

TA(h, k) exists, and

∑
k:Ik∼Oj

±kj TA(Oj , k) = 0. (61)

From this lemma the expression (58) follows by simple manipulation.

With these two results, we can obtain a differential-equation characterization of those ρ̂ with Î(ρ̂) = 0.
Assume that a ρ̂ with Î(ρ̂) = 0 is given. By rescaling we find that for all g ∈ A,∫

Γ

gT dρ̂T −
∫

Γ

g0dρ̂0 =

∫ T

0

∫
Γ

[
∂tgt dρ̂+ (TAg′t)

′ dρ̂t
T

]
dt. (62)

As already remarked we find a parabolic equation inside each edge of Γ,

∂tρ̂t =
(
TA
( ρ̂t
T

)′)′
= (Aρ̂t)

′′ − (Bρ̂t)
′. (63)

We next determine the boundary and connection conditions at the vertices.
Consider a single interior vertex Oj , and choose a function g ∈ A such that supp g contains no other

vertices. Writing ρ̂t(dγ) = ft(γ)T (γ)dγ we find first that ft is continuous at Oj , by the definition (52) of Î.
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Then, assuming that ρ̂ is smooth enough for the following expressions to make sense1, we perform two partial
integrations in γ and one in time on (62) and substitute (63) to find

0 =

∫ T

0

ft(Oj)
∑

k:Ik∼Oj

±kj TA(Oj , k)g′t(Oj , k) dt−
∫ T

0

gt(Oj)
∑

k:Ik∼Oj

±kj TA(Oj , k)f ′t(Oj , k) dt.

The first term vanishes since g ∈ A, while the second term leads to the connection condition

at each interior vertex Oj :
∑

k:Ik∼Oj

±kj TA(Oj , k)f ′t(Oj , k) = 0.

The lower exterior vertices and the top vertex are inaccessible, in the language of [Fel52, Man68], and
therefore require no boundary condition. Summarizing, we find that if Î(ρ̂) = 0, then ρ̂ =: fTdγ satisfies a
weak version of equation (63) with connection conditions

at each interior vertex Oj : f is continuous and
∑

k:Ik∼Oj

±kj TA(Oj , k)f ′t(Oj , k) = 0.

This combination of equation and boundary conditions can be proved to characterize a well-defined semigroup
using e.g. the Hille-Yosida theorem and the characterization of one-dimensional diffusion processes by Feller
(e.g. [Fel52]).

We now prove the inequality (59).

Lemma 3.7 (Comparison of Î and Ĩ). We have

Î(ρ̂) ≥ Ĩ(ρ̂) := sup
g∈A
Ĵ (ρ̂, g).

Proof. Take ρ̂ such that Î(ρ̂) < ∞, implying that ρ̂t(dγ) = ft(γ)T (γ)dγ with ft continuous on Int Γ for
almost all t. Choose g ∈ A; we will show that Î(ρ̂) ≥ Ĵ (ρ̂, g), thus proving the lemma. For simplicity we
only treat the case of a single interior vertex, called O; the case of multiple vertices is a simple generalization.
For convenience we also assume that O corresponds to h = 0.

Define

gδ,t(h, k) = gt(h, k)ζδ(h) + (1− ζδ(h))gt(0), (64)

where ζδ is a sequence of smooth functions such that

• ζδ is identically zero in a δ-neighbourhood of O, and identically 1 away from a 2δ-neighbourhood of O;

• ζδ satisfies the growth conditions |ζ ′δ| ≤ 2/δ and |ζ ′′δ | ≤ 4/δ2.

We calculate Ĵ (ρ̂, gδ). The limit of the first three terms is straightforward: by dominated convergence
we obtain ∫

Γ

gδ,T dρ̂T −
∫

Γ

gδ,0dρ̂0 −
∫ T

0

∫
Γ

∂tgδ,t dρ̂t
δ→0−−−→

∫
Γ

gT dρ̂T −
∫

Γ

g0dρ̂0 −
∫ T

0

∫
Γ

∂tgt dρ̂t.

Next consider the term∫ T

0

∫
Γ

A(γ)g′′δ (γ)ρ̂t(dγ)dt =

∫ T

0

∫
Γ

[
g′′(h, k)ζδ(h) + 2ζ ′δ(h)g′(h, k) + ζ ′′δ (h)

[
hg′(0, k) +O(h2)

]]
A(γ)ρ̂t(dγ)dt.

(65)

1This can actually be proved using the properties of A and B near the vertices and applying standard parabolic regularity
theory on each of the edges.
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Since the function (γ, t) 7→ A(γ)g′′t (γ) ∈ L∞(ρ̂t) the first term in (65) again converges by dominated
convergence : ∫ T

0

∫
Γ

g′′t (h, k)ζδ(h)A(h, k)ρ̂t(dγ)dt
δ→0−−−→

∫ T

0

∫
Γ

g′′t (h, k)A(h, k)ρ̂t(dγ)dt.

Abbreviate ft(γ)TA(γ) as a(γ); note that a is continuous and bounded in a neighbourhood of O. Write the
second term on the right-hand side in (65) as (supressing the time integral for the moment)

2

∫
Γ

ζ ′δ(h)g′(h, k)a(h, k)dh = 2

∫
Γ

ζ ′δ(h)g′(h, k)
(
a(h, k)− a(0, k)

)
dγ + 2

∑
k

a(0, k)

∫
Ik

ζ ′δ(h)
(
g′(h, k)− g′(0, k)

)
dh

+ 2
∑
k

a(0, k)g′(0, k)

∫
Γk

ζ ′δ(h)dh

δ→0−−−→ 0 + 0− 2
∑

k:Ik∼O

±kO g′(0, k) a(0, k) = 2
∑

k:Ik∼O

±kO g′(0, k) f(0, k)TA(0, k).

The limit above holds since −ζ ′δ(·, k) converges weakly to a signed Dirac, ±kOδ0, as δ → 0. Proceeding
similarly with the remaining terms we have

Î(ρ̂) ≥ Ĵ (ρ̂, gδ)
δ→0−−−→

∫
Γ

gT dρ̂T −
∫

Γ

g0dρ̂0 −
∫ T

0

∫
Γ

(
∂tgt +A(γ)g′′t (γ) +B(γ)g′t(γ)

)
ρ̂t(dγ)dt

− 1

2

∫ T

0

∫
Γ

A(γ)g′t(γ)
2
ρ̂t(dγ)dt−

∫ T

0

ft(0, k)

[ ∑
k:Ik∼O

±kOTA(0, k)g′t(0, k)

]
dt.

Note that the final term vanishes by the requirement that g ∈ A, and therefore the right-hand side above
equals Ĵ (ρ̂, g). This concludes the proof of the lemma.

We still owe the reader the proof of Lemma 3.6.

Proof of Lemma 3.6. We first prove part 1. For simplicity, assume first that H has a single well, and therefore
Γ has only one edge, k = 1. Since

div

(
0
∇pH

)
= ∆pH,

and remarking that the exterior normal n to the set H ≤ h equals (0,∇pH/|∇H|)T , we calculate that∫
{H≤h}

∆pH =

∫
{H=h}

(∇pH)2

|∇H|
dH 1 = TA(h). (66)

By the smoothness of H, the derivative of the left-hand integral is well-defined for all h such that ∇H 6= 0
at that level. At such h we then have

TB(h) =

∫
{H=h}

∆pH

|∇H|
dH 1 = ∂h

∫
{H≤h}

∆pH = ∂hTA(h).

For the multi-well case, this argument can simply be applied to each branch of Γ.
For part 2, since H is coercive, {H ≤ h} is bounded for each h; since H is smooth, therefore ∆pH is

bounded on bounded sets. From (66) it follows that TA also is bounded on bounded sets of Γ.
Finally, for part 3, note first that TB is bounded near each interior vertex. This follows by an explicit

calculation and our assumption that each interior vertex corresponds to exactly one, non-degenerate, saddle
point. Since (TA)′ = TB, TA has a well-defined and finite limit at each interior saddle. The summation
property (61) follows from comparing (66) for values of h just above and below the critical value. For
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instance, in the case of a single saddle at value h = 0, with two lower edges k = 1, 2 and upper edge k = 0,
we have

lim
h↑0

TA(h, 1) + TA(h, 2) = lim
h↑0

∫
ξ−1
(

(−∞,h]×{1}
) ∆pH +

∫
ξ−1
(

(−∞,h]×{2}
) ∆pH

= lim
h↑0

∫
{H≤h}

∆pH = lim
h↓0

∫
{H≤h}

∆pH = lim
h↓0

TA(h, 0).

This concludes the proof of Lemma 3.6.

3.8 Conclusion and Discussion

The combination of Theorems 3.1 and 3.5 give us that along subsequences ρ̂ε := ξ#ρ
ε converges in an

appropriate manner to some ρ̂, and that

Î(ρ̂) ≤ lim inf
ε→0

Iε(ρe).

In addition, any ρ̂ satisfying I(ρ̂) = 0 is a weak solution of the PDE

∂tρ̂ = (Aρ̂)′′ − (Bρ̂)′

on the graph Γ. This is the central coarse-graining statement of this section. We also obtain the boundary
conditions, similarly as in the conventional weak-formulation method, by expanding the admissible set of
test functions.

In switching from the VFP equation (9) to equation (40) we removed two terms, representing the friction
with the environment and the interaction between particles. Mathematically, it is straightforward to treat
the case with friction, which leads to an additional drift term in the limit equation in the direction of
decreasing h. We left this out simply for the convenience of shorter expressions.

As for the interaction, represented by the interaction potential ψ, again there is no mathematical necessity
for setting ψ = 0 in this section; the analysis continues rather similarly. However, the limiting equation will
now be non-local, since the particles at some γ ∈ Γ, which can be thought of as ‘living’ on a full connected
level set of H, will feel a force exerted by particles at a different γ′ ∈ Γ, i.e. at a different level set component.
This makes the interpretation of the limiting equation somewhat convoluted.

The results of the current and the next sections were proved by Freidlin and co-authors in a series of
papers [FW93, FW94, FW98, FW01, FW04], using probabilistic techniques. Recently, Barret and Von
Renesse [BvR14] provided an alternative proof using Dirichlet forms and their convergence. The latter
approach is closer to ours in the sense that it is mainly PDE-based method and of variational type. However,
in [BvR14] the authors consider a perturbation of the Hamiltonian by a friction term and a non-degenerate
noise, i.e. the noise is present in both space and momentum variables; this non-degeneracy appears to be
essential in their method. Moreover, their approach invokes a reference measure which is required to satisfy
certain non-trivial conditions. In contrast, the approach of this paper is applicable to degenerate noise and
does not require such a reference measure. In addition, certain non-linear evolutions can be treated, such as
the example of the VFP equation.

4 Diffusion on a Graph, d > 1

We now switch to our final example. As described in the introduction, the higher-dimensional analogue of
the diffusion-on-graph system has an additional twist: in order to obtain unique stationary measures on level
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sets of ξ, we need to add an additional noise in the SDE, or equivalently, an additional diffusion term in the
PDE. This leads to the equation

∂tρ = −1

ε
div(ρJ∇H) +

κ

ε
div(a∇ρ) + ∆pρ, (67)

where a : R2d → R2d×2d with a∇H = 0, dim(Ker(a)) = 1 and κ, ε > 0 with κ � ε. The spatial domain is
R2d, d > 1, with coordinates (q, p) ∈ Rd × Rd. Here the unknown is trajectory in the space of probability
measures ρ : [0, T ]→ P(R2d); the Hamiltonian is the same as in the previous section, H : R2d → R given by
H(q, p) = p2/2m+ V (q).

The results for the limit ε→ 0 in (67) closely mirror the one-degree-of-freedom diffusion-on-graph problem
of the previous section; the only real difference lies in the proof of local equilibrium (Lemma 3.2). For a
rigorous proof of this lemma in this case, based on probabilistic techniques, we refer to [FW01, Lemma 3.2];
here we only outline a possible analytic proof.

Along the lines of Theorem 3.1, and using boundedness of the rate functional Iε(ρε), one can show that

1

2

∫ T

0

∫
R2

|∇pρε|2

ρε
+
κ

ε

∫ T

0

∫
R2

a∇ρε · ∇ρε

ρε
≤ C.

Multiplying this inequality by ε/κ and using the weak convergence ρε ⇀ ρ along with the lower-semicontinuity
of the Fisher information [FK06, Theorem D.45] we find∫ T

0

∫
R2

a∇ρ · ∇ρ
ρ

= 0,

or in variational form, for almost all t ∈ [0, T ],

0 = sup
ϕ∈C∞c (R2d)

∫
R2d

div(a∇ϕ)ρt −
1

2

∫
R2d

a∇ϕ · ∇ϕρt

⇐⇒ 0 =

∫
R2d

div(a∇ϕ)ρt, ∀ϕ ∈ C∞c (R2d).

Applying the co-area formula we find∫
ξ−1(γ)

ρ(x)

|∇H(x)|
div(a(x)∇ϕ(x)) H 2d−1(dx) = 0, (68)

where H 2d−1 is the (2d− 1) dimensional Haursdoff measure. LetMγ be the (2d− 1) dimensional manifold
ξ−1(γ) with volume element |∇H|−1H 2d−1. Then (68) becomes∫

Mγ

ρ(x) divM(a(x)∇Mϕ(x)) volM(dx) = 0,

where divM and ∇M are the corresponding differential operators on Mγ , and volM is the induced volume
measure. Since a∇H = 0, dim(Ker(a)) = 1, a is non-degenerate on the tangent space of Mγ . Therefore,
given ψ ∈ C∞(Mγ) with

∫
Mγ

ψ d volM = 0, we can solve the corresponding Laplace-Beltrami-Poisson

equation for ϕ,

divM(a∇Mϕ) = ψ,

and therefore ∫
Mγ

ρψ dvolM = 0, ∀ψ ∈ C∞(Mγ) with

∫
Mγ

ψ d volM = 0.

Since Mγ is connected by definition, it follows that ρ constant on Mγ ; this is the statement of Lemma 3.2.
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5 Conclusion and discussion

In this paper we have presented a structure in which coarse-graining and ‘passing to a limit’ combine in
a natural way, and which extends also naturally to a class of approximate solutions. The central object
is the rate function I, which is minimal and vanishes at solutions; in the dual formulation of this rate
function, coarse-graining has a natural interpretation, and the inequalities of the dual formulation and of
the coarse-graining combine in a convenient way.

We now comment on a number of issues related with this method.

Why does this method work? One can wonder why the different pieces of the arguments of this paper
fit together. Why do the relative entropy and the relative Fisher information appear? To some extent this
can be recognized in the similarity between the duality definition of the rate function I and the duality
characterization of relative entropy and relative Fisher Information. The details of Appendix B show this
most clearly, but the similarity between the duality definition of the relative Fisher information and the
duality structure of I can readily be recognized: in (19) combined with (18) we collect the O(γ2) terms∫ T

0

∫
R2d

[
∆pft −

p

m
∇pft −

1

2
|∇pft|2

]
dρtdt,

and these match one-to-one to the definition (24). This shows how the structure of the relative Fisher
Information is to some extent ‘built-in’ in this system.

Relation with other variational formulations. Our variational formulation (2) to ‘passing to a limit’ is
closely related to other variational formulations in the literature, notably the Ψ-Ψ∗ formulation and the
method in [PSCF05, ASZ09]. In the Ψ-Ψ∗ formulation, a gradient flow of the energy Eε : Z → R with
respect to the dissipation Ψ∗ε is defined to be a curve ρε ∈ C([0, T ],Z) such that

Aε(ρ) := Eε(ρT )− Eε(ρ0) +

∫ T

0

[Ψε(ρ̇t, ρt) + Ψ∗ε(−DEε(ρt), ρt)] dt = 0. (69)

‘Passing to a limit’ in a Ψ-Ψ∗ structure is then accomplished by studying (Gamma-) limits of the func-
tionals Aε. The method introduced in [PSCF05, ASZ09] is slightly different. Therein ‘passing to a limit’
in the evolution equation is executed by studying (Gamma-)limits of the functionals that appear in the
approximating discrete minimizing-movement schemes.

The similarities between these two approaches and ours is that all the methods hinge on duality structure
of the relevant functionals, allow one to obtain both compactness and limiting results, and can work with
approximate solutions, see e.g. [AMP+12] and the papers above for details. In addition, all methods assume
some sort of well-prepared initial data, such as bounded initial free energy and boundedness of the functionals.
Our assumptions on the boundedness of the rate functionals arise naturally in the context of large-deviation
principle since this assumption describes events of a certain degree of ‘improbability’.

The main difference is that the method of this paper makes no use of the gradient-flow structure, and
therefore also applies to non-gradient-flow systems as in this paper. The first example, of the overdamped
limit of the VFP equation, also is interesting in the sense that it derives a dissipative system from a non-
dissipative one. Since the GENERIC framework unifies both dissipative and non-dissipative systems, we
expect that the method of this paper could be used to derive evolutionary convergence for GENERIC systems
(see the next point). Finally, we emphasize that using the duality of the rate functional is mathematically
convenient because we do not need to treat the three terms in the right-hand side of (69) separately. Note
that although the entropy and energy functionals as well as the dissipation mechanism are not explictly
present in this formulation, we are still able to derive an energy-dissipation inequality in (4).

Relation with GENERIC. As mentioned in the introduction, the Vlasov-Fokker-Planck system (8) com-
bines both conservative and dissipative effects. In fact it can be cast into the GENERIC form by introducing
an excess-energy variable e, depending only on time, that captures the fluctuation of energy due to dissipa-
tive effects (but does not change the evolution of the system). The building blocks of the GENERIC for the
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augmented system for (ρ, e) can be easily deduced from the conservative and dissipative effects of the original
Vlasov-Fokker-Planck equation. Moreover, this GENERIC structure can be derived from the large-deviation
rate functional of the empirical process (7). We refer to [DPZ13] for more information. This suggests that
our method could be applied to other GENERIC systems.

Gradient flows and large-deviation principles. As mentioned in the introduction, this approach using the
duality formulation of the rate functionals is motivated by our recent results on the connection between gen-
eralised gradient flows and large-deviation principles [ADPZ11, ADPZ13, DPZ14, DPZ13, DLZ12, MPR14].
We want to discuss here how the two overlap but are not the same. In [MPR14], the authors show that if N ε

is the adjoint operator of a generator of a Markov process that satisfies a detailed balance condition, then
the evolution (1) is the same as the generalised gradient flow induced from a large-deviation rate functional,

which is of the form
∫ T

0
L ε(ρt, ρ̇t) dt, of the underlying empirical process. The generalised gradient flow

is described via the Ψ-Ψ∗ structure as in (69) with L ε(z, ż) = Ψε(z, ż) + Ψ∗ε(z,−DEε(z)) + 〈DEε(z), ż〉.
Moreover, Eε and Ψε can be determined from L ε [MPR14, Theorem 3.3]. However, it is not clear if such
characterisation holds true for systems that do not satisfy detailed balance. In addition, there exist (gener-
alised) gradient flows for which we currently do not know of any corresponding microscopic particle systems,
such as the Allen-Cahn and Cahn-Hilliard equations.

Quantification of coarse-graining error. The use of the rate functional in a central role allows us not
only to derive the limiting coarse-grained system but also to obtain quantitative estimates of the coarse-
graining error. Existing quantitative methods such as [LL10] and [GOVW09] only work for gradient flows
systems since they use crucially the gradient flow structures. The essential estimate that they need is the
energy-dissipation inequality, which is similar to (4). Since we are able to obtain this inequality from the
duality formulation of the rate functionals, our method would offer an alternative technique for obtaining
quantitative estimate of the coarse-graining error for both dissipative and non-dissipative systems. We
address this issue in detail in a companion article [DLP+15].

Other stochastic processes. The key ingredient of the method is the duality structure of the rate functional
(5) and (10). This duality formulation holds true for many other stochastic processes; indeed, the ‘Feng-
Kurtz’ algorithm (see chapter 1 of [FK06]) suggests that the large-deviation rate functional for a very wide
class of Markov processes can be written as

I(ρ) = sup
f

{
〈fT , ρT 〉 − 〈f0, ρ0〉 −

∫ T

0

〈ḟt, ρt〉 dt−
∫ T

0

H(ρt, ft) dt

}
,

where H is an appropriate limit of ‘non-linear’ generators. The formula (10) is a special case. As a result,
we expect that the method can be extended to this same wide class of Markov processes.

A Proof of Lemma 2.1

Define Ĩ(f) to be the right-hand side in (25),

Ĩ(f) :=


∫
R2d

∣∣∣∇pf
f

1{f>0} +
p

m

∣∣∣2f dqdp, if ∇pf ∈ L1
loc(dqdp),

∞ otherwise.

for f ∈ L1(R2d). We need to show that Ĩ(f) = I(f dqdp|µ).

First assume that Ĩ is finite. Then
∇pf
f 1{f>0} + p

m ∈ L
2(fdqdp), which implies the following stronger

statement.

Lemma A.1. One has
∇pf
f

1{f>0} +
p

m
∈ L2

∇(fdqdp),
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where the space L2
∇(fdqdp) is defined as the closure of

{
∇pϕ : ϕ ∈ C∞c (R2d)

}
with respect to the norm

‖ · ‖2fdqdp :=
∫
R2d | · |2 fdqdp.

Assuming Lemma A.1 for the moment we rewrite Ĩ(f) as

Ĩ(f) =

∫
R2d

∣∣∣∇pff 1{f>0} + p
m

∣∣∣2 f dqdp =
∥∥∥−∇p · (f (∇pff 1{f>0} + p

m

))∥∥∥2

−1,(fdqdp)

= ‖ − ∇p ·
(
1{f>0}∇pf + f p

m )
)
‖2−1,(fdqdp)

= ‖ −∆p(1{f>0} f)−∇p · (f p
m )‖2−1,(fdqdp),

where ‖·‖−1,fdqdp is the dual norm (in duality with L2
∇(fdqdp)) from [DPZ13] and 1{f>0}∇pf = ∇p(1{f>0} f)

holds due to Stampacchia’s Lemma [KS00, Theorem A.1]. Following the variational characterization of
‖ · ‖−1,(fdqdp) from [DPZ13, (11)] we finally obtain

Ĩ(f) = sup
ϕ∈C∞c (R2d)

2

∫
R2d

(
∇pϕ ·

p

m
− 1{f>0}∆pϕ− 1

2 |∇pϕ|
2
)
f dqdp

= sup
ϕ∈C∞c (R2d)

2

∫
R2d

(
∇pϕ ·

p

m
−∆pϕ− 1

2 |∇pϕ|
2
)
f dqdp,

which is the claimed result. The same reference also provides that Ĩ =∞ iff I(f dqdp|µ) =∞.

Proof of Lemma A.1. We assume that
∇pf
f 1{f>0}+ p

m ∈ L
2(fdqdp) and show that the two individual terms

∇pf
f 1{f>0} and p

m are in L2
∇(fdqdp). Choose a smooth cut-off function ηR = η(x/R) with η : R2d → R,

η = 1 on B1(0) and η = 0 in R2d \B2(0). Then

−
∫
R2d

ηR
p

m
· ∇pf
f

1{f>0} f = −
∫
R2d

ηR
p

m
· ∇pf 1{f>0} = −

∫
R2d

ηR
p

m
· ∇p(1{f>0} f)

= +
1

m

∫
R2d

[
ηR d+ p · ∇pηR

]
1{f>0} f ≤

d

m
+

∫
R2d

p · ∇pηR f =: b(R).

As R→∞, the bound b(R) converges to d/m.
Therefore we have∫

R2d

ηR

[∣∣∣∇pff 1{f>0}

∣∣∣2 +
∣∣ p
m

∣∣2] f =

∫
R2d

ηR

∣∣∣∇pff 1{f>0} + p
m

∣∣∣2 f − 2

∫
R2d

ηR∇pf · pm1{f>0}

≤ 2b(R) +

∫
R2d

ηR

∣∣∣∇pff 1{f>0} + p
m

∣∣∣2 f.
By passing to the limit R→∞ we obtain

lim
R→∞

∫
R2d

ηR

[∣∣∣∇pff 1{f>0}

∣∣∣2 +
∣∣ p
m

∣∣2] f ≤ ∫
R2d

∣∣∣∇pff 1{f>0} + p
m

∣∣∣2 f +
2d

m
<∞

and thus
∇pf
f 1{f>0},

p
m ∈ L2(fdqdp). To conclude the proof of Lemma A.1 it remains to show that

∇pf
f 1{f>0},

p
m can be approximated by gradients of C∞c -functions. For ε > 0 we therefore define

ϕε := log(f ∨ ε)− log ε.

Then ϕε has compact support in R2d and ∇pϕε =
∇pf
f for f ≥ ε and 0 otherwise. Note that ϕε is not

necessarily smooth, but by convolution with a mollifier we can also achieve smoothness. Our aim is to show
that ‖∇pff 1{f>0} −∇pϕε‖fdqdp → 0 as ε→ 0. Indeed,∫

R2d

∣∣∣∣∇pff 1{f>0} −∇pϕε
∣∣∣∣2 f =

∫
{f<ε}

∣∣∣∇pff 1{f>0}

∣∣∣2 f ε→0−→ 0.

This proves that
∇pf
f 1{f>0} ∈ L2

∇(fdqdp). The calculation for p
m = ∇p

(
|p|2
2m

)
is similar.
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B Proof of Theorem 2.3

We prove Theorem 2.3 using the method of the duality equation; see e.g. [ACP82, RK82, BKP85, Eid90] for
examples. Throughout this appendix γ is fixed.

In addition to the duality definition of relative Fisher Information (24) we also use the Donsker-Varadhan
duality characterization of the relative entropy (21) for two probability measures (see e.g. [DE97, Lemma. 1.4.3]):

H(ν|µ) = sup
φ∈C∞c (R2d)

∫
R2d

φdν − log

∫
R2d

eφ dµ,

which implies the corresponding characterization of the free energy (22),

F(ν) = sup
φ∈C∞c (R2d)

∫
R2d

[
φ+H +

1

2
ψ ∗ ν

]
dν − log

∫
R2d

eφ dx+ logZH . (70)

Lemma B.1. For all g ∈ C1,2
b (R× R2d), all ρ ∈ C([0, T ];P(R2d)), and τ ∈ [0, T ],

Iγ(ρ) ≥
∫
R2d

ρ
(1

2
ψ ∗ ρ+H + g

)∣∣∣τ
0
−
∫ τ

0

∫
R2d

{
γ2
( d
m
− 1

2

p2

m2

)
+ ∂tg + γJ∇(H + ψ ∗ ρt) · ∇g + γ2∆pg +

γ2

2
|∇pg|2

}
dρtdt. (71)

Lemma B.2. Given φ ∈ C∞c (Rd) and ϕ ∈ C∞c ([0, T ] × Rd), there exists a function g ∈ L∞(0, T ; (W 1,∞ ∩
L1)(R2d))∩L2([0, T ]×Rdq ;H2(Rdp)) with ∂tg ∈ (L∞+L2)([0, T ]×R2d), which satisfies the following equation
pointwise a.e.:

∂tg + γJ∇(H + ψ ∗ ρt) · ∇g + γ2∆pg +
γ2

2
|∇pg|2 = γ2

(
∆pϕ+

1

2
|∇pϕ|2

)
in [0, T ]× Rd (72a)

g = φ at t = T. (72b)

This solution satisfies

t 7→
∫
R2d

egtdx is non-decreasing. (73)

The proof of Theorem 2.3 follows from these two lemmas. Using a smoothed version of the function g
given by Lemma B.2 (on the time interval [0, τ ]) in Lemma B.1, we find that

sup
ϕ,φ

∫
Rd
ρ
(1

2
ψ∗ρ+H+φ

)∣∣∣
t=τ
−γ2

∫ τ

0

∫
R2d

ρ
( d
m
−1

2

p2

m2
+∆pϕ+

1

2
|∇pϕ|2

)
≤ Iγ(ρ)+

∫
R2d

ρ
(1

2
ψ∗ρ+H+g

)∣∣∣
t=0

.

(74)
Using (70) we estimate the integral on the right-hand side by∫

R2d

ρ
(1

2
ψ ∗ ρ+H + g

)∣∣∣
t=0
≤ F(ρ0) + log

∫
R2d

eg0 dx− logZH .

From inequality (74) we deduce that, using gτ = φ,

sup
ϕ,φ

∫
Rd
ρ
(1

2
ψ ∗ ρ+H + φ

)∣∣∣
t=τ
− log

∫
R2d

eφ dx− γ2

∫ τ

0

∫
R2d

ρ
( d
m
− 1

2

p2

m2
+ ∆pϕ+

1

2
|∇pϕ|2

)
≤

≤ Iγ(ρ) + F(ρ0) + log

∫
R2d e

g0 dx∫
R2d egτ dx

− logZH . (75)
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By setting ϕ(q, p) = −ϕ̃(q, p)− p2/2m (which is allowable since
∫
Hρ <∞, as shown in Lemma B.3 below),

the third integral in (75) becomes

−γ2

∫ τ

0

∫
R2d

ρ
( p
m
∇pϕ̃−∆pϕ̃+

1

2
|∇pϕ̃|2

)
.

We now combine (75), the duality characterizations of free energy (70) and of the relative Fisher informa-
tion (24), and estimate (73), to find

F(ρτ ) + γ2 sup
ϕ̃∈C∞c (R×R2d)

∫ τ

0

∫
R2d

ρ
(
− p

m
∇pϕ̃+ ∆pϕ̃−

1

2
|∇pϕ̃|2

)
≤ F(ρ0) + Iγ(ρ).

By a standard argument, based on the C2-separability of C∞c , we can move the supremum inside of the
time integral to find

F(ρτ ) +
γ2

2

∫ τ

0

I(ρt|µ) dt ≤ F(ρ0) + Iγ(ρ).

This proves Theorem 2.3.

Proof of Lemma B.1. Formally, (71) follows from substituting in (19) f = ψ ∗ ρ + H + g. To prove the
statement rigorously, we use

Lemma B.3. Let ρ ∈ C([0, T ];P(R2d)).

1. The map t 7→ ψ ∗ ρt is continuous from [0, T ] to Cb(Rd);

2. If Iγ(ρ),H(ρ|Z−1
H e−H) <∞, then

∫
Hρt <∞ for all t ∈ [0, T ].

Accepting this lemma for the moment, the result follows from choosing in (19) the function

fn = δn ∗t (χδn ∗t ψ ∗x ρ) +Hξn + g,

for some g ∈ C2,1([0, T ]×R2d) and χ ∈ C∞c ((0, T )). Here δn(t) := nδ(nt) is an approximation of the identity,
ξn(x) = ξ(xn−2d) is a truncation sequence, and we write ∗t and ∗x for convolution in time and in space
(x = (q, p)), respectively. (The convolution ψ ∗x ρ is the same as the notation ψ ∗ ρ used in the rest of this
paper.) Upon rearranging the time convolutions, letting n→∞, using Lemma B.3, and letting χ converge
to the function 1, we recover (74).

Proof of Lemma B.3. The first part follows from the bound ψ ∈ L1(Rd)∩C1
b (Rd). Fix ε > 0, t ∈ [0, T ], and

take a sequence tn → t. For each n, choose xn ∈ R2d such that |ψ ∗ (ρt−ρtn)|(xn) ≥ ‖ψ ∗ (ρt−ρtn)‖∞− ε/2.
Since ρtn → ρt narrowly, {ρtn}n is tight, implying that xn can be chosen bounded; let xnk → x as k →∞.
Then

|(ψ ∗ ρt)(xn)− (ψ ∗ ρtn)(xn)| ≤ |(ψ ∗ ρt)(xn)− (ψ ∗ ρt)(x)|+ |(ψ ∗ ρt)(x)− (ψ ∗ ρtn)(x)|
+ |(ψ ∗ ρtn)(x)− (ψ ∗ ρtn)(xn)|.

The last term on the right-hand side satisfies∫
|ψ(x− y)− ψ(xn − y)|ρtn(dy)→ 0 since ψ(xn − ·)→ ψ(x− ·) uniformly,

and a similar argument applies to the first term. The middle term converges to zero by the narrow convergence
of ρtn to ρt. This proves the first part.
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For the second part, we take in (19) the function f(q, p, t) = ζ(H(q, p)), where ζ ∈ C∞([0,∞)) is a
smooth, bounded, increasing truncation of the function f(s) = s, satisfying 0 ≤ ζ ′ ≤ 1 and ζ ′′ ≤ 0. Then we
find∫

R2d

ζ(H)ρτ −
∫
R2d

ζ(H)ρ0 − Iγ(ρ) ≤
τ∫

0

∫
R2d

(
− γζ ′ p

m
· ∇qψ ∗ ρt + γ2

(
ζ ′′ + 1

2ζ
′2 − ζ ′

) p2

m2
+ γ2ζ ′

d

m

)
dρtdt

≤
τ∫

0

∫
R2d

(
1

2
ζ ′|∇qψ ∗ ρt|2 + γ2ζ ′

d

m

)
dρtdt ≤

τ

2
‖∇qψ‖2∞ + γ2 d

m
τ.

The result follows upon letting ζ converge to the identity.
Note that this inequality gives a bound on

∫
Hρt for fixed γ, but this bound breaks down when γ →∞.

The bound (29), which is directly derived from (28), gives a γ-independent estimate.

Proof of Lemma B.2. The Hopf-Cole transformation g = 2 log(G+ 1) transforms equation (72a) into

∂tG+ γJ∇(H + ψ ∗ ρt) · ∇G+ γ2∆pG =
γ2

2
(G+ 1)

(
∆pϕ+

1

2
|∇pϕ|2

)
, (76)

with final datum GT = eφ/2 − 1.
The existence and uniqueness of a solution of this equation is standard; a proof follows along these lines:

• First approximate V by a function Vδ with the property that ∇Vδ is bounded for each δ, and d2Vδ is
bounded uniformly in δ (this is possible by assumption (V1));

• Solve the equation (76), with V replaced by Vδ, by e.g. [Deg86, Appendix 1];

• Applying the maximum principle to weighted derivatives of Gδ, as in [Deg86, Section III], obtain δ-
independent bounds on Gδ in L∞([0, T ] × R2d) and L∞(0, T ;L1(R2d)), on (1 + |q|2 + |p|2)α∇Gδ in
L∞([0, T ]× R2d) for all α > 0, on ∆pGδ in L2([0, T ]× R2d), and on ∂tGδ in (L∞ + L2)([0, T ]× R2d);

• Pass to the limit δ → 0, with Gδ
∗
⇀ G in L∞; then G solves equation (76) in the pointwise sense, with

the same bounds on G and its derivatives.

The estimate (73) follows from the calculation

d

dt

1

2

∫
(G+ 1)2 =

∫
(G+ 1)∂tG = γ2

∫
(G+ 1)

(
−∆pG+ 1

2 (G+ 1)( 1
2 |∇pϕ|

2 + ∆pϕ)
)

= γ2

∫
|∇pG− 1

2 (G+ 1)∇pϕ|2 ≥ 0.

Since
∫

(G+ 1)2 =
∫
eg, (73) follows.
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Le cas indépendant du temps. Comptes Rendus de l’Académie des Sciences de Paris, Série A,
282:971–974, 1976.

[BGL+14] D. Bakry, I. Gentil, M. Ledoux, et al. Analysis and geometry of Markov diffusion operators.
Springer, 2014.

[BKP85] M. Bertsch, R. Kersner, and L. A. Peletier. Positivity versus localization in degenerate diffusion
equations. Nonl. Anal., 9(9):987–1008, 1985.

[BvR14] F. Barret and M. von Renesse. Averaging principle for diffusion processes via Dirichlet forms.
Potential Anal., 41(4):1033–1063, 2014.

[CDG02] D. Cioranescu, A. Damlamian, and G. Griso. Periodic unfolding and homogenization. Comptes
Rendus Mathematique, 335(1):99–104, 2002.

[CDG08] D. Cioranescu, A. Damlamian, and G. Griso. The periodic unfolding method in homogenization.
SIAM Journal on Mathematical Analysis, 40:1585, 2008.

[CF06] S. Cerrai and M. Freidlin. On the Smoluchowski-Kramers approximation for a system with an
infinite number of degrees of freedom. Probab. Theory Related Fields, 135(3):363–394, 2006.

[CIL92] M. Crandall, H. Ishii, and P. Lions. User’s guide to viscosity solutions of second order partial
differential equations. In Amer. Math. Soc, volume 27, pages 1–67, 1992.

35



[DE97] P. Dupuis and R. S. Ellis. A Weak Convergence Approach to the Theory of Large Deviations,
volume 902. John Wiley & Sons, 1997.

[Deg86] P. Degond. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and
2 space dimensions. Annales scientifiques de l’École Normale Supérieure, 19(4):519–542, 1986.
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