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Abstract
This paper examines the mathematical analysis of an electromagnetic inverse 
problem governed by nonlinear evolutionary Maxwell’s equations. The aim of 
the inverse problem is to recover electromagnetic fields at the past time by noisy 
measurement data at the present time. We consider the Tikhonov regularization 
method to cope with the ill-posedness of the governing backward nonlinear 
Maxwell’s equations. By means of the semigroup theory, we study its convergence 
analysis and derive optimality conditions through a rigorous first-order analysis 
and adjoint calculus. The final part of the paper is focused on the convergence 
rate analysis of the Tikhonov regularization method under a variational source 
condition (VSC), which leads to power-type convergence rates. Employing the 
spectral theory, the complex interpolation theory and fractional Sobolev spaces, 
we validate the proposed VSC on account of an appropriate regularity assumption 
on the exact initial data and the material parameters.

Keywords: nonlinear Maxwell’s equations, ill-posed backward evolution 
equations, Tikhonov regularization, variational source condition,  
inverse problems

1.  Introduction

This paper is concerned with the mathematical analysis for an electromagnetic inverse prob-
lem governed by Maxwell’s equations. The inverse problem is to recover (unknown) electro
magnetic fields at the past time (t = 0) by measurement at the present time (t = T > 0). As the 
governing forward problem, we focus on nonlinear hyperbolic Maxwell’s equations, where 
the nonlinearity arises from the modelling of nonlinear material properties as encountered in 
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various electromagnetic materials such as ferromagnetic materials or superconductors (see 
[24, 39, 41]). To be more precise, we consider the following nonlinear hyperbolic Maxwell 
system:





ε∂tE(x, t)−∇× H = F1(t, x, E(x, t), H(x, t)) in Ω× (0, T),
µ∂tH(x, t) +∇× E = F2(t, x, E(x, t), H(x, t)) inΩ× (0, T),

E(x, t)× n = 0 on ∂Ω× (0, T).
� (1.1)

In the setting of (1.1), Ω ⊂ R3 denotes a bounded Lipschitz domain and 
F1, F2 : [0, T]× Ω× R3 × R3 → R3 are (given) nonlinear functions. Furthermore, 
E : Ω× [0, T] → R3 denotes the electric field, H : Ω× [0, T] → R3 the magnetic field, 
ε : Ω → R3×3 the electric permittivity and µ : Ω → R3×3 the magnetic permeability. The pre-
cise mathematical assumptions for all the data involved in (1.1) will be specified in section 2. 
Let us underline that, in the Maxwell forward system (1.1), the material parameters ε and µ 
are assumed to be known data. We refer to [11, 26] for ill-posed identification problems of the 
electric permittivity and the magnetic permeability in the linear counterpart to (1.1).

Given data for the electromagnetic fields at the final time (e†, h†), our goal is to recover the 
initial value (E(·, 0), H(·, 0)) =: (u†, v†) in the space

Y := {(u, v) ∈ H0(curl)× H(curl) | εu ∈ H(div), µv ∈ H0(div)},

where the imposed divergence conditions in Y are motivated by the physical Gauss law for 
magnetic and electric fields. Note that, since ε and µ are only of class L∞(Ω)3×3, every element 
of Y does not necessarily enjoy a higher regularity in Hs(Ω)× Hs(Ω) for s > 0. However, by 
the Maxwell compactness embedding theory [29, 34], the embedding Y ↪→ L2(Ω)× L2(Ω) 
is compact. Our analysis will benefit from this compactness result. The considered inverse 
problem is ill-posed in the following sense: If we replace the exact terminal data (e†, h†) by a 
noisy pattern (eδ , hδ) satisfying

‖(eδ , hδ)− (e†, h†)‖L2
ε(Ω)×L2

µ(Ω) � δ,

where the parameter δ > 0 is used to represent a noise level in the data, then the initial value 
of the (mild) solution to (1.1) may not belong to the space Y. Even if it belongs to Y and δ is 
small, the solution could still be far from the exact initial value (u†, v†) ∈ Y.

To deal with the ill-posedness, we consider the Tikhonov regularization technique by solv-
ing a least-squares nonlinear minimization problem. Our main goal is to examine the conv
ergence rate of the regularized solution under an appropriate choice of the noise level δ and 
the Tikhonov regularization parameter. To obtain the convergence rate, one usually requires 
an additional smoothness assumption on the true solution, well-known as the so-called source 
condition. In general, (classical) source conditions could be restrictive since they require 
the Fréchet differentiability of the forward operator and further properties on the adjoint of 
the Fréchet-derivative (see [10, 12, 23, 25]). Our present work shall focus on the so-called  
variational source condition (VSC). The concept of VSC was originally introduced by 
Hofmann et al [18] for the case of a linear index function Ψ. Convergence rates for a general 
index function Ψ were shown independently in [6, 13, 16]. We also refer to [14] for a modified 
proof of the convergence rate result by [16]. In contrast to the classical source condition, VSC 
does not require any differentiability assumption on the forward operator. More importantly, 
under an appropriate parameter choice rule (see [22]), convergence rates can be deduced from 
VSC in a straightforward manner.

In literature, there is only a small number of contributions towards the verification of VSC 
for inverse problems governed by partial differential equations. For abstract linear operators 
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and � p penalties with respect to certain bases, we refer to [2, 5, 7] and references therein. 
Recently, Hohage and Weidling [19, 20] shown the validity of VSC for the Tikhonov regu-
larization of inverse scattering problems. In particular, based on VSC, they obtained conv
ergence with logarithmic-type rates for the corresponding regularized solution. For more 
details between VSC and classical source conditions, we refer the reader to [19–21]. See also 
[7] concerning recent results on VSC for elastic-net regularizations.

In this work, we propose VSC for the Tikhonov regularization of the ill-posed backward 
nonlinear Maxwell’s equation (1.1). The main novelty of our contribution includes the verifi-
cation of VSC by means of the spectral theory and the complex interpolation theory under an 
appropriate regularity assumption on (e†, h†) and a piecewise regularity assumption on ε and 
µ (see (A4), p 17). In particular, this assumption is related to the physical material structure of 
the medium Ω consisting of different heterogeneous materials. Since our techniques are dif-
ferent from those proposed in [19–21], we believe that our results may help enrich the works 
on VSC for inverse problems governed by partial differential equations. In addition to the veri-
fication of VSC, we also examine the sensitivity analysis of the associated Maxwell forward 
operator and establish its Gâteaux-differentiability property. In particular, this result allows us 
to develop adjoint techniques and derive first-order optimality conditions for the associated 
Tikhonov regularization problem. Then, based on VSC, we obtain convergence rates for the 
corresponding adjoint state. To our best knowledge, these results have not been obtained in the 
literature of PDE-constrained optimization (see [38–40]).

The outline of the paper is as follows. In section 2, we provide the mathematical form
ulation for the ill-posed backward nonlinear Maxwell’s equation  (1.1) and the associated 
Tikhohov regularization. Section 3 is concerned with the well-posedneess of Tikhohov regu-
larization and its first-order sensitivity analysis. In section 4, we establish the validity of VSC 
for the considered inverse problem and derive convergence rates for regularised solutions and 
adjoint states.

2.  Preliminaries and mathematical formulation

Throughout this paper, for a given Hilbert space H , we denote by (·, ·)H the standard inner 
product and by ‖ · ‖H  the standard norm of H . If H  is continuously embedded into a normed 
vector space V , then we write V ↪→ H . The notation L(X, Y) stands for the space of all bounded 
linear operator from a normed space X  into another normed space Y  endowed with the stan-
dard operator norm ‖ · ‖L(X,Y). If Y = X , then we use the abbreviation L(X). For an interval 
J ⊂ R, 1 � p � ∞, and a normed space X , let L p(J; X) denote the classical L p-Bochner 
space. Moreover, C([a, b]; X) denotes the Banach space of all continuous function from [a, b] 
to X . A bold typeface is used to indicate a three-dimensional vector function or a Hilbert space 
of three-dimensional vector functions. In our analysis, we mainly deal with the following 
Hilbert spaces:

H(curl) : = {q ∈ L2(Ω) | curl q ∈ L2(Ω)},
H0(curl) : = {q ∈ H(curl) | q × n = 0 on ∂Ω},

H(div) : = {q ∈ L2(Ω) | div q ∈ L2(Ω)},
H0(div) : = {q ∈ H(div) | q · n = 0 on ∂Ω},

where the curl- and div -operators as well as the normal and tangential traces are understood 
in the sense of distributions (see [15]). In this paper, we make use of the notation A � B to 
indicate that A � CB for some positive constant C that is independent of A and B.
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For a symmetric and uniformly positive definite function α ∈ L∞(Ω)3×3, the notation 
L2
α(Ω) stands for the α-weighted L2(Ω)-space with the weighted scalar product (α·, ·)L2(Ω). 

Then, we define the weighted Hilbert space X := L2
ε(Ω)× L2

µ(Ω), equipped with the weighted 
scalar product

((u, v), (û, v̂))X := (εu, û)L2(Ω) + (µv, v̂)L2(Ω) ∀ (u, v), (û, v̂) ∈ X.

Let us now introduce the (unbounded) Maxwell operator

A : D(A) ⊂ X → X, A := −
(

ε 0
0 µ

)−1 ( 0 −curl
curl 0

)
,

whose domain is given by D(A) := H0(curl)× H(curl).
Throughout this paper, we assume that the following standing assumptions hold:

	(A0) � Let the electric permittivity and the magetic permeability ε,µ : Ω → R3×3 be of class 
L∞(Ω)3×3, symmetric and uniformly positive definite in the sense that there exist posi-
tive real numbers ε  and µ  such that

ξTε(x)ξ � ε|ξ|2 and ξTµ(x)ξ � µ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R3.

	(A1) � For every t ∈ [0, T], the operator F(t, ·) : X → X given by

(u, v) �→ (µ−1F1(t, x, (u, v)(x))), ε−1F2(t, x, (u, v)(x))

		 is well-defined, and the mapping F : [0, T]× X → X is globally Lipschitz-continuous 
with the Lipschitz constant L > 0, i.e.

‖F(t1, (u1, v1))− F(t2, (u2, v2))‖X � L(|t1 − t2|+ ‖(u1, v1)− (u2, v2)‖X)

		 for all t1, t2 ∈ [0, T] and (u1, v1), (u2, v2) ∈ X.

Applying the Maxwell operator A, the nonlinear hyperbolic Maxwell system (1.1) can be 
reformulate as the following abstract Cauchy problem:

{( d
dt −A

)
(E, H)(t) = F(t, E(t), H(t)) in (0, T],

(E, H)(0) = (u, v).� (2.1)

Obviously, A : D(A) ⊂ X → X is a densely defined, and closed operator. Moreover, due to 
the choice of the weighted Hilbert space X, the operator A is skew-adjoint, i.e. A∗ = −A with 
D(A∗) = D(A) (see, e.g. [4, lemma A.2 and (3.4)] for this standard result). Thus, by virtue 
of Stone’s theorem [33, theorem 10.8, p 41], A generates a strongly continuous group {T}t∈R 
of unitary operators on X.

Definition 2.1.  Let (u, v) ∈ X. A continuous function (E, H) ∈ C([0, T]; X) is called a mild 
solution of (2.1) associated with (u, v) if and only if

(E, H)(t) = Tt(u, v) +
∫ t

0
Tt−sF(s, E(s), H(s))ds ∀ t ∈ [0, T].

Thanks to the Lipschitz property (A1), a classical result [33] implies that the Cauchy prob-
lem (2.1) admits for every (u, v) ∈ X a unique mild solution (E, H) ∈ C([0, T]; X). We denote 
the mild solution operator associated with (2.1) by
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G : X → C([0, T]; X), (u, v) �→ (E, H),

which assigns to every initial data (u, v) ∈ X the unique mild solution (E, H) ∈ C([0, T]; X) 
of (2.1). Furthermore, we introduce the operator

S : X → X, S(u, v) := G(u, v)(T).

Let us now state the regularity assumption on the initial data we consider throughout this 
paper:

	(A2) � Suppose that the exact true initial value satisfies (u†, v†) ∈ Y.

In all what follows, we set

(e†, h†) := S(u†, v†).

As pointed out in the introduction, we aim at recovering the initial value of the mild solu-
tion for (2.1) from a given measurement at final time with noise data, which we denote by 
(eδ , hδ)∈ X satisfying

‖(eδ , hδ)− (e†, h†)‖X � δ,� (2.2)

with δ > 0 representing the noise level in the data. Then, the inverse problem reads as follows: 
Find (u, v) ∈ Y such that S(u, v) = (eδ , hδ). Our goal is to investigate the corresponding 
Tikhonov regularization method:

J κ
δ (u, v) :=

1
2
‖S(u, v)− (eδ , hδ)‖2

X +
κ

2
‖(u, v)‖2

Y → min, subject to(u, v) ∈ Y.� (2.3)

In the Tikhonov minimization problem (2.3), we employ the full norm of Y, which is defined 
by

‖(u, v)‖2
Y := ‖u‖2

H(curl) + ‖v‖2
H(curl) + ‖div (εu)‖2

L2(Ω) + ‖div (µv)‖2
L2(Ω) ∀(u, v) ∈ Y.

The use of the full norm is mainly required for the analysis of VSC (see section 4). If we are 
only interested in the existence of a minimizer for (2.3), then, thanks to (3.8), we may also 
replace the full norm ‖ · ‖Y  by the semi-norm

|(u, v)|2Y := ‖curl u‖2
L2(Ω) + ‖div (εu)‖2

L2(Ω)

+ ‖curl v‖2
L2(Ω) + ‖div (µv)‖2

L2(Ω) ∀(u, v) ∈ Y.
� (2.4)

Note that the Friedrichs–Poincaré-type inequalities:

‖u‖L2(Ω) � ‖curl u‖L2(Ω) + ‖div (εu)‖L2(Ω) ∀ u ∈ H0(curl) ∩ ε−1H(div)

and

‖v‖L2(Ω) � ‖curl v‖L2(Ω) + ‖div (µv)‖L2(Ω) ∀ v ∈ H(curl) ∩ µ−1H0(div)

hold true, if Ω is simply connected and its boundary is connected. This is a well-known con-
sequence of the Maxwell compactness embedding theory [29, 34]. Since we do not make any 
additional geometrical assumption on Ω, the semi-norm (2.4) is not equivalent to the full norm 
of Y.

We close this section by providing a classical result on the energy balance equality for 
every strongly continuous group of unitary operators on X. For a proof, we refer to [42, lemma 
2.1], which is based on a density argument and the semigroup theory.
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Lemma 2.2.  Let {St}t∈R be a strongly continuous group of unitary operators on X.  
Furthermore, suppose that (e, h) ∈ C([0, T]; X), (e0, h0) ∈ X and (f1, f2) ∈ L1((0, T); X)  
satisfy

(e, h)(t) = St(e0, h0) +

∫ t

0
St−s(f1, f2)(s)ds ∀ t ∈ [0, T].

Then, the energy balance equality

‖(e, h)(t)‖2
X = ‖(e0, h0)‖2

X + 2
∫ t

0
((f1, f2)(s), (e, h)(s))Xds� (2.5)

holds for all t ∈ [0, T].

As investigated in [40], the energy balance equality is an important tool for the mathematical 
analysis of the optimal control of nonlinear evolutionary Maxwell’s equations. In our case, the 
energy balance equality is important for the case, where F is monotone (see proposition 3.3).

3. Tikhonov regularization and its sensitivity analysis

In section 3.1, we first recall some results from the Tikhonov regularization theory (see [3, 14, 
16, 18]). Then, in section 3.2, we derive some important properties for the Tikhonov regular-
ization (2.3), leading to an existence and convergence result. The final part of this section is 
devoted to the analysis of the adjoint state associated with the Tikhonov regularization (2.3) 
and its convergence behavior.

3.1. Tikhonov regularization

Let W  and Z  be Hilbert spaces and F : W → Z  be an operator with an unbounded inverse 
F−1. Given z ∈ Z , we look for a solution w ∈ W  of the following operator equation:

F(w) = z.� (3.1)

This operator equation is ill-posed in the sense that a solution possibly does not exist, if the 
exact data z comes with small noisy, namely only the noise data zδ of z available satisfying

‖z − zδ‖Z � δ,

for some small noisy level δ > 0. Even if a solution exists, then it could be crucially far away 
from the original one. To obtain a stable approximation of a norm-minimizing solution of 
(3.1), i.e. a solution w† ∈ W  to (3.1) such that

F(w†) = z and ‖w†‖W = min{‖w‖W | F(w) = z}.� (3.2)

Tikhonov proposed the use of a regularized solution wδ
κ, given by a minimizer of the following 

minimization problem:

Tδ
κ(w) :=

1
2
‖F(w)− zδ‖2

Z + κ ‖w‖2
W → min, subject to w ∈ W.� (3.3)

We refer to [8, 31], [18, section 4.1] and [32, section 4.1] for the convergence analysis of wδ
κ 

as κ, δ → 0. 
In general, however, the convergence rate of wδ

κ may be arbitrary slow (see [8]). To achieve 
an explicit convergence rate of the regularized solution wδ

κ, one needs to choose an appropriate 
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parameter κ = κ(δ, zδ) and impose an additional condition on w†. In the literature, this condi-
tion on w† is called a source condition. In particular, the variational source condition of the 
form

β

2
‖w† − w‖2

W �
1
2
‖w‖2

W − 1
2
‖w†‖2

W +Ψ(‖F(w†)− F(w)‖Z) ∀w ∈ W
� (3.4)

became more popular for the description of the solution smoothness. In the setting of (3.4), 
β ∈ (0, 1] is a fixed constant, and Ψ is a concave index function. Notice that a function Ψ is 
called an index function if and only if Ψ : (0,∞) → (0,∞) is continuous and strictly increas-

ing and satisfies limt→0 Ψ(t) = 0. As already established in [14, 16], the condition (3.4) 

implies the following convergence rate:

‖wδ
κ(δ) − w†‖2

W = O(Ψ(δ)) as δ → 0.� (3.5)

In other words, the index function can determine the convergence rate, if the regularization 
parameter is chosen appropriately. In particular, we have following result:

Proposition 3.1 ([22, theorem 1]).  Let the regularization parameter be chosen a prio-

ri as κ = κ(δ) = δ2

Ψ(δ) . Then, under the variational source condition (3.4), the convergence 

property (3.5) holds true for the regularized solution wδ
κ(δ).

In this paper, we only apply a priori rules for choosing the regularization parameter when 
minimizing Tδ

κ, because the discussion of a posteriori rules such as variants of the discrepancy 
principle or Lepskiĭ principle, which also depend on zδ, is beyond the scope of this paper. We 
refer the reader e.g. to [7, 22] for a posteriori parameter choice rules under variational source 
conditions.

3.2.  Mathematical properties of (2.3)

We begin by recalling some standard results from the semigroup theory.

Lemma 3.2.  Let assumptions (A0) and (A1) be satisfied. Then, the mild solution operator 
G : X → C([0, T]; X) satisfies

‖G(u1, v1)− G(u2, v2)‖C([0,T];X) � eLt‖(u1, v1)− (u2, v2)‖X� (3.6)

for all (ui, vi) ∈ X, i = 1, 2. In addition, if (u, v) ∈ Y, then G(u, v) ∈
C([0, T]; D(A)) ∩ C1([0, T]; X) is the classical solution of the Cauchy problem (2.1).

Proof.  The standard argument in [33, p 184] implies that G : X → C([0, T]; X) is well-
defined and the estimate (3.6) holds true. Let (u, v) ∈ Y ⊂ D(A). Then, in view of (A1), 
the argument in [33, p 189] ensures that the mild solution (E, H) := G(u, v) is Lipschitz 
continuous, which implies f := F(·, (E, H)(·)) ∈ C0,1([0, T]; X). In particular, the reflexiv-
ity of X implies that f ∈ W1,∞((0, T); X). For this reason along with the regularity proper-
ty (u, v) ∈ Y ⊂ D(A), we may apply [9, corollary 7.6, p 440] to deduce that the solution 
(E, H) ∈ C([0, T]; D(A)) ∩ C1([0, T]; X) is the classical solution.� □ 

Setting t = T  into (3.6), we immediately obtain the Lipschitz continuity of the operator 
S : X → X:

D-H Chen and I Yousept﻿Inverse Problems 35 (2019) 025001
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‖S(u1, v1)− S(u2, v2)‖X � eLT‖(u1, v1)− (u2, v2)‖X ∀(u1, v1), (u2, v2) ∈ X.
� (3.7)

In following lemma, we establish another estimate result for the operator S : X → X, which is 
significant for our subsequent analysis.

Proposition 3.3.  Under the assumptions of lemma 3.2, the forward operator S  is  
sequentially weak-to-strong continuous from Y to X. More importantly, there exists a constant 
CS > 0 such that

‖(u1, v1)− (u2, v2)‖X � CS‖S(u1, v1)− S(u2, v2)‖X ∀(u1, v1), (u2, v2) ∈ X.
� (3.8)

If F, in addition, satisfies the following monotonicity condition:

(F(t, (u1, v1))− F(t, (u2, v2)), (u1, v1)− (u2, v2))X � 0 ∀t ∈ [0, T],� (3.9)

for all (ui, vi) ∈ X, (i = 1, 2), then the estimate (3.8) holds with CS = 1.

Proof.  Let {(un, vn)}∞n=1 ⊂ Y be a sequence, converging weakly to (u, v) in Y. The com-
pact embedding Y ↪→ X (see [29, 34]) implies that (un, vn) → (u, v) strongly in X as n → ∞. 
Then, (3.7) implies the strong convergence S(un, vn) → S(u, v) in X. In conclusion, S : Y → X 
is sequentially weak-to-strong continuous.

Let us now prove the main estimate (3.8). For all 0 � s� T , we obtain by the definition of 
mild solution (E, H) at t = s and t = T  that

(E, H)(T) = TT(E, H)(0) +
∫ T

0
TT−τF(τ , (E, H)(τ))dτ ,� (3.10)

and

(E, H)(s) = Ts(E, H)(0) +
∫ s

0
Ts−τF(τ , (E, H)(τ))dτ .� (3.11)

Applying TT−s to both sides of (3.11) and taking advantage of the group property of the 
strongly continuous group {Tt}t∈R, it follows that

TT−s(E, H)(s) = TT(E, H)(0) +
∫ s

0
TT−τF(τ , (E, H)(τ))dτ ∀ s ∈ [0, T].

In view of this and (3.10), we obtain that

(E, H)(T) = TT−s(E, H)(s) +
∫ T

s
TT−τF(τ , (E, H)(τ))dτ ∀ s ∈ [0, T].

� (3.12)

Then, applying Ts−T  to the above equality yields that

(E, H)(s) = Ts−T(E, H)(T)−
∫ T

s
Ts−τF(τ , (E, H)(τ))dτ ∀ s ∈ [0, T].
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Therefore, for two different solution U1 := G(u1, v1) and U2 := G(u2, v2), it holds that

(U1 − U2)(s) = Ts−T(U1 − U2)(T)−
∫ T

s
Ts−τ (F(τ , U1(τ))− F(τ , U2(τ))) dτ ∀ s ∈ [0, T].

As the group {Tt}t∈R is unitary and F is globally Lipschitz-continuous with the Lipschitz 
constant L > 0, we obtain from the above identity that

‖(U1 − U2)(s)‖X � ‖(U1 − U2)(T)‖X +

∫ T

s
L‖(U1 − U2)(τ)‖Xdτ ∀ s ∈ [0, T],

which implies that

‖(U1 − U2)(T − s)‖X � ‖(U1 − U2)(T)‖X +

∫ T

T−s
L‖(U1 − U2)(τ)‖Xdτ ∀ s ∈ [0, T].

Setting f (s) := ‖(U1 − U2)(T − s)‖X for all s ∈ [0, T], we deduce from the above inequality 
by changing of variables that

f (s) � ‖(U1 − U2)(T)‖X +

∫ s

0
L‖(U1 − U2)(T − w)‖Xdw

� ‖(U1 − U2)(T)‖X +

∫ s

0
Lf (w)dw ∀ s ∈ [0, T].

Thus, the classical Gronwall’s inequality implies f (s) � exp(Ls)‖(U1 − U2)(T)‖ for all 
s ∈ [0, T]. Taking s = T , we get

‖(u1, v1)− (u2, v2)‖X � exp(LT)‖(U1 − U2)(T)‖X = exp(LT)‖S(u1, v1)− S(u2, v2)‖X.

Now suppose that F additionally satisfies (3.9). Then, the energy balanced equality implies 
that

‖(U1 − U2)(T)‖2
X =‖(U1 − U2)(0)‖2

X

+ 2
∫ T

0
(F(t, U1(t))− F(t, U2(t)), U1(t)− U2(t))Xdt,

which due to (3.9) yields that ‖(u1, v1)− (u2, v2)‖X � ‖S(u1, v1)− S(u2, v2)‖X.� □ 

Based on (A2), proposition 3.3 immediately implies that (u†, v†) ∈ Y is the unique solu-
tion to the operator equation: Find (u, v) ∈ Y such that

S(u, v) = (e†, h†) in X.

Thus, in view of well-known results [8, 31] (see [18, section 4.1] and [32, section 4.1]), propo-
sition 3.3 leads to the following result:

Theorem 3.4.  Assume that the hypothesises ( A0)–( A2) hold true.

	(1)	�For each κ > 0 and (Eδ , Hδ) ∈ X, there exists a minimiser (uδ
κ, vδκ) ∈ Y of (2.3).

	(2)	�Let {δn}∞n=1 ⊂ R+ be a sequence converging monotonically to zero and (eδn , hδn) satisfy
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‖(eδn , hδn)− (e†, h†)‖X � δn.

		 Moreover, we assume that the regularization parameter κn fulfils

κn → 0 and
δ2

n

κn
→ 0 as n → ∞.� (3.13)

		 If (un, vn) is a minimiser of (2.3) with (eδ , hδ) and κ replaced by (eδn , hδn) and κn,  
respectively, then the sequence {(un, vn)}∞n=1 converges strongly in Y to the exact solution 
(u†, v†) as n → ∞.

3.3.  First-order analysis of (2.3)

Our first-order analysis relies on the following assumptions for F : [0, T]× X → X:

	(A3a)  For each t ∈ [0, T], F(t, ·) : X → X is Gâteaux-differentiable.
	(A3b) � The Gâteaux derivative is assumed to satisfy the following property: If

tn → t in [0, T] and (un, vn) → (u, v)strongly in X,

then for every (w, y) ∈ X it holds that

lim
n→∞

‖F′(tn, un, vn)(w, y)− F′(t, u, v)(w, y)‖X = 0.

	(A3c) � The function (t, u, v) �→ F′(t, u, v) maps every bounded set in [0, T]× X into a bounded 
set in L(X).

Lemma 3.5.  Let ( A0)–( A1) and ( A3) be satisfied. Then, the operator S : X → X is weakly 
directionally differentiable. The weak directional derivative of S  at (u, v) ∈ X in the direction 
(δu, δv) ∈ X is given S′(u, v)(δu, δv) = (δE, δH)(T), where (δE, δH) ∈ C([0, T]; X) satisfies 
the following integral equation

(δE, δH)(t) = Tt(δu, δv) +
∫ t

0
Tt−sF′(s, (E, H)(s))(δE, δH)(s)ds ∀ t ∈ [0, T].

� (3.14)

Proof.  Let (u, v), (δu, δv) ∈ X and (E, H) = G(u, v). Further, for every τ ∈ R+, we write 
(Eτ , Hτ ) = G(u + τδu, v + τδv). Thus, according to (3.6), we have

(
Eτ − E

τ
,

Hτ − H
τ

)
(t) = Tt(δu, δv) +

∫ t

0
Tt−sIτ (s)ds,� (3.15)

where

Iτ (s) :=
F(s, (Eτ , Hτ )(s))− F(s, (E, H)(s))

τ
.� (3.16)

Lemma 3.2 implies that {(Eτ−E
τ , Hτ−H

τ )}τ>0 is bounded in C([0, T]; X), and hence there ex-
ists a subsequence, which we still denote by {(Eτ−E

τ , Hτ−H
τ )}τ>0, such that

(
Eτ − E

τ
,

Hτ − H
τ

) ⇀ (δE, δH) weakly star in L∞((0, T), X) as τ → 0+,
� (3.17)

for some (δE, δH) ∈ L∞((0, T), X).

D-H Chen and I Yousept﻿Inverse Problems 35 (2019) 025001



11

For the sake of brevity, we write Uτ = (Eτ , Hτ ) and U = (E, H). Let w ∈ L1((0, T); X) 
be arbitrarily fixed. The mean-value theorem in the integral form implies that for almost all 
s ∈ (0, T),

(Iτ (s), w(s))X

=(F′(s, U(s))
Uτ (s)− U(s)

τ
, w(s))X + (Gτ (s)

Uτ (s)− U(s)
τ

, w(s))X,
� (3.18)

where

Gτ (s)x :=
∫ 1

0
F′(s, (U + θ(Uτ − U))(s))x − F′(s, U(s))xdθ ∀ x ∈ X.

As U ∈ C([0, T]; X) and {Uτ}τ>0 ⊂ C([0, T]; X) is bounded, (A3c) implies the existence of a 
positive constant M > 0, independent of t and τ , such that

‖G∗
τ (t)‖L(X) = ‖Gτ (t)‖L(X) � M ∀t ∈ [0, T], ∀τ ∈ R+.� (3.19)

Also, by (A3b), it holds that

Gτ (·)x ∈ C([0, T]; X) ∀x ∈ X, ∀τ ∈ R+.� (3.20)

Therefore, (3.19) and (3.20) along with Petti’s theorem and the separability of X im-
ply that Gτ (·)∗w(·) belongs to L1((0, T); X). Moreover, since for almost every s ∈ (0, T) 
Gτ (s)∗w(s) → 0 as τ → 0+ and by (3.19), we may apply Lebesgue’s dominated convergence 
theorem to obtain that G∗

τw → 0 strongly in L1((0, T); X) as τ → 0+. Then, the weak star 
convergence (3.17) implies

∫ T

0
(Gτ (s)

Uτ (s)− U(s)
τ

, w(s))Xds =
∫ T

0
(

Uτ (s)− U(s)
τ

, G∗
τ (s)w(s))Xds → 0,

� (3.21)

as τ → 0+. In addition, (3.17) along with (A3c) yields

lim
τ→0

∫ T

0
(F′(s, U(s))

Uτ (s)− U(s)
τ

, w(s))Xds =
∫ T

0
(F′(s, U(s))(δE(s), δH(s)), w(s))X ds.� (3.22)

Concluding from (3.18), (3.21), (3.22) and since w ∈ L1((0, T); X) was chosen arbitrarily 
fixed, we obtain that

Iτ ⇀ F′(·, U(·))(δE, δH) weakly star in L∞((0, T); X) as τ → 0+.� (3.23)

On the other hand, it holds that
∫ T

0

∫ t

0
(Tt−sIτ (s), w(t))X dsdt =

∫ T

0

(
Iτ (s),

∫ T

s
T∗

t−sw(t)dt
)

X
ds ∀w ∈ L1((0, T); X).

Since the mapping s �→
∫ T

s T∗
t−sw(t)dt also belongs to L1(0, T; X), we obtain from (3.23), 

(3.17) and (3.15) that (δE, δH) satisfies the integral equation (3.14).� □ 
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Corollary 3.6.  Under the assumptions of lemma 3.5, the operator S : X → X is weakly-
Gâteaux-differentiable.

Proof.  Let (u, v) ∈ X and (E, H) = G(u, v) ∈ C([0, T]; X). In view of (3.14), the operator 
S′(u, v) : X → X is linear. Let us show the boundedness result. In fact, the energy balance 
equality implies that (δE, δH) = G(u, v)(δu, δv) satisfies

‖(δE(t), δH(t))‖2
X = ‖(δu, δv)‖2

X

+ 2
∫ t

0
(F′(s, (E, H)(s))(δE, δH)(s), (δE, δH)(s))X ds ∀ t ∈ [0, T].

Then, according to (A3c), we can find a constant C > 0 independent of (δE, δH) such that

‖(δE, δH)(t)‖2
X � ‖(δu, δv)‖2

X + C
∫ t

0
‖(δE, δH)(s)‖2

Xds ∀ t ∈ [0, T].

From this inequality, the Gronwall lemma implies that S′(u, v) : X → X is bounded.� □ 

By classical arguments, corollary 3.6 implies the following Gâteaux-differentiability result:

Corollary 3.7.  Under the assumptions of lemma 3.5, the functional J κ
δ : Y → R is Gâ-

teaux-differentiable with the Gâteaux derivative

J κ
δ

′(u, v)(δu, δv) = (S(u, v)− (Eδ , Hδ), S′(u, v)(δu, δv))X + κ((u, v), (δu, δv))Y,� (3.24)

for all (u, v), (δu, δv) ∈ Y.

Let us now establish an explicit formula for the adjoint operator associated with the 
Gâteaux-derivative S′(u, v) : X → X.

Lemma 3.8.  Let the assumptions of lemma 3.5 be satisfied. Let (u, v) ∈ X and 
(E, H) ∈ C([0, T]; X) denote the mild solution associated with the initial value (u, v). Then, 
for every (w, z) ∈ X, the adjoint operator S′(u, v)∗ : X → X satisfies

S′(u, v)∗(w, z) := (K, Q)(0),

where (K, Q) ∈ C([0, T]; X) is the unique solution of the following integral equation:

(K, Q)(t) = Tt−T(w, z) +
∫ T

t
Tt−sF′(s, (E, H)(s))∗(K, Q)(s)ds� (3.25)

for all t ∈ [0, T].

Proof.  Let B(t) := F′(t, E(t), H(t)) for all t ∈ [0, T]. From (A3b) together with 
(E, H) ∈ C([0, T]; X), it follows that

B(·)x ∈ C([0, T]; X), B(·)w(·) ∈ L1((0, T); X) ∀ x ∈ X, w ∈ L1((0, T); X).
�

(3.26)
Let (ŵ, ẑ) ∈ D(A) and

(δE, δH)(t) := Tt(ŵ, ẑ) +
∫ t

0
Tt−sB(s)(δE, δH)(s)ds ∀ t ∈ [0, T].� (3.27)
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According to lemma 3.5,

S′(u, v)(ŵ, ẑ) = (δE, δH)(T).� (3.28)

Further, making use of the resolvent operator of A, we introduce the following approximation:

Bn(t) := n(nId −A)−1B(t) ∀ n ∈ N, ∀ t ∈ [0, T].� (3.29)

It is standard to show that, for every n ∈ N, n(nId −A)−1 : X → D(A) is linear and bounded. 
Thus, along with (3.26), it holds for every n ∈ N that

Bn(·)x ∈ C([0, T]; D(A)), Bn(·)w(·) ∈ L1((0, T); D(A)) ∀ x ∈ X, w ∈ L1((0, T); X).

For this reason, the integral equation

(δEn, δHn)(t) = Tt(ŵ, ẑ) +
∫ t

0
Tt−sBn(s)(δEn, δHn)(s)ds ∀ t ∈ [0, T]� (3.30)

admits a unique solution (δEn, δHn) ∈ C1([0, T]; X) ∩ C([0, T]; D(A)) satisfying
{ d

dt (δEn, δHn)(t) = (A+ Bn(t))(δEn, δHn)(t) ∀t ∈ [0, T]
(δEn, δHn)(0) = (ŵ, ẑ).

� (3.31)

Similarly, for every (w, z) ∈ D(A), the following integral equation

(Kn, Qn)(t) = Tt−T(w, z) +
∫ T

t
Tt−sBn(s)∗(Kn, Qn)(s)ds ∀ t ∈ [0, T]

admits a unique solution (Kn, Qn) ∈ C1([0, T]; X) ∩ C([0, T]; D(A)) satisfying
{
− d

dt (Kn, Qn)(t) = (−A+ Bn(t)∗)(Kn, Qn)(t) ∀t ∈ [0, T]
(Kn, Qn)(T) = (w, z).� (3.32)

Combining (3.31) and (3.32), we obtain that

((δEn, δHn)(T), (Kn, Qn)(T))X − ((δEn, δHn)(0), (Kn, Qn)(0))X

=

∫ T

0

( d
dt
(δEn, δHn)(t), (Kn, Qn)(t)

)
X +

(
(δEn, δHn)(t),

d
dt
(Kn, Qn)(t)

)
Xdt

=

∫ T

0

(
(δEn, δHn)(t), (A+ Bn(t))∗(Kn, Qn)(t) +

d
dt
(Kn, Qn)(t)

)
Xdt = 0.

� (3.33)

A direct computation based on (3.27) and (3.30) yields

‖(δEn, δHn)(t)− (δE, δH)(t)‖X

� ‖
∫ t

0
Tt−sBn(s)((δEn, δHn)(s)− (δE, δH)(s))ds‖X

+ ‖
∫ t

0
Tt−s(Bn(s)− B(s))(δE, δH)(s)ds‖X ∀ t ∈ [0, T].

�

(3.34)
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Since for every x ∈ X the mapping t �→ B(t)x is continuous from [0, T] to X and the set 
{(δE, δH)(t) | t ∈ [0, T]} is compact in X, it follows that (see [9, lemma 5.2, chapter 1]) 
the mapping t �→ B(t)(δE, δH)(t) is continuous from [0, T] to X, and consequently the set 

{B(t)(δE, δH)(t) | t ∈ [0, T]} is a compact set in X. Then, as limn→∞ n(nId −A)−1x = x 

holds for all x ∈ X (see [9, lemma 3.4, chapter 2]), we obtain again by employing [9, lemma 
5.2c, chapter 1] that

∀ε > 0 ∃N ∈ N ∀n � N : max
s∈[0,T]

‖ (Bn(s)− B(s))︸ ︷︷ ︸
=(n(nId−A)−1−Id)B(s)

(δE, δH)(s)‖X � ε.

� (3.35)

On the other hand, by definition (3.29) and (A3c), there exists a constant CB > 0, independent 
of n, such that

sup
t∈[0,T]

‖Bn(t)‖L(X) � CB ∀ n ∈ N.� (3.36)

Therefore, in view of (3.34)–(3.36), it holds that for every ε > 0, there exists an N ∈ N such 
that

‖(δEn, δHn)(t)− (δE, δH)(t)‖X

�CB

∫ t

0
‖(δEn, δHn)(s)− (δE, δH)(s)‖X + tε ∀ t ∈ [0, T], ∀ n � N.

Hence, the Gronwall lemma implies that

lim
n→∞

(δEn, δHn)(t) = (δE, δH)(t) ∀t ∈ [0, T].� (3.37)

Similarly, one can show that

lim
n→∞

(Kn, Qn)(t) = (K, Q)(t) ∀t ∈ [0, T],� (3.38)

where (K, Q) is the solution of the integral solution (3.25). Combining (3.28), (3.33), (3.37) 
and (3.38), we obtain that

(S′(u, v)(ŵ, ẑ), (w, z))X = ((ŵ, ẑ), (K, Q)(0))X

for all (w, z), (ŵ, ẑ) ∈ D(A). Then, by the density of D(A) in X, the assertion is valid.� □ 

Theorem 3.9.  Assume that ( A0)–( A1) and (A3) hold true. Furthermore, let (uδ
κ, vδκ) ∈ Y 

be a minimiser of (2.3) and (Eδ
κ, Hδ

κ) ∈ C([0, T]; D(A)) ∩ C1([0, T]; X) the corresponding 
solution of (2.1) associated with (uδ

κ, vδκ) ∈ Y. Then, there exists a unique adjoint state 
(Kδ

κ, Qδ
κ) ∈ C([0, T]; X) satisfying

(Kδ
κ, Qδ

κ)(t) =Tt−T(Eδ
κ(T)− eδ , Hδ

κ(T)− hδ),

+

∫ T

t
Tt−sF′(s, (Eδ

κ, Hδ
κ)(s))

∗(Kδ
κ, Qδ

κ)(s)ds ∀t ∈ [0, T]

� (3.39)

(κ(uδ
κ, vδκ), (δu, δv))Y = −((Kδ

κ, Qδ
κ)(0), (δu, δv))X ∀(δu, δv) ∈ Y.� (3.40)
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Proof.  The necessary optimality condition for (2.3) reads as

J κ
δ (u

δ
κ, vδκ)(δu, δv) = 0, ∀ (δu, δv) ∈ Y,

which is according to (3.24) equivalent to

(S(uδ
κ, vδκ)− (Eδ , Hδ), S′(uδ

κ, vδκ)(δu, δv))X + (κ(uδ
κ, vδκ), (δu, δv))Y = 0, ∀ (δu, δv) ∈ Y.

Thus, by lemma 3.8, we obtain the desired result.� □ 

Corollary 3.10.  Let ( A0)–( A3) be satisfied. Let {δn}∞n=1, {κn}∞n=1 ⊂ R, {(eδn , hδn)}∞n=1 ⊂ X, 
and {un, vn}∞n=1 ⊂ Y be sequences as defined in theorem 3.4. Moreover, for every n ∈ N, let 

(Eδn
κn

, Hδn
κn
) ∈ C([0, T]; D(A)) ∩ C1([0, T]; X) denote the corresponding solution of (2.1)  

associated with (un, vn) ∈ Y, and (Kn, Qn) ∈ C([0, T]; X) denote the adjoint state satisfying 
(3.39) and (3.40) with (Eδ

κ, Hδ
κ), (eδ , hδ) and (uδ

κ, vδκ) replaced by (Eδn
κn

, Hδn
κn
), (eδn , hδn) and 

(un, vn), respectively. Then, the adjoint state (Kn, Qn) converges strongly in C([0, T]; X) to 
zero as n → ∞.

Proof.  From theorem 3.4, it follows that (un, vn) converges strongly to (u†, v†). The Lip-

schtiz continuity of S : X → X implies that (Eδn
κn

, Hδn
κn
)(T) converges strongly to (e†, h†). As 

a consequence, we obtain that

lim
n→∞

‖(Eδn
κn
(T)− eδn , Hδn

κn
(T)− hδn)‖X = 0.� (3.41)

On the other hand, since {(En, Hn)}∞n=1 ⊂ C([0, T]; X) is bounded, we may apply the as-
sumption (A3c) to the equation (3.39) and obtain a constant M > 0 such that

‖(Kn, Qn)(t)‖X

�‖(Eδn
κn
(T)− eδn , Hδn

κn
(T)− hδn)‖X + M

∫ T

t
‖(Kn(s), Qn(s))‖Xds ∀t ∈ [0, T].

The Gronwall lemma implies therefore

‖(Kn, Qn)(t)‖X � eM(T−t)‖(Eδn
κn
(T)− eδn , Hδn

κn
(T)− hδn)‖X ∀t ∈ [0, T].

� (3.42)

Now, the assertion follows from (3.41) and (3.42).� □ 

4.  Convergence rate analysis under VSC

As pointed in section 3.1, the convergence speed for the Tikhonov regularization method (2.3) 
can be arbitrarily slow (see [8]). The goal of this section  is therefore to analyze the conv
ergence rate for regularized solutions to (2.3) under VSC (see proposition 3.1). To be more 
precise, our goal is to to verify

β

2
‖(u† − u, v† − v)‖2

Y �
1
2
‖(u, v)‖2

Y − 1
2
‖(u†, v†)‖2

Y

+Ψ(‖S(u†, v†)− S(u, v)‖X) ∀ (u, v) ∈ Y,
� (4.1)
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for some constant 0 < β � 1 and index function Ψ. To this end, we shall first establish several 
auxiliary results in section 4.1 and recall well-known results on interpolation spaces. Then, the 
verification of (4.1) will be investigated in section 4.2. Throughout this section, we make the 
following additional material assumption:

	(A4) � There exist Lipschitz domains Ωj ⊂ R3, j = 1, . . . , N such that

Ωi ∩ Ωj = ∅ ∀ i �= j and Ω = ∪N
j=1Ωj,

		  and

ε|Ωj ,
µ|Ωj

∈ C2(Ωj)
3×3 ∀j = 1, 2, . . . , N.� (4.2)

In order to model a heterogeneous medium, the assumption of piecewise smooth material 
functions (4.2) is reasonable and often used in the mathematical study of Maxwell’s equa-
tions  (see, e.g. [28, p 83]). Such piecewise smooth assumption was also considered in the 
study of pulsed electric fields on the physical media involving a heterogeneous permittivity 
and a heterogeneous conductivity [1].

Lemma 4.1.  Let (A0) and (A4) be satisfied. Then the space Y is dense in X.

Proof.  Let us consider the linear spaces

D := {u ∈ C∞
0 (Ω)3; u |Ωi∈ C∞

0 (Ωi)
3 for all i = 1, 2, · · · , N}.� (4.3)

Thanks to (4.2), it holds that

D ⊂ H0(curl) ∩ ε−1H(div), D ⊂ H(curl) ∩ µ−1H0(div),

from which it follows that D ×D ⊂ Y. Moreover, by the construction, D ×D is dense in X. 
This completes the proof.� □ 

4.1.  An auxiliary result

In the following, we investigate the connection between the inner products of X and Y, which 
will be characterized by an unbounded self-adjoint operator. To take advantage of the spectral 
theory for operators in complex Hilbert spaces and the complex interpolation theory, we need 
to consider the complexification of X and Y. More precisely, let XC be a complex linear space 
consists of all complex-valued functions (u, v) with (Re u, Re v), (Im u, Im v) ∈ X, equipped 
with inner product

((u1, v1), (u2, v2))XC =(Re(u1, v1), Re(u2, v2))X + (Im(u1, v1), Im(u2, v2))X

− i(Re(u1, v1), Im(u2, v2))X + i(Im(u1, v1), Re(u2, v2))X.

It is obvious that ((u1, v1), (u2, v2))XC = ((u1, v1), (u2, v2))X for all (u1, v1), (u2, v2) ∈ X. 
Similarly, we define the complexification YC of Y.

Under the assumptions (A0) and (A4), according to lemma 4.1 the embedding YC ⊂ XC 
is dense and continuous. Therefore, there exists a (unique) extension of XC, called extrapola-
tion space Y∗

C, which is isometric to the dual space of YC, such that the triple YC ⊂ XC ⊂ Y∗
C 

satisfies the following conditions (see e.g. [36, secttion 7, chapter 1]):

D-H Chen and I Yousept﻿Inverse Problems 35 (2019) 025001



17

	(1)	�YC ⊂ XC ⊂ Y∗
C with dense and continuous embeddings; 

	(2)	�{Y∗
C, YC} forms an adjoint pair with the duality product 〈·, ·〉Y∗

C ,YC; 
	(3)	�the duality product 〈·, ·〉Y∗

C ,YC satisfies

〈(w, z), (u, v)〉Y∗
C ,YC = ((u, v), (w, z))XC ∀(u, v) ∈ YC, ∀(w, z) ∈ XC.

Since the inner-product (·, ·)YC is a symmetric sesquilinear form over YC, the operator 
BYC : YC → Y∗

C defined by

〈BYC(u1, v1), (u2, v2)〉Y∗
C×YC := ((u1, v1), (u2, v2))YC ∀ (u1, v1), (u2, v2) ∈ YC

is linear and bounded. In addition, if we define

B(u, v) := BYC(u, v) ∀ (u, v) ∈ D(B)� (4.4)

with the domain

D(B) := {(u, v) ∈ YC | BYC(u, v) ∈ XC},

then B : D(B) ⊂ XC → XC is a densely defined and close operator (see [36, theorem 1.25]), 
and it satisfies many other mathematical properties. Some of them are summarized in the fol-
lowing lemma:

Lemma 4.2 ([36, theorem 2.34 and corollary 2.4]).  Assume that (A0) and (A4) 
hold true. Then, the unbounded operator B : D(B) ⊂ XC → XC is densely defined, closed,  
self-adjoint operator and m-accretive. Furthermore, it satisfies

(B(u1, v1), (u2, v2))XC = ((u1, v1), (u2, v2))YC ∀ (u1, v1) ∈ D(B), (u2, v2) ∈ YC.� (4.5)

In addition, (B, D(B)) is maximal in the sense that if (u, v) is an element in YC satisfying

((u∗, v∗), (e, h))XC = ((u, v), (e, h))YC ∀(e, h) ∈ YC

for some (u∗, v∗) ∈ XC, then (u, v) ∈ D(B) and B(u, v) = (u∗, v∗).

From (4.5) we obtain that

(B(u, v), (u, v))XC = ‖(u, v)‖2
YC

� ‖(u, v)‖2
XC

∀(u, v) ∈ D(B).

Then, in view of the compactness of the embedding D(B) ⊂ XC, we infer that there exists a 
complete orthonormal basis {(an, bn)}∞n=1 in XC such that

(B(u, v), (u, v))XC =

∞∑
n=1

λn|((u, v), (an, bn))XC |2 ∀ (u, v) ∈ D(B),� (4.6)

where 1 � λ1 � λ2 � · · ·, limn→∞ λn = +∞, and, for every n ∈ N, (an, bn) is the eigenfunc-
tion of B for the eigenvalue of λn, i.e.

B(an, bn) = λn(an, bn) ∀n � 1.

For every s � 0, the fractional power Bs of B can be defined as

Bs(u, v) :=
∞∑

n=1

λs
n((u, v), (an, bn))XC(an, bn) ∀ (u, v) ∈ D(Bs),� (4.7)
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where the domain D(Bs) is given by

D(Bs) = {(u, v) ∈ XC |
∞∑

n=1

λ2s
n |((u, v), (an, bn))XC |2 < ∞}.� (4.8)

Then, for each s � 0, Bs : D(Bs) ⊂ X → X is also self-adjoint and D(Bs) is a Banach space 
equipped with the norm

‖(u, v)‖D(Bs) := ‖Bs(u, v)‖XC ∀(u, v) ∈ D(Bs),� (4.9)

which is also equivalent to the corresponding graph norm of (Bs, D(Bs)) (for more details, we 
refer to [30, 35]). Let us mention that

D(B1/2) = YC� (4.10)

holds with norm equivalence (see [36, theorem 2.33]).

4.2.  Verification of VSC and convergence rates

First of all, let us remark that the variational source condition (4.1) is equivalent to

((u†, v†), (u† − u, v† − v))Y

�
1 − β

2
‖(u†, v†)− (u, v)‖2

Y +Ψ(‖S(u†, v†)− S(u, v)‖X) ∀ (u, v) ∈ Y.
� (4.11)

At this point, we shall recall that Y only contains real-valued functions. Our goal now is 
to verify (4.11) for some concave index function Ψ : (0,∞) → (0,∞) and some constant 
β ∈ (0, 1]. The arguments used in the following theorem are partly inspired from [5, lemma 
5.1] and [21, theorem 2.1].

Theorem 4.3.  Let (A0)–(A2) and (A4) be satisfied, and let (u†, v†) ∈ D(B1/2+s) 
be a real-valued function with s ∈ (0, 1/2]. Then, there exists a concave index function 
Ψ : (0,∞) → (0,∞) satisfying the variational source condition (4.11) with β = 1

2  and

Ψ(δ) = O(δ
2s

2s+1 ) as δ → 0+.� (4.12)

Proof.  We prove that (4.11) is satisfied for β = 1/2 and an appropriate index function 
Ψ : (0,∞) → (0,∞). To this end, let (u, v) ∈ Y and for every λ � λ1 we introduce the fol-
lowing orthogonal projection:

Pλ(w, z) =
∑

λ1�λn�λ

((w, z), (an, bn))XC(an, bn) ∀ (w, z) ∈ XC.

We then infer that for all λ � λ1,

((u†, v†), (u† − u, v† − v))Y

=Re ((I − Pλ)(u†, v†), (u† − u, v† − v))YC + Re ((u†, v†), Pλ(u† − u, v† − v))YC

= : I1 + I2,

since Pλ : XC → XC is self-adjoint.
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On the one hand, the Cauchy–Schwarz inequality and Young’s inequality yield

I1 �‖(u† − u, v† − v)‖Y‖(I − Pλ)(u†, v†)‖YC

�
1
4
‖(u† − u, v† − v)‖2

Y + ‖(I − Pλ)(u†, v†)‖2
YC

.

From (4.9) and (4.10), it follows that ‖(I − Pλ)(u†, v†)‖2
YC

= ‖B1/2((I − Pλ)(u†, v†))‖2
XC

. 
Then, the definition (4.7) of Bs implies

‖(I − Pλ)(u†, v†)‖2
YC

�C
∑
λn>λ

λn|((u, v), (an, bn))XC |2 � C
∑
λn>λ

λ1+2s
n

λ2s |((u, v), (an, bn))XC |2

�
C
λ2s ‖B

1/2+s(u†, v†)‖2
XC

,

for some constant C > 0. In conclusion, we obtain

I1 �
1
4
‖(u† − u, v† − v)‖2

Y +
C
λ2s ‖B

1/2+s(u†, v†)‖2
XC

.� (4.13)

An interplay of proposition 3.3 and the definition of projection Pλ implies that

I2 �
∑

λ1�λn�λ

λn|((u†, v†), (an, bn))XC | · |((u† − u, v† − v), (an, bn))XC |

�λ‖(u†, v†)‖XC‖(u†, v†)− (u, v)‖XC

=λ‖(u†, v†)‖X‖(u†, v†)− (u, v)‖X

�CSλ‖(u†, v†)‖X‖S(u†, v†)− S(u, v)‖X

�CSλ(‖(u†, v†)‖X + 1)‖S(u†, v†)− S(u, v)‖X.

�

(4.14)

Combing (4.13) and (4.14) and noticing that λ � λ1 is arbitrary, we have

((u†, v†), (u† − u, v† − v))Y

�
1
4
‖(u† − u, v† − v)‖2

Y

+ inf
λ�λ1

(
C
λ2s ‖B

1/2+s(u†, v†)‖2
XC

+ CSλ(‖(u†, v†)‖X + 1)‖S(u†, v†)− S(u, v)‖X

)

for all (u, v) ∈ Y. Therefore, it remains to show that the function

Ψs : (0,∞) → (0,∞), Ψs(δ) := inf
λ�λ1

(
As

λ2s + Bsλδ

)
� (4.15)

is a concave index function, where we set constants As := C‖B1/2+s(u†, v†)‖2
XC

 
and Bs := CS(‖(u†, v†)‖X + 1). As Ψs is an infimum of concave functions, we have 
that Ψs : (0,∞) → (0,∞) is concave. In particular, a classical result yields that 
Ψs : (0,∞) → (0,∞) is continuous (see [43, corollary 47.6]). Now, we prove the decay esti-

mate (4.12), which also implies the continuity of Ψs at 0. For any δ ∈ (0, As

Bsλ
(2s+1)
1

], we choose 

λ = 2s+1

√
As
Bs
δ−

1
(2s+1)  and obtain that
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Ψs(δ) � 2A
1

2s+1
s B

2s
2s+1
s δ

2s
(2s+1) .

Finally, we verify now that Ψs is strictly increasing. To this end, let δ1, δ2 > 0 with δ1 < δ2. 
Since both λ → ∞ implies that the right-hand side of (4.15) blows up, the infimum in the 
definition of Ψ(δ2) can be attained at some λ = λ∗ < +∞. Thus it follows that

Ψs(δ1) �

(
As

(λ∗)2s + Bsλ
∗δ1

)
< Ψs(δ2).� (4.16)

This completes the proof.� □ 

An interplay of theorem 4.3 and proposition 3.1 yields the following result:

Theorem 4.4.  Assume that (A0)–(A2) and (A4) hold true, (u†, v†) ∈ D(B1/2+s) with 
1/2 � s > 0, and let Ψs be the concave index function defined as in (4.15). Furthermore, for 
every κ > 0, let (uδ

κ, vδκ) denote a minimizer of the Tikhonov-regularization problem (2.3).

	(a)	�If the regularization parameter κ > 0 is chosen as κ = κ(δ) := 2δ2

Ψs(δ)
, then

‖(uδ
κ(δ), vδκ(δ))− (u†, v†)‖2

Y = O(δ
2s

2s+1 ) as δ → 0+.� (4.17)

	(b)	�Let (A3) be satisfied and let (Kδ
κ(δ), Qδ

κ(δ)) be the adjoint state satisfying (3.39) and 
(3.40) associated with (uδ

κ(δ), vδκ(δ)). Then, it holds that

‖(Kδ
κ(δ), Qδ

κ(δ))‖
2
C([0,T];X) = O(δ

2s
2s+1 ) as δ → 0+,

		 provided that the regularization parameter κ > 0 is chosen as κ = κ(δ) = 2δ2

Ψs(δ2).

Proof.  Assertion (a) is merely a direct consequence of the proposition 3.1 and theorem 4.3. 

Let (Eδ
κ(δ), Hδ

κ(δ)) ∈ C([0, T]; X) be the mild solution of (2.1) associated with (uδ
κ(δ), vδκ(δ)). 

To prove the second assertion, we first obtain from (4.17) and the Lipschtiz continuity of op-
erator S : X → X that

‖(Eδ
κ(δ), Hδ

κ(δ))(T)− (e†, h†)‖2
X = O(δ

2s
2s+1 ) as δ → 0+,

which, together with (2.2), implies

‖(Eδ
κ(δ), Hδ

κ(δ))(T)− (eδ , hδ)‖2
X = O(δ

2s
2s+1 ).

Then, we use the argument as in the proof of corollary 3.10 to complete the proof.� □ 

4.3.  Concrete realization of D(Bs) by fractional Sobolev spaces

Theorem 4.4 yields a convergence rate result for the Tikhonov regularization method (2.3) 
under the condition that the true initial value (u†, v†) belongs to D(Bs+ 1

2 ), 0 < s � 1
2 . Our 

goal now is to present an explicit characterization of D(Bs+ 1
2 ) with the help of fractional 

Sobolev spaces. To this end, we shall utilize the complex interpolation theory.
If two normed complex Banach space X  and Y  are continuously embedded in a Hausdorff 

topological vector space, then for every θ ∈ [0, 1], we can define the complex interpolation 
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[X, Y]θ between X  and Y . From the classical theory on the complex interpolation space [27, 
section 2.1] and [36, theorem 2.34 and corollary 2.4], we have the following result.

Lemma 4.5.  Let B : D(B) ⊂ XC → XC be the self-adjoint operator defined as in lemma 
4.2. Then, it holds that

D(Bs) = [XC, D(B)]s ∀ s ∈ [0, 1],

and

D(Bs) = [XC, YC]2s ∀ 0 � s �
1
2

with norm equivalence.

In the following, we shall utilize fractional Sobolev spaces of complex valued functions. To 
more be precise, for any 0 � s < ∞, we define

Hs(Rn;C) := {u ∈ S(Rn;C)′ | ‖u‖2
Hs(Rn;C) :=

∫

Rn
(1 + |ξ|2)s|(Fu)(ξ)|2dξ < +∞},

where F : S(Rn;C)′ → S(Rn;C)′ represents the Fourier transform and S(Rn;C)′ denotes 
the tempted distribution space (see, e.g. [35, 36]). Let us point out that Hs(Rn;C) is a Hilbert 
space equipped with inner product

(u, v)Hs(Rn;C) := ((1 + | · |2)s/2(Fu)(·), (1 + | · |2)s/2(Fv)(·))L2(Rn;C) ∀ u, v ∈ Hs(Rn;C).

In addition, for a bounded domain O ⊂ Rn  with a Lipschitz boundary ∂O, the space Hs(O;C) 
with a possibly non-integer exponent s � 0 is defined as the space of all complex-valued func-
tions u ∈ L2(O;C) with some U ∈ Hs(Rn;C) such that U|O = u, endowed with the norm

‖u‖Hs(O;C) := inf
U|O=u

U∈Hs(Rn ;C)

‖U‖Hs(Rn;C).

For every s ∈ [0,∞), we denote by �s� ∈ [0, s] the largest integer less or equal to s. In the case 
of s ∈ (0,∞) with s = �s�+ σ and 0 < σ < 1, the norm ‖ · ‖Hs(O;C) is equivalent to (see, e.g. 
[36, 37]):


‖u‖2

L2(O;C) +
∑

|α|��s�

∫ ∫

O×O

|Dαu(x)− Dαu(y)|2

|x − y|n+2σ dxdy




1
2

.

If s is an integer, then Hs(O;C) coincides with the classical Sobolev space. In particular, 
H0(O;C) = L2(O;C). Moreover, for s > 1

2, the trace operator γ : Hs(O;C) → Hs− 1
2 (∂O;C) 

is linear and bounded. Let H̊s(O;C) denote the closure of C∞
0 (O;C) with respect to the norm 

of Hs(O). It is well-known that C∞
0 (O;C) is dense in Hs(O;C) for all 0 � s � 1/2 (see, e.g. 

[36, theorem 1.40]), and so Hs(O;C) = H̊s(O;C) for all 0 � s � 1/2. Furthermore, if O is 
of class C1,1, then

H̊s(O;C) = {u ∈ Hs(O;C) | γ(∂
ku

∂νk ) = 0 ∀ 0 � k � �s − 1/2�} ∀ s ∈
(1

2
, 2
]
\ {3

2
}

(see [17, corollary 1.5.1.6]). Also, in the case of O being a C1,1-domain, it holds that

[L2(O;C), H̊2(O;C)]s =
{

H̊2s(O;C) for 1/4 < s � 1, s �= 3
4 ,

H2s(O;C) for 0 � s < 1/4,
� (4.18)
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with norm equivalence (see [17, theorem 1.5.1.5 and corollary 1.4.4.5] and [27, theorem 
11.6]). In the following, we shall make use of (4.18) for O = Ωj, j = 1 . . . , N . To this aim, we 
require an additional smoothness assumption on the subdomains Ωj:

	(A5) � The domain Ω satisfies (A4) with C1,1-subdomains Ωj  for all j = 1, . . . , N.

Let us underline that in the case of N � 2, the assumption (A5) does not necessarily imply 
that the whole domain Ω is of class C1,1. In fact, we do not require this global C1,1-assumption 
on Ω, since we only apply the formula (4.18) to every subdomain O = Ωj for j = 1, . . . , N.

We introduce next the following function spaces, which will be important in the sequel:

X s : = {u ∈ L2(Ω;C) | u |Ωj∈ H2s(Ωj;C)3, j = 1, 2, . . .N},

X̊ s : = {u ∈ L2(Ω;C) | u |Ωj∈ H̊2s(Ωj;C)3, j = 1, 2, . . .N},

endowed with the norm ‖u‖X s =
(∑N

j=1 ‖u |Ωj ‖2
H2s(Ωj;C)3

)1/2
. Assuming (A5), it follows 

from (4.18) that

[L2(Ω;C), X̊ 1]s =

{
X̊ s for 1/4 < s � 1, s �= 3

4 ,
X s for 0 � s < 1/4.

� (4.19)

Proposition 4.6.  Under (A0), (A4) and (A5), we have the following continuous embed-
dings:

X̊ s × X̊ s ⊂ D(Bs) for 1 � s >
1
4

and s �= 3
4

,

and

X s ×X s ⊂ D(Bs) for 0 � s <
1
4

.

Proof.  Let us define the linear space

D(C) := X̊ 1 × X̊ 1,

which is a Banach space under the norm

‖(u, v)‖D(C) = (‖u‖2
X 1 + ‖v‖2

X 1)
1/2.� (4.20)

Making use of this Banach space, we introduce an unbounded operator C : D(C) ⊂ XC → XC, 
defined by C(u, v) = (C1u, C2v), where

C1u = ε−1u + ε−1curl × curl u −∇div (εu),

and

C2v = µ−1v + µ−1curl × curl v −∇div (µv).

Let us underline that C(u, v) ∈ XC holds for all (u, v) ∈ D(C) since ε |Ωj ,µ |Ωj∈ C2 and 
u |Ωj , v |Ωj∈ H̊2(Ωj;C)3 for all j = 1, 2, . . . , N. We recall that every (u, v) ∈ YC, it holds

Re(u, v), Im(u, v) ∈ Y = {(u, v) ∈ H0(curl)× H(curl) | εu ∈ H(div), µv ∈ H0(div)}.
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Therefore, every (u, v) ∈ YC satisfies

(C(z1, z2), (u, v))XC = ((z1, z2), (u, v))YC ∀ (z1, z2) ∈ DC ×DC,

where

DC := {u ∈ C∞
0 (Ω;C)3 : u |Ωj∈ C∞

0 (Ωj;C)3 for j = 1, 2, · · · , N}.

Then, because D(C) is merely the closure of DC ×DC under the norm (4.20), it holds that

(C(u1, v1), (u2, v2))XC = ((u1, v1), (u2, v2))YC ∀(u1, v1) ∈ D(C), (u2, v2) ∈ YC.

Therefore, it follows from lemma 4.2 that the operator (C, D(C)) is the restriction of (B, D(B)) 
to the domain D(C). Thus, we have that

‖(u, v)‖D(B) = ‖B(u, v)‖XC = ‖C(u, v)‖XC � ‖(u, v)‖D(C) ∀(u, v) ∈ D(C),

which ensures that the embedding D(C) ⊂ D(B) is continuous. This implies

[X, D(C)]s ⊂ [X, D(B)]s = D(Bs) ∀ s ∈ [0, 1].

Now the assertion follows from the above inclusion and (4.19).� □ 

As a consequence of proposition 4.6 and theorem 4.4, we obtain the following result in 
terms of a fractional Sobolev space instead of an abstract space.

Corollary 4.7.  Assume that (A0)–(A2) and (A4), (A5) hold true, and (u†, v†) is real-valued 
and satisfies

(u†, v†) ∈ X̊ s+ 1
2 × X̊ s+ 1

2

with 1/2 � s > 0 and s �= 1
4. Then, the statement (a) of theorem 4.4 is valid. If we further  

assume that (A3) is true, then theorem 4.4 (b) is also valid.
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