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1. Introduction. We are concerned in this work with the convergence of the
Tikhonov regularization for two inverse problems modelled by the following elliptic
equation with mixed boundary conditions:

(1.1)


−∇ · (p(x)∇u(x)) = f(x), x ∈ Ω,

p(x)
∂u

∂n
(x) = q(x), x ∈ Γ1,

p(x)
∂u

∂n
(x) + κ(x)u(x) = ua(x), x ∈ Γ2,

where Ω ⊂ Rd (d = 2, 3) is a bounded and connected domain with a C1,1-boundary
∂Ω consisting of two disjointed parts Γ1 and Γ2, i.e., ∂Ω = Γ1 ∪Γ2 and Γ1 ∩Γ2 = ∅
(e.g. Fig. 1). Furthermore, the functions p : Ω → R, f : Ω → R, and ua : Γ2 → R
denote, respectively, the diffusivity coefficient, the source strength, and the ambient
temperature. Assuming that all these three data are available, our analysis focuses
on the reconstruction of the Robin coefficient κ : Γ2 → R and the boundary flux
q : Γ1 → R separately, as specified below.

Inverse Robin Problem (IRP): Suppose that p, f , ua and q are all known,
and let the open connected part Γa of Γ1 be accessible (e.g., through some preset
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Figure 1. An example of Ω in R2 and Γa (resp. Γb) is an open
part of Γ1 (resp. Γ2)

device). Recover the unknown Robin coefficient κ on the inaccessible boundary Γ2

from the noisy measurement data zδ of u on the accessible partial boundary Γa.

Inverse flux Problem (IFP): Suppose that p, f , ua and κ are all known, and let
the open connected part Γb of Γ2 be accessible (e.g., through some preset device).
Recover the unknown heat flux q on the inaccessible boundary Γ1 from the noisy
measurement data zδ of u on the accessible partial boundary Γb.

In heat transfer, Robin boundary condition characterizes the convective heat con-
duction between the conducting body and the ambient environment [47]. Therefore,
it is of immense practical interest in thermal problems [37], e.g. the thermal analysis
of rocket nozzles and gas-turbine blades, the safety analysis of nuclear reactor ele-
ments for the loss-of-coolant accident, the thermal protection of space shuttles, the
analysis of quenching processes and the development of thermally high-performance
materials and composites. However, it is very difficult to acquire the exact value
of the Robin coefficient. Engineers thus seek to estimate them from the accessi-
ble boundary measurements [36], which naturally gives rise to the inverse Robin
problems. On the other hand, the inverse flux problems find numerous impor-
tant applications in diffusive, thermal and heat transfer problems, including the
real-time monitoring in steel industry [2] and the visualization by liquid crystal
thermography [30]. Since it is difficult to obtain an accurate measurement on the
inaccessible boundary, such as the interior boundary of nuclear reactors and steel
furnaces, engineers attempt to reconstruct the flux from the measurements on the
accessible boundary. Both the inverse Robin and flux problems are severly ill-posed
and have attracted a lot of attention. In particular, some theoretical and numerical
analysis have been studied under the framework of Tikhonov regularization (see e.g.
[27, 28, 34, 49]).

The classical convergence rate was studied as early as in 1989 [14] for general
inverse problems. The essence of this classical regularization theory lies in its source
condition which involves the adjoint operator to the Fréchet derivative of the forward
map and requires the existence of a small source function in certain sense. This

Inverse Problems and Imaging Volume 16, No. 2 (2022), 283–304



Variational source conditions for inverse Robin and flux problems ... 285

smallness condition is usually hard to be verified for inverse problems of PDEs,
which motivated many further studies of the convergence rates of the solutions gen-
erated by Tikhonov regularization for the inverse problems in elliptic and parabolic
equations. A new effort was made in [15] for an inverse conductivity problem in a
parabolic system to relax the restrictive requirements in the classical convergence
theory [14]. A much simpler source condition was presented, which involved only
the forward map and does not require the smallness of the source function, but the
proposed source conditions can be verified only in the one spatial dimension. Con-
vergence rates of the Tikhonov regularizations were further studied in [19] for the
identification of conductivity and radiativity respectively in elliptic systems, where
parameters to be identified were assumed to be known over all the boundaries.
Then the source conditions can be relaxed in [15] and the source conditions can
be verified in general dimensional spaces for elliptic systems. But the parameters
to be identified may not be accessible over the entire boundary in most applica-
tions. The authors derived recently in [9] some reasonable convergence rates of the
Tikhonov regularizations for elliptic and parabolic inverse radiativity problems in
the framework of the variational source condition. Even if the radiativities may not
be known on the boundary, the variational source conditions can still be rigorously
verified, and the convergence results also revealed the explicit relation between the
regularity of the radiativities and the convergence rates. On the other hand, an
inverse conductivity problem by using the boundary data was considered in [31] for
a nonlinear elliptic equation. The convergence rate of the Tikhonov regularization
was derived under some source conditions similar to the ones proposed in [15]. But
to verify these source conditions, it requires sufficient smoothness of the conduc-
tivity (belong to H4), sufficient smoothness of the trace of the forward solution
on the accessible boundary and the full knowledge about the conductivity on the
accessible boundary. A novel convergence theory was proposed in [25] for general
nonlinear inverse operator equation under a special source condition and a strong
nonlinearity condition. An inverse elliptic Robin problem by the boundary data
was taken to be an application for the novel theory in [25], but the special source
condition and strong nonlinearity condition may not be easy to verify in general
dimensional spaces. We emphasize that all the above results were achieved under
the full data in the whole domain (see, e.g., [9, 15, 19]) or on the entire boundary
(see, e.g., [31, 25]).

It is important to note that we may only be able to collect measurements on a part
of the physical boundary or domain in most applications. We are not aware of any
results in the literature about the convergence rates of Tikhonov regularizations
for inverse elliptic problems when only the partial data are available. This is a
major motivation of this work. To this end, we shall study the convergence of
Tikhonov regularizations for the considered two inverse problems (IRP) and (IFP)
in the framework of the variational source condition (VSC). VSC was initiated by
Hofmann et al. [20], and its extensions were developed independently in [4], [16] and
[17]. In comparison with the classical source condition, VSC does not involve the
Fréchet differentiability of the forward operator, and the resulting convergence rates
for the regularized solutions follow immediately from VSC under an appropriate
parameter choice rule (see, e.g., [21]). We refer the reader to [22, 24, 23] for more
details about the connections between VSC and classical source conditions.

Similarly to the classical source conditions, the verification of VSCs has proved to
be still a nontrivial and highly technical mathematical task, and it is often highly
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problem dependent. VSC was verified for some abstract linear inverse problems
with ℓp penalties [3, 6, 8], in particular, for elastic-net regularizations in [8]. The
main techniques used there are the operator theory and a delicate construction of
index functions. For inverse problems of PDEs, the validity of VSC was established
in [22, 24] for inverse scattering problems, using the conditional stability estimates
via geometrical optics solutions. Recently, the validity of VSC was shown for the
ill-posed backward nonlinear Maxwell’s equations in [10], by means of the semi-
group theory and extrapolation of Hilbert spaces. The authors of this work verified
VSC and obtained a Hölder type convergence rate in [7, 9, 11] for the Tikhonov
regularized solutions of the inverse elliptic and parabolic radiativity problems. It is
important to emphasize that all the above results were established under the full
measurement data.

In this work, we shall first derive some logarithmic type stability estimates for the
proposed inverse problems and then propose some new variational source conditions
in order to achieve some desirable convergence rates of the Tikhonov regularizations
for the inverse problems. We are aware of a novel methodology that was developed
recently in [46], which enables us to derive the convergence rates directly from some
conditional stability estimates without VSCs. However, it is still unclear how to
apply the approach to some concrete inverse problems of PDEs and how to derive
the required conditional stability estimates.

There are several important novelties in this work. Firstly, we are able to rigor-
ously verify some VSC under a newly established logarithmic-type stability and the
sufficient conditions depend mainly on the regularity of the true Robin coefficient or
distributed flux. We shall also construct two counterexamples to illustrate that the
optimal stabilities for both the inverse Robin and flux problems are of logarithmic
type (See Remark 3.3). The second novelty is that the convergence rates can be
achieved when measurement data are available over an arbitrary small accessible
partial boundary Γa (or Γb). As the third novelty, our results reveal the relation
between the regularity of the Robin coefficient (resp. flux) and the corresponding
convergence rate.

The paper is organized as follows. In Section 2, we introduce our general assump-
tions and present the mathematical formulations of (IRP) and (IFP). In Section
3, the logarithmic type stability estimates are derived for both (IRP) and (IFP).
Section 4 is devoted to verifying VSC and establishing convergence raters for (IRP)
and (IFP). Some concluding remarks are given in Section 5.

2. Preliminaries. Given a linear operator T : X → X on a complex Banach space
X, let Ker(T ), D(T ), ρ(T ) and σ(T ) stand for the kernel, domain, resolvent, and
spectrum of T . A linear operator T : D(T ) ⊂ X → X is called closed if its graph
{(x, Tx), x ∈ D(T )} is closed in X × X. Furthermore, the adjoint of a densely
defined operator T : D(T ) ⊂ X → X is denoted by T ∗ : D(T ∗) ⊂ X → X. We
call T : D(T ) ⊂ X → X symmetric if Tx = T ∗x holds true for all x ∈ D(T ), i.e.,
(Tx, y)X = (x, Ty)X for all x, y ∈ D(T ). If a symmetric operator T satisfies that
D(T ) = D(T ∗), then T is said to be self-adjoint.

For 1 ≤ i, j ≤ d and a sufficiently regular Sobolev function u : Rd → R, we write
∂iu := ∂u/∂xi, ∇u = (∂1u, . . . , ∂du), and ∂i,ju := ∂2u/∂xi∂xj . Given the Hessian

matrix u′′ of a function u, we write u′′(x, y) :=
∑d

i,j=1 ∂i,juxiyj with the vectors

x = (x1, · · · , xd) and y = (y1, · · · , yd) ∈ Cd.
For any s ∈ R, we define the fractional Sobolev space
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Hs(Rd) := {u ∈ S(Rd)′ | ∥u∥2Hs(Rd) :=

∫
Rd

(1 + |ξ|2)s|(Fu)(ξ)|2dξ < +∞},

where F : S(Rd)′ → S(Rd)′ is the Fourier transform, and S(Rd)′ denotes the
tempted distribution space (see, e.g., [35, 48, 50]). For a bounded domain U ⊂
Rd with a Lipschitz boundary ∂U , the space Hs(U) with a possibly non-integer
exponent s ≥ 0 is defined as the space of all complex-valued functions v ∈ L2(U)
satisfying V|U = v for some V ∈ Hs(Rd), endowed with the norm

∥v∥s,U := inf
V|U=v

V ∈Hs(Rd)

∥V ∥Hs(Rd).

For every s ∈ [0,∞), we denote by ⌊s⌋ ∈ [0, s] the largest integer less or equal to
s. If s is a non-negative integer, then Hs(U) coincides with the classical Sobolev
space. For a compact, d-dimensional Ck,κ-manifold M with an integer k ≥ 0 and
κ ∈ {0, 1}, we can define the Sobolev space Hs(M) on M for all 0 ≤ s ≤ k + κ via
partitions of unity and Sobolev spaces Hs(Rd) (see, e.g., [48]). In particular, for
a bounded domain U of class Ck,κ, its boundary ∂U is a compact Ck,κ manifold
and then the Sobolev space Hs(∂U) is defined as in [48]. Moreover, in the case of
s ∈ (0,∞) with s = ⌊s⌋+σ and 0 < σ < 1, the norm of ∥u∥Hs(∂U) is also equivalent
to  ∑

|α|≤⌊s⌋

∥Dαu∥2L2(∂U) +
∑

|α|≤⌊s⌋

∫∫
∂U×∂U

|Dαu(x)−Dαu(y)|2

|x− y|n−1+2σ
dSxdSy

 1
2

.

By H−s(M) we denote the dual of Hs(M) with respect to the inner product in
L2(M). We also write H0(M) = L2(M) and denote its norm and scalar product by
∥ · ∥M and (·, ·)M respectively. By a standard argument (as used in [35, Theorem
7.7]), for every −(k + κ) ≤ s1 < s2 ≤ k + κ, one has for all θ ∈ [0, 1] and s =
s1(1− θ) + s2θ that

(2.1) [Hs1(M), Hs2(M)]θ = Hs(M),

with equivalent norms (See. e.g. [42, Proposition 2.3.11 and 2.4.3]). In particular,
one has

(2.2) ∥u∥s,M ≤ C∥u∥1−s
s1,M

∥u∥ss2,M ∀ u ∈ Hs2(M)

for some C > 0, depending only on M , s0, s1 and θ. We would like to mention that
(2.2) also holds for M = U and 0 ≤ s1, s2 ≤ k + κ.

We then recall some estimates on the pointwise product operator (u, v) → uv
in the fractional Sobolev spaces. In view of [44, Corollary 2.1], [50, p. 49] and
[43, Theorem 4], we have the following results with the help of partition of unity
together with a local mapping.

Lemma 2.1. Let M be a d-dimensional, C1,1-compact manifold.

(i) Assume that s and t are two real numbers such that 0 < r, s < d
2 , then for

t := r + s − d
2 , u ∈ Hs(M) and v ∈ Hr(M), one has uv ∈ Ht(M) and the

following inequality holds

∥uv∥t,M ≤ C∥u∥s,M∥v∥r,M
with a constant C > 0 independent of u and v.
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(ii) If 2 > s > d
2 , then

∥uv∥s,M ≤ C∥u∥s,M∥v∥s,M , ∀u, v ∈ Hs(M),

with a constant C > 0 independent of u and v.
(iii) If F : C → C is a globally Lipschitz function, then F (u) ∈ H1(M) when

u ∈ H1(M) and ∥F (u)∥H1(M) ≤ C∥u∥H1(M) for a positive constant C > 0,
independent of u.

Let us now formulate the regularity assumptions on the fixed data involved in
(1.1).

(H1) Let Ω ⊂ Rd (d = 2, 3) be a bounded and connected C1,1-domain. There exist
(d−1)-dimensional compact C1,1-manifolds Γ1,Γ2 such that Γ1 ∩Γ2 = ∅ and
∂Ω = Γ1 ∪ Γ2.

(H2) We assume that p ∈ C0,1(Ω) with

(2.3) pmin := min
x∈Ω

p(x) > 0,

f ∈ L2(Ω), and ua ∈ H1/2(Γ2).

In our study below, the measurements are only taken on a part Γp of the whole
boundary ∂Ω. Since it may not necessarily be a compact manifold itself, we need to
impose some further requirements for the definitions of the Sobolev spaces on the
boundary. More precisely, we say that a tuple (Γp,Ω) is of C1,1 provided that for

each x ∈ Ω, there exists an open neighborhood Nx in Rn and C1,1-diffeomorphisms
Φx : Nx → Rn such that Vx := Φx(Nx) satisfies

Φx(Nx ∩ Ω) = Vx ∩ Rn
+,

Φx(Nx ∩ ∂Ω) = Vx ∩ ∂Rn
+,

Φx(Nx ∩ Γp) = Vx ∩ {∂Rn−1
+ × {0}},

Φx(Nx ∩ ∂Γp) = Vx ∩ {Rn−2 × {(0, 0)}},

where Rn
+ := {(x1, x2, · · · , xn);xn > 0} for n ≥ 1 (see e.g. [41, 40]). If a tuple

(Γp,Ω) is of C
1,1, for each s ≥ 0, we define Hs(Γp) to be the space of all complex-

valued functions v ∈ L2(∂Ω) satisfying V|Γp
= v for some V ∈ Hs(∂Ω), endowed

with the norm

(2.4) ∥v∥s,Γp := inf
V|U=v

V ∈Hs(∂Ω)

∥V ∥Hs(∂Ω).

On the other hand, we set Hs
0(Γp) to be the subspace of Hs(Γp) such that for each

v ∈ Hs
0(Γp), its trivial extension ṽ = vχΓp belongs to Hs(∂Ω). The dual space of

Hs
0(Γp) is denoted by H−s(Γp) (See e.g. [39, Subsection 1.2.1.4]). Then, the trace

mapping γp : Hs(Ω) → Hs− 1
2 (Γp) is continuous when s > 1

2 ([39, Theorem 1.37]).
From (2.2) and (2.4) it follows that the following interpolation result is valid:

(2.5) ∥u∥1/2,Γp
≤ Cp∥u∥1/21,Γp

∥u∥1/20,Γp
∀u ∈ H1(Γp),

where Cp is independent of u (see e.g. [41]).
In this paper, we shall use the following admissible set for the Robin coefficient

data.

(2.6) U := {κ ∈ L∞(Γ2) | κ ≤ κ(x) ≤ κ̄ for a.e. x ∈ Γ2}
with fixed constants 0 < κ < κ̄ <∞.
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The following well-possedness results follow from [35, Theorem 7.4] and the com-
pact perturbation theorem of Fredholm operators, whose proof is beyond the scope
of this paper and is included in the Appendix.

Lemma 2.2. Suppose (H1)-(H2) hold. Then, for all q ∈ L2(Γ1) and κ ∈ U , the
system (1.1) admits a unique weak solution u ∈ H3/2(Ω) satisfying

∥u∥H3/2(Ω) ≤ C(∥f∥0,Ω + ∥q∥0,Γ1
+ ∥ua∥0,Γ2

)

with a constant C > 0, independent of u, f , q, ua, and κ ∈ U .

Let us now recall a stability estimate result, which plays a profound role in our
analysis. In the following, for a C1,1-tuple (Γp,Ω), we denote by H1

co(Ω ∪ Γp) the
closed subspace of H1(Ω) containing all functions with compact support in Ω∪ Γp.

Lemma 2.3 ([1, Theorem 1.9]). Let the conditions of Lemma 2.2 be satisfied.
Furthermore, suppose that (Γp,Ω) is a C1,1-couple and u ∈ H1(Ω) satisfying∫

Ω

p∇u · ∇vdx = ⟨p∂nu, v⟩H−1/2(Γp)×H1/2(Γp) ∀ v ∈ H1
co(Ω ∪ Γp),

and

(2.7) ∥u∥1,Ω ≤M

for some positive constant M . Then, there exist µ∗ ∈ (0, 1) and C > 0, independent
of M and u, such that
(2.8)

∥u∥L2(Ω) ≤ C(M + ∥u∥1/2,Γp
+ ∥p∂nu∥−1/2,Γp

)
1

logµ
∗
(

M+∥u∥1/2,Γp+∥p∂nu∥−1/2,Γp

∥u∥1/2,Γp+∥p∂nu∥−1/2,Γp

) .
Remark 2.4. F. John and L.E. Payne [29, 38] initiated the general study of stabili-
ties for ill-posed elliptic Cauchy problems, i.e., assuming a solution u of the Cauchy
problem is a priori known to be bounded over Ω, and the Cauchy data are pre-
scribed on some portion Γ of the boundary ∂Ω, one wishes to estimate the solution
u in an interior domain or the whole domain Ω. The former is called stability
estimates in the interior, while the later is called global stability estimates. For lin-
ear elliptic equations with analytic coefficients and classical solutions, F. John [29]
established Hölder continuity for stability estimates in the interior and logarithmic
global stability estimates. In [38], the author relaxed the restriction on coefficients
and established similar estimates for strong solutions of elliptic equations, while in
[1] we can find the same estimates for merely weak solution of elliptic equations.
Moreover, the classical example dated back to Hadamard shows that for the sta-
bility estimate in the interior we cannot expect anything better than a Hölder rate
[1, 18], whereas for the global stability the optimal rate will be of logarithmic type
(see, e.g., [1]).

2.1. Mathematical formulation for (IRP). We first introduce an assumption
for the inverse Robin problem.

(HR) Assume that q ∈ L2(Γ1), and κ† ∈ U denotes the true Robin coefficient of
(1.1). Furthermore, let Γa ⊂ Γ1 be a connected open part of Γ1 such that
(Γa,Ω) is a C

1,1-tuple.
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Let us now assume that (H1)-(H2) and (HR) are satisfied. In view of Lemma
2.2, the elliptic problem (1.1) admits for every κ ∈ U a unique weak solution u =
u(κ) ∈ H3/2(Ω) satisfying the variational form:
(2.9)∫
Ω

p∇u(κ) ·∇vdx+
∫
Γ2

κu(κ)vdS =

∫
Ω

fvdx+

∫
Γ1

qvdS+

∫
Γ2

uavdS ∀v ∈ H1(Ω).

Introducing the noisy data uδ ∈ L2(Γa) resulting from the partial measurement of
the true solution u(κ†) on Γa ⊂ Γ1 satisfying (with a noise level δ > 0)

(2.10) ∥uδ − u(κ†)∥0,Γa
≤ δ,

the inverse Robin coefficient problem of our interest reads as follows:

(IRP) Find κ ∈ U s.t. u(κ) = uδ.

To deal with the ill-posedness in (IRP), we consider the Tikhonov regularization
method:

(2.11) min
κ∈U

1

2
∥u(κ)− uδ∥20,Γa

+
α

2
∥κ− κ∗∥20,Γ2

,

where α > 0 is a regularization parameter and κ∗ ∈ L∞(Γ2) is an a priori estimate
of the true parameter κ†. Note that κ∗ does not necessarily lie in the admissible set
U . By the well-known arguments (cf. [28, Lemma 3.1]), the Tikhonov regularization
problem (2.11) admits a solution, which we refer to as the regularized solution to
the inverse Robin problem (IRP).

Lemma 2.5. Under (H1)-(H2) and (HR), (2.11) admits a global optimal solution
κδα ∈ U .

2.2. Mathematical formulation for (IFP). In the case of the inverse flux prob-
lem, the Robin coefficient κ ∈ U is supposed to be the known data, and our goal
is to reconstruct the flux parameter q ∈ L2(Γ1). In other words, in place of (HR),
we now pose the following assumption:

(HF) Suppose that κ ∈ U , and q† ∈ L2(Γ1) denotes the true boundary flux of (1.1).
Furthermore, let Γb ⊂ Γ2 be a connected open part of Γ2 such that (Γb,Ω)
is a C1,1 couple.

As in (IRP), to emphasize the solution dependence on the heat flux q, the unique
weak solution to (1.1) is denoted by u = u(q) ∈ H1(Ω) satisfying the variational
formulation:

(2.12)

∫
Ω

p∇u(q) · ∇vdx+

∫
Γ2

ku(q)vdS =

∫
Ω

fvdx+

∫
Γ1

qvdS +

∫
Γ2

uavdS.

Introducing the noisy data zδ ∈ L2(Γb) resulting from the partial measurement of
the true solution u(q†) on Γb ⊂ Γ2 satisfying

(2.13) ∥zδ − u(q†)∥0,Γb
≤ δ,

we focus on the following inverse flux problem:

(IFP) Find q ∈ L2(Γ1) s.t. u(q) = zδ.

Then, the Tikhonov regularization method for (IRP) reads as:

(2.14) min
q∈L2(Γ1)

1

2
∥u(q)− zδ∥20,Γb

+
α

2
∥q∥20,Γ1

,
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where α > 0 is the regularization parameter. The well-known arguments (cf. [49])
yield the existence of the solutions to (2.14).

Lemma 2.6. Under (H1)-(H2) and (HF), (2.14) admits a global optimal solution
qδα ∈ L2(Γ1).

3. Conditional stability estimates.

3.1. Stability estimate for (IRP).

Theorem 3.1. Let (H1), (H2), and (HR) hold. Suppose that |u(κ†)| ≥ c0 a.e.
on Γ2 for some positive constant c0 > 0, then for every ϵ ∈ (0, 1/2), there exists a
positive constant C such that

(3.1) ∥κ− κ†∥− 1
2−ϵ,Γ2

≤ C
1

logµ
∗/3

(
1

∥u(κ)−u(κ†)∥0,Γa
+ 1

) ∀κ ∈ U

with µ∗ ∈ (0, 1) is the same as in Lemma 2.3.

Proof. Let ϵ ∈ (0, 1/2). The claim is trivial for κ = κ†. Therefore, let κ† ̸= κ ∈ U .
We split the proof into two steps.

Step 1. We first prove that there exists a constant C > 0, independent of κ ∈ U ,
such that

(3.2) ∥κ− κ†∥− 1
2−ϵ,Γ2

≤ C∥u(κ)− u(κ†)∥1,Ω.

In view of the definition of the variational form (2.9) for u(κ), we have that for any
v ∈ H1(Ω),∫

Ω

p∇u(κ) · ∇vdx+

∫
Γ2

κu(κ)vdS =

∫
Ω

p∇u(κ†) · ∇vdx+

∫
Γ2

κ†u(κ†)vdS,

which ensures that

(3.3)

∫
Ω

p∇(u(κ)−u(κ†)) ·∇vdx+
∫
Γ2

κ(u(κ)−u(κ†))vdS =

∫
Γ2

(κ†−κ)u(κ†)vdS.

Hence, using the Cauchy-Schwarz inequality and the trace theorem, we get∣∣∣∣∫
Γ2

(κ† − κ)u(κ†)vdS

∣∣∣∣ ≤κ̄∥u(κ)− u(κ†)∥0,Γ2∥v∥0,Γ2 + ∥p∥C(Ω)∥u(κ)− u(κ†)∥1,Ω∥v∥1,Ω

≤C∥u(κ)− u(κ†)∥1,Ω∥v∥1,Ω.(3.4)

As u(κ†) ∈ H
3
2 (Ω) (by Lemma 2.2), we obtain by trace theorem that u(κ†) ∈

H1(Γ2). Based on the condition that |u(κ†)| ≥ c0 > 0 a.e. on Γ2, Lemma 2.1 (iii)
implies that 1/u(κ†) ∈ H1(Γ2). Let φ ∈ H1/2+ϵ(Γ2) be arbitrarily fixed. In the
case of d = 2, Lemma 2.1 (ii) implies that φ/u(κ†) ∈ H1/2+ϵ(Γ2) with

(3.5) ∥φ/u(κ†)∥1/2+ϵ,Γ2
≤ C∥φ∥1/2+ϵ,Γ2

∥1/u(κ†)∥1/2+ϵ,Γ2

with a constant C > 0 independent of φ and u(κ†). As the trace mapping H1+ϵ(Ω)
→ H1/2+ϵ(Γ2) is surjective with some continuous right inverse (see. e.g. [35]), we
can find some vφ ∈ H1+ϵ(Ω) such that vφ |Γ2= φ/u(κ†) and

(3.6) ∥vφ∥1+ϵ,Ω ≤ C∥φ/u(κ†)∥1/2+ϵ,Γ2
≤ C∥φ∥1/2+ϵ,Γ2

∥1/u(κ†)∥1/2+ϵ,Γ2
.
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For this reason, we can deduce by choosing v = vφ in (3.4) and using (3.6) that∣∣∣∣∫
Γ2

(κ† − κ)φdS

∣∣∣∣ ≤C∥u(κ)− u(κ†)∥1,Ω∥vφ∥1,Ω ≤ C∥u(κ)− u(κ†)∥1,Ω∥vφ∥1+ϵ,Ω

≤C∥u(κ)− u(κ†)∥1,Ω∥φ∥1/2+ϵ,Γ2
∥1/u(κ†)∥1/2+ϵ,Γ2

.(3.7)

As φ ∈ H1/2+ϵ(Γ2) was chosen arbitrarily, the estimate (3.7) yields the desired (3.2)
for the case of d = 2.

Let us now prove (3.2) for the three-dimensional case, namely d = 3. In this
case, Lemma 2.1 (i) implies that

(3.8) ∥φ/u(κ†)∥1/2+ϵ/2,Γ2
≤ C∥φ∥1/2+ϵ,Γ2

∥1/u(κ†)∥1−ϵ/2,Γ2

with a constant C > 0 independent of φ and u(κ†). Again, as the trace mapping
H1+ϵ/2(Ω) → H1/2+ϵ/2(Γ2) is also surjective with some continuous right inverse,
we can find some vφ ∈ H1+ϵ/2(Ω) such that vφ |Γ2

= φ/u(κ†) and

(3.9) ∥vφ∥1+ϵ/2,Ω ≤ C∥φ/u(κ†)∥1/2+ϵ/2,Γ2
≤ C∥φ∥1/2+ϵ,Γ2

∥1/u(κ†)∥1−ϵ/2,Γ2
.

Therefore, applying (3.9) to (3.4) with v = vφ in (3.4), it follows that∣∣∣∣∫
Γ2

(κ† − κ)φdS

∣∣∣∣ ≤C∥u(κ)− u(κ†)∥1,Ω∥vφ∥1+ϵ/2,Ω

≤C∥u(κ)− u(κ†)∥1,Ω∥φ∥1/2+ϵ,Γ2
∥1/u(κ†)∥1−ϵ/2,Γ2

,

which concludes (3.2) for the case d = 3.

Step 2. Thanks to (3.2), we can prove (3.1) by estimating ∥u(κ)−u(κ†)∥1,Ω in terms
of ∥u(κ)−u(κ†)∥0,Γa . In view of the definition of u(κ), the function w

.
= u(κ)−u(κ†)

satisfies the following elliptic system

(3.10)


−∇ · (p∇w) = 0 in Ω,

p
∂w

∂n
= 0 on Γ1,

p
∂w

∂n
+ κw = (κ† − κ)u(κ†) on Γ2.

Then, an combination of Lemma 2.2 and the trace theorem implies that

(3.11) ∥u(κ)−u(κ†)∥ 3
2 ,Ω

≤ C∥(κ†−κ)u(κ†)∥0,Γ2
≤ C2κ̄∥u(κ†)∥1,Ω ≤M ∀κ ∈ U ,

where M is a sufficiently large constant that will be fixed later. Applying the
interpolation result (2.2) with M = Ω, s0 = 0, s1 = 3/2 and s = 1 and (3.11), it
follows that there exists a constant C > 0 independent of κ ∈ U such that
(3.12)

∥u(κ)− u(κ†)∥1,Ω ≤ C∥u(κ)− u(κ†)∥2/33/2,Ω∥u(κ)− u(κ†)∥1/30,Ω ≤ CM2/3∥u(κ)− u(κ†)∥1/30,Ω.

or this reason along with (3.2), we can conclude that

(3.13) ∥κ−κ†∥− 1
2−ϵ,Γ2

≤ C∥u(κ)−u(κ†)∥1,Ω ≤ CM2/3∥u(κ)−u(κ†)∥1/30,Ω ∀κ ∈ U .

Hence, it remains to estimate ∥u(κ) − u(κ†)∥0,Ω in terms of ∥u(κ) − u(κ†)∥1/2,Γa
.

Thanks to (3.11), we may apply Lemma 2.3 with Γp = Γa ⊂ Γ1 to (3.10), and
obtain that
(3.14)

∥u(κ)− u(κ†)∥0,Ω ≤ C(M + ∥u(κ)− u(κ†)∥1/2,Γa
)

1

logµ
∗
(

M+∥u(κ)−u(κ†)∥1/2,Γa

∥u(κ)−u(κ†)∥1/2,Γa

) .
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On the other hand, by the interpolation result (2.5) and the continuity of the trace
mapping H3/2(Ω) → H1(Γa), it holds that

∥u(κ)− u(κ†)∥1/2,Γa ≤ C∥u(κ)− u(κ†)∥1/21,Γa
∥u(κ)− u(κ†)∥1/20,Γa

≤ C∥u(κ)− u(κ†)∥1/23
2
,Ω
∥u(κ)− u(κ†)∥1/20,Γa

≤︸︷︷︸
(3.11)

CM1/2∥u(κ)− u(κ†)∥1/20,Γa
(3.15)

with a constant C > 0 independent of κ ∈ U . As the mapping x 7→ (M + x)/x is
monotonically decreasing in (0,∞), we deduce from (3.15) that

M + ∥u(κ)− u(κ†)∥1/2,Γa

∥u(κ)− u(κ†)∥1/2,Γa

≥
M1/2/C + ∥u(κ)− u(κ†)∥1/20,Γa

∥u(κ)− u(κ†)∥1/20,Γa

≥
(1 + ∥u(κ)− u(κ†)∥0,Γa )

1/2

∥u(κ)− u(κ†)∥1/20,Γa

by choosing M large enough. Applying the above inequality to (3.14), it follows
that

∥u(κ)− u(κ†)∥0,Ω ≤ 2µ
∗
C(M + ∥u(κ)− u(κ†)∥1/2,Γa)

1

logµ
∗
(

1
∥u(κ)−u(κ†)∥0,Γa

+ 1
)

≤︸︷︷︸
(3.11)

C
M

logµ
∗
(

1
∥u(κ)−u(κ†)∥0,Γa

+ 1
) .

Concluding from (3.2), (3.13), and the above estimate, we conclude the desired
claim.

Remark 3.2. We add a remark about the condition on the lower bound of the
forward solution in Theorem3.1. If f is non-negative a.e. in Ω, q is non-negative
a.e. on Γ1, and ua is nonnegative a.e. on Γ2, then u(κ†) ≥ 0 a.e. in Ω by [33,
Theorem 2]. If, in addition, Ω is convex and smooth, f ∈ L∞(Ω), u(κ†) ∈ L∞(Ω)
and u(κ†) ̸≡ 0, then u(κ†) is Hölder continuous, and there exists C0 > 0 such that
u(κ†) ≥ C0 in Ω (see, e.g., [33, Theorem 4].).

At this point, let us underline that the established logarithmic-type estimate (3.1)
is readily sharp and cannot be improved by Hölder- or Lipschitz-type estimate. To
demonstrate this fact, we consider the following counterexample extending the one
proposed by [12] to our inverse problem (IRP).

Let B1(0) (resp. B1/2(0)) denote the open ball in R2 of radius 1 (resp. 1/2)

centered at 0. We set Ω = B1(0)\B1/2(0) ⊂ R2, Γ1 = ∂B1(0), and Γ2 = ∂B1/2(0)
and consider the following elliptic problem:

(3.16)


△u = 0 in Ω ,

∂u
∂n + κu = 0 on Γ2 ,

∂u
∂n = 1 on Γ1.

We construct the special solutions for κ and u by means of the separation of variables
in polar coordinates. More precisely, we make use of the coordinate transformation
(x, y) = (r cos θ, r sin θ) in (3.16), leading to

(3.17)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

It is straightforward to justify that the following function

u(r, θ) = 10 + ln r(3.18)
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fulfills (3.17) and the boundary condition ∂u
∂n = ∂u

∂r = 1 on Γ1. Furthermore, by
specifying

κ ≡ 2

10− ln 2
,(3.19)

it holds that

∂u

∂n
+ κu = −1

r
+ κ(10 + ln r) = −2 + κ(10− ln 2) = 0 on Γ2 = ∂B1/2(0) .

In conclusion, we see that (3.18) and (3.19) are the special solutions of (3.16). In
an analogous way, we can justify that

un = 10 + ln r + ϵn(r
n + r−n) sinnθ and κn =

2 + n−1(2−2n+1 − 2) sinnθ

10− ln 2 + n−2(2−2n + 1) sinnθ
,

with ϵn := 2−nn−2, are the solutions to (3.16). Due to our construction, we can
compute

(3.20) ∥u− un∥0,Γ1
= ϵn

(∫ 2π

0

sin2(nθ)dθ

)1/2

= 2−nn−3π1/2

and

∥u− un∥1,Ω =

(∫ 1

1/2

∫ 2π

0

[(u− un)2 + (∂ru− ∂ru
n)2 + r−2(∂θu− ∂θu

n)2]rdrdθ

)1/2

= ϵn
( ∫ 1

1/2

∫ 2π

0

[(rn + r−n)2 sin2(nθ) + n2(rn−1 − r−n−1)2 sin2(nθ)

+ n2(rn−1 + r−n−1)2 cos2(nθ)]rdrdθ
)1/2

∼n−3/2.(3.21)

Next, we claim that there exists a constant C > 0, independent of n, such that

(3.22) C−1∥u− un∥1,Ω ≤ ∥κ− κn∥−1/2,Γ2
≤ C∥u− un∥1,Ω.

Indeed, we first observe that u is constant over Γ2 and obtain by similar arguments
for (3.2) (see (3.4)) that

(3.23) ∥κ− κn∥− 1
2 ,Γ2

≤ C∥u− un∥1,Ω

with a constant C > 0 independent of n. On the other hand, similar to (3.3), we
have

(3.24)

∫
Ω

∇(un−u) ·∇vdx+
∫
Γ2

κn(un−u)vdS =

∫
Γ2

(κ−κn)uvdS ∀v ∈ H1(Ω).

By choosing v = un − u in (3.24) and using the generalized Poincare’s inequality
(cf. [48, Theorem 7.7]) along with the trace theorem, it follows that there exists a
constant C > 0, independent of un, u, κn and κ, such that

∥un − u∥21,Ω ≤ C∥κn − κ∥−1/2,Γ2
∥un − u∥1/2,Γ2

≤ C∥κn − κ∥−1/2,Γ2
∥un − u∥1,Ω,

which, together with (3.23), implies the desired claim (3.22). it follows from
(3.21)-(3.22) that

(3.25) ∥κ− κn∥− 1
2 ,Γ2

∼ ∥u− un∥1,Ω ∼ n−3/2.
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In conclusion, (3.20) implies that the error ∥u−un∥0,Γ1 decays exponentially, while
(3.25) ensures that ∥κ−κn∥− 1

2 ,Γ2
decays only polynomially. Therefore, the following

Hölder-type estimate

∥κ− κn∥− 1
2 ,Γ2

≤ C∥u− un∥α0,Γ1

can not be satisfied for any fixed C > 0 and α > 0.

Remark 3.3. The above example demonstrates that one can only expect logarithmic-
type stabilities for (IRP). However, if the whole boundary data is given, i.e.,
Γa = ∂Ω, then we can get a Hölder-type stability estimate instead of logarithmic-
type. We obtain by the classical well-posendess theory that

∥u(κ)− u(κ†)∥1,Ω≤ C∥u(κ)− u(κ†)∥1/2,∂Ω ∀κ ∈ U
with a constant C > 0 independent of κ ∈ U . This, together with (3.2), implies
that

(3.26) ∥κ− κ†∥− 1
2−ϵ,Γ2

≤ C∥u(κ)− u(κ†)∥1/2,∂Ω ∀κ ∈ U .

On the other hand, an interplay of (3.11) and the continuity of trace mapping
implies that

(3.27) ∥u(κ)− u(κ†)∥1,∂Ω ≤ C∥u(κ)− u(κ†)∥3/2,Ω ≤ CM ∀κ ∈ U .
Then we conclude from (3.26)-(3.27), and the well-known interpolation inequality
(see (2.5)) that
(3.28)

∥κ− κ†∥− 1
2−ϵ,Γ2

≤ C∥u(κ)− u(κ†)∥1/2,∂Ω≤ CM1/2∥u(κ)− u(κ†)∥1/20,∂Ω ∀κ ∈ U .

3.2. Local stability estimate for (IFP). The goal of this section is to derive a
logarithmic type stability estimate for the inverse flux problem (IFP). Similar to
the previous stability estimate (3.1), our analysis makes use of Lemma 2.3 and the
following admissible set for the heat flux (with r > 0):

Br := {q ∈ L2(Γ1) | ∥q − q†∥0,Γ1
≤ r} .

Theorem 3.4. Let (H1), (H2), and (HF) hold. For every r > 0, there exists a
constant C(r) > 0 such that

(3.29) ∥q − q†∥− 1
2 ,Γ1

≤ C(r)
1

logµ
∗/3

(
1

∥u(q)−u(q†)∥0,Γb

+ 1
) ∀ q ∈ Br,

where µ∗ ∈ (0, 1) is the same as in Lemma 2.3.

Proof. Let r > 0 and q ∈ Br. In view of the definition (2.12), it holds for all
v ∈ H1(Ω) that ∫

Ω

p∇u(q) · ∇vdx+

∫
Γ2

κu(q)vdS −
∫
Γ1

qvdS

=

∫
Ω

p∇u(q†) · ∇vdx+

∫
Γ2

κu(q†)vdS −
∫
Γ1

q†vdS.

As the trace mapping H1(Ω) → H1/2(Γ2) is continuous, the identity above implies

|
∫
Γ1

(q − q†)vdS| ≤ ∥p∥C(Ω)∥∇(u(q)− u(q†))∥0,Ω∥∇v∥0,Ω + κ̄∥u(q)− u(q†)∥0,Γ2∥v∥0,Γ2

≤ C∥u(q)− u(q†)∥1,Ω∥v∥1,Ω.(3.30)
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Since the trace mapping H1(Ω) → H1/2(Γ1) is surjective with continuous right
inverse (see. e.g. [35]), then for any given φ ∈ H1/2(Γ1), there exists a function
vφ ∈ H1(Ω) such that vφ |Γ1

= φ and ∥vφ∥1,Ω ≤ C∥φ∥1/2,Γ1
. For this reason, it

follows from (3.30) that

|
∫
Γ1

(q − q†)φdS| ≤ C∥u(q)− u(q†)∥1,Ω∥φ∥1/2,Γ1
∀φ ∈ H1/2(Γ1),

which yields

(3.31) ∥q − q†∥− 1
2 ,Γ1

≤ C∥u(q)− u(q†)∥1,Ω.

On the other hand, it is readily checked that u(q) − u(q†) satisfies the following
elliptic system

(3.32)



−∇ · (p∇(u(q)− u(q†))) = 0 in Ω,

p
∂(u(q)− u(q†))

∂n
= q − q† on Γ1,

p
∂(u(q)− u(q†))

∂n
= −κ(u(q)− u(q†)) on Γ2.

Then, Lemma 2.2 implies the existence of a positive constant Ĉ(r) such that

(3.33) max{∥u(q)− u(q†)∥1,Ω, ∥u(q)− u(q†)∥3/2,Ω} ≤ Ĉ(r) ∀q ∈ Br.

Hence, using (3.33), (3.31), and the interpolation result (2.2) with M = Ω s0 = 0,
s1 = 3/2 and s = 1, we get

∥q − q†∥− 1
2 ,Γ1

≤C∥u(q)− u(q†)∥1,Ω ≤ C∥u(q)− u(q†)∥2/33/2,Ω∥u(q)− u(q†)∥1/30,Ω

≤CĈ(r)2/3∥u(q)− u(q†)∥1/30,Ω.(3.34)

Furthermore, applying Lemma 2.3 with Γp = Γb ⊂ Γ2 to (3.32) yields that

∥u(q)− u†∥0,Ω ≤C(Ĉ(r) + ∥u(q)− u(q†)∥1/2,Γb
+ ∥k(u(q)− u(q†))∥−1/2,Γb

)

× 1

logµ
∗
(

Ĉ(r)+∥u(q)−u(q†)∥1/2,Γb
+∥k(u(q)−u(q†))∥−1/2,Γb

∥u(q)−u(q†)∥1/2,Γb
+∥k(u(q)−u(q†))∥−1/2,Γb

) .(3.35)

In view of (2.5), (3.33), the continuity of the trace mapping H1(Ω) → L2(Γb), and
the embeddings L2(Γb) ↪→ H−1/2(Γb) and H

3/2(Ω) ↪→ H1(Ω), we obtain

∥u(q)− u(q†)∥1/2,Γb
+ ∥k(u(q)− u(q†))∥−1/2,Γb

≤ C(∥u(q)− u(q†)∥1/21,Γb
∥u(q)− u(q†)∥1/20,Γb

+ ∥k(u(q)− u(q†))∥0,Γb)

≤ C(∥u(q)− u(q†)∥1/23/2,Ω∥u(q)− u(q†)∥1/20,Γb
+ ∥u(q)− u(q†)∥1/20,Γb

· ∥u(q)− u(q†)∥1/20,Γb
)

≤ CĈ(r)1/2∥u(q)− u(q†)∥1/20,Γb
.

(3.36)
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Then, the similar arguments as used in the proof of Theorem 3.1 along with (3.35)
and (3.36) ensure that

(3.37) ∥u(q)− u(q†)∥1,Ω ≤ C(r)
1

logµ
∗/3

(
1+∥u(q)−u(q†)∥0,Γb

∥u(q)−u(q†)∥0,Γb

) ,
which, together with (3.34), completes the proof.

We emphasize that the established logarithmic-type estimate (3.29) is sharp and
can not be improved, to get Hölder- or Lipschitz-type estimates. To demonstrate
this fact, we construct a counterexample to our inverse problem (IFP).

We denote by B2(0) the open ball in R2 of radius 2 centered at 0. We set
Ω = B2(0)\B1(0) ⊂ R2, Γ2 = ∂B1(0), and Γ1 = ∂B2(0) and consider the following
elliptic system

(3.38)


△u = 0 in Ω ,

∂u
∂n + u = 0 on Γ2 ,

∂u
∂n = q on Γ1 .

We will construct special solutions by the separation of variables in polar coordi-
nates. Obviously, the system (3.38) admits trivial solutions u ≡ 0 and q ≡ 0. By a
similar argument as in Subsection, we justify that for all n ≥ 1,

un := ϵn((n+2)rn+1+nr−n−1) sin(n+1)θ and qn := ϵn(n+1)[(n+2)2n−n2−n−2] sin(n+1)θ

where ϵn = 2−nn−2, are the solutions of (3.38). Since Γ1 is a circle, we recall that
the norm in H−1/2(Γ1) can be equivalently computed as follows (See [45, page 25]):

(3.39) ∥f∥2−1/2,Γ1
=

+∞∑
m=−∞

(1 +m2)−1

∣∣∣∣ 1

2π

∫ 2π

0

f(θ)e−imθdθ

∣∣∣∣2 ∀f ∈ H−1/2(Γ1).

From this formula and the result that

| 1
2π

∫ 2π

0

sin(n+ 1)θe−imθdθ| =

{
1/2, m = ±(n+ 1),

0, m ̸= ±(n+ 1),

it follows that

∥qn∥− 1
2
,Γ1

= ϵn(n+ 1)[(n+ 2)2n − n2−n−2]

(
+∞∑

m=−∞

(1 +m2)−1

∣∣∣∣ 12π
∫ 2π

0

sin(n+ 1)θe−imθdθ

∣∣∣∣2
)1/2

= ϵn(n+ 1)[(n+ 2)2n − n2−n−2] · 1√
n2 + 2n+ 2

∼n− 1
2 as n → +∞.

(3.40)

In an analogous way, we obtain that

∥un∥0,Γ2
= 2ϵn(n+ 1)

1√
n2 + 2n+ 2

∼ 2−nn−1 as n→ +∞.

In conclusion, the error ∥un − u∥0,Γ2 = ∥un∥0,Γ2 decays exponentially, while ∥qn −
q∥− 1

2 ,Γ1
= ∥qn∥− 1

2 ,Γ1
decays only polynomially. Therefore there exists no constants

C > 0 and α > 0 such that

∥qn − q∥− 1
2 ,Γ1

≤ C∥un − u∥α0,Γ2
∀n ∈ N.
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4. Convergence rates analysis.

4.1. Convergence rate for (IRP). Following the general principle of variational
source conditions (VSCs) [20] for inverse problems, we propose the following VSC
for the Tikhonov regularization (2.11) associated with (IFP):

∥κ− κ†∥20,Γ2

4

≤
∥κ− κ∗∥20,Γ2

2
−

∥κ† − κ∗∥20,Γ2

2
+

C

logµ
(

1
∥u(κ)−u(κ†)∥0,Γa

+ 1
) ∀κ ∈ U ,(4.1)

where µ > 0 will be selected later.

Lemma 4.1. Let (H1), (H2) and (HR) hold. Let µ∗ ∈ (0, 1) be the same as in
Lemma 2.3. Assume that |u(κ†)| ≥ c0 a.e. on Γ2 for some positive constant c0 > 0,
and κ† − κ∗ ∈ Hβ(Γ2) with β > 0. Then, (4.1) holds true for µ ∈ (0, µ∗] satisfying{

µ = µ∗/3 if β > 1
2 ,

µ < 4βµ∗

3+6β if β ∈ (0, 12 ].

Proof. By the parallelogram law in Hilbert spaces, (4.1) is equivalent to

(κ† − κ∗, κ† − κ)Γ2
≤

1

4
∥κ− κ†∥20,Γ2

+ C
1

logµ
(

1
∥u(κ)−u(κ†)∥0,Γa

+ 1

) ∀κ ∈ U .(4.2)

Trivially, (4.2) holds true for κ† − κ∗ = 0. In the sequel, we therefore consider the
case κ† ̸= κ∗. In this case, if β > 1/2, Theorem 3.1 yields that

|(κ† − κ∗, κ† − κ)Γ2 | ≤ ∥κ† − κ∗∥β,Γ2∥κ† − κ∥−β,Γ2

≤ C∥κ† − κ∗∥β,Γ2

1

logµ
∗/3

(
1

∥u(κ)−u(κ†)∥0,Γa
+ 1

) ∀κ ∈ U ,

which verifies (4.2) with µ = µ∗/3.
Next, let us consider the case β ∈ (0, 1/2] and ϵ ∈ (0, 1/2). Using (2.2) with

s0 = −1/2− ϵ, s0 = 0, and θ = 1+2ϵ−2β
1+2ϵ , we obtain that

|(κ† − κ∗, κ† − κ)Γ2
| ≤∥κ† − κ∗∥β,Γ2

∥κ† − κ∥−β,Γ2

≤C∥κ† − κ∗∥β,Γ2∥κ† − κ∥
2β

1+2ϵ

−1/2−ϵ,Γ2
∥κ† − κ∥

1+2ϵ−2β
1+2ϵ

0,Γ2
.

Applying Theorem 3.1 to the inequality above, it follows that

|(κ†−κ∗, κ†−κ)Γ2 | ≤ C∥κ†−κ∗∥β,Γ2

1

log
2βµ∗

3(1+2ϵ)

(
1

∥u(κ)−u(κ†)∥0,Γa
+ 1

)∥κ†−κ∥ 1+2ϵ−2β
1+2ϵ

0,Γ2
.

Then, making the use of Young’s inequality

ab ≤ cp

p
ap +

1

qcq
bq

with p = 2(1+2ϵ)
1+2ϵ+2β , q =

2(1+2ϵ)
1+2ϵ−2β and a suitable parameter c > 0, we conclude that

|(κ† − κ∗, κ† − κ)Γ2
| ≤ 1

4
∥κ† − κ∥20,Γ2

+ C
1

log
4βµ∗

3(1+2ϵ+2β)

(
1

∥u(κ)−u(κ†)∥0,Γa
+ 1

) .
Since ϵ ∈ (0, 1/2) is arbitrary, this completes the proof.
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Lemma 4.2. For each fixed µ ∈ (0, 1/3), the following function is concave:

ψ(δ) := log−µ(
1

δ
+ 1) ∀ δ ∈ (0,∞) .

Proof. It suffices to show that ψ′′(δ) < 0 for all δ > 0. An direct computation yields

(4.3) ψ′′(δ) =
µ

(δ2 + δ)2 log(µ+1)( 1δ + 1)
[(µ+ 1) log−1(

1

δ
+ 1)− 1− 2δ].

By applying Jensen’s inequality to the convex function x 7→ 1/x, we can obtain that

log(
1

δ
+ 1) = log(1 + δ)− log δ =

∫ δ+1

δ

1

x
dx ≥ 1∫ δ+1

δ
xdx

=
1

2δ+1
2

,

which, along with the fact that 0 < µ ≤ 1/3, implies
(4.4)

(µ+1) log−1(
1

δ
+1)−1−2δ ≤ (µ+1)(δ+

1

2
)−2(δ+

1

2
) = (µ−1)(δ+

1

2
) < 0 ∀δ > 0

The desired claim follows now from (4.3) and (4.4).

In view of Lemmas 4.1-4.2, we readily derive the following convergence result [21,
Theorem 1].

Theorem 4.3. Let (H1), (H2) and (HR) hold. Suppose that that |u(κ†)| ≥ c0
a.e. on Γ2 for some positive constant c0 > 0, and κ† − κ∗ ∈ Hβ(Γ2) with β > 0.
Then, under the parameter choice β(δ) = δ2 logµ( 1δ + 1), with µ as in Lemma 4.1,
it holds that

(4.5) ∥u(κδα)− u(κ†)∥0,Γa
= O(δ) as δ → 0

and

(4.6) ∥κδα − κ†∥0,Γ2 = O(log−µ/2(
1

δ
)) as δ → 0,

4.2. Convergence rate for (IFP). In this subsection, we propose the following
VSC for the Tikhonov regularization (2.14) associated with (IFP):

∥q − q†∥20,Γ1

4

≤
∥q∥20,Γ1

2
−

∥q†∥20,Γ1

2
+ C(r)

1

logµ
(

1
∥u(q)−u(q†)∥0,Γb

+ 1
) ∀ r > 0, q ∈ Br,(4.7)

with a constant C(r) > 0 depending on r, and a constant µ > 0 to be specified later.
Then the following results follow from the same arguments as that for Lemma 4.1
but using Theorem 3.4.

Lemma 4.4. Let (H1), (H2), and (HF) hold, and µ∗ ∈ (0, 1) be the same as in
Lemma 2.3. Assume that q† ∈ Hβ(Γ1) with some β > 0, then (4.7) holds true with
µ satisfying {

µ = µ∗

3 if β > 1
2 ,

µ = 4βµ∗

3+6β if β ∈ (0, 12 ] .

With the aid of the proposed VSC (4.7), we are ready to establish the following
results about the convergence rate, whose proof follows the same reasoning as that
for Theorem 4.3 with some necessary modifications.
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Theorem 4.5. Let (H1), (H2), and (HF) be satisfied. Suppose that q† ∈ Hβ(Γ2)
holds for some β > 0. Then, under the parameter choice α(δ) = δ2 logµ( 1δ +1), the
following convergence properties

∥u(qδα)− u†∥0,Γb
= O(δ) as δ → 0 and ∥qδα − q†∥0,Γ1 = O(log−µ/2(

1

δ
)) as δ → 0

hold with µ being the same as in Theorem 4.4.

Proof. Let δmax > 0 be fixed. From the definition of qδα it follows that

1

2
∥u(qδα)− zδ∥20,Γb

+
α

2
∥qδα∥20,Γ1

≤ 1

2
∥u(q†)− zδ∥20,Γb

+
α

2
∥q†|20,Γ1

≤ δ2

2
+
α

2
∥q†∥20,Γ1

,

which ensures that ∥qδα∥20,Γ1
≤ δ2/α+ ∥q†|20,Γ1

≤ r∗ = log−µ( 1
δmax

+1)+ ∥q†|20,Γ1
for

all 0 < δ ≤ δmax . Therefore, we can obtain the desired estimates along the lines of
the proof of Theorem 4.3, by applying VSC (4.7) with r = r∗.

5. Concluding remarks. In this paper, we have established some logarithmic
type stability estimates for both the inverse Robin and flux problems, which are
then applied to help us rigorously verify the variational source conditions in general
dimensional spaces. We have also obtained the logarithmic type convergence rates
and presented two counterexamples to show that the logarithmic type convergence
rates are optimal.

There are some potential studies related to this work that can be conducted
in the future. Firstly, we may expect similar results for inverse parabolic Robin
and flux problems. The most crucial step for this extension is to establish some
global stability estimates for the weak solution of the Cauchy problem associated
with the parabolic system. Secondly, it is very interesting but also challenging to
study the explicit convergence rates of Tikhonov regularization for inverse elliptic
conductivity, diffusivity problems and inverse problems arising from electromagnetic
applications (see e.g. [32]), when only partial interior measurement data is available,
e.g., collected from a subregion inside the physical domain.

6. Appendix. We present a proof of Lemma 2.2 in this appendix. Following [35],
we define ρ to be a positive and C1,1(Ω) function, vanishing on ∂Ω of the same
order of d(x, ∂Ω), such that

lim
x→x0

ρ(x)

d(x, ∂Ω)
̸= 0.

Since d(x, ∂Ω) is C1,1 in a neigborhood of Γ ([5, Theorem 2.1.]), we can define
ρ to a strictly positive function in C1,1(Ω) that equals to d(x, ∂Ω) in a certain
neighborhood of the boundary ∂Ω (See, e.g., [13]). For k = 0, 1, 2, we set Xk(Ω) :=
{u ∈ L2(Ω); ρ|α|Dαu ∈ L2(Ω), |α| ≤ k}, endowed with the inner product

(u, v)Xk =
∑
|α|≤k

(ρ|α|Dαu, ρ|α|Dαv)L2(Ω).

Then, for s = k + θ with an integer k = 0, 1 and 0 < θ < 1, we define

Xs(Ω) := [Xk(Ω), Xk+1(Ω)]θ,

and X−s(Ω) to be the dual space of Xs(Ω). Let us mention that the embedding
Xt(Ω) ↪→ Xs(Ω) is continuous for all t ≥ s (See [35, Section 6.3]). Let us write

Lu := ∇ · p∇u ∀u ∈ L2(Ω)
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in the sense of the distribution, i.e.,

⟨Lu, φ⟩H−2(Ω),H2
0 (Ω) :=

∫
Ω

u∇ · p∇φdx ∀φ ∈ H2(Ω).

Then, following the concept in [35], we can define a subspace of Hs(Ω) as follows:

(6.1) Ds
L(Ω) := {u ∈ Hs(Ω) | Lu ∈ Xs−2(Ω)},

which is a Hilbert space with the norm ∥u∥Xs
L

:= ∥u∥s,Ω + ∥Lu∥Xs−2(Ω), and is
continuously embedded into Hs(Ω) for s ≥ 0. These spaces are useful in charac-
terizing the elliptic boundary value problems with general boundary conditions. In
particular, the boundary conditions are allowed to be in the sense of distributions,

and the normal derivative is well-defined for functions in D
3/2
L (Ω).

Theorem 6.1 ([35, Theorem 7.4]). Suppose (H1)-(H2) hold, and set the normal
derivatives

B1u = p
∂u

∂n
on Γ1 and B2u = p

∂u

∂n
+ u on Γ2,

and sdefine

A : D
3/2
L (Ω) → V := (X−1/2(Ω), L2(Γ1), L

2(Γ2)) with Au := (Lu,B1u,B2u).

Then, the operator A : D
3/2
L (Ω) → V is an algebra and topological homomorphism.

Proof of Lemma 2.2. We first prove the uniqueness of the solution to system (1.1).
Suppose that u1 and u2 are two corresponding solutions to (1.1), it follows imme-
diately that

(6.2)

∫
Ω

p∇(u1 − u2) · ∇vdx+

∫
Γ2

κ(u1 − u2)vdS = 0 ∀v ∈ H1(Ω).

By selecting v = u1 − u2 in (6.2), one can derive ∥∇(u1 − u2)∥L2(Ω)d = 0 = ∥u1 −
u2∥L2(Γ2). Then the norm equivalence of ∥u1−u2∥2H1(Ω) and (∥∇(u1−u2)∥2L2(Ω)d +

∥u1 − u2∥2L2(Γ2)
) implies that ∥u1 − u2∥2H1(Ω) = 0. Hence, we have u1 = u2 a.e. in

Ω.
Then let us prove the existence and stability result. To this end, we first define

the operator

(6.3) Cκ : H1(Ω) → V, Cκu := (0, 0, (κ− 1)γu),

where γ : H1(Ω) → H1/2(Γ2) denotes the trace operator. Obviously, Cκ is compact.
In view of this, Theorem 6.1, and the injectivity of the A+ Cκ, it follows from the
compact perturbation of the Fredholm operator ([48, Theorem 12.8]) that A+Cκ :

D
3/2
L (Ω) → V is also an algebra and topological homomorphism. Therefore, given

any (f, q, ua) ∈ V , the inverse u := (A+Cκ)
−1(f, q, ua) exists, and it is exactly the

weak solution u of system (1.1), which proves the existence.
Now, let us prove the stability. As it is readily checked that

u = A−1((f, q, ua)− Cκu)

satisfies

(6.4) ∥u∥
D

3/2
L (Ω)

≤ ∥A−1∥
V→D

3/2
L (Ω)

(∥(f, q, ua)∥V + ∥Cκu∥V )

In view of the weak formulation (2.9), we obtain that

(6.5)

∫
Ω

p|∇u|2dx+

∫
Γ2

κ|u|2dS =

∫
Ω

fu(κ)dx+

∫
Γ1

qudS +

∫
Γ2

uaudS.
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By the Hölder’s inequality and Poincáre’s inequalities, it follows that

(6.6) ∥u∥H1(Ω) ≤ C(∥f∥0,Ω + ∥q∥0,Γ1 + ∥ua∥0,Γ2)

with a constant C > 0, independent of f , q, ua, and κ ∈ U . Since the operator
Cκ : H1(Ω) → L2(Γ2) is continuous with ∥Cκ∥H1(Ω)→V ≤ (κ + 1)∥γ∥H1(Ω)→L2(Ω),
it follows from (6.3) and (6.6) that

(6.7) ∥Cκu∥V ≤ C(∥f∥0,Ω + ∥q∥0,Γ1
+ ∥ua∥0,Γ2

).

Concluding from (6.4), (6.7), and the invertibility of A : D
3/2
L (Ω) → V , we obtain

∥u∥
D

3/2
L (Ω)

≤ C(∥f∥0,Ω + ∥f∥X−1/2(Ω) + ∥q∥0,Γ1
+ ∥ua∥0,Γ2

)

with a constant C > 0, independent of f , q, ua, and κ ∈ U . As the embedding

D
3/2
L (Ω) ↪→ H3/2(Ω) and L2(Ω) ↪→ X−1/2(Ω) are continuous, we completes the

proof.
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