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Abstract. This paper examines optimal control problems governed by ellip-

tic variational inequalities of the second kind with bounded and unbounded

operators. To tackle the bounded case, we employ the polyhedricity of the
test set appearing in the dual formulation of the governing variational inequal-

ity. Based thereon, we are able to prove the directional differentiability of
the associated solution operator, which leads to a strong stationary optimality

system. The second part of the paper deals with the unbounded case. Due

to the non-smoothness of the variational inequality and the unboundedness
of the governing elliptic operator, the directional differentiability of the solu-

tion operator becomes difficult to handle. Our strategy is to apply the Yosida

approximation to the unbounded operator, while the non-smoothness of the
variational inequality is still preserved. Based on the developed strong station-

ary result for the bounded case, we are able to derive optimality conditions

for the unbounded case by passing to the limit in the Yosida approximation.
Finally, we apply the developed results to Maxwell-type variational inequalities

arising in superconductivity.

1. Introduction. Deriving first-order necessary optimality conditions for optimal
control problems governed by variational inequalities (VIs) is a challenging issue,
which is mainly complicated by the lack of the Gâteaux-differentiability of the
corresponding solution operator. In the past decades, two main strategies have
been developed for the derivation of optimality conditions. The first strategy was
introduced by Barbu [1, 2], which is based on a regularization approach for the
non-smooth variational inequalities. His method has been applied and extended by
many authors to various problems (see e.g. [10, 12, 16, 14, 18, 19, 31]). In all these
contributions, a regularized problem featuring a Gâteaux differentiable solution
operator is introduced. This allows the derivation of a necessary optimality system
after passing to the limit with respect to the regularization parameter.

Without any use of regularization, Mignot and Puel [24] introduced a direct
method of proving necessary optimality conditions for the optimal control of elliptic
obstacle problems (VIs of the first kind). The main tool used in their direct approach

2010 Mathematics Subject Classification. 35J86.
Key words and phrases. Variational inequality of the second kind, directional differentiability,

strong stationarity, Yosida approximation, Maxwell variational inequality.
This work was supported by the DFG under the grant YO 159/2-2 within the priority pro-

gramme SPP 1962 ‘Non-smooth and Complementarity-based Distributed Parameter Systems:

Simulation and Hierarchical Optimization’.
∗ Corresponding author: irwin.yousept@uni-due.de.

479

http://dx.doi.org/10.3934/mcrf.2021009


480 LIVIA BETZ AND IRWIN YOUSEPT

is based on the conical differentiability property developed by Mignot [23]. We note
that necessary optimality conditions obtained by Mignot and Puel [24] are stronger
than those by Barbu [2] and equivalent to necessary optimality conditions in the
primal form. For this reason, in the literature, they are also called strong stationary
conditions [26]. In general, strong stationary conditions are more difficult to derive
than necessary optimality conditions by [2], since specific characteristics such as
ample controls (cf. [15]) are required. Furthermore, the direct approach mainly
relies on the directional differentiability property of the governing control-to-state
mapping. For H1(Ω)-elliptic VIs of the second kind, this property requires some
regularity and structural assumptions on the unknown state and slack variable. See
the recent work by De los Reyes and Meyer [11] and its extension [7]. Regarding
other directional differentiability and strong stationarity results for non-smooth
problems, cf. e.g. the contributions [9, 17, 8, 21, 4] and the references therein.

The first goal of this paper is to analyze optimal control problems governed
by elliptic VIs of the second kind involving bounded operators. The problem we
investigate reads as follows:

min
f∈U

J(y,f)

s.t. −By + f ∈ ∂ϕ(y) in L2(Ω),

 (Pb)

where U is a Hilbert space, so that U
d
↪→ L2(Ω) and J : L2(Ω)×U → R is Fréchet

differentiable. The operator B : L2(Ω) → L2(Ω) is linear, bounded and coercive,
i.e., there exists a constant α > 0 such that

(Bx,x)2 ≥ α‖x‖22 ∀x ∈ L2(Ω).

Furthermore, the non-smooth functional ϕ : L2(Ω)→ R is defined as follows:

ϕ(v) :=

∫
Ω

n∑
i=1

gi(x)|vi(x)| dx, (1)

with g ∈ L∞(Ω;Rn) satisfying gi ≥ 0 a.e. in Ω for all i = 1, . . . , n.
Our aim is to derive a strong stationary optimality system for (Pb) in the spirit of

Mignot and Puel [24]. To this end, we shall address the directional differentiability
of the control-to-state operator for (Pb). The idea is to make use of the polyhedric-
ity of the test set ∂ϕ(0) appearing in the dual formulation of the constraint in (Pb).
By means of [9, Thm. 2.3], this property allows us to derive the directional differ-
entiability of the solution operator, which leads to a strong stationary optimality
system.

The second goal of this paper is to investigate an optimal control problem, where
the governing elliptic operator appearing in the constraint is unbounded, namely:

min
u∈U

1

2
‖y − yd‖22 +

κ

2
‖u‖22

s.t. −νy −Ay + u ∈ ∂ϕ(y) in L2(Ω).

 (P)

In the setting of (P), the function yd ∈ L
2(Ω) denotes the desired state, and κ > 0

the control cost term. Moreover, ν ∈ L∞(Ω;Rn×nsym ) is a uniformly positive definite

function and A : D(A)
d
↪→ L2(Ω)→ L2(Ω) is a linear, unbounded and skew-adjoint

operator. We point out that the governing operator νI+A arises e.g. from the time
discretization of first-order hyperbolic wave equations such as linear wave acoustic
equations or Maxwell’s equations. The Maxwell case will be considered in the final
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part of the paper. The precise assumptions for the data involved in (P) will be
specified in Section 3.

The optimal control problem (P) features two main difficulties: the non-smooth
character arising from the VI-structure and the unboundedness of the elliptic op-
erator. In particular, differently from (Pb), the unboundedness of the operator A
makes the directional differentiability of the control-to-state mapping difficult to
tackle. To be more precise, it is not clear if the difference quotients associated with
the state are uniformly bounded in suitable spaces. For this reason, we reach out
to the Yosida approximation of the unbounded operator A. This gives rise to an
optimal control problem governed by:

− νy −Aλy + u ∈ ∂ϕ(y) in L2(Ω), u ∈ U . (2)

Here, λ > 0 is a fixed parameter, while Aλ is the Yosida approximation of A (see
Definition 3.2). We should underline that the variational inequality structure of the
second kind is preserved in (2), and thus the resulting optimal control problem still
has a non-smooth character. This is different from the regularization method by
Barbu [2]. By employing the developed results for (Pb), we obtain an optimality
system of strong stationary type for the optimal control problem governed by (2).
Then, passing to the limit λ ↘ 0 in the strong stationary optimality system, we
derive optimality conditions for local minimizers of the original problem (P).

1.1. Preliminaries. Throughout this paper, C denotes a generic positive constant.
For a given Hilbert space V , we use the notation ‖ · ‖V and (·, ·)V for the standard
norm and the standard scalar product in V , respectively. Let X and Y be two
normed linear spaces. By X∗ we denote the dual space of X and 〈., .〉X∗,X stands
for the associated duality pairing. If X is continuously embedded in Y , we write
X ↪→ Y . Furthermore, if X is compactly embedded in Y , we write X ↪→↪→ Y ,

and X
d
↪→ Y indicates that X is dense in Y . The open ball in X around x ∈ X

with radius R > 0 is denoted by BX(x,R). Throughout this paper, Ω is an open
bounded subset of RN , N ∈ N, and n ∈ N is fixed. L2(Ω) stands for L2(Ω;Rn),
(·, ·)2 is the associated standard scalar product, and ‖ · ‖2 denotes the standard
norm in L2(Ω). Similarly, a bold typeface is used to indicate an n-dimensional
vector function or a Hilbert space of n-dimensional vector functions. For a convex
function F : L2(Ω) → R ∪ {∞} we denote by ∂F (x) the convex subdifferential of
F at x ∈ L2(Ω), i.e.,

∂F (x) := {ξ ∈ L2(Ω) : (ξ,v − x)2 ≤ F (v)− F (x) ∀v ∈ L2(Ω)}.
The polar cone of a set M ⊂ L2(Ω) is denoted by

M◦ := {x∗ ∈ L2(Ω) : (x∗,x)2 ≤ 0 ∀x ∈M}. (3)

The radial cone of M ⊂ L2(Ω) is defined as

coneM := ∩{A ⊂ L2(Ω) : M ⊂ A, A is a convex cone}. (4)

For the indicator functional of M ⊂ L2(Ω), we write IM .

2. Strong Stationarity for (Pb). We begin by noticing that the inclusion con-
straint of (Pb)

−By + f ∈ ∂ϕ(y) in L2(Ω)

is equivalent to

(B y,v − y)2 + ϕ(v)− ϕ(y) ≥ (f ,v − y)2 for all v ∈ L2(Ω). (VI)
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Lemma 2.1. For every f ∈ L2(Ω), (VI) admits a unique solution y ∈ L2(Ω). The
associated solution operator S : L2(Ω)→ L2(Ω), f 7→ y, fulfills

‖S(f1)− S(f2)‖2 ≤ 1/α ‖f1 − f2‖2 ∀f1,f2 ∈ L
2(Ω), (5)

where α > 0 denotes the coercivity constant of B.

Proof. Since the functional ϕ is convex and continuous, the well-posedness for (VI)
follows from the classical result [20]. Let f1,f2 ∈ L

2(Ω) and y1 := S(f1), y2 :=
S(f2). Testing the VI for y1 with y2 and vice versa implies

(B(y1 − y2),y1 − y2)2 ≤ (f1 − f2,y1 − y2)2, (6)

which by the coercivity of B then gives (5).

Lemma 2.2. Let f ∈ L2(Ω), y := S(f) and j := −B y+f . Then, the variational
inequality (VI) is equivalent to

ji(x)yi(x) = gi(x)|yi(x)|, (7a)

|ji(x)| ≤ gi(x) for a.e. x ∈ Ω, ∀ i ∈ {1, ..., n}. (7b)

Proof. Testing in (VI) with 0 and 2v implies that (VI) is equivalent to{
(j,y)2 = ϕ(y),

(j,v)2 ≤ ϕ(v) for all v ∈ L2(Ω).
(8)

We first focus on the implication (VI)⇒(7). To this end, let w ∈ L2(Ω) with
w ≥ 0 a.e. in Ω. Testing with the vector (w, 0, 0, ..., 0) in the inequality in (8) yields
j1(x) ≤ g1(x) a.e. in Ω. By choosing w ∈ L2(Ω) with w ≤ 0 a.e. in Ω and testing in
the exact same way, we arrive at |j1(x)| ≤ g1(x) a.e. in Ω. Completely analogously,
we obtain |ji(x)| ≤ gi(x) a.e. in Ω for all i ∈ {1, ..., n}, i.e., the inequality (7b).
From ji(x) ∈ [−gi(x), gi(x)], it follows that ji(x)yi(x) ≤ gi(x)|yi(x)| a.e. in Ω for
all i ∈ {1, ..., n}. By defining for i ∈ {1, ..., n} the set Mi := {x ∈ Ω : ji(x)yi(x) <
gi(x)|yi(x)|} (up to a set of measure zero), one then has

(j,y)2 − ϕ(y) =

n∑
i=1

∫
Mi

ji(x)yi(x)− gi(x)|yi(x)|︸ ︷︷ ︸
<0

dx.

The identity (7a) now follows from the identity in (8). This proves (VI)⇒(7).
In order to show the opposite implication, we argue as follows. Let v ∈ L2(Ω) be

arbitrary, but fixed. From (7b), we deduce ji(x)vi(x) ≤ gi(x)|vi(x)| a.e. in Ω for
all i ∈ {1, ..., n}. This together with (7a) immediately implies that (8), and thus,
(VI) holds true. The proof is now complete.

Definition 2.3 (Conjugate functional). For a convex functional F : L2(Ω) →
[−∞,∞], we define its conjugate functional F ∗ : L2(Ω)→ [−∞,∞] as

F ∗(ψ) = sup
v∈L2(Ω)

(ψ,v)2 − F (v).

In the upcoming lemma, we compute the conjugate functional of ϕ; see (1) for
its definition.

Lemma 2.4 (Conjugate functional of ϕ). For every ψ ∈ L2(Ω), it holds that

ϕ∗(ψ) =

{
0, if |ψi(x)| ≤ gi(x) for a.e. x ∈ Ω and for all i ∈ {1, ..., n},
∞, otherwise.
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In other words, ϕ∗ = IK= I∂ϕ(0), where

K := {w ∈ L2(Ω) : |wi(x)| ≤ gi(x) for a.e. x ∈ Ω and for all i ∈ {1, ..., n}}. (9)

Proof. Since ϕ is convex and positively homogeneous, straight forward computation
yields ϕ∗ = I∂ϕ(0), see e.g. [22, Sec. 1.3.3]. Thus, we only have to show that the set

K coincides with ∂ϕ(0) = {ζ ∈ L2(Ω) : (ζ,v)2 ≤ ϕ(v) ∀v ∈ L2(Ω)}. Firstly, let
us verify the inclusion ∂ϕ(0) ⊂ K. To this end, consider ψ ∈ ϕ(0). In the same way
as in the proof of Lemma 2.2, we deduce that |ψi(x)| ≤ gi(x) for a.e. x ∈ Ω and
for all i ∈ {1, ..., n}, i.e., ∂ϕ(0) ⊂ K. Let us now show K ⊂ ∂ϕ(0). To this aim, let
ψ ∈ K and v ∈ L2(Ω). From |ψi(x)| ≤ gi(x) for a.e. x ∈ Ω and for all i ∈ {1, ..., n},
we have

ψi(x)vi(x) ≤ gi(x)|vi(x)| for a.e. x ∈ Ω and for all i ∈ {1, ..., n}.
This proves K ⊂ ∂ϕ(0), in view of the definition of ∂ϕ(0).

2.1. Directional differentiability. In this section, we establish the directional
differentiability of the solution operator S, by exploiting the polyhedricity of the
set K introduced in (9). We recall here that K is given by

K := {w ∈ L2(Ω) : |wi(x)| ≤ gi(x) for a.e. x ∈ Ω and for all i ∈ {1, ..., n}}. (10)

Note that K is a convex and closed subset of L2(Ω). In all what follows, we use for
simplicity the following abbreviations:

RK(x) := cone(K − x) for all x ∈ K,

[µ]⊥ := {w ∈ L2(Ω) : (µ,w)2 = 0} for all µ ∈ L2(Ω).
(11)

Note that according to (4), it holds that RK(x) = {β(K−x) |β > 0} for all x ∈ K.

Proposition 2.5 ([5, Proposition 6.35]). Let m ∈ N and M denotes the power set
of {1, . . . ,m}. Furthermore, let I : Ω→M be a measurable mapping and

P (x) := {w ∈ Rn|ai(x) ·w ≤ bi(x), i ∈ I(x)} for a.e. x ∈ Ω,

with

ai ∈ L∞(Ω;Rn) and bi ∈ L∞(Ω) ∀ i ∈ {1, . . . ,m}.
Then, the set

P = {v ∈ L2(Ω) |v(x) ∈ P (x) for a.e. x ∈ Ω}
satisfies the polyhedricity condition, i.e., cone(P−x)∩[µ]⊥ is dense in cone(P − x)∩
[µ]⊥ for all x ∈ P and all µ ∈ cone(P − x)

◦
.

The next lemma is crucial for proving the directional differentiability of the
solution operator of (VI).

Lemma 2.6. The set K is polyhedric, i.e., it satisfies

RK(x) ∩ [µ]⊥ = RK(x) ∩ [µ]⊥ ∀x ∈ K, ∀µ ∈ RK(x)
◦
. (12)

where RK(x)
◦

denotes the polar cone of RK(x); see (3) for its definition.

Proof. We observe that

K = {w ∈ L2(Ω) : w(x) ∈ K(x) a.e. in Ω}, (13)

with

K(x) := {v ∈ Rn : vi ∈ [−gi(x), gi(x)] for all i = 1, ..., n} a.e. in Ω.
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The assertion follows immediately from Proposition 2.5 with I(x) = {1, ..., 2n} a.e.
in Ω, in combination with g ∈ L∞(Ω;Rn).

Before stating the main result of this section, let us compute the set in (12). This
will be useful when deriving optimality conditions for our application in Section 4
below (see proof of Corollary 4.1).

Lemma 2.7. Let f ∈ L2(Ω), y := S(f) and j := −By + f . Then, the set

RK(j) ∩ [y]⊥ coincides with

C(f) := {v ∈ L2(Ω) : vi(x) ≤ 0 if ji(x) = gi(x),

vi(x) ≥ 0 if ji(x) = −gi(x),

vi(x)yi(x) = 0 a.e. in Ω, i = 1, ..., n}.
(14)

Proof. In view of (13), [5, Lemma 6.34] implies that

RK(j) ∩ [y]⊥ = {v ∈ L2(Ω) : v(x) ∈ cone(K(x)− j(x)), v(x) · y(x) = 0 a.e. in Ω}.

Moreover, it holds that

cone(K(x)− j(x)) ={w ∈ Rn : wi ≤ 0 if ji(x) = gi(x),

wi ≥ 0 if ji(x) = −gi(x), i = 1, ..., n} for a.e. x ∈ Ω,

and thus,

RK(j) ∩ [y]⊥ = {v ∈ L2(Ω) : vi(x) ≤ 0 if ji(x) = gi(x),

vi(x) ≥ 0 if ji(x) = −gi(x), i = 1, ..., n,

v(x) · y(x) = 0 a.e. in Ω}.
(15)

In particular, it follows that C(f) ⊂ RK(j) ∩ [y]⊥. Let now v ∈ RK(j) ∩ [y]⊥ be
arbitrary, but fixed. From (7a) we know that

ji(x) = sgnyi(x)gi(x) a.e. in {x ∈ Ω : yi(x) 6= 0} ∀i = 1, ..., n.

Hence, by (15) we obtain

vi(x)yi(x) ≤ 0 a.e. in Ω ∀ i = 1, ..., n. (16)

Assume now that there exists a set ω ⊂ Ω with |ω| > 0 such that

vj(x)yj(x) < 0 a.e. in ω,

for some j ∈ {1, . . . , n}. Thus, (16) implies that

v(x) · y(x) =

n∑
i=1

vi(x)yi(x) < 0 a.e. in ω,

which is in contradiction with v ∈ RK(j)∩ [y]⊥ (see (15)). Therefore, (16) holds as
an equality, which means that v ∈ C(f) (see (14)). This completes the proof.

Lemma 2.8. Let f ∈ L2(Ω), y := S(f) and j := −By + f . Then, the polar cone
C(f)◦ of (14) coincides with

Q(f) := {v ∈ L2(Ω) : vi(x) = 0 if |ji(x)| < gi(x),

vi(x)ji(x) ≥ 0 if |ji(x)| = gi(x) and yi(x) = 0

a.e. in Ω, i = 1, ..., n}.
(17)
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Proof. (i) We first show that Q(f) ⊂ C(f)◦. To this end, let v ∈ Q(f) and ξ ∈ C(f)
be arbitrary, but fixed. For every i ∈ {1, ..., n}, we set

Ui := {x ∈ Ω : |ji(x)| < gi(x)},
V +
i := {x ∈ Ω : ji(x) = gi(x), yi(x) = 0},
V −i := {x ∈ Ω : ji(x) = −gi(x), yi(x) = 0},
Wi := {x ∈ Ω : |ji(x)| = gi(x), yi(x) 6= 0}.

(18)

Since j ∈ K, cf. (10) and (7b), we have Ω = Ui∪V +
i ∪V

−
i ∪Wi. Note that vi(x) ≥ 0

a.e. in V +
i ∩ {gi > 0}, while ξi(x) ≤ 0 a.e. in V +

i ∩ {gi > 0} and ξi(x) = 0 a.e. in
V +
i ∩ {gi = 0}. Moreover, vi(x) ≤ 0 a.e. in V −i ∩ {gi > 0}, while ξi(x) ≥ 0 a.e. in
V −i ∩ {gi > 0} and ξi(x) = 0 a.e. in V −i ∩ {gi = 0}. Thus

vi(x)ξi(x) ≤ 0 a.e. in V +
i ∪ V

−
i . (19)

Since yi(x) 6= 0 a.e. in Wi, ξi(x) = 0 must hold a.e. in Wi, due to the identity in
the definition of C(f), see (14). From the above and by employing the definition of
Q(f) we have

(v, ξ)2 =

n∑
i=1

∫
Ui

vi(x)︸ ︷︷ ︸
=0

ξi(x) dx+

∫
V +
i ∪V

−
i

vi(x)ξi(x)︸ ︷︷ ︸
≤0

dx+

∫
Wi

vi(x) ξi(x)︸ ︷︷ ︸
=0

dx

≤ 0,

(20)
from which v ∈ C(f)◦ follows.
(ii) Let now z ∈ C(f)◦ be arbitrary, but fixed and consider i ∈ {1, ..., n}. Our goal
is to prove that z ∈ Q(f). To this end, we first show that

zi(x) = 0 a.e. in {x ∈ Ω : |ji(x)| < gi(x)}. (21)

We define the sets

Ui := {x ∈ Ω : |ji(x)| = gi(x)} ∪ {x ∈ Ω : |ji(x)| < gi(x), zi(x) = 0},
V +
i := {x ∈ Ω : |ji(x)| < gi(x), zi(x) > 0},
V −i := {x ∈ Ω : |ji(x)| < gi(x), zi(x) < 0}

(22)

and the function ξi : Ω→ R as

ξi(x) := 0 a.e. in Ui, ξi(x) := 1 a.e. in V +
i , ξi(x) := −1 a.e. in V −i .

We notice Ω = Ui ∪ V +
i ∪ V

−
i , since j ∈ K. Note that the resulting vector valued

function ξ : Ω→ Rn is measurable, since Ui, V
+
i and V −i are measurable (as ji, gi

and zi do so). Further, ξ satisfies a.e. in Ω

ξi(x) ≤ 0 a.e. in {x ∈ Ω : ji(x) = gi(x)},
ξi(x) ≥ 0 a.e. in {x ∈ Ω : ji(x) = −gi(x)},
ξi(x)yi(x) = 0 a.e. in Ω (yi(x) = 0 a.e. in V +

i ∪ V
−
i ,due to (7a)).

Hence, ξ ∈ C(f). Then, z ∈ C(f)◦ leads to

0 ≥ (z, ξ)2 =

n∑
i=1

∫
V +
i

zi(x)︸ ︷︷ ︸
>0

ξi(x)︸ ︷︷ ︸
=1

dx+

∫
V −
i

zi(x)︸ ︷︷ ︸
<0

ξi(x)︸ ︷︷ ︸
=−1

dx.

If the set V +
j or V −j has positive measure for some j ∈ {1, ..., n}, the term on the

above right-hand side is strictly positive, which is in contradiction with z ∈ C(f)◦.
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Thus, V +
i or V −i have measure zero for all i ∈ {1, ..., n} and in view of (22), we can

now deduce (21) ∀ i ∈ {1, ..., n}.
It remains to show zi(x)ji(x) ≥ 0 a.e. in {x ∈ Ω : |ji(x)| = gi(x) andyi(x) =

0}. First we observe that

zi(x)ji(x) ≥ 0 a.e. in {x ∈ Ω : |ji(x)| = gi(x), gi(x) = 0 andyi(x) = 0} (23)

is automatically fulfilled. In the following we prove

zi(x) ≥ 0 a.e. in {x ∈ Ω : ji(x) = gi(x), gi(x) > 0 andyi(x) = 0}. (24)

Let us point out that (24) does not necessarily hold true on the set {x ∈ Ω : ji(x) =
gi(x) = 0 and yi(x) = 0}, see (23). To prove (24), we define

Wi := {x ∈ Ω : ji(x) = gi(x) , gi(x) > 0, yi(x) = 0, zi(x) < 0} (25)

and ξi : Ω→ R as

ξi(x) := −1 a.e. in Wi, ξi(x) := 0 a.e. in Ω \Wi.

Note that ξ ∈ L2(Ω) satisfies:

ξi(x) ≤ 0 a.e. in {x ∈ Ω : ji(x) = gi(x)},
ξi(x) ≥ 0 a.e. in {x ∈ Ω : ji(x) = −gi(x)} (Wi ∩ {ji = −gi} = ∅),
ξi(x)yi(x) = 0 a.e. in Ω (yi(x) = 0 a.e. in Wi).

Hence, ξ ∈ C(f), and due to z ∈ C(f)◦ one has

0 ≥ (z, ξ)2 =

n∑
i=1

∫
Wi

zi(x)︸ ︷︷ ︸
<0

ξi(x)︸ ︷︷ ︸
=−1

dx.

If the set Wj has positive measure for some j ∈ {1, ..., n}, the term on the above
right-hand side is strictly positive, which is in contradiction with z ∈ C(f)◦. Thus,
Wi has measure zero for all i ∈ {1, ..., n} and in view of (25), it follows that (24)
holds true for all i ∈ {1, ..., n}. Its counterpart, namely

zi(x) ≤ 0 a.e. in {x ∈ Ω : ji(x) = −gi(x), gi(x) > 0 andyi(x) = 0}, (26)

follows by defining

Wi := {x ∈ Ω : ji(x) = −gi(x), gi(x) > 0, yi(x) = 0, zi(x) > 0},
ξi(x) := 1 a.e. in Wi, ξi(x) := 0 a.e. in Ω \Wi

and arguing as above. The inclusion C(f)◦ ⊂ Q(f) is now given by (21), (23), (24)
and (26). This completes the proof.

The main result of this section concerning the directional differentiability of S is
given by the following

Theorem 2.9. The solution operator S : L2(Ω) → L2(Ω) of (VI) is Hadamard
directionally differentiable. For all f ∈ L2(Ω) and δf ∈ L2(Ω), its directional
derivative η := S′(f ; δf) is the unique solution of the following VI of the first kind

η ∈ Q(f), (Bη − δf ,v − η)2 ≥ 0 ∀v ∈ Q(f), (27)

where Q(f) was defined in (17).

Proof. We observe that (VI) fits in the setting of [9, Sec. 2]. Moreover, according
to Lemma 2.6, the set K is polyhedric. Since K = ∂ϕ(0), see Lemma 2.4, we can
apply [9, Thm. 2.3], which together with Lemmata 2.7 and 2.8 yields the desired
assertion.
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2.2. Strong Stationarity. Exploiting the directional differentiability of the solu-
tion operator S, we shall prove a strong stationary optimality system for (Pb), i.e.,
optimality conditions which are equivalent to the necessary optimality condition in
primal form (cf. [26]).

Theorem 2.10. Let ū be a local optimum of (Pb) with associated state ȳ. Then
there is a unique adjoint state p ∈ L2(Ω) and a unique multiplier µ ∈ L2(Ω) so
that the following strong stationary optimality system is fulfilled

−Bȳ + ū ∈ ∂ϕ(ȳ), (28a)

∂yJ(ȳ, ū)−B∗p+ µ = 0, (28b)

µ ∈ C(u), (28c)

p ∈ Q(u), (28d)

p+ ∂uJ(y,u) = 0, (28e)

where C(u) and Q(u) are defined as in (14) and (17), respectively.

Proof. We follow the ideas from the proof of [23, Prop. 4.1], see also [27, Thm.
5.3]. For convenience of the reader, we recall the arguments. Let us introduce the
control-reduced objective functional of (Pb) by

f : U → R, f(u) := J(S(u),u).

As J : L2(Ω) × U → R is Fréchet-differentiable and S : L2(Ω) → L2(Ω) is di-
rectionally differentiable (Theorem 2.9), it follows that f : U → R is directional
differentiable (cf. [15, Lemma 3.9]). Its directional derivative at ū in the direction
h ∈ U is given by ∂yJ(ȳ, ū)S′(ū;h) + ∂uJ(ȳ, ū)h. Thus, ū satisfies the following
necessary optimality condition

∂yJ(ȳ, ū)S′(ū;h) + ∂uJ(ȳ, ū)h ≥ 0 ∀h ∈ U . (29)

We define p := −∂uJ(y,u). By testing (27) with 0 and 2S′(ū;h), respectively, we
obtain

α‖S′(ū;h)‖22 ≤ (BS′(ū;h), S′(ū;h))2 = (h, S′(ū;h))2 ∀h ∈ L2(Ω). (30)

From (29)-(30) it follows that

〈p,h〉U∗,U ≤ c‖∂yJ(ȳ, ū)‖2‖h‖2 ∀h ∈ U ,

and so Hahn-Banach’s theorem implies that p ∈ L2(Ω). Then, as U
d
↪→ L2(Ω), (29)

yields that

∂yJ(ȳ, ū)S′(ū;h)− (p,h)2 ≥ 0 ∀h ∈ L2(Ω), (31)

where we also employed that S′(ū; ·) : L2(Ω) → L2(Ω) is continuous, due to [5,
Proposition 2.49].

By Theorem 2.9, we have that S′(ū;h) ∈ Q(u), and so inserting h ∈ Q(u)◦ in
(30) implies S′(ū;h) = 0 for all h ∈ Q(u)◦. It follows therefore from (31) that

(p,h)2 ≤ 0 ∀h ∈ Q(u)◦ ⇒ p ∈ (Q(u)◦)◦ = Q(u),

since Q(u) is a nonempty closed convex cone (Lemma 2.8).
Let us now set

µ := −∂yJ(ȳ, ū) +B∗p. (32)

It remains to prove that µ ∈ C(u). By Theorem 2.9, it holds that

α‖S′(ū;Bv)− v‖22 ≤ (BS′(ū;Bv)−Bv, S′(ū;Bv)− v)2 ≤ 0 ∀v ∈ Q(u),
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where the first inequality is again a result of the coercivity of B. Thus, S′(ū;Bv) =
v for all v ∈ Q(u). Testing in (31) with h ∈ BQ(u) now gives in turn

(µ,v)2 =︸︷︷︸
(32)

−∂yJ(ȳ, ū)v + (B∗p,v)2 ≤ 0 ∀v ∈ Q(u) ⇒ µ ∈ Q(u)◦ = C(u),

where we have used Lemma 2.8 and the fact that C(u) is a nonempty closed convex
cone. In conclusion, (28c) is valid.

Let us finally show that (28) is strong stationary, i.e., it is equivalent to (29).
Indeed, this follows from (28c), C(u) = Q(u)◦, (27) and (28d), which imply

(µ, S′(ū;h))2 ≤ 0 ≤ (BS′(ū;h)− h,p)2 ∀h ∈ L2(Ω).

Thus, the inequality (29) is an immediate result of the above inequality in combi-
nation with (28b) and (28e). The proof is now complete.

Remark 2.11. Let us compare our results with the ones obtained in [11] for H1
0 (Ω)-

elliptic VIs of the second kind. Firstly, we notice that our set Q(f) corresponds
to the one in [11, Eq. (3.28)]. Moreover, Theorems 2.9 and 2.10 correspond to
[11, Theorems 3.19 and 5.4] with the exception that [11] requires an additional
regularity and structural assumptions on the unknown solution. This is due to the
fact that K is polyhedric in L2(Ω), cf. Lemma 2.6, while in [11], the corresponding
set {ξ ∈ H−1(Ω) : 〈ξ, v〉 ≤ ‖v‖1 ∀ v ∈ H1

0 (Ω)} is not polyhedric in H−1(Ω) (see the
recent contribution [9]). Thus, additional assumptions have to be imposed in [11]
to guarantee the polyhedricity.

3. Optimality system for (P). In this section, we analyze the optimal control
problem (P) involving an unbounded operator:

min
u∈U

1

2
‖y − yd‖22 +

κ

2
‖u‖22

s.t. −νy −Ay + u ∈ ∂ϕ(y).

 (P)

We summarize all mathematical assumptions for the data involved in (P):

Assumption 3.1. For the quantities in (P) we require the following:

1. Ω ⊂ RN , N ∈ N, is a bounded Lipschitz domain.
2. ν : Ω→ Rn×nsym is a function of class L∞(Ω;Rn×nsym ). Moreover, ν is uniformly

coercive, in the sense that there exists ν0 > 0 so that

wTν(x)w ≥ ν0|w|2 a.e. in Ω,∀w ∈ Rn.

3. A : D(A)
d
↪→ L2(Ω) → L2(Ω) is a linear, unbounded and skew-adjoint opera-

tor, i.e., D(A∗) = D(A) and A∗ = −A.

4. U is a Hilbert space, so that U
d
↪→ L2(Ω) and U ↪→↪→ L2(Ω). Moreover,

U ⊂ D(A).
5. The desired state yd belongs to L2(Ω) and κ > 0.

As the operator A is skew-adjoint, we deduce from [25, Theorems 1.10.8 and
1.4.3b)] that A is maximal monotone. For this reason, the Yosida approximation of
A is well-defined as follows:

Definition 3.2. For every λ > 0, the Yosida approximation of A is given by the
operator Aλ : L2(Ω)→ L2(Ω) defined as Aλ := 1

λ (I − (I + λA)−1).
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For convenience of the reader we enumerate here some properties of Aλ which
will be needed throughout this paper:

(Aλv,v)2 ≥ 0 ∀v ∈ L2(Ω) and ∀λ > 0, (33a)

Aλv
λ→0→ Av in L2(Ω), ∀v ∈ D(A), (33b)

see, for instance, [6, Prop. 7.2].

Proposition 3.3. Let F : L2(Ω)→ [0,∞) be a convex, lower semicontinuous and
positive homogeneous functional, i.e., F (βw) = βF (w) for all w ∈ L2(Ω) and for
all β > 0. Then, for any u ∈ L2(Ω) the equation

− νy −Ay + u ∈ ∂F (y) (34)

admits a unique solution y ∈ D(A).

Proof. Let λ > 0 be fixed and define yλ := SFλ (u), where SFλ : L2(Ω) → L2(Ω) is
the solution operator of

−νy −Aλy + u ∈ ∂F (y).

Note that its existence is due to [13]. From Assumption 3.1.2 and (33a) we deduce
that νI+Aλ is coercive with coercivity constant ν0. Therefore, by arguing as in the
proof of Lemma 2.1, one obtains that SFλ : L2(Ω)→ L2(Ω) is Lipschitz continuous
with constant 1/ν0. Since SFλ (0) = 0, one has ‖yλ‖2 ≤ L ‖u‖2, where L > 0 is
independent of λ. Thus, we can extract a weakly convergent subsequence, denoted
by the same symbol such that

yλ ⇀ ŷ in L2(Ω) as λ↘ 0. (35)

Further, we define jλ := −νyλ −Aλyλ + u and ĵ : D(A)→ R as

ĵ(v) := −(νŷ,v)2 − (ŷ, A∗v)2 + (u,v)2. (36)

By Lemma 5.1, (33b) and (35) we have for all v ∈ D(A)

(Aλyλ,v)2 = (yλ, A
∗
λv)2 = (yλ, A

∗
λv −A∗v︸ ︷︷ ︸
→0

)2 + (yλ, A
∗v)2 → (ŷ, A∗v)2,

which together with (35) gives

jλ(v)→ ĵ(v) ∀v ∈ D(A) as λ↘ 0. (37)

Since jλ ∈ ∂F (yλ), we have in view of the positive homogeneity of F the following{
(jλ,yλ)2 = F (yλ),

(jλ,v)2 ≤ F (v) for all v ∈ L2(Ω).
(38)

Passing to the limit in the inequality in (38) gives that ĵ(v) ≤ F (v) for all v ∈
D(A), due to (37). Further, we notice that F is sublinear and locally Lipschitz-
continuous (see e.g. [3, Thm. 8.38 and Cor. 8.39], where we used that domF =

L2(Ω)). Hence, by Hahn-Banach’s theorem we then infer that there exists j̃ ∈
L2(Ω) so that {

j̃(v) = ĵ(v) for all v ∈ D(A),

(j̃,v)2 ≤ F (v) for all v ∈ L2(Ω).
(39)

Now, the identity in (39) and (36) combined with A∗ = −A yield

− (νŷ,v)2 + (ŷ, Av)2 + (u,v)2 = (j̃,v)2 ∀v ∈ D(A). (40)
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Thus, ŷ ∈ D(A∗) = D(A), see e.g. [25, Sec. 1.10]. Relying again on A∗ = −A and

D(A)
d
↪→ L2(Ω), we now deduce from (40)

−νŷ −Aŷ + u = j̃. (41)

By the weak lower semicontinuity of F and (35), the identity in (38), the definition
of jλ and (33a), we further obtain

F (ŷ) ≤ lim inf
λ→0

F (yλ) = lim inf
λ→0

(jλ,yλ)2

= lim inf
λ→0

(−νyλ −Aλyλ + u,yλ)2

≤ lim sup
λ→0

(−νyλ + u,yλ)2

≤ (−νŷ + u, ŷ)2.

Note that for the last inequality we employed the weak lower semicontinuity of
L2(Ω) 3 v 7→ (νv,v)2. In view of (Aŷ, ŷ)2 = 0 and (41), the above inequality can
be continued as

F (ŷ) ≤ (j̃, ŷ)2 ≤ F (ŷ), (42)

where the last inequality is due to the inequality in (39). Hence, (j̃, ŷ)2 = F (ŷ).
Thanks to the inequality in (39) and in view of (41), we can now conclude that
there exists ŷ ∈ D(A) so that −νŷ−Aŷ+u ∈ ∂F (ŷ). To show the uniqueness, let
y1,y2 ∈ D(A) be two solutions of (34). Testing the VI for y1 with y2 and viceversa
then gives

(ν(y1 − y2),y1 − y2)2 + (A(y1 − y2),y1 − y2)2︸ ︷︷ ︸
=0

≤ 0,

whence y1 = y2 follows, by the uniform coercivity of ν. This completes the
proof.

Since ϕ satisfies the assumptions of Proposition 3.3 (see (1)), the variational
inequality associated with (P) admits a unique solution. In the following, we denote
by S : L2(Ω)→ D(A),u 7→ y, the solution operator for

− νy −Ay + u ∈ ∂ϕ(y). (43)

Remark 3.4. As in the proof of Lemma 2.1, by employing the fact that A(v,v) = 0
for all v ∈ D(A) and the uniform coercivity of ν, it can be shown that the solution
operator S is Lipschitz continuous from L2(Ω) to L2(Ω).

Remark 3.5. Notice that the existence of solutions for the optimal control problem
(P) is not guaranteed. This is due to the fact that the reduced objective u ∈ U 7→
1
2‖S(u)−yd‖22+ κ

2 ‖u‖
2
2 is not necessarily radially unbounded, so that the arguments

of the direct method of calculus of variations do not apply here.

Next, for every λ > 0, we introduce

− νy −Aλy + u ∈ ∂ϕ(y). (44)

From Assumption 3.1.2 and (33a) we deduce that νI + Aλ is linear, bounded and
coercive with coercivity constant ν0. Therefore, in view of Lemma 2.1, the following
result holds:

Lemma 3.6. For every u ∈ L2(Ω) the equation (44) admits a unique solution
y ∈ L2(Ω). The associated solution operator Sλ : L2(Ω) → L2(Ω) is Lipschitz
continuous with Lipschitz constant independent of λ.
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Lemma 3.7. If uλ ⇀ u in U as λ↘ 0, then

Sλ(uλ)→ S(u) in L2(Ω), as λ↘ 0.

Proof. Let {uλ}λ ⊂ U be a fixed sequence such that uλ ⇀ u in U as λ ↘ 0. Let
λ > 0 be arbitrary, but fixed. We define yλ := Sλ(uλ) and y := S(u). Testing (43)
with yλ and (44) with y and adding the resulting inequalities then yields

(ν(y − yλ),y − yλ)2 + (Ay −Aλyλ,y − yλ)2 + (uλ − u,y − yλ)2 ≤ 0.

The uniform coercivity of ν, cf. Assumption 3.1.2, and (33a) then give in turn

ν0‖y−yλ‖22 +(Ay−Aλy,y−yλ)2 +(Aλ(y − yλ),y − yλ)2︸ ︷︷ ︸
≥0

≤ ‖uλ−u‖2‖y−yλ‖2

By bringing the second term on the right-hand side and by dividing with ‖y−yλ‖2
(we assume y 6= yλ), we then have

ν0‖y − yλ‖2 ≤ ‖uλ − u‖2 + ‖Ay −Aλy‖2.

Assumption 3.1.4 and (33b) combined with y ∈ D(A) imply the assertion.

For the rest of this section let ū ∈ U be an arbitrary, but fixed local minimizer
of (P). For a given λ > 0, we consider the following optimization problem:

min
u∈U

1

2
‖y − yd‖22 +

κ

2
‖u‖22 +

1

2
‖u− ū‖2U

s.t. −νy −Aλy + u ∈ ∂ϕ(y).

 (Pλ)

We emphasize that (Pλ) is still a non-smooth problem. Here, the non-smooth
variational-inequality-structure is preserved, while the unbounded operator A is
approximated using the Yosida approximation. In the following, we shall make use
of the reduced cost functionals of (P) and (Pλ), denoted respectively by

J : U → R, u 7→ 1

2
‖S(u)− yd‖22 +

κ

2
‖u‖22, (45a)

Jλ : U → R, u 7→ 1

2
‖Sλ(u)− yd‖22 +

κ

2
‖u‖22 +

1

2
‖u− ū‖2U . (45b)

Proposition 3.8 (Convergence of the minimizers). Let ū ∈ U be a local minimizer
of (P). Then, there exists a sequence {uλ}λ>0 of local minimizers of (Pλ) such that

uλ → ū in U as λ↘ 0. (46)

Moreover,

Sλ(uλ)→ S(ū) in L2(Ω) as λ↘ 0. (47)

Proof. Let B(ū, ρ) := BU (ū, ρ) with some ρ > 0 be the closed ball of local opti-
mality of ū, i.e.,

J (ū) ≤ J (u) ∀u ∈ B(ū, ρ). (48)

For every λ > 0, we consider the following auxiliary optimal control problem:

min Jλ(u)

s.t. u ∈ B(ū, ρ).

}
(Pρλ)

The existence of global minimizers for (Pρλ) follows by standard arguments thanks

to the compact embedding U ↪→↪→ L2(Ω) and the Lipschitz continuity of Sλ :
L2(Ω) → L2(Ω) (Lemma 3.6). In the sequel, for every λ > 0, let uλ denote a
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global minimizer of (Pρλ). As {uλ} ⊂ B(ū, ρ), we can select a weakly converging
subsequence, which we denote by the same symbol, i.e.,

uλ ⇀ ũ in U as λ↘ 0. (49)

Note that since B(ū, ρ) is weakly closed, ũ ∈ B(ū, ρ) follows. By the weak lower
semicontinuity of the squared norm, we arrive at

J (ū) +
1

2
‖ũ− ū‖2U ≤

1

2
‖S(ũ)− yd‖22 +

κ

2
‖ũ‖22 +

1

2
‖ũ− ū‖2U ((45a) and (48))

≤ lim inf
λ→0

1

2
‖Sλ(uλ)− yd‖22 +

κ

2
‖uλ‖22 +

1

2
‖uλ − ū‖2U ((49) and Lemma 3.7)

≤ lim sup
λ→0

1

2
‖Sλ(uλ)− yd‖22 +

κ

2
‖uλ‖22 +

1

2
‖uλ − ū‖2U

≤ lim sup
λ→0

1

2
‖Sλ(ū)− yd‖22 +

κ

2
‖ū‖22 (uλ is global optimal for (Pρλ) and (45b))

= J (ū) (Lemma 3.7 and (45a)),

whence ũ = ū follows. Applying ũ = ū and (45a) in the above series of inequalities
we further obtain

lim
λ→0

1

2
‖Sλ(uλ)− yd‖22 +

κ

2
‖uλ‖22 +

1

2
‖uλ − ū‖2U =

1

2
‖S(ū)− yd‖22 +

κ

2
‖ū‖22.

(50)
Moreover, by (49) and U ↪→↪→ L2(Ω), it follows that

uλ → ū in L2(Ω) as λ↘ 0,

which implies

Sλ(uλ)→ S(ū) in L2(Ω) as λ↘ 0,

in view of Lemma 3.7. From these two convergences and (50) we now have

uλ → ū in U as λ↘ 0.

It only remains to prove that uλ is a local minimizer for (Pλ). To this end, let
v ∈ BU (uλ, ρ/2). Then, for sufficiently small λ > 0, (46) leads to

‖v − ū‖U ≤ ‖uλ − ū‖U + ‖v − uλ‖U <
ρ

2
+
ρ

2
= ρ.

This yields v ∈ B(ū, ρ), and the global optimality of uλ for (Pρλ) implies Jλ(uλ) ≤
Jλ(v). Since v ∈ BU (uλ, ρ/2) was chosen arbitrarily, the claims follows.

Theorem 3.9. Let ū be a local optimum of (P) with the associated state ȳ. Then
there is a unique adjoint state p ∈ U and a unique multiplier µ ∈ L2(Ω) so that
the following optimality system is fulfilled

−νȳ −Aȳ + ū ∈ ∂ϕ(ȳ), (51a)

ȳ − yd − νp−A∗p+ µ = 0, (51b)

p+ κū = 0, (51c)

(µ,p)2≤ 0. (51d)

Proof. Let {uλ}λ>0 be the sequence of local minimizers of (Pλ) established in
Proposition 3.8, which converges strongly to ū as λ → 0. For every λ > 0, we
set yλ = Sλ(uλ). As Aλ : L2(Ω) → L2(Ω) is a linear bounded operator, we see
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that (Pλ) is a special case of (Pb) with B = νI + Aλ. Thus, we may apply The-
orem 2.10 to (Pλ) to deduce that there exist a unique pλ ∈ L

2(Ω) and a unique
µλ ∈ L

2(Ω) so that

yλ − yd − (νI +Aλ)∗pλ + µλ = 0, (52a)

µλ ∈ C(uλ), (52b)

pλ ∈ Q(uλ), (52c)

(pλ,v)2 + (κuλ,v)2 + (uλ − ū,v)U= 0 ∀v ∈ U , (52d)

where C(uλ) and Q(uλ) are defined as in (14) and (17). Testing (52a) with pλ
yields

(yλ − yd,pλ)2 − ((νI +Aλ)∗pλ,pλ)2 + (µλ,pλ)2 = 0. (53)

Thus, it holds that

−(yλ − yd,pλ)2 + ν0‖pλ‖22 ≤ −(yλ − yd,pλ)2 + ((νI +Aλ)∗pλ,pλ)2

= (µλ,pλ)2 ≤ 0,
(54)

where the first inequality is due to (33a) and Assumption 3.1.2, while the last one
follows from (52b)-(52c) combined with C(uλ)◦ = Q(uλ), see Lemma 2.8. As a
consequence of (54) and the boundedness of {yλ} ⊂ L2(Ω), cf. (47), we deduce
that there exists a weakly convergent subsequence of {pλ} (denoted by the same
symbol) and p ∈ L2(Ω) with

pλ ⇀ p in L2(Ω) as λ↘ 0. (55)

Now, passing to the limit in (52d), where we rely on (55) and (46), gives in turn

(p,v)2 + (κū,v)2 = 0 for all v ∈ U . This implies (51c), by U
d
↪→ L2(Ω), cf.

Assumption 3.1.4. From (51c) one immediately obtains the uniqueness and the
desired regularity of p. Further, letting λ ↘ 0 in (52a) together with (47), (55),
and (33b) yields for all v ∈ D(A)

(µλ,v)2 = −(yλ − yd,v)2 + ((νI +Aλ)v,pλ)2

→ −(ȳ − yd,v)2 + (νp,v)2 + (Av,p)2

= (µ,v)2 as λ↘ 0,

(56)

where µ := −(ȳ−yd)+νp+A∗p ∈ L2(Ω). Note that A∗p ∈ L2(Ω) holds true, due
to p ∈ U ⊂ D(A) = D(A∗), cf. Assumption 3.1. It remains to prove (51d). To this
end, we first notice that the mapping L2(Ω) 3 v 7→ (νv,v)2 ∈ R is continuous and
convex, by Assumption 3.1.2, and thus, weakly lower semicontinuous. We recall
that (Ap,p)2 = 0, since A is skew-adjoint, which combined with (47), (55) and (54)
finally leads to

(µ,p)2 = −(ȳ − yd,p)2 + (νp,p)2 + (Ap,p)2

≤ lim inf
λ→0

−(yλ − yd,pλ)2 + (νpλ,pλ)2 ≤ 0.
(57)

The proof is now complete.

4. Application to the Bean critical-state model. Throughout this section, we
set N = 3 and n = 6, and thus, L2(Ω) stands for L2(Ω;R6), where Ω ⊂ R3. We
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consider the following optimal control problem:

min
(f ,g)∈H

1

2
‖e− ed‖2L2(Ω;R3) +

1

2
‖h− hd‖2L2(Ω;R3) +

κ

2
‖(f , g)‖22

s.t.



εe− curlh+ j = f in Ω,

µh+ curl e = g in Ω,

e× n = 0 on ∂Ω,

ji(x)ei(x) = jc(x)|ei(x)| for a.a. x ∈ Ω, ∀ i = 1, 2, 3,

|ji(x)| ≤ jc(x) for a.a. x ∈ Ω, ∀ i = 1, 2, 3.


(58)

Here, (ed,hd) ∈ L2(Ω) and κ > 0 are fixed. The electric permittivity ε : Ω →
Rn×nsym and the magnetic permeability µ : Ω → Rn×nsym are assumed to be of class

L∞(Ω;Rn×nsym ). There exist constants ε0 > 0 and µ0 > 0 such that

wT ε(x)w ≥ ε0|w|2 and wTµ(x)w ≥ µ0|w|2 a.e. in Ω, ∀w ∈ Rn.

The function jc : Ω → R is Lebesgue measurable, nonnegative and essentially
bounded. We notice that the PDE-constraint in (58) is motivated by the time-
discretization of Bean’s critical-state model for type-II superconductivity (cf. [30,
31, 28, 32]). We also refer to [29] for our previous contribution towards the optimal
control of nonlinear elliptic Maxwell equations. Let us now reformulate (58) as a
problem of the type (P). To this aim, we introduce the following Hilbert spaces:

H(curl) :=

{
v ∈ L2(Ω;R3)

∣∣ curlv ∈ L2(Ω;R3)

}
,

H0(curl) :=

{
v ∈H(curl)

∣∣ v × n = 0 on ∂Ω

}
,

H(div) :=

{
v ∈ L2(Ω;R3)

∣∣ div v ∈ L2(Ω)

}
,

H0(div) :=

{
v ∈H(div)

∣∣ v · n = 0 on ∂Ω

}
,

H := (H0(curl) ∩H(div))× (H(curl) ∩H0(div)),

where the curl- and div-operators, as well as the tangential and normal traces are
understood in the sense of distributions. We set

A : D(A) ⊂ L2(Ω)→ L2(Ω), A :=

(
0 −curl

curl 0

)
,

where the domain of A is given by

D(A) := H0(curl)×H(curl). (59)

We note that the operator A : D(A) ⊂ L2(Ω) → L2(Ω) is skew-adjoint, i.e., it
holds for the corresponding adjoint operator that A∗ = −A and D(A∗) = D(A) =
H0(curl)×H(curl). Thus, A satisfies Assumption 3.1.3.

Next, we specify ϕ : L2(Ω)→ R to be

ϕ(v) :=

∫
Ω

jc(x)

3∑
i=1

|vi(x)| dx. (60)
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Then, the relation{
ji(x)ei(x) = jc(x)|ei(x)| for a.a. x ∈ Ω, ∀ i = 1, 2, 3,

|ji(x)| ≤ jc(x) for a.a. x ∈ Ω, ∀ i = 1, 2, 3.
(61)

can be equivalently written as (j,0) ∈ ∂ϕ(e,h); see the proof of Lemma 2.2. Finally,
by introducing

ν :=

(
ε 0
0 µ

)
,

we conclude that (58) is equivalent to

min
(f ,g)∈H

1

2
‖e− ed‖2L2(Ω;R3) +

1

2
‖h− hd‖2L2(Ω;R3) +

κ

2
‖(f , g)‖22

s.t. −ν(e,h)−A(e,h) + (f , g) ∈ ∂ϕ(e,h).

 (PBean)

We observe that (PBean) is a special case of (P), where Assumption 3.1 is fulfilled.
Thus, we can apply Theorem 3.9 to (PBean) and obtain the following result:

Corollary 4.1. Let (f̄ , ḡ) ∈ H be a local optimum of (PBean) with the associated
state (ē, h̄) ∈H0(curl)×H(curl). Then, there is a unique adjoint state p ∈ H and
a unique multiplier µ ∈ L2(Ω) so that the following optimality system is fulfilled

−ν(ē, h̄)−A(ē, h̄) + (f̄ , ḡ) ∈ ∂ϕ(ē, h̄), (62a)

(ē, h̄)− (ed,hd)− νp−A∗p+ µ = 0, (62b)

p+ κ(f̄ , ḡ) = 0, (62c)

(µ,p)2 ≤ 0, (62d)

µi(x) = 0 a.e. in Ω, ∀ i = 4, 5, 6. (62e)

Proof. The system (62a)-(62d) is a direct consequence of Theorem 3.9. To prove
(62e), let us consider the sequence {(fλ, gλ)}λ associated to (f̄ , ḡ) from Proposition
3.8. Moreover, let eλ, jλ and µλ denote the corresponding quantities. In view of
the definition of ϕ, it follows that

C(fλ, gλ) := {v ∈ L2(Ω) : vi(x) ≤ 0 if jλ,i(x) = jc(x),

vi(x) ≥ 0 if jλ,i(x) = −jc(x),

vi(x)eλ,i(x) = 0 a.e. in Ω, i = 1, ..., 3,

vi(x) = 0 a.e. in Ω, i = 4, ..., 6},

(63)

see (14), which together with (52b) yields that µλ,i(x) = 0 a.e. in Ω, ∀ i = 4, ..., 6.
Now, testing with (0,v) ∈ D(A) in (56), where v ∈H(curl) is arbitrary, implies

0 = (µλ, (0,v))2 → (µ, (0,v))2 as λ↘ 0,

whence (62e) follows.

Remark 4.2. Note that the structure of (58) allows us to improve the system in
Theorem 3.9. To be more precise, the fact that the current density has only three
components (instead of n = 6) allows us to choose g4 = g5 = g6 = 0 a.e. in Ω
(see the definition of ϕ). This yields the additional information in (62e). We also
observe that, as a result of (62d)-(62e),∫

Ω

3∑
i=1

µi(x)pi(x) dx ≤ 0
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is true.

Remark 4.3. The ideas employed in this section could be applied for the deriva-
tion of optimality conditions for the time-dependent version of (58), i.e. for an
optimization problem where the underlying state equation is given by the Bean’s
critical-state model for type-II superconductivity. This could be done by resorting
to a time-discretization approach. In this case, one obtains in each time-step a
problem of the type (58) for which the associated optimality system has the same
structure as (62). Then, a careful investigation of the limit behaviour of the involved
discrete variables for time-step size tending to 0 is expected to yield an optimality
system for the original control problem governed by the hyperbolic Bean’s critical-
state model. In [31], necessary optimality conditions therefor were derived via a
regularization procedure inspired by Barbu [2]. However, the derivation of opti-
mality systems for the time-dependent version of (58) as explained above and the
comparison with the results from [31] go beyond the scope of this paper and give
rise to future research.

5. Appendix.

Lemma 5.1. Let H be a Hilbert space and A : D(A) ⊂ H → H be a maximal
monotone operator. Then, for any λ > 0, it holds (A∗)λ = (Aλ)∗, where (A∗)λ is
the Yosida approximation of A∗.

Proof. Let us begin by noticing that the maximal monotonicity of A ensures the
maximal monotonicity of A∗, in view of [6, page 194], see also [25, Lemma 10.2, page
38]. Hence, one can indeed define the Yosida approximation of A∗. To show the
desired result, we argue as in the proof of [6, Proposition 7.6]. Let λ > 0 be arbitrary,
but fixed. For x, y ∈ H, we define w := (I + λA)−1x and z := (I + λA∗)−1y. Note
that w ∈ D(A) and z ∈ D(A∗), in view of the maximal monotonicity of A and A∗,
respectively. Moreover, we have the identities

w + λAw = x, z + λA∗z = y.

Testing the above equalities with z and w, respectively, implies that

(w, z)H = (x, z)H − λ(Aw, z)H = (y, w)H − λ(A∗z, w)H . (64)

On the other hand, w ∈ D(A) and z ∈ D(A∗) yields (Aw, z)H = (A∗z, w)H . Then,
by the definition of w and z, we deduce from (64) the following

(x, (I + λA∗)−1y)H = ((I + λA)−1x, y)H .

Hence, (
x,
y

λ

)
H
−
(
x,

1

λ
(I + λA∗)−1y

)
H

=
(
x,
y

λ

)
H
−
(
y,

1

λ
(I + λA)−1x

)
H
.

This gives in turn(
x,

1

λ
(I − (I + λA∗)−1)︸ ︷︷ ︸

(A∗)λ

y
)
H

=
( 1

λ
(I − (I + λA)−1)︸ ︷︷ ︸

Aλ

x, y
)
H
,

in view of Definition 3.2. Since x, y ∈ H were arbitrary, the proof is now
complete.
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