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VARIATIONAL SOURCE CONDITIONS IN Lp-SPACES∗

DE-HAN CHEN† AND IRWIN YOUSEPT‡

Abstract. We propose and analyze variational source conditions (VSC) for the Tikhonov reg-
ularization method with Lp-penalties applied to an ill-posed operator equation in a Banach space.
Our analysis is built on the celebrated Littlewood–Paley theory and the concept of (Rademacher)
R-boundedness. With these two analytical principles, we validate the proposed VSC under a con-
ditional stability estimate in terms of a dual Triebel–Lizorkin-type norm. In the final part of the
paper, the developed theory is applied to an inverse elliptic problem with measure data for the re-
construction of possibly unbounded diffusion coefficients. By means of VSC, convergence rates for
the associated Tikhonov regularization with Lp-penalties are obtained.
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1. Introduction. Let us consider an ill-posed operator equation of the type

(1.1) T (x) = y in Y,

where Y is a Banach space, and T : D(T ) → Y is a weakly sequentially continuous
mapping with a closed and convex subset D(T ) ⊂ Lp(Ω, µ) for some 1 < p < +∞
and σ-finite measure (Ω, µ). We underline that the Lebesgue space Lp(Ω, µ) is real,
but the Banach space Y is allowed to be complex or real. Moreover, the right-hand
side y lies in the range of T . The operator equation (1.1) is supposed to be locally ill-
posed with a specific characterization through the stability estimate (3.7) comprising
a dual Triebel–Lizorkin-type norm. The local degree of the ill-posedness is exactly
described by the involved dual norm in (3.7) (Remark 3.4(ii)). To construct a stable
approximation to the ill-posed problem (1.1), we employ the celebrated Tikhonov reg-
ularization method taking into account the noisy data yδ ∈ Y under the deterministic
noise model: ‖y − yδ‖Y ≤ δ. More precisely, for a given α > 0, the solution of (1.1)
is approximated by a minimizer of

(1.2) min
x∈D(T )

T δα(x) :=
1

`
‖T (x)− yδ‖`Y +

α

p
‖x− x∗‖p̂p

for a fixed constant ` > 1, p̂ := max{p, 2}, and a fixed a priori guess x∗ of x. In
view of the presupposed conditions on T : D(T ) → Y and D(T ) ⊂ Lp(Ω, µ), the
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2864 DE-HAN CHEN AND IRWIN YOUSEPT

existence and plain convergence for the Tikhonov regularization method (1.2) follow
by standard arguments (see [14, 25, 46]).

In general, a convergence rate for (1.2) is guaranteed under a smoothness as-
sumption on the true solution, well-known as the so-called source condition (cf.
[14, 15, 25, 33, 34]). However, classical source conditions are rather restrictive since
they require the Fréchet differentiability of the operator T and further properties on
its first-order derivative (see [8, 15, 16, 18, 33, 34, 40, 45]). These restrictions make
the classical source condition less appealing for the convergence analysis of (1.2). Our
focus is therefore set on the concept of variational source condition (VSC) introduced
originally by Hofmann et al. [25] in the case of a linear index function. Conver-
gence rates based on VSC for a general index function were shown independently
in [6, 19, 22]. In contrast to the classical source condition, VSC is applicable to a
wider class of inverse problems with possibly nonsmooth forward operators. More im-
portantly, convergence rates can be deduced from VSC in a straightforward manner
(cf. Hofmann and Mathé [27]) without any additional nonlinearity condition such as
tangential cone condition. We refer to Hohage and Weidling [31] for a general char-
acterization of VSC in Hilbert spaces. See also [10, 30, 53] regarding VSC for inverse
problems governed by partial differential equations (PDEs). All these results were
derived by means of the spectral theory for self-adjoint operators in Hilbert spaces.

Although the study of VSC was initiated in the Banach space setting, general
sufficient conditions for VSC in Banach spaces are somewhat restrictive (see [21, 46]),
compared with those for the Hilbertian case, which are mainly related to conditional
stability estimates and smoothness of the true solution. Such methodologies have
been applied to various inverse problems governed by PDEs in the Hilbertian setting
(see [9, 10, 30, 31, 53]). More recently, less restrictive sufficient conditions for VSC in
Besov spaces were proposed by Hohage and others [29, 54] using a new characterization
of subgradient smoothness. Their results lead to optimal convergence rates for the
Tikhonov regularization method with wavelet Besov-norm penalties. However, we
note that Lp(Ω, µ) for p 6= 2 is not a Besov space, and therefore [29, 54] are not
directly applicable to (1.1)–(1.2).

Striving to fill this gap, our paper develops novel sufficient criteria for VSC in
the Lp-setting based on a sophisticated application of the Littlewood–Paley (LP) de-
composition and the concept of the (Rademacher) R-boundedness. The LP theory is
a systematic method to understand various properties of functions by decomposing
them in infinite dydic sums with frequency localized components. On the other hand,
the concept of R-boundedness was initially introduced to study multiplier theorems
for vector-valued functions [7]. These two mathematical concepts are of central signif-
icance in the vector-valued harmonic analysis and its profound application to PDEs
(cf. [7, 32]). For the sake of completeness, we provide some basics and standard results
concerning the LP decomposition and R-boundedness in sections 2.2 and 2.3. Invok-
ing these two analytical tools, we prove our main result (Theorem 3.3) on the sufficient
criteria for VSC in the Lp-setting, leading to convergence rates for the Tikhonov regu-
larization method (1.2). The proposed sufficient conditions consist of the existence of
a LP decomposition for the (complex) space Lq(Ω, µ;C), q := p

p−1 , together with the

previously mentioned conditional stability estimate (3.7) and a regularity assumption
for the true solution in terms of a Triebel–Lizorkin-type norm.

The final part of this paper focuses on an inverse reconstruction problem of possi-
bly unbounded diffusion Lp-coefficients in elliptic equations with measure data. Such
problems are mainly motivated from geological or medical applications involving dirac
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VARIATIONAL SOURCE CONDITIONS IN Lp-SPACES 2865

measures as source terms. They include acoustic monopoles in full waveform inversion
and electrostatic phenomena with a current dipole source in electroencephalography.
We analyze the mathematical property of the corresponding forward operator and
prove the existence and plain convergence of the corresponding regularized solution
(Theorem 4.5). Finally, we transfer our abstract theoretical finding to this specific
inverse problem and verify its requirements (see Theorem 4.6 and Lemmas 4.13 and
4.14), leading to convergence rates for the associated Tikhonov regularization method
(Corollary 4.8).

2. Preliminaries. We begin by recalling some terminologies and notations used
in what follows. Let X,Y be complex or real Banach spaces. The space of all
linear and bounded operators from X to Y is denoted by B(X,Y ) = {A : X →
Y is linear and bounded}, endowed with the operator norm ‖A‖B(X,Y ) := sup‖x‖X=1

‖Ax‖Y . If X = Y , then we simply write B(X) for B(X,X). The notation X∗ stands
for the dual space of X. A linear operator A : D(A) ⊂ X → X is called closed if its
graph {(x,Ax), x ∈ D(A)} is closed in X ×X. If A : D(A) ⊂ X → X is a linear and
closed operator, then

ρ(A) := {λ ∈ C | λid−A : D(A)→ X is bijective and (λid−A)−1 ∈ B(X)}

and
σ(A) := C \ ρ(A)

denote respectively the resolvent set and spectrum of A. For every λ ∈ ρ(A), the
operator R(λ,A) := (λid−A)−1 ∈ B(X) is referred to as the resolvent operator of A.

If (Ω, µ) is a σ-finite measure and 1 ≤ p < +∞, then Lp(Ω, µ) (resp., Lp(Ω, µ;C))
denotes the space of all equivalence classes of real-valued (resp., complex-valued) µ-
measurable and p-integrable functions with the corresponding norm ‖f‖p :=

(
∫

Ω
|f |pdµ)

1
p . If Ω ⊂ Rn is a measurable and µ is the Lebesgue measure, then we

simply write Lp(Ω) (resp., Lq(Ω;C)) for Lp(Ω, µ) (resp., Lq(Ω, µ;C)). For f, g ∈
L1(Rn;C), f ? g denotes the convolution of f and g. Moreover, let 〈·, ·〉p,q :=

∫
Ω
fgdµ

stand for the duality product between f ∈ Lp(Ω, µ;C) and g ∈ Lq(Ω, µ;C) for
1
p + 1

q = 1.

Finally, for nonnegative real numbers a, b, we write a . b if a ≤ Cb holds true for
a positive constant C > 0 independent of a and b. If a . b and b . a, we then write
a ∼= b.

2.1. Sobolev spaces. For every −∞ < s <∞ and p ≥ 1, we define the (classi-
cal) fractional Sobolev space

Hs
p(Rn;C) := {u ∈ S(Rn;C)′ | ‖u‖Hsp(Rn;C) := ‖F−1[(1+|·|2)

s
2 |(Fu)]‖Lp(Rn;C) < +∞},

where S(Rn;C)′ denotes the tempered distribution space and F : S(Rn;C)′ →
S(Rn;C)′ is the Fourier transform (see, e.g., [56]). For a bounded open set U ⊂ Rn
with a Lipschitz boundary ∂U , the space Hs

p(U ;C) with a possibly noninteger ex-
ponent s ≥ 0 is defined as the space of all complex-valued functions v ∈ Lp(U ;C)
satisfying V|U = v for some V ∈ Hs

p(Rn;C), endowed with the norm

‖v‖Hsp(U ;C) := inf
V|U=v

V ∈Hsp(Rn;C)

‖V ‖Hsp(Rn;C).

Furthermore, the real counterpart to Hs
p(U ;C) is simply denoted by Hs

p(U).
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2866 DE-HAN CHEN AND IRWIN YOUSEPT

Proposition 2.1 ([51, Theorems 2.4.2 and 4.10.1] and [56, Theorem 1.36]). Let
Ω be a bounded open set in Rn with a Lipschitz boundary and 1 < τ < +∞.

(i) If τ < n, then for any 1 ≤ s ≤ τn
n−τ , the embedding H1

τ (Ω;C) ↪→ Ls(Ω;C) is
continuous. It is compact if s < τn

n−τ .

(ii) If τ ≥ n, then for any 1 ≤ s < +∞, the embedding H1
τ (Ω;C) ↪→ Ls(Ω;C) is

compact.
(iii) Let 0 ≤ s1, s2 < +∞ and 1 ≤ τ1, τ2 ≤ +∞. Furthermore, let ρ ∈ (0, 1) and

s := (1− ρ)s1 + ρs2,
1

τ
:=

1− ρ
τ1

+
ρ

τ2
.

Then, there exists a constant C > 0 such that

(2.1) ‖u‖Hsτ (Ω;C) ≤ C‖u‖1−ρH
s1
τ1

(Ω;C)
‖u‖ρ

H
s2
τ2

(Ω;C)
∀u ∈ Hs1

τ1 (Ω;C)∩Hs2
τ2 (Ω;C).

In the following, we also summarize the well-known composition rule and product
estimates for Sobolev functions (cf. [49, Chapter 2, Propositions 1.1 and 6.1]).

Proposition 2.2 (composition rule and product estimates). Let Ω be a bounded
open set in Rn with a Lipschitz boundary.

(i) Let 1 ≤ τ < +∞. If F : R → R is globally Lipschitz and satisfies F (0) = 0,
then F (u) ∈ H1

τ (Ω) holds true for all u ∈ H1
τ (Ω).

(ii) For all 1 < τ, τ1, τ2 < +∞ satisfying 1
τ = 1

τ1
+ 1

τ2
, there exists a constant

C > 0 such that

‖uv‖H1
τ (Ω;C) ≤ C‖u‖H1

τ1
(Ω;C)‖v‖H1

τ2
(Ω;C)

holds true for all u ∈ H1
τ1(Ω;C) and v ∈ H1

τ2(Ω;C).

2.2. Littlewood–Paley decomposition. In its simplest manifestation, the
LP decomposition is a method to understand various properties of functions by de-
composing them into an infinite dydic sum of frequency localized components. A
prominent example for an LP decomposition can be found in the classical theory of
harmonic analysis as follows: Let 1 < q < +∞ and s ≥ 0. Then, every f ∈ Hs

q (Rn;C)
can be decomposed into

(2.2) f =

∞∑
j=0

f ? ϕ̌j and ‖f‖Hsq (Rn;C)
∼=

∥∥∥∥∥∥∥
 ∞∑
j=0

22js|f ? ϕ̌j |2
 1

2

∥∥∥∥∥∥∥
q

,

where {ϕj}∞j=0 is a family of compactly supported smooth functions satisfying supp(ϕ0)

⊂ {ξ | |ξ| ≤ 2}, supp(ϕ1) ⊂ {ξ | 1 ≤ |ξ| ≤ 4}, ϕj(·) := ϕ1(·21−j) for j ≥ 2, and∑∞
j=0 ϕ(ξ) = 1 for all ξ ∈ Rn. Furthermore, ϕ̌j denotes the inverse Fourier trans-

formation of ϕj (cf. [48, section 4.1]). Motivated by (2.2) and following [35], we
introduce the following definition.

Definition 2.3. Let (Ω, µ) be a σ-finite measure and 1 < q < +∞. We say
that Lq(Ω, µ;C) admits an LP decomposition if there is a family of uniformly bounded
and pairwisely commutative linear operators {Pj}∞j=0 ⊂ B(Lq(Ω, µ;C)) satisfying the
following conditions:

(i) The partition of identity:

(2.3) z =

∞∑
j=0

Pjz ∀ z ∈ Lq(Ω, µ;C).
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(ii) Almost orthogonality:

(2.4) PjPkz = 0 ∀ z ∈ Lq(Ω, µ;C) ∀j, k ∈ N ∪ {0} with |j − k| ≥ 2.

(iii) Norm equivalence: there exists a constant c∗ ≥ 1 such that

(2.5)
1

c∗
‖z‖q ≤

∥∥∥∥∥∥∥
 ∞∑
j=0

|Pjz|2
 1

2

∥∥∥∥∥∥∥
q

≤ c∗‖z‖q ∀z ∈ Lq(Ω, µ;C).

Remark 2.4. The third condition in Definition 2.3 implies that {Pj}∞j=0 is uni-
formly bounded in B(Lq(Ω, µ;C)). Therefore, we may remove the uniform bounded-
ness assumption on {Pj}∞j=0 in the definition. From the partition of identity and the
almost orthogonality, it follows that

(2.6) Pj(Pj + Pj−1 + Pj+1) = Pj ∀j ≥ 1.

Note that (2.2) gives a classical example of an LP decomposition on Lq(Rn;C). Also, if
q = 2 and {ej}∞j=0 is an orthonormal basis of L2(Ω, µ;C), then the family of operators

P = {Pj}∞j=0 with Pjz := (z, ej)L2(Ω,µ;C)z is an LP decomposition on L2(Rn;C).

With the help of the LP decomposition and inspired by the classical Triebel–
Lizorkin spaces, if Lq(Ω, µ) admits an LP decomposition P = {Pj}∞j=0 ⊂ B(Lq(Ω, µ;
C)), then the space

F sq (P) :=

z ∈ Lq(Ω, µ;C) | ‖z‖F sq (P) :=

∥∥∥∥∥∥∥
 ∞∑
j=0

22js|Pjz|2
 1

2

∥∥∥∥∥∥∥
q

< +∞

 ∀s ≥ 0

(2.7)

defines a Banach space. Obviously, F 0
q (P) = Lq(Ω, µ;C) holds true with norm equiv-

alence. According to Definition 2.3, F sq (P) is a dense subspace of Lq(Ω, µ;C), and
the embedding F sq (P) ↪→ Lq(Ω, µ;C) is continuous.

2.3. R-boundedness.

Definition 2.5. Let (Ω, µ) be a σ-finite measure and 1 < q < +∞. A subset
T ⊂ B(Lq(Ω, µ;C)) is called R-bounded if there exists a constant C > 0 such that for
all n ∈ N, T1, . . . , Tn ∈ T and z1, . . . , zn ∈ Lq(Ω, µ;C), the following inequality holds:

(2.8)

∥∥∥∥∥∥
(

n∑
k=1

|Tkzk|2
) 1

2

∥∥∥∥∥∥
q

≤ C

∥∥∥∥∥∥
(

n∑
k=1

|zk|2
) 1

2

∥∥∥∥∥∥
q

.

The infimum of all such constants C > 0 is called the R-bound of T and is denoted
by R(T ).

Remark 2.6. The notion of R-boundedness can also be defined by using Rade-
macher functions, and Definition 2.5 is also referred to as `2-boundedness (cf. [32])
or R2-boundedness (cf. [37]). By Khintchine’s inequality, these two definitions are
equivalent in Lq(Ω, µ;C) (see [43, Remark 4.1.3] or [32, Proposition 6.3.3]). Since our
work only focuses on Lq(Ω, µ;C) and considers (2.8), we choose the terminology “R-
boundedness.” We note that for the case q = 2, the R-boundedness of T is equivalent
to the uniform boundedness of T (cf. [43, Remark 4.1.3]).
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We recall some elementary properties regarding to R-boundedness.

Proposition 2.7 (cf. [32, Example 8.1.7 and Proposition 8.1.19] and [37, Propo-
sitions 2.9 and 2.10]). Let (Ω, µ) be a σ-finite measure and 1 < q < +∞. Then, the
following claims hold true:

(i) Every singleton {T} in B(Lq(Ω, µ;C)) is R-bounded with

R({T}) ≤ CG‖T‖B(Lq(Ω,µ;C)),

where CG > 0 denotes the Grothendieck’s constant. In particular, R({id}) =
1.

(ii) If T ,S ⊂ B(Lq(Ω, µ;C)) are R-bounded subsets, then both T + S and T ∪ S
are R-bounded with

R(T + S) ≤ R(T ) +R(S) and R(T ∪ S) ≤ R(T ) +R(S).

Let us mention that the exact value of Grothendieck’s constant is still an open
problem, and it is known that π

2 ≤ CG ≤ π
2 ln(1+

√
2)

(cf. [36]). A direct consequence

of Proposition 2.7 is summarized in the following corollary.

Corollary 2.8. If a subset T ⊂ B(Lq(Ω, µ;C)) is finite, then it is R-bounded.

2.4. Existence of LP decompositions via sectorial operators. In this sec-
tion, we recall the notion of the sectorial operator and discuss some LP decomposition
for Lq(Ω, µ;C) with the help of sectorial operators. In the following, let X be a com-
plex Banach space. For ω ∈ (0, π), let Σω := {z ∈ C\{0} | | arg z| < ω} denote the
symmetric sector around the positive axis of aperture angle 2ω.

Definition 2.9 ([24, 35]). Let ω ∈ (0, π). A linear and closed operator A :
D(A) ⊂ X → X is called ω-sectorial if the following conditions hold:

(i) the spectrum σ(A) is contained in Σω;
(ii) R(A) is dense in X;
(iii) for all θ ∈ (ω, π) ∃ Cθ > 0 for allλ ∈ C\Σθ : ‖λR(λ,A)‖ ≤ Cθ.

We say that A is 0-sectorial operator if A is ω-sectorial for all ω ∈ (0, π).

Note that (ii) and (iii) imply that every ω-sectorial operator is injective (cf. [24]).
For every θ ∈ (0, π), we denote by H∞(Σθ;C) the space of all bounded holomorphic
functions on Σθ, which is a Banach algebra with the norm ‖f‖∞,θ := supz∈Σθ

|f(z)|.
Moreover, we introduce the subspace H∞0 (Σθ;C) := {f ∈ H∞(Σθ;C) | ∃C, ε >
0 such that |f(z)| ≤ C |z|ε

(1+|z|)ε }. Then, for an ω-sectorial operator A and a function

f ∈ H∞0 (Σθ;C) with θ ∈ (ω, π), one can define a linear and bounded operator

(2.9) GA(f) : X → X, GA(f) :=
1

2πi

∫
Γ

f(λ)R(λ,A)dλ,

where Γ is the boundary of the sector Σσ with σ ∈ (ω, θ), oriented counterclockwise.
Note that by the Cauchy integral formula for vector-valued holomorphic functions,
the above integral has the same value for all σ ∈ (ω, θ). Therefore, the definition (2.9)
is independent of the choice of Γ. If there exists a constant C > 0 such that

‖GA(f)‖B(X) ≤ C‖f‖∞,θ ∀f ∈ H∞0 (Σθ;C),

then we say that A has a bounded H∞0 (Σθ;C)-calculus. In this case, the Cauchy
integral formula (2.9) can be extended to a bounded homomorphism H∞(Σθ;C) →
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B(X), f 7→ GA(f). For any α ≥ 0, we can choose an integer n strictly larger than
α such that the function fα(z) := zα(1 + z)−n belongs to H∞0 (Σθ;C), and so the
operator

Aα : D(Aα) ⊂ X → X, Aα := (1 +A)nGA(fα)

defines a linear and closed operator (cf. [24, Lemma A.1.3]) with the effective domain
D(Aα) := {x ∈ X | GA(fα)x ∈ D(An)}. In particular, D(Aα) equipped with the
graph norm

(2.10) ‖Aα · ‖X + ‖ · ‖X
defines a Banach space. Clearly, D(A0) = X and D(A1) = D(A).

Let (A,D(A)) be a 0-sectorial operator and η > 0. If there is a constant C > 0
such that for all ω ∈ (0, π),

‖GA(f)‖B(X) ≤
C

ωη
‖f‖∞,ω ∀ f ∈ H∞(Σω),

then we say that A has a (bounded) Mη-calculus (see, e.g., [11, Theorem 4.10] and
[35]). Another equivalent definition of Mη-calculus can be found in [35] (see [11,
Theorem 4.10] for the proof).

Under the existence of a 0-sectorial operator withMη-calculus for some η > 0, the
following key lemma guarantees the existence of an LP decomposition for Lq(Ω, µ;C).

Lemma 2.10 ([35, Theorems 4.1 and 4.5]). Let (Ω, µ) be a σ-finite measure.
If X = Lq(Ω, µ;C) for some 1 < q < +∞, and there exists a 0-sectorial operator
A : D(A) ⊂ X → X with Mη-calculus for some η > 0, then X admits an LP
decomposition P = {Pj}∞j=0 such that

(2.11) F sq (P) = D(As) ∀ s ≥ 0,

where F sq (P) is defined as in (2.7).

Example 2.11. Let Ω be a bounded domain of Rn (n ≥ 2) with a C1,1-boundary
and X = Lq(Ω;C) for 1 < q < +∞.

(i) Dirichlet boundary condition. If we define Au := −∆u for all u ∈ D(A)

with D(A) := H2(Ω;C)∩H̊1(Ω;C), which corresponds to Dirichlet boundary
condition, then A : D(A) ⊂ L2(Ω;C) → L2(Ω;C) is a self-adjoint operator
with 0 ∈ ρ(A) and −A generates a strongly continuous semigroup {e−At}t≥0,
whose kernel {pt}t∈(0,+∞) satisfies the following Gaussian upper bound esti-
mate:

(2.12) |pt(x, y)| . 1

t
n
2

exp

(
−c |x− y|

2

t

)
∀(t, x, y) ∈ (0,+∞)× Ω× Ω

for some c > 0 (see, e.g., [42, Theorem 6.10] and [42, Chapter 7]). We can
extend {e−At}t≥0 to a strongly continuous semigroup on Lq(Ω;C), whose
generator is denoted by −Aq : D(Aq) ⊂ Lq(Ω;C) → Lq(Ω;C). Then, Aq :
D(Aq) ⊂ Lq(Ω;C) → Lq(Ω;C) is a 0-sectorial operator with bounded Mη-
calculus for η > bn2 c+ 1 (see, e.g., [35, Lemma 6.1] and [42, Theorem 7.23]),
where bcc denotes the largest integer smaller than c. Therefore, according to
Lemma 2.10, Lq(Ω;C) admits an LP decomposition PD and

F θq (PD) = D(Aθq) =

{
H2θ
q (Ω;C), 0 ≤ θ < 1

2q ,

{H2θ
q (Ω;C) | γu = 0}, 1 ≥ θ > 1

2q and θ 6= q+1
2q ,

where we have used the characterization of D(Aθq) from [56, Theorem 16.15].
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(ii) Neumann boundary condition. Let us now consider Au := −∆u + u for
u ∈ D(A), where D(A) := {H2(Ω;C) | ∂u∂n = 0 on ∂Ω}. Then, A : D(A) ⊂
L2(Ω;C)→ L2(Ω;C) is also a self-adjoint operator with 0 ∈ ρ(A) and hence
−A generates a strongly continuous semigroup (e−At)t≥0. Its kernel also
satisfies the classical Gaussian upper estimate (2.12) ([42, Theorem 6.10]
and [42, Chapter 7]). As in the first case, (e−At)t≥0 can be extended to
a strongly continuous semigroup on Lq(Ω;C) with the generator denoted by
−Aq : D(Aq) ⊂ Lq(Ω;C)→ Lq(Ω;C). Again, thanks to [35, Lemma 6.1] and
[42, Theorem 7.23], Aq : D(Aq) ⊂ Lq(Ω;C)→ Lq(Ω;C) is a 0-sectorial oper-
ator over Lq(Ω;C) with boundedMη-calculus for η > bn2 c+ 1. Therefore, by
Lemma 2.10, Lq(Ω;C) admits an LP decomposition PN such that

(2.13) F θq (PN ) = D(Aθq) =

{
H2θ
q (Ω;C), 0 ≤ θ < q+1

2q ,

{H2θ
q (Ω;C) | ∂u∂n = 0}, 1 ≥ θ > q+1

2q ,

where we have used the characterization of D(Aθq) from [56, Theorem 16.11].

Further examples for sectorial operators with boundedMη-calculus can be found
in [35, Lemma 6.1].

3. Sufficient conditions for VSC in Lp(Ω, µ). In what follows, let (Ω, µ) be
a σ-finite measure, 1 < p < +∞, q := p

p−1 , and p̂ := max{p, 2}. It is well-known

that the real Lebesgue space Lp(Ω, µ) is p̂-uniformly convex (see, e.g., [55]), and there
exists a constant cp > 0 such that

(3.1) ‖w + y‖p̂p ≥ ‖w‖p̂p + p̂〈y, Jp̂(w)〉p,q + cp‖y‖p̂p ∀w, y ∈ Lp(Ω, µ),

where Jp̂ : Lp(Ω, µ) → Lq(Ω, µ) denotes the generalized duality map (cf. [55]) satis-
fying

〈w, Jp̂(w)〉p,q = ‖w‖p̂p and ‖Jp̂(w)‖q = ‖w‖p̂−1
p .(3.2)

Given an x∗-minimum norm solution x† ∈ D(T ) ⊂ Lp(Ω, µ) to the ill-posed operator
equation (1.1), i.e.,

‖x† − x∗‖p = min{‖x− x∗‖p | x ∈ D(T ) such thatT (x) = y},

our goal is to find a constant β ∈ (0, cp) and a concave index function Ψ : (0,+∞)→
(0,+∞) such that the VSC

(3.3) 〈x†−x, Jp̂(x†−x∗)〉p,q ≤
cp − β
p̂
‖x−x†‖p̂p+ Ψ(‖T (x)−T (x†)‖Y ) ∀x ∈ D(T )

holds true. Note that a function Ψ : (0,+∞)→ (0,+∞) is called an index function if it
is continuous, is strictly increasing, and satisfies the limit condition limδ→0+ Ψ(δ) = 0.

Remark 3.1. Inserting y = x−x† and w = x†−x∗ in (3.1), we immediately obtain
that

〈x† − x, Jp̂(x† − x∗)〉p,q ≥
1

p̂

(
‖x† − x∗‖p̂p − ‖x− x∗‖p̂p + cp‖x− x†‖p̂p

)
∀x ∈ D(T ).

Therefore, (3.3) implies that

β

p̂
‖x† − x‖p̂p ≤

1

p̂
‖x− x∗‖p̂p −

1

p̂
‖x† − x∗‖p̂p + Ψ(‖T (x)− T (x†)‖Y ) ∀x ∈ D(T ).

(3.4)
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VSC of the type (3.4) has been proposed in [27, 46]. Thus, as (3.3) implies (3.4),
the following convergence rate result follows directly from [27, Theorem 1] and [46,
Theorem 4.13]).

Corollary 3.2. Suppose that VSC (3.3) holds true for some β ∈ (0, cp) and
concave index function Ψ : (0,+∞) → (0,+∞). If the regularization parameter in

(1.2) is chosen as α(δ) := δ`

Ψ(δ) , then every solution xδα(δ) ∈ D(T ) to (1.2) satisfies

(3.5) ‖xδα(δ) − x
†‖p̂p = O(Ψ(δ)) as δ → 0+.

Let us now state our main assumption on the existence of an LP decomposition
for the dual space of Lp(Ω, µ;C):

(H0) Lq(Ω, µ;C) admits an LP decomposition P = {Pj}∞j=0 ⊂ B(Lq(Ω, µ;C)) in
the sense of Definition 2.3.

If (H0) holds, then for every θ ≥ 0, we can construct a Banach space F θq :=

F θq (P) by (2.7). Since the embedding F θq ↪→ Lq(Ω, µ;C) is dense and continuous, the

embedding Lp(Ω, µ;C) ↪→ (F θq )∗ is continuous, and therefore

(3.6) |〈f, g〉p,q| ≤ ‖f‖(F θq )∗‖g‖F θq ∀ (f, g) ∈ Lp(Ω, µ;C)× F θq .

Theorem 3.3. Let (Ω, µ) be a σ-finite measure, 1 < p < +∞, and q = p
p−1

satisfying (H0). Suppose that there exist a concave index function Ψ0 : (0,+∞) →
(0,+∞) and a constant θ ≥ 0 such that

(3.7) ‖x† − x‖(F θq )∗ . Ψ0(‖T (x†)− T (x)‖Y ) ∀x ∈ D(T ).

Moreover, assume that f† := Jp̂(x
† − x∗) is nonzero and belongs to F sθq for some

0 < s ≤ 1. Then, VSC (3.3) holds true for β =
cp
2 and a concave index function

Ψ : (0,+∞)→ (0,+∞), defined by

Ψ(δ) :=

C‖f
†‖F θq Ψ0(δ) if s = 1,

C inf
λ≥1

[
1

2λq̂s
‖f†‖q̂

F sθq
+ 2(λ+1)(1−s)‖f†‖F sθq Ψ0(δ)

]
if s ∈ (0, 1),

(3.8)

for all sufficiently large C > 0 and q̂ := min{q, 2}. Furthermore, the index function
(3.8) satisfies

(3.9) Ψ(δ) . Ψ0(δ)
q̂s

1+(q̂−1)s

for all sufficiently small δ > 0.

Remark 3.4.
(i) If f† is zero, then x∗ = x†, i.e., the a priori guess x∗ is exactly the true

solution x†. In this case, VSC (3.3) holds true for all β ∈ (0, cp) and all index
functions Ψ.

(ii) The condition (3.7) characterizes the local ill-posedness of the forward oper-
ator T : Lp(Ω, µ) ⊃ D(T ) → Y at x†. As the topology of (F θq )∗ becomes

coarser for growing θ, i.e., (F θ1q )∗ ⊂ (F θ2q )∗ holds for any 0 ≤ θ1 < θ2, the
ill-posedness grows if θ becomes larger. On the other hand, if θ = 0, then
(F 0
q )∗ = Lp(Ω, µ;C), and (3.7) implies the local well-posedness at x† in the

following sense:

{xn}n∈N ⊂ D(T ) and lim
n→∞

T (xn) = T (x†) in Y =⇒ lim
n→∞

xn = x† in Lp(Ω, µ).
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(iii) The existence of a concave index function Ψ0 satisfying (3.7) can be obtained
by conditional stability estimates, including Hölder/Lipschitz-type estimates
and logarithmic type estimates, for the corresponding inverse problem (1.1)
related to the forward operator T : Lp(Ω, µ) ⊃ D(T )→ Y . The claim for the
case of θ = 0 can be found in [46, Theorem 4.26]. In this case, the assumption
(H0) is not required, and (3.3) holds for all β ∈ (0, cp) and Ψ = C‖f†‖F θq Ψ0

for all sufficiently large C > 0.
(iv) We underline that the regularity condition f† := Jp̂(x

† − x∗) ∈ F sθq is not
a source condition. This regularity requirement along with (H0) and the
stability estimate (3.7) yield that VSC (3.3) is satisfied for the index function
(3.8). No other smoothness conditions are needed.

Proof. If s = 1 or θ = 0, then (3.6) and (3.7) imply that

(3.10) 〈x†−x, Jp̂(x†−x∗)〉p,q ≤ ‖x†−x‖(F θq )∗‖f†‖F θq ≤ ‖f
†‖F θq Ψ0(‖T (x†)−T (x)‖Y )

holds true for all x ∈ D(T ). Therefore, if s = 1 or θ = 0, VSC (3.3) is satisfied for all
β ∈ (0, cp) and Ψ(δ) = ‖f†‖F θq Ψ0(δ).

We now prove the claim for 0 < s < 1 and θ > 0. To this aim, let x ∈ D(T ) be
arbitrarily fixed. For any fixed λ ≥ 1, we introduce

Pλz :=

bλc∑
k=0

Pkz ∀z ∈ Lq(Ω, µ) and Qλ := I −Pλ,

where we recall that bλc ∈ N denotes the largest integer satisfying bλc ≤ λ. Then,

(3.11) 〈x† − x, f†〉p,q = 〈x† − x,Qλf
†〉p,q + 〈x† − x,Pλf

†〉p,q =: I1 + I2.

Let us first derive a proper estimate for I1. Since p̂ = max{2, p} and q̂ = min{q, 2} =
p̂
p̂−1 , Young’s inequality implies that

I1 ≤ ‖x† − x‖p‖Qλf
†‖q ≤

cp
2p̂
‖x† − x‖p̂p +

1

q̂

(
2

cp

)q̂−1

‖Qλf
†‖q̂q.(3.12)

Next, in view of the almost orthogonality (2.4) and the partition of identity (2.3), it
holds for all z ∈ Lq(Ω, µ) that

(3.13) PjQλz = Pj

∞∑
k=bλc+1

Pkz =


Pjz, j ≥ bλc+ 2,

Pbλc+1(Pbλc+1 + Pbλc+2)z, j = bλc+ 1,

PbλcPbλc+1z, j = bλc,
0, j ≤ bλc − 1.

By (2.5), (3.13), and the fact that {Pj}∞j=0 is pairwisely commutative, we obtain that

1

c∗
‖Qλf

†‖q ≤

∥∥∥∥∥∥
(
∞∑
j=0

|PjQλf
†|2
) 1

2

∥∥∥∥∥∥
q

(3.14)

=

∥∥∥∥∥∥∥
|Pbλc+1Pbλcf

†|2 + |
(
Pbλc+1 + Pbλc+2

)
Pbλc+1f

†|2 +

∞∑
j=bλc+2

|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

.
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From Proposition 2.7, it follows that the finite set {Pbλc+1, Pbλc+1 + Pbλc+2, id} is
R-bounded with

R({Pbλc+1, Pbλc+1 + Pbλc+2, I}) ≤ R({Pbλc+1}) +R({Pbλc+1 + Pbλc+2}) +R({id})
≤ CR := 1 + 3CG sup

j≥0
‖Pj‖B(Lq(Ω,µ;C)).

Let now N ∈ N be arbitrarily fixed with N > bλc. According to the definition of the
R-boundedness (see Definition 2.5), by choosing

n := N − bλc+ 1, T1 := Pbλc+1, T2 := Pbλc+1 + Pbλc+2, Tk := id ∀k = 3, . . . , n,

and zk := Pbλc+k−1f
† for all k = 1, . . . n in (2.8), we obtain∥∥∥∥∥∥∥

|Pbλc+1Pbλcf
†|2 + |(Pbλc+1 + Pbλc+2)Pbλc+1f

†|2 +

N∑
j=bλc+2

|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

≤ CR

∥∥∥∥∥∥∥
 N∑
j=bλc

|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

.

Since N was chosen arbitrarily, it follows that

∥∥∥∥∥∥∥
|Pbλc+1Pbλcf

†|2 + |
(
Pbλc+1 + Pbλc+2

)
Pbλc+1f

†|2 +

∞∑
j=bλc+2

|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

(3.15)

≤ CR

∥∥∥∥∥∥∥
 ∞∑
j=bλc

|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

≤ CR
2(λ−1)sθ

∥∥∥∥∥∥
(
∞∑
j=0

22jsθ|Pjf†|2
) 1

2

∥∥∥∥∥∥
q

=
2sθCR
2λsθ

‖f†‖Fsθq ,

where we have used the definition (2.7) for the last identity. Combining (3.12) and
(3.14)–(3.15) results in

(3.16) I1 ≤
cp
2p̂
‖x† − x‖p̂p +

C

2λq̂sθ
‖f†‖q̂

F sθq
∀x ∈ D(T )

for some C > 0, depending only on c∗, cp, q̂, s, θ, and CR.
Next, we estimate the second term I2 by applying (3.6) and (3.7) to (3.11):

(3.17) I2 = 〈x† − x,Pλf
†〉p,q . ‖Pλf

†‖F θq Ψ0(‖T (x†)− T (x)‖Y ).

Let us now derive an appropriate upper bound for ‖Pλf
†‖F θq . Similar to (3.13),

invoking the almost orthogonality (2.4) and the partition of identity (2.3), we deduce
that

(3.18) PjPλz = Pj

bλc∑
k=0

Pkz =


0, j ≥ bλc+ 2,

Pbλc+1Pbλcz, j = bλc+ 1,

Pbλc(Pbλc + Pbλc−1)z, j = bλc,
Pjz, j ≤ bλc − 1,
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holds true for all z ∈ Lq(Ω, µ). Since the finite set {Pbλc, Pbλc + Pbλc−1, id} is R-
bounded with R({Pbλc, Pbλc + Pbλc−1, id}) ≤ 1 + 3CG supj≥0 ‖Pj‖B(Lq(Ω,µ;C)) = CR,
using (3.18) and analogous arguments for (3.15), we infer that

‖Pλf
†‖Fθq

(3.19)

=

∥∥∥∥∥∥
(
∞∑
j=0

22jθ|PjPλf
†|2
) 1

2

∥∥∥∥∥∥
q

=

∥∥∥∥∥∥
bλc−1∑

j=0

22jθ|Pjf†|2+ 22bλcθ|
(
Pbλc+Pbλc−1

)
Pbλcf

†|2+22(bλc+1)θ|PbλcPbλc+1f†|2
 1

2

∥∥∥∥∥∥
q

≤ CR

∥∥∥∥∥∥∥
bλc+1∑

j=0

22jθ|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

≤ CR2(λ+1)θ(1−s)

∥∥∥∥∥∥∥
bλc+1∑

j=0

22sjθ|Pjf†|2
 1

2

∥∥∥∥∥∥∥
q

≤ CR2(λ+1)θ(1−s)‖f†‖Fsθq .

Applying (3.19) to (3.17) leads to

(3.20) I2 . 2(λ+1)θ(1−s)‖f†‖F sθq Ψ0(‖T (x†)− T (x)‖Y ).

Finally, combining (3.11), (3.16), and (3.20) together, we arrive at

〈x† − x, f†〉p,q ≤
cp
2p̂
‖x† − x‖p̂p

+ C inf
λ≥1

(
1

2λq̂sθ
‖f†‖q̂

F sθq
+ 2(λ+1)θ(1−s)‖f†‖F sθq Ψ0(‖T (x†)− T (x)‖Y )

)
∀x ∈ D(T )

for all sufficiently large C > 0, independent of x. The function Ψ : (0,∞) → (0,∞)
defined by

(3.21) Ψ(δ) := C inf
λ≥1

(
1

2λq̂sθ
‖f†‖q̂

F sθq
+ 2(λ+1)θ(1−s)‖f†‖F sθq Ψ0(δ)

)
is concave, continuous, and strictly increasing (cf. the proof of [10, Theorem 4.3]). In
conclusion, VSC (3.3) holds true for β =

cp
2 and the concave index function (3.21) for

all sufficiently large C > 0.
Eventually, since s, q̂, θ are fixed and limδ→0 Ψ0(δ) = 0, if δ is small enough,

there exists λ0 ≥ 1 such that 1
2λ0θ

= Ψ0(δ)
1

1+(q̂−1)s , which implies that ( 1
2λ0θ

)q̂s =

Ψ0(δ)
q̂s

1+(q̂−1)s and ( 1
2λ0θ

)s−1Ψ0(δ) = Ψ0(δ)
s−1

1+(q̂−1)sΨ0(δ) = Ψ0(δ)
q̂s

1+(q̂−1)s . Therefore,
if δ is small enough, (3.21) yields that

Ψ(δ) .
1

2λ0q̂sθ
‖f†‖q̂

Fsθq
+2(λ0+1)θ(1−s)‖f†‖Fsθq Ψ0(δ)=(‖f†‖q̂Fsq +2θ(1−s)‖f†‖Fsq )Ψ0(δ)

q̂s
1+(q̂−1)s .

This completes the proof.

Let us close this section by presenting an exemplary application of Theorem 3.3
with an optimal convergence rate. We consider p = q = 2 and an unbounded, self-
adjoint, and strictly positive operator A : D(A) ⊂ L2(Ω, µ;C) → L2(Ω, µ;C). By
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the functional calculus for self-adjoint operator (see, e.g., [35, Lemma 6.1(2)]), A :
D(A) ⊂ L2(Ω, µ;C)→ L2(Ω, µ;C) is a 0-sectorial operator withMη-calculus for some
η > 0. Therefore, in view of Lemma 2.10, L2(Ω, µ;C) admits an LP decomposition
P = {Pj}∞j=0 such that

(3.22) F θ2 (P) = D(Aθ) ∀ θ ≥ 0,

and its dual space F θ2 (P)∗ coincides with D(A−θ). We suppose that the forward
operator T : D(T ) ⊂ L2(Ω, µ)→ L2(Ω, µ) is linear, and there exists θ ≥ 0 such that

‖x‖D(A−θ) . ‖Tx‖L2(Ω,µ) ∀x ∈ D(T ).

Now, if x∗ = 0 and x† ∈ D(Asθ) for some 0 < s ≤ 1, then Theorem 3.3 yields that
VSC (3.3) holds true for the index function

Ψ(δ) := Cδ
2s

1+s

for any sufficiently large C > 0. Eventually, Corollary 3.2 yields the convergence rate

‖xδα(δ) − x
†‖L2(Ω,µ) = O(δ

s
1+s ) as δ → 0+(3.23)

for the Tikhonov regularization method (1.2) with ` = 2 and the parameter choice

α(δ) := C−1δ
2
s+1 . It is well-known that the convergence rate (3.23) is optimal (see

[41] or [50, Theorem 1.1.]).

4. Parameter identification of elliptic equations with measure data in
the Lp-setting. Throughout this section, let Ω ⊂ Rn (n ≥ 2) be a bounded C1,1

domain, and let κ ∈ L∞(Ω) be a real-valued function satisfying

(4.1) 0 < λ0 ≤ κ(x) ≤ Λ for a.e. x ∈ Ω,

with two positive real constants λ0 < Λ. We consider the inverse problem of recon-
structing the possibly unbounded diffusion coefficient a : Ω → R of the following
elliptic equation:

(4.2)

{
∇(κ∇u) + au = µΩ in Ω,

κ∂u∂ν = µΓ on Γ := ∂Ω,

where µΩ and µΓ are regular signed Borel measures on Ω and Γ.

Definition 4.1. Let µΩ + µΓ =: µΩ ∈ C(Ω)∗ be a regular signed Borel measure
on Ω. A function u ∈ H1

1 (Ω) is said to be a weak solution of (4.2) if au ∈ L1(Ω) and

(4.3)

∫
Ω

κ∇u · ∇ϕ+ auϕdx =

∫
Ω

ϕdµΩ ∀ϕ ∈ C∞(Ω).

The well-posedness of (4.2) requires the following ellipticity condition:
(EC)m Let p > n/2 and suppose that a ∈ Lp(Ω) is a nonnegative function satisfying

(4.4)

∫
Ω

(κ|∇ϕ|2 + a|ϕ|2)dx ≥ m‖ϕ‖2H1
2 (Ω) ∀ϕ ∈ H1

2 (Ω)

for some m > 0.
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We note that Proposition 2.1 ((i) and (ii)) implies that H1
2 (Ω) ↪→ L

2n
n−2 (Ω), if n ≥ 3,

and H1
2 (Ω) ↪→ Ls(Ω) for all 1 < s < ∞, if n = 2. Thus, the requirement p > n

2 is
reasonable to ensure that the second term in the left-hand side of (4.4) is well-defined.

Theorem 4.2 ([1, Theorem 4]). Let p > n
2 and a ∈ Lp(Ω) satisfying (EC)m for

some m > 0. Then, for every µΩ ∈ C(Ω)∗, the elliptic problem (4.2) admits a unique
weak solution u ∈ H1

τ (Ω) for all 1 ≤ τ < n
n−1 . Moreover, for every 1 ≤ τ < n

n−1 ,
there exists a constant C(m, τ) > 0, independent of a, µΩ, and u, such that

(4.5) ‖u‖H1
τ (Ω) ≤ C(m, τ)‖µΩ‖M(Ω).

4.1. Existence and convergence. In all what follows, let µΩ ∈ C(Ω)∗, p > n
2 ,

p ≥ p, a > 0, M > 0 be fixed and

(4.6) D(S) := {a ∈ Lp(Ω) | ‖a‖Lp(Ω) ≤M and a ≤ a(x) for a.e. x ∈ Ω}.

Lemma 4.3. Suppose that {ak}∞k=1 ⊂ D(S), and, for every k ∈ N, let uk ∈ H1
τ (Ω)

for all 1 ≤ τ < n
n−1 denote the unique weak solution to (4.2) associated with ak. Then,

ak ⇀ a weakly in Lp(Ω) ⇒ uk ⇀ u weakly in H1
τ (Ω) for all 1 ≤ τ < n

n− 1
,

where u ∈ H1
τ (Ω) is the unique weak solution to (4.2) associated with a ∈ D(S).

Proof. Suppose that the sequence {ak}∞k=1 ⊂ D(S) converges weakly in Lp(Ω)
toward some element a ∈ Lp(Ω). Since D(S) is a weakly compact set in Lp(Ω) and
the embedding Lp(Ω) ↪→ Lp(Ω) is continuous, it follows that the set D(S) is a weakly
compact set in Lp(Ω), which yields that a ∈ D(S). Furthermore, Theorem 4.2 ensures
that for every fixed 1 < τ < n

n−1 , there exists a subsequence {ukm}∞m=1 ⊂ {uk}∞k=1

weakly converging in H1
τ (Ω) to some u ∈ H1

τ (Ω).
Let us now fix a τ ∈ ( np

n(p−1)+p ,
n
n−1 ), which ensures that nτ

n−τ > p
p−1 . Then,

Proposition 2.1(i) implies that the embedding H1
τ (Ω) ↪→ L

p
p−1 (Ω) is compact. For

this reason, we obtain the strong convergence ukm → u in L
p
p−1 (Ω), which yields the

weak convergence akmukm ⇀ au in L1(Ω). Thus, for any ϕ ∈ C∞(Ω), we obtain that∫
Ω

κ∇u · ∇ϕ+ auϕdx = lim
m→∞

∫
Ω

κ∇ukm · ∇ϕ+ akmukmϕdx =

∫
Ω

ϕdµΩ.

It follows therefore from Theorem 4.2 that u is the unique weak solution to (4.2), and
so a well-known argument implies that the whole sequence {uk}∞k=1 converges weakly
in H1

τ (Ω) toward u. Finally, as the embedding H1
τ (Ω) ↪→ H1

τ̃ (Ω) for any τ̃ ∈ [1, τ ]
is linear and bounded, we conclude that {uk}∞k=1 converges weakly in H1

τ (Ω) for all
1 ≤ τ < n

n−1 toward u.

In view of Theorem 4.2, we introduce the solution operator S : D(S) ⊂ Lp(Ω)→
Y , a 7→ u, where Y denotes a real Banach space satisfying H1

τ (Ω) ↪→ Y for some
1 ≤ τ < n

n−1 . More precisely, the operator S assigns to every coefficient a ∈ D(S) the

unique weak solution of (4.2) u ∈ H1
τ (Ω) for all 1 ≤ τ < n

n−1 . Applying the solution
operator, the mathematical formulation of the elliptic inverse coefficient problem (4.2)
reads as follows: Find a ∈ D(S) such that

(4.7) S(a) = u†,
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where u† ∈ H1
τ (Ω) for all 1 ≤ τ < n

n−1 denotes the unique weak solution of (4.2)

associated with the true coefficient a† ∈ D(S). For our convergence analysis, we
assume that the (unknown) true solution a† is the Lp-norm minimizing solution in
the sense that a† ∈ D(S) solves

(4.8) ‖a†−a∗‖Lp(Ω) = min
a∈Π(u†)

‖a−a∗‖Lp(Ω) with Π(u†) := {a ∈ D(S) | S(a) = u†}.

Lemma 4.4. The nonempty set Π(u†) is bounded, convex, and closed in Lp(Ω).
Therefore, the minimization problem (4.8) admits a unique solution.

Proof. The boundedness follows immediately from the definition of D(S) (see
(4.6)) and Lp(Ω) ↪→ Lp(Ω). Moreover, by Definition 4.1, it is straightforward to show
that Π(u†) is convex. Let us now prove that Π(u†) ⊂ Lp(Ω) is closed. To this aim,
let {ak}∞k=1 ⊂ Π(u†) such that ak → a in Lp(Ω). This weak limit satisfies a ∈ D(S)
since D(S) ⊂ Lp(Ω) is weakly compact (cf. the proof of Lemma 4.3). Furthermore,

as the embedding H1
τ (Ω) ↪→ L

p
p−1 (Ω) holds true for all np

n(p−1)+p < τ < n
n−1 (cf. the

proof of Lemma 4.3) we obtain that u† ∈ L
p
p−1 (Ω), which implies that

aku
† → au† inL1(Ω),

and consequently∫
Ω

κ∇u† · ∇ϕ+ au†ϕdx = lim
k→∞

∫
Ω

κ∇u† · ∇ϕ+ aku
†ϕdx =

∫
Ω

ϕdµΩ ∀ϕ ∈ C∞(Ω).

In conclusion, a ∈ Π(u†). This completes the proof.

Now, given α > 0, the Tikhonov regularization problem associated with (4.7)
reads as

(4.9) min
a∈D(S)

(
1

`
‖S(a)− uδ‖`Y +

α

p̂
‖a− a∗‖p̂Lp(Ω)

)
for a fixed constant ` > 1, p̂ = max{p, 2}, and an arbitrarily fixed a priori estimate
a∗ ∈ Lp(Ω) for a†. Moreover, the noisy data uδ satisfy

‖u† − uδ‖Y ≤ δ,

with the noisy level δ > 0. From the classical theory of Tikhonov regularization (see,
e.g., [25, 46]), the sequentially weak-to-weak continuity result (Lemma 4.3) implies
the following existence and plain convergence results.

Theorem 4.5. The following assertions hold true:
(i) For each α > 0 and uδ ∈ Y , (4.9) admits a solution aδα ∈ D(S).

(ii) Let {δk}∞k=1 ⊂ (0,+∞) be a null sequence and {uδk}∞k=1 ⊂ Y be a sequence
satisfying

‖uδk − u†‖Y ≤ δk ∀ k ∈ N.

Moreover, let {αk}∞k=1 ⊂ (0,+∞) fulfill

αk → 0,
δ`k
αk
→ 0,

where ` ≥ 1 is as in (4.9). If ak is a minimizer of (4.9) with uδ and α replaced
by uδk and αk, respectively, then ak converges strongly to a† in Lp(Ω).
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4.2. VSC for (4.9). Our goal is to verify VSC for the Tikhonov regularization
problem (4.9). We shall apply our abstract result (Theorem 3.3) to the case of T = S
and show that the conditional estimate (3.7) is satisfied.

Theorem 4.6. Let p > n
2 ,

(4.10) τ ∈

{
(1,+∞) if p ≥ n,(

pn
np−n+p ,

pn
n−p

)
if n

2 < p < n,

and 1 < r, q < +∞, γ > 0 such that
(a) u† ∈ H1

r (Ω) and |u†| ≥ γ a.e. in Ω;
(b) S(a)− S(a†) ∈ H1

τ (Ω) for all a ∈ D(S);
(c)

(4.11) 1− 1

τ
=

1

q
+

1

r
.

Furthermore, p := q
q−1 , p̂ := max{2, p}, q̂ := min{2, q}, and suppose that Jp̂(a

† −
a∗) := f† ∈ Hs

q (Ω) for some s ∈ (0, 1]. Then the following assertions hold true:
(i) There exists a constant C > 0 such that

(4.12) ‖a− a†‖H1
q (Ω)∗ ≤ C‖S(a)− S(a†)‖H1

τ (Ω) ∀ a ∈ D(S).

(ii) If τ < n
n−1 and Y = H1

τ (Ω), then VSC (3.3) holds true for T = S, β =
cp
2 ,

and Ψ as in (3.8) with θ = 1 and Ψ0(δ) = δ.
(iii) If, in addition, there exist τ > τ and M1 > 0 such that

(4.13) ‖S(a)− S(a†)‖H1
τ (Ω) ≤M1 ∀ a ∈ D(S),

and Y = H1
1 (Ω), then VSC (3.3) holds true for T = S, β =

cp
2 , and Ψ as in

(3.8) with θ = 1 and Ψ0(δ) = δ
τ−τ
τ(τ−1) .

(iv) If there exists M2 > 0 such that

(4.14) ‖S(a)− S(a†)‖H2
τ (Ω) ≤M2 ∀ a ∈ D(S),

and Y = Lτ (Ω), then VSC (3.3) holds true for T = S, β =
cp
2 , and Ψ as in

(3.8) with θ = 1 and Ψ0(δ) = δ
1
2 .

Remark 4.7.
(i) The condition (a) implies that Π(u†) = {a†}, and so the inverse problem

(4.7) has a unique solution. We note that the generalized duality map Jp̂ :
Lp(Ω) → Lq(Ω) satisfies Jp̂(w)(x) = ‖w‖p̂−pp |w(x)|p−2w(x) if w(x) 6= 0 and
Jp̂(w)(x) = 0 if w(x) = 0 (see, e.g., [3, section 1.1]). Therefore, the regularity
assumption f† := Jp̂(a

† − a∗) ∈ Hs
q (Ω) can be immediately translated to the

difference between the true solution and the initial guess as follows:

(4.15) χω|a† − a∗|p−2(a† − a∗) ∈ Hs
q (Ω),

where χω denotes the characteristic function of ω := {x ∈ Ω | a†(x) 6= a∗(x)}.
Introducing

ϕp(t) :=

{
|t|p−2t, t ∈ R\{0},
0, t = 0,

and Tϕpf := ϕp ◦ f,
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(4.15) can be reformulated as

Tϕp(a† − a∗) ∈ Hs
q (Ω) ⇐⇒ a† − a∗ ∈ T−1

ϕp (Hs
q (Ω)) = Tϕ−1

p
(Hs

q (Ω)).

In the literature, there exist numerous contributions to the superposition in
Lizorkin–Triebel spaces (see, e.g., [4, 5, 44, 47]). To characterize Tϕ−1

p
(Hs

q (Ω)),

we first take advantage of [47, Theorem 3]. By an elementary calculation (see
the appendix), it holds that

(4.16) ϕp(R) ⊂ R, |ϕ(l)
p (t)| . |t|p−1−l, l = 0, . . . , N,

and

(4.17) sup
t0 6=t1

|ϕ(N)
p (t1)− ϕ(N)

p (t0)|
|t1 − t0|τ

<∞,

where N ∈ Z and 0 < τ := p − 1 − N ≤ 1. Thus, Theorem 3 in [47] is
applicable, and [47, Theorem 3] yields that

Hs
q (Rn) ⊂ T−1

ϕp (Hs
q (Rn)) if p > max{2, n} and n/q < s < p− 1.

Then, from the definition of Hs
q (Ω) and the fact that T−1

ϕp (U) |Ω= T−1
ϕp (u)

whenever U ∈ Hs
q (Rn) and u = U |Ω, we conclude that

Hs
q (Ω) ⊂ T−1

ϕp (Hs
q (Ω)) if p > max{2, n} and n/q < s < p− 1.

By [47, Theorem 3] along with the argument above, we obtain that

Hs∗

q (Ω) ⊂ T−1
ϕp (Hp−1

q (Ω)) ⊂ T−1
ϕp (Hs

q (Ω))

if p > 2, 0 < s < p−1, and n(1−2/p) < s∗ < min{1+n(1−2/p), n(1−1/p)},
where we have used the inclusion Hp−1

q (Ω) ⊂ Hs
q (Ω) [56, p. 42]. Let us

finally consider the case 1 < p < 2, 0 < s < p− 1, and t > s
p−1 . In this case,

introducing ϕp,+(t) := |t|p−1 for t ∈ R, [44, section 5.4.4, Theorem 1] and the
embedding result [44, section 2.2.1, Proposition 1] yield

(4.18) Tϕp,+(Ht
p(Ω)) ⊂ Hs

q (Ω).

For the convenience of the reader, we present a proof for (4.18) in the appen-
dix. For the above case, if a† − a∗ ≥ 0 a.e. on Ω, and a† − a∗ ∈ Ht

p(Ω), then

Tϕp(a† − a∗) = Tϕp,+(a† − a∗) ∈ Hs
q (Ω).

(ii) Theorem 4.2 implies that S(a), S(a†) ∈ H1
τ (Ω) for all 1 < τ < n

n−1 . Never-

theless, we shall show in Lemmas 4.13 and 4.14 that S(a) − S(a†) enjoys a
higher regularity property, depending on the regularity of κ, such that the
assumptions (b), (4.13), and (4.14) are reasonable.

(iii) The second part of the assumption (a) can be verified under additional as-
sumptions: Suppose that a† ∈ L∞(Ω), µΩ ∈ Lh1(Ω) with h1 > n

2 , and
µΓ ∈ Lh2(Γ) with h2 > n− 1. This additional regularity assumption implies
that u† ∈ H1

2 (Ω) ∩ C(Ω) (see [1, Theorem 2]). Suppose further that Ω is
convex and piecewise smooth, µΩ ≥ 0 a.e. in Ω, and µΓ ≥ ĉ a.e. on ∂Ω for
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some constant ĉ > 0. Let û ∈ H1
2 (Ω) ∩C(Ω) denote the weak solution to the

Neumann problem

−∇ · (κ∇û) + a†û = 0 in Ω and κ
∂û

∂ν
= ĉ on Γ.

We note again that the continuity of û follows from [1, Theorem 2]. Now,
according to [39, Theorems 2 and 4], there exists a constant γ > 0 such that
û(x) ≥ γ for all x ∈ Ω. Letting w := u† − û, we obtain that∫

Ω

κ∇w · ∇ϕ+ a†wϕdx−
∫

Γ

κ(µΓ − ĉ)ϕds =

∫
Ω

µΩϕdx ∀ϕ ∈ H1
2 (Ω),

from which it follows that∫
Ω

κ∇w · ∇ϕ+ a†wϕdx =

∫
Ω

µΩϕdx+

∫
Γ

κ(µΓ − ĉ)ϕds ≥ 0(4.19)

for all nonnegative functions ϕ ∈ H1
2 (Ω). By [39, Theorem 2], it follows from

(4.19) that w(x) ≥ 0 holds for all x ∈ Ω. As a consequence, we obtain that
u†(x) ≥ û(x) ≥ γ for all x ∈ Ω.

Proof. (i) Let τ∗ denote the conjugate exponent of τ , i.e., τ∗ = τ
τ−1 . For each

a ∈ D(S), by the definition of the weak solution, we have∫
Ω

κ∇(S(a)−S(a†)) ·∇ϕ+a(S(a)−S(a†))ϕdx =

∫
Ω

(a†−a)S(a†)ϕdx ∀ϕ ∈ C∞(Ω).

Then, in view of (4.1) and Hölder’s inequality, it follows that∣∣∣∣∫
Ω

(a† − a)S(a†)ϕdx

∣∣∣∣ ≤ Λ‖∇(S(a)− S(a†))‖τ‖∇ϕ‖τ∗ +

∣∣∣∣∫
Ω

a(S(a)− S(a†))ϕdx

∣∣∣∣
=: Λ‖∇(S(a)− S(a†))‖τ‖∇ϕ‖τ∗ + J.(4.20)

By the defiiniton of D(S) ⊂ Lp(Ω) (see (4.6)), we have

J ≤ ‖a‖p‖S(a)ϕ− S(a†)ϕ‖ p
p−1
≤M‖S(a)ϕ− S(a†)ϕ‖ p

p−1
∀ (a, ϕ) ∈ D(S)× C∞(Ω).

(4.21)

Let us now prove the following estimate for J:

(4.22) J . ‖S(a)− S(a†)‖H1
τ (Ω)‖ϕ‖H1

τ∗ (Ω) ∀ (a, ϕ) ∈ D(S)× C∞(Ω).

We first consider the case 1 < τ, τ∗ < n, which is only possible for n ≥ 3. For this
case, generalized Hölder’s inequality and Proposition 2.1(i) yield that

‖S(a)ϕ− S(a†)ϕ‖ p
p−1

.︸︷︷︸
p>n

2

‖(S(a)− S(a†))ϕ‖ n
n−2
≤ ‖S(a)− S(a†)‖ nτ

n−τ
‖ϕ‖ nτ∗

n−τ∗

. ‖S(a)− S(a†)‖H1
τ (Ω)‖ϕ‖H1

τ∗ (Ω) ∀ (a, ϕ) ∈ D(S)× C∞(Ω).(4.23)

Applying (4.23) to (4.21) yields (4.22). If τ ≥ n and τ∗ ≥ n, both H1
τ (Ω) and H1

τ∗(Ω)
are embedded to Ls(Ω) for all 1 < s < +∞ (Proposition 2.1(ii)), and consequently
Hölder’s inequality implies

‖S(a)ϕ− S(a†)ϕ‖ p
p−1

. ‖S(a)− S(a†)‖H1
τ (Ω)‖ϕ‖H1

τ∗ (Ω) ∀ (a, ϕ) ∈ D(S)× C∞(Ω),

(4.24)
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which yields (4.22). Now suppose that τ ≥ n and τ∗ < n. From (4.10), we obtain
that

(4.25)
1

p
<

1

τ
+

1

n
⇒ 1− 1

p
> 1− 1

τ
− 1

n
⇒ p

p− 1
<

nτ∗

n− τ∗
.

Therefore, in view of the generalized Hölder’s inequality and Proposition 2.1, we can
choose 1 < s < +∞ such that

‖S(a)ϕ− S(a†)ϕ‖ p
p−1
≤‖S(a)− S(a†)‖s‖ϕ‖ nτ∗

n−τ∗
. ‖S(a)− S(a†)‖H1

τ (Ω)‖ϕ‖H1
τ∗ (Ω)

for all (a, ϕ) ∈ D(S) × C∞(Ω). Thus, applying the above inequality to (4.21) gives
(4.22). Similarly, (4.22) is obtained for the case of τ < n and τ∗ ≥ n as p

p−1 <
nτ
n−τ

is satisfied in this case.
Applying (4.22) to (4.20), we obtain

∣∣∣∣∫
Ω

(a† − a)S(a†)ϕdx

∣∣∣∣ . ‖S(a)− S(a†)‖H1
τ (Ω)‖ϕ‖H1

τ∗ (Ω) ∀ (a, ϕ) ∈ D(S)×H1
τ∗(Ω),

(4.26)

where we have also used the density of C∞(Ω) in H1
τ∗(Ω) (cf. [23]). On the other

hand, we observe that

‖(a†−a)‖H1
q (Ω)∗ = sup

‖g‖H1
q (Ω)=1

∣∣∣∣∫
Ω

(a†−a)gdx

∣∣∣∣= sup
‖g‖H1

q (Ω)=1

∣∣∣∣∫
Ω

(a† − a)S(a†)
1

S(a†)
gdx

∣∣∣∣ .
(4.27)

Now we show that 1
S(a†)

is well-defined in H1
τ∗(Ω). From the condition (a), it follows

that 1
S(a†)

= F (S(a†)) holds true for a globally Lipschitz function F : R→ R satisfying

F (0) = 0 and F (x) = 1
x for all |x| ≥ γ. For this reason, Proposition 2.2(i) implies

that 1
S(a†)

∈ H1
r (Ω). Furthermore, using Proposition 2.2(ii) and the condition (c), we

have

(4.28)

∥∥∥∥ 1

S(a†)
g

∥∥∥∥
H1
τ∗ (Ω)

≤ C
∥∥∥∥ 1

S(a†)

∥∥∥∥
H1
r (Ω)

‖g‖H1
q (Ω) ∀g ∈ H1

q (Ω).

As a consequence of (4.26) and (4.27),
(4.29)

‖(a† − a)‖H1
q (Ω)∗ . sup

‖g‖H1
q (Ω)=1

(
‖S(a)− S(a†)‖H1

τ (Ω)

∥∥∥∥ 1

S(a†)
g

∥∥∥∥
H1
τ∗ (Ω)

)
∀a ∈ D(S).

Then, applying (4.28) to (4.29), we conclude that (4.12) is valid.
(ii) Let PN be the PL decomposition as constructed in Example 2.11(ii). In view

of (2.13), it holds that

(4.30) F tq (PN ) = H2t
q (Ω;C) ∀t ∈ [0, 1/2] ⇒ F 1/2

q (PN )∗ = (H1
q (Ω;C))∗

with equivalent norms. Then, (4.12) implies that (3.7) holds true for T = S, Y =
H1
τ (Ω), Ψ0(δ) = δ, and θ = 1. In conclusion, the claim (ii) follows from Theorem 3.3.

D
ow

nl
oa

de
d 

05
/1

3/
21

 to
 1

32
.2

52
.2

02
.8

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2882 DE-HAN CHEN AND IRWIN YOUSEPT

(iii) Applying the interpolation inequality (2.1) with s1 = s2 = 1, τ1 = τ , τ2 = 1,
and ρ = τ−τ

τ(τ−1) to the right-hand side of (4.12) along with (4.13), we obtain

(4.31) ‖a− a†‖H1
q (Ω)∗ ≤ CM

1− τ−τ
τ(τ−1)

1 ‖S(a)− S(a†)‖
τ−τ
τ(τ−1)

H1
1 (Ω)

∀ a ∈ D(S).

In view of (4.30) and (4.31), we see that (3.7) holds true for T = S, Y = H1
1 (Ω),

Ψ0(δ) = δ
τ−τ
τ(τ−1) , and θ = 1. Thus, by Theorem 3.3, the claim (iii) is valid.

(iv) Similarly, applying the interpolation inequality (2.1) with s1 = 2, s2 = 0, τ1 =
τ2 = τ , and ρ = 1/2 to the right-hand side of (4.12) together with (4.14), we have

(4.32) ‖a− a†‖H1
q (Ω)∗ ≤ CM

1
2

2 ‖S(a)− S(a†)‖
1
2

Lτ (Ω) ∀ a ∈ D(S).

In view of (4.30) and (4.32), we see that (3.7) holds true for T = S, Y = Lτ (Ω),
Ψ0(δ) =

√
δ, and θ = 1. In conclusion, the claim (iv) follows from Theorem 3.3.

The conditional stability estimate (4.12) is the main key point to verify VSC (3.3)
for T = S, as it implies the required condition (3.7) for Theorem 3.3. Concluding
from Corollary 3.2, Theorem 4.6, and (3.9), we obtain the following convergence rates.

Corollary 4.8. Under the assumptions of Theorem 4.6 and the parameter choice

α(δ) := δ`

Ψ(δ) , the Tikhonov regularization method (4.9) yields the convergence rates

‖aδα(δ) − a†‖p̂p =



O

(
δ

q̂s
1+(q̂−1)s

)
as δ → 0+ in the case of (ii) with Y = H1

τ (Ω),

O

(
δ

(τ−τ)q̂s
τ(τ−1)(1+(q̂−1)s)

)
as δ → 0+ in the case of (iii) with Y = H1

1 (Ω),

O

(
δ

q̂s
2+2(q̂−1)s

)
as δ → 0+ in the case of (iv) with Y = Lτ (Ω).

As a conclusion, different choices of Y -norms and estimates (4.12)–(4.14) lead
to different convergence rates. The case (iv) with the weakest norm Y = Lτ (Ω)
is mostly relevant for applications since measurement in higher Sobolev norms is
typically difficult to realize in practice.

Remark 4.9. In the case of (iv) of Theorem (4.6) with p = 2, one may expect

convergence rate ‖aδα(δ) − a
†‖22 = O(δ

2s
s+2 ). Thus, our convergence rate is suboptimal

in this case, which may be caused by the treatment of the nonlinearity of the forward
operator. It is an open question that we shall investigate as a future goal.

4.3. Discussion of hypotheses in Theorem 4.6. In the following, we discuss
the assumptions (b), (4.13), and (4.14) with more details. Although S(a) belongs
only to H1

τ (Ω) for all 1 ≤ τ < n
n−1 , it turns out that the difference S(a) − S(b) for

all a, b ∈ D(S) enjoys a better regularity property, provided that κ is regular enough.
This fact allows us to verify the assumptions (b), (4.13), and (4.14) under the following
material assumption:

(A) There exist C1 domains Ωj ⊂ Rn, j = 1, . . . , N , such that

Ωi ∩ Ωj = ∅ ∀ i 6= j and Ωj ⊂ Ω.

Furthermore, it holds that

κ |
Ωc
∈ C(Ωc) and κ |

Ωj
∈ C(Ωj) ∀ j = 0, 1 . . . , N,

where Ωc := Ω\
⋃N
j=1.
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Remark 4.10. To model a heterogeneous medium, the assumption of piecewise
continuous material functions is reasonable and often used in the mathematical study
of elliptic equations (cf. [17]).

Lemma 4.11 (Theorem 1.1, Remarks 3.17–3.19 in [17]). Assume that (A) holds
true and 1 < r, τ < +∞ such that

(4.33)

{
τ ∈ (1,+∞) if r ≥ n,
τ ∈ (1, nr

n−r ] if 1 < r < n.

Then, for every f ∈ Lr(Ω), the homogeneous Neumann problem

(4.34)

{
−∇ · κ∇u+ u = f in Ω,

κ∂u∂ν = 0 on Γ

admits a unique weak solution u ∈ H1
τ (Ω) satisfying

(4.35) ‖u‖H1
τ (Ω) . ‖f‖Lr(Ω).

Remark 4.12. As a special case of [17] and an analogue of [12] for Neumann
conditions, the material assumption (A) implies that for every 1 < τ < ∞ and
τ∗ = τ

τ−1 the operator −∇·κ∇+ 1 : H1
τ (Ω)→ H1

τ∗(Ω)∗ is a topological isomorphism.
We note that (4.33) implies

(4.36) 1− 1

r
≥ 1− 1

τ
− 1

n
⇒ 1

r∗
≥ 1

τ∗
− 1

n
.

In view of (4.36), Proposition 2.1 yields the continuous embedding H1
τ∗(Ω) ↪→ Lr

∗
(Ω).

Therefore, under (A) and (4.33), (4.34) admits for every f ∈ Lr(Ω) ↪→ H1
τ∗(Ω)∗ a

unique weak solution u ∈ H1
τ (Ω) with τ as in (4.33). This unique weak solution

satisfies
‖u‖H1

τ (Ω) . ‖f‖H1
τ (Ω)∗ . ‖f‖Lr(Ω).

Let us also mention that (A) cannot be relaxed due to the counterexamples in [17].

Lemma 4.13. Assume that (A) holds and p > n
2 .

(i) If n = 2, then for every{
τ ∈ (1,+∞) if p > 2,

τ ∈
(

1, 2p
2−p

)
if 1 < p ≤ 2

there exists a constant C > 0 such that

‖S(a)− S(b)‖H1
τ (Ω) ≤ C ∀a, b ∈ D(S).

(ii) If n = 3, then for every τ ∈ (1, p) there exists a constant C > 0 such that

‖S(a)− S(b)‖H1
τ (Ω) ≤ C ∀a, b ∈ D(S).

Proof. According to Definition 4.1, we have∫
Ω

κ∇(S(a)− S(b)) · ∇ϕ+ (S(a)− S(b))ϕdx

=

∫
Ω

(S(a)− S(b) + bS(b)− aS(a))ϕdx ∀ϕ ∈ C∞(Ω) ∀a, b ∈ D(S).

(4.37)
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Let us first consider the case n = 2. In view of Theorem 4.2 and Proposition 2.1(i),
it holds that

‖S(a)‖s ≤ C(s) ∀a ∈ D(S) ∀1 ≤ s <∞

for some constant C(s) > 0, independent of a ∈ D(S). For this reason, making use of
the definition D(S) ⊂ Lp(Ω) (see (4.6)), it follows that

‖aS(a)‖r ≤ C(r) ∀a ∈ D(S) ∀1 ≤ r < p

for some constant C(r) > 0, independent of a ∈ D(S). Combining the above two
inequalities yields that

(4.38) ‖S(a)− S(b) + bS(b)− aS(a)‖r ≤ C(r) ∀a, b ∈ D(S) ∀1 ≤ r < p.

If p > 2, then we may choose r = 2 = n in (4.38) such that applying Lemma 4.11 to
(4.37) yields the claim (i) for τ ∈ (1,+∞) and p > 2. If 1 < p ≤ 2 = n, then for every
τ ∈ (1, 2p

2−p ), we can find an r < p ≤ n such that τ < 2r
2−r = nr

n−r . Therefore, in view

of (4.38), applying again Lemma 4.11 to (4.37) yields the claim (i) for τ ∈ (1, 2p
2−p )

and 1 < p ≤ 2.
Now let us consider the case n = 3 and p > 3

2 . Theorem 4.2 and Proposition
2.1(i) ensure that

‖S(a)‖s < C(s) ∀a ∈ D(S) ∀1 ≤ s < 3(4.39)

for some constant C(s) > 0, independent of a ∈ D(S). Then, making use of the
definition of D(S) ⊂ Lp(Ω) (see (4.6)), the generalized Hölder inequality implies that

‖aS(a)‖r ≤ ‖a‖p‖S(a)‖ rp
p−r
≤MC(r, p) ∀a ∈ D(S) ∀1 ≤ r < 3p

3 + p
,(4.40)

where we have used (4.39) since 1 ≤ rp
p−r < 3 holds true for all 1 ≤ r < 3p

3+p .

Altogether, since 3p
3+p < 3, (4.39) and (4.40) yield

(4.41)

‖S(a)− S(b) + bS(b)− aS(a)‖r ≤ C(r, p) ∀a, b ∈ D(S) ∀1 ≤ r < 3p

3 + p
< 3 = n

for some constant C(r, p) > 0, independent of a, b ∈ D(S). In view of (4.41), applying
Lemma 4.11 to (4.37), we come to the conclusion that for every τ ∈ (1, p), there exists
a constant C > 0 such that

‖S(a)− S(b)‖H1
τ (Ω) ≤ C ∀a, b ∈ D(S).

This completes the proof.

Lemma 4.14. Let n ∈ {2, 3} and p > n
2 . Assume that κ ∈ C0,1(Ω). Then, for

every τ ∈ (1, τ) with

(4.42) τ :=

{
p, n = 2,
3p

3+p , n = 3,

there exists a constant C > 0 such that

(4.43) ‖S(a)− S(b)‖H2
τ (Ω) ≤ C ∀a, b ∈ D(S).
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Proof. Let a, b ∈ D(S). By the definition of the weak solution (4.1),∫
Ω

κ∇(S(a)− S(b)) · ∇ϕ+ (S(a)− S(b))ϕdx

=

∫
Ω

(S(a)− S(b) + bS(b)− aS(a))ϕdx ∀ϕ ∈ C∞(Ω).

Therefore, in view of (4.38) (for n = 2) and (4.41) (for n = 3), the classical W 2,τ (Ω)-
regularity result for elliptic equations [23, Theorem 2.4.1.3] implies (4.43).

In conclusion, we see that assumptions (4.13) and (4.14) can be guaranteed by
Lemmas 4.13 and 4.14, respectively.

5. Conclusion. Based on the LP theory and the concept of R-boundedness,
we developed sufficient criteria (Theorem 3.3) for VSC (3.3) in Lp(Ω, µ)-spaces with
1 < p < +∞. The proposed sufficient criteria consist of the existence of an LP
decomposition for the complex dual space Lq(Ω, µ;C) (q = p

p−1 ) together with a con-
ditional stability estimate and a regularity requirement for the true solution in terms
of Triebel–Lizorkin-type norms. In section 4, the developed abstract result is applied
to the inverse reconstruction problem of unbounded diffusion Lp(Ω)-coefficients in el-
liptic equations with measure data (4.2). We derived existence and plain convergence
results for the associated Tikhonov regularization problem (4.9) with Lp(Ω)-norm pen-
alties (Theorem 4.5). As final results (Theorem 4.6 and Lemmas 4.13 and 4.14)), we
prove that all requirements of Theorem 3.3 are satisfied for the inverse problem (4.7),
leading to convergence rates for the Tikhonov regularization method (4.9) (Corollary
4.8).

Our future goals are threefold. First, noticing that there has been recent progress
on VSC for `1-regularization (see, e.g., [2, 20, 52]), we aim at extending our study
to the Tikhonov regularization method with L1(Ω, µ)-penalties. On the other hand,
in some applications, the unknown solution could fail to have a finite penalty value
if the penalty is oversmoothing. Recently, such oversmoothing regularizations have
been studied for inverse problems in Hilbert scales (see, e.g., [13, 26, 28]). As Triebel–
Lizorkin-type space allows us to work with scales of Banach space through the use
of sectorial operators, it would be attempting to study oversmoothing regularizations
under an Lp(Ω)-setting. Third, we would like to extend the developed results to
nonlinear and nonsmooth PDEs, in particular for those arising from electromagnetic
applications [38, 57, 58, 59, 60, 61].

6. Appendix.

6.1. Properties of ϕp from Remark 4.7. It is obvious that ϕp(R) ⊂ R. Let
N ∈ Z and 0 < τ ≤ 1 such that N + τ = p − 1. Since ϕp(t) = tp−1 for t > 0, and
ϕp(t) = −(−t)p−1 for t < 0, it follows for all l = 0, 1, 2 . . . , N that

(6.1) ϕ(l)
p (0) = 0 and ϕ(l)

p (t) =

{
clt

p−1−l if t > 0,

(−1)l+1cl(−t)p−1−l if t < 0,

where cl := (p − 1) · (p − 2) · · · (p − l), and hence |ϕ(l)
p (t)| ≤ cl|t|p−1−l for all t ∈ R

with l = 0, 1, . . . , N . Using (6.1) and the inequality (t+ s)τ ≤ tτ + sτ for all t, s ≥ 0,
we have that

|ϕ(N)
p (t1)− ϕ(N)

p (t0)|
|t1 − t0|τ

= cl
|tτ1 − tτ0 |
|t1 − t0|τ

= cl
(t1 − t0 + t0)τ − tτ0

(t1 − t0)τ
≤ cl,
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whenever t1 > t0 ≥ 0. The case t0 > t1 ≥ 0 can be handled similarly. Thus,

(6.2) sup
t1,t0≥0,t0 6=t1

|ϕ(N)
p (t1)− ϕ(N)

p (t0)|
|t1 − t0|τ

≤ cl.

In view of (6.2) and the fact that ϕ
(N)
p (t) = (−1)l+1ϕ

(N)
p (−t) for any t < 0 by (6.1),

we obtain that

(6.3) sup
t1,t0≤0,t0 6=t1

|ϕ(N)
p (t1)− ϕ(N)

p (t0)|
|t1 − t0|τ

≤ cl.

If t1t0 < 0, then from (6.1) it follows that

|ϕ(N)
p (t1)− ϕ(N)

p (t0)|
|t1 − t0|τ

≤ |ϕ
(N)
p (t1)|
|t1 − t0|τ

+
|ϕ(N)
p (t0)|
|t1 − t0|τ

≤ |ϕ
(N)
p (t1)|
|t1|τ

+
|ϕ(N)
p (t0)|
|t0|τ

≤ 2cl.

(6.4)

Therefore, we conclude from (6.2)–(6.4) that

sup
t0 6=t1

|ϕ(N)
p (t1)− ϕ(N)

p (t0)|
|t1 − t0|τ

≤ 2cl.

6.2. Proof of (4.18). For s ∈ R, 1 ≤ q < ∞, and 1 ≤ r ≤ ∞, let F sq,r(Rn;C)
denote the Triebel–Lizorkin space as defined in [44, p. 8] and F sq,r(Rn) the subspace
of F sq,r(Rn;C) consisting of real-valued functions in F sq,r(Rn;C), which satisfies

F sq,2(Rn) = Hs
q (Rn)

if s ∈ R and 1 < q < ∞ (see [44, section 2.1.2. Proposition 1(vii)]). In addition, the
inclusion

(6.5) Hs′

q (Rn) ⊂ F s
′′

q,r′′(Rn)

is valid if 1 ≤ q <∞, s′ > s′′, and 1 ≤ r′, r′′ ≤ ∞ (see [44, section 2.2.1, Proposition
1]). From [44, section 5.4.4, Theorem 1], it follows that the inclusion

Tϕp,+

(
F
s/(p−1)
p,2(p−1)(R

n)
)
⊂ F sq,2(Rn) = Hs

q (Rn)

holds if 1 < p < 2 and 0 < s < p− 1, which, together with (6.5), implies the inclusion

(6.6) Tϕp,+(Ht
p(Rn)) ⊂ Hs

q (Rn)

if t > s
p−1 . By the argument used in Remark 4.7(i), we deduce that (6.6) remains true

if we replace Ht
p(Rn) and Hs

q (Rn) by Ht
p(Ω) and Hs

q (Ω), respectively. This completes
the proof.
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[6] R. I. Boţ and B. Hofmann, An extension of the variational inequality approach for obtaining
convergence rates in regularization of nonlinear ill-posed problems, J. Integral Equations
Appl., 22 (2010), pp. 369–392.

[7] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, in Probability Theory
and Harmonic Analysis, Dekker, New York, 1986, pp. 1–19.

[8] G. Chavent and K. Kunisch, Convergence of Tikhonov regularization for constrained ill-posed
inverse problems, Inverse Problems, 10 (1994), pp. 63–76.

[9] D. H. Chen, D. Jiang, and J. Zou, Convergence rates of Tikhonov regularizations for elliptic
and parabolic inverse radiativity problems, Inverse Problem, 36 (2020), 075001.

[10] D. H. Chen and I. Yousept, Variational source condition for ill-posed backward nonlinear
Maxwell’s equations, Inverse Problems, 35 (2018), 025001.

[11] M. Cowling, I. Doust, A. Micintosh, and A. Yagi, Banach space operators with a bounded
H∞-functional calculus, J. Australian Math. Soc., 60 (1996), pp. 51–89.

[12] K. Disser, H.-C. Kaiser, and J. Rehberg, Optimal sobolev regularity for linear second-order
divergence elliptic operators occurring in real-world problems, SIAM J, Math. Anal., 47
(2015), pp. 1719–1746.

[13] H. Egger and B. Hofmann, Tikhonov regularization in Hilbert scales under conditional sta-
bility assumptions, Inverse Problems, 34 (2018), 115015.

[14] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Math. Appl.
375, Kluwer, Dordrecht, 1996.

[15] H. W. Engl, K. Kunisch, and A. Neubauer, Convergence rates for Tikhonov regularization
of nonlinear ill-posed problems, Inverse problems, 5 (1989), pp. 523–540.

[16] H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regu-
larization for parameter identification in heat conduction, Inverse Problems, 16 (2000),
pp. 1907–1923.

[17] J. Elschner, J. Rehberg, and G. Schmidt, Optimal regularity for elliptic transmission prob-
lems including C1 interfaces, Interfaces Free Bound., 9 (2007), pp. 233–252.

[18] H. Feng, D. Jiang, and J. Zou, Convergence rates of Tikhonov regularizations for parameter
identification in a parabolic-elliptic system, Inverse Problems, 28 (2012), 104002.

[19] J. Flemming, Theory and examples of variational regularization with non-metric fitting func-
tionals, J. Inverse Ill-Posed Probl., 18 (2010), pp. 677–699.

[20] J. Flemming and D. Gerth, Injectivity and weak∗-to-weak continuity suffice for convergence
rates in `1-regularization, J. Inverse Ill-Posed Probl., 26 (2018), pp. 85–94.

[21] J. Flemming, Existence of variational source conditions for nonlinear inverse problems in
Banach spaces, J. Inverse Ill-Posed Probl., 26 (2018), pp. 277–286.

[22] M. Grasmair, Generalized Bregman distances and convergence rates for non-convex regular-
ization methods, Inverse Problems, 26 (2010), 115014.

[23] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Appl. Math. 69, SIAM,
Philadelphia, 2011.

[24] M. Haase, The Functional Calculus for Sectorial Operators, Oper. Theory Adv. Appl.,
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