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NUMERICAL ANALYSIS FOR MAXWELL OBSTACLE PROBLEMS
IN ELECTRIC SHIELDING*

MAURICE HENSELT AND IRWIN YOUSEPTT

Abstract. This paper proposes and examines a finite element method (FEM) for a Maxwell
obstacle problem in electric shielding. The model is given by a coupled system comprising the
Faraday equation and an evolutionary variational inequality (VI) of Ampére-Maxwell-type. Based
on the leapfrog (Yee) time-stepping and the Nédélec edge elements, we set up a fully discrete FEM
where the obstacle is discretized in such a way that no additional nonlinear solver is required for the
computation of the discrete VI. While the L?-stability is achieved for the discrete solutions and the
associated difference quotients, the scheme only guarantees the L!-stability for the discrete magnetic
curl field in the obstacle region. The lack of the global L2-stability for the magnetic curl field is
justified by the low regularity issue in Maxwell obstacle problems and turns to be the main challenge
in the convergence analysis. Our convergence proof consists of two main stages. First, exploiting the
L'-stability in the obstacle region, we derive a convergence result towards a weaker system involving
smooth feasible test functions. In the second step, we recover the original system by enlarging the
feasible test function set through a specific constraint preserving mollification process in the spirit
of Ern and Guermond [Comput. Methods Appl. Math., 16 (2016), pp. 51-75]. This paper is closed
by three-dimensional numerical results of the proposed FEM confirming the theoretical convergence
result and, in particular, the Faraday shielding effect.

Key words. Maxwell obstacle problems, electric shielding, FEM, leapfrog time-stepping, sta-
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1. Introduction. Electric shielding is a physical process of blocking or canceling
external electric fields through obstacles made by conductive materials. This physical
phenomenon was discovered in 1836 by Faraday, who experimentally verified that a
conductive enclosure is able to eliminate the effect of an external electric field by charge
cancelation on the boundary and leaving a zero field inside the cavity. Such an effect
is also known under the term Faraday cage. See Figure 1 for a simple experiment of a
Faraday cage conducted at our mathematical faculty. From the mathematical point
of view (see Duvaut and Lions [7]), electric shielding falls into the class of obstacle
problems: In the free region, the electromagnetic waves satisfy the Maxwell equations,
whereas pointwise constraints are applied to the electric field in the shielded area.
This leads to a nonstandard coupled system consisting of the Faraday equation and
an evolutionary variational inequality (VI) of Ampere-Maxwell-type. Faraday cage
effects can also be treated by homogenization techniques (see [16, 3] for electrostatic
Faraday cage models), which are, however, not the focus of this paper.

We refer to [24] for a recent well posedness result for Maxwell obstacle problems,
which turn out to be more difficult to handle than Maxwell VI of the second kind with
L'-nonlinearities emerging in type-II superconductivity [23, 19, 22, 20]. In particular,
solutions to Maxwell obstacle problems suffer from low regularity as we shall address
shortly.
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1084 MAURICE HENSEL AND IRWIN YOUSEPT

Fic. 1. Electric field measurement with and without Faraday shielding.

Let € C R? be a bounded Lipschitz polyhedral domain representing the hold-all
domain. Inside this domain, we consider a Lipschitz polyhedral domain w satisfying
wC Q.

The subset w stands for the obstacle region representing the area shielded by a
closed conductive enclosure. Thus, a pointwise constraint is applied to the electric
field in w leading to the following feasible electric set:

K ={ec L*(Q) | |e(z)] <d forae. z€cw}

for some fixed upper bound d € [0,00). Then, given initial data (Ey, Hy) € (K N
Hjy(curl)) x H(curl) and a source field f € C%1([0,T], L*(Q)), the electric obstacle
problem we focus on reads as

/Q %E(t) (v — E(t)) + 0B(t) - (v — E(t)) — H(t) - curl(v — E(t)) do

> / f@®)-(v—E(t))dz Vv e KnNHy(curl) for a.e. t € (0,7T),
Q
d

,uaH(t) +curlE(t) =0 forae. t€(0,7),

(E,H) € Wh>((0,T), L*(Q) x L*()) N L>=((0,T), Hy(curl) x L*(Q)),
E(t)e K for all t € [0,T] and (E, H)(0) = (Ey, Hy).

The existence of a unique solution (E, H) to (P) follows from Theorems 1 and 2 in
[24]. As shown in [24, Theorem 1], in the free region 2\ @, the unique solution of (P)
satisfies the Ampere-Maxwell equation and the local magnetic L?-regularity property
curl H € L*>((0,T), L?(Q\w)). However, in the obstacle region w, the L2-regularity
of curl H is not a priori guaranteed.

This paper aims to construct and analyze an efficient finite element method
(FEM) for (P). We are not aware of any previous work on the numerical analysis of
(P). Note that the implicit Euler time-stepping does not seem to be a suitable choice
for (P) as it results in a second-order elliptic curl-curl VI at every time step. There-
fore, at every time step, one requires a nonsmooth method such as the semismooth
Newton method for solving the VI problem, leading to highly inefficient computa-
tional efforts in the case of fine time discretization. For this reason, our discretization
does not employ the implicit Euler method. To describe our method, let us begin by
introducing a partition of the time interval [0, 7] as follows: Given N € N, we set

T:=T/N, 0=ty<ty <ty < <ty 1<tn=T, tp=nt Vne{l0,... N}
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and intermediate time steps
-
t =——=t,—- VYne{l,...,N}L

Motivated by the leapfrog (Yee) time-stepping [21] (cf. Li [11], Li, Wang Waters, and
Machorro [12], Cohen and Monk [6], and Monk [17]), we consider the following:
e the Ampeére-Maxwell variational inequality in (P) at the intermediate time
steps ¢,,_ 1
e the Faraday equation in (P) at the time steps t,;
and make use of the central difference approximations

FE — E(t,_ H(t, .)—H(,_1
D, yn BBy L gy Ay ZH oy,

2 T

and mean value approximations

E(t,) + E(tn,l)'

E{, 1)~ 5

Then, invoking the piecewise constant finite element space DGy, (see (2.2)) and the
lowest-order Nédélec finite element space NDy, (see (2.1)) for the spatial discretization
of the electric and magnetic fields, respectively, we arrive at

nol

_1 n1
[ @B -on- B +oB) (0 - B
Q
_1 _1
—curlH, ? - (v, — E; ?)da

(LFn.n) z/f;_%-(vh—EZ_%)dx vo, € KNDG), VYne{l,...,N}
Q

n+ %
/udHhLJ” ~wp, + B} - curlwp,dz =0
Q

Yw, € ND;, Vne{l,...,N},
where
H'™ —H Ep + B

1 1
6Hn+§ == Enié =
h T ’ h 2

E} —E!
(1.1) oE) = ——1—
1 1

for all n € {1,..., N}. Furthermore, E}) € DGy, H? € NDj,, and f;; 2 € DGy, are
given proper FE approximations specified as in (2.8). Now, to complete the discrete
scheme, we have to properly include the obstacle structure K in the discrete system.
We propose applying the pointwise electric constraint at the intermediate time steps
[ (instead of at the time steps t,), i.e.,

_1
(1.2) E, > ¢ KNDG;, Vne{l,...,N}L
The choice (1.2) is of paramount importance to obtain an efficiently computable ex-
plicit formula for the discrete electric field (Theorem 2.2). Thus, differently from the
implicit Euler method, the numerical realization of our discretization does not require
an additional nonlinear solver for solving the underlying VI. Altogether, utilizing

2 n—1 _
(1.3) 0B == (B '~ E;7') ne{l,... N}
T
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and (1.1)—(1.2) in (LF n,p), we finally end up with the following fully discrete FEM:

_1 ntl
Find {(E; %, H, "*)})_, ¢ (K NDG},) x NDj, such that

)

2¢ n—1 n—1
?4’0' Eh '('Uthh )d:C
Q

n—s n—s 2 _ n—
Z/(fh FtowlHY 7+ B 1)'(”h—Eh ?)dw
Q T
P
(Prv.) Vo, € KNDG;, Vne{l,...,N},

1
n—3

E; =2E, * —E;" !,

1 1
/HH:JFz.wh—i-E};-curlwhd:E:/HH: 2wy dz
Q T

T

Vwp, € NDy, Vne{l,...,N}

This paper analyzes the proposed FEM (Py ;) and delivers three main novelties:
well posedness, stability, and convergence. The well posedness is obtained by the
celebrated result [13] due to our particular choice (1.2), which leads to a computable
explicit formula for the (exact) discrete electric field (see Theorem 2.2). The stability
analysis relies on an additional H!(Q)-regularity assumption for the initial electric
field Ey. Along with a linear CFL-condition (3.2), it allows us to prove L?-stability for
the discrete solutions and the associated difference quotients (1.1) (see Proposition 3.3
and Corollary 3.5). Based on Proposition 3.3, our analysis reveals local L2-stability
for {curl H;ZH/Q} in the free region 2\ @, while only L!-stability for {curl H;;H/Q}
is achieved in the obstacle region w (see Proposition 3.6). This result is somehow
justified by the low regularity issue in (P) pointed out earlier: In the free region Q\ @,
we have curl H € L>((0,T), L*(Q \ w)), but there is no a priori knowledge on the
L2-regularity of curl H in the obstacle region w. The lack of the global L2-stability
for the rotation field makes the convergence analysis of (Px ;) rather challenging.
Our strategy to prove a convergence result (Theorem 4.3) comprises two main stages.
First, exploiting the L2-stability estimates (Proposition 3.3 and Corollary 3.5) and
the Ll-stability result (Proposition 3.6), we derive a convergence result for (Py ;)
towards a weaker system (4.28) involving smooth test functions v € KNCy°(2). The
second step is to recover the original system (P) from (4.28) by enlarging the feasible
smooth test function set to K N Hy(curl). We realize this part through a mollification
process, which requires us to modify the recent result by Ern and Guermond [8] to
constraint preserving mollification (see section 4.1).

1.1. Preliminaries. Given a real Hilbert space H, we denote by (-,-)m and ||- ||z
its scalar product and induced norm, respectively. In the case of H = R?, we simply
write a dot and | - | for the Euclidean scalar product and norm. Discussing problems
of Maxwell-type, there naturally arise function spaces of R3-valued functions. We will
therefore use a bold typeface to indicate them. Let L?(2) denote the space of all
(equivalence classes of) R3-valued Lebesgue square-integrable functions. Moreover,
we introduce the Hilbert space

H(curl) := {u € L*(Q) | curlu € L*(Q)}

endowed with its natural graph norm. Here the curl-operator is to be understood
in the sense of distributions. Furthermore, let C3°(2) denote the space of infinitely
differentiable R3-valued functions with compact support in . The space H(curl)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/22 to 132.252.202.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

NUMERICAL ANALYSIS FOR MAXWELL OBSTACLE PROBLEMS 1087

stands for the closure of C3°(£2) with respect to the H (curl)-topology. We recall that
Hy(curl) admits the useful characterization

(1.4) Ho(curl)={z € H(curl) | (2, curlv) 2o = (curlz,v) . Vv€ H(curl)}.

See, for instance, [23, Appendix A] for a proof of (1.4). For a given uniformly positive
function o € L>°(Q), that is, there exists a constant o > 0 such that

alz) > a forae. z€Q,

we denote by L2 (Q) the vector space L?(Q) equipped with the weighted scalar product
(a-,-)2(0)- Finally, C' > 0 represents a generic constant which is independent of N
and the spatial discretization parameter h > 0. However, this constant may depend on
other quantities, including the model parameters, the domain, and the time interval.
We close this section by presenting the basic assumption for our analysis.

Assumption 1.1. There exist a fqmily of Lipschitz polyhedral domains {§2; }50:1 mn
Q and a subfamily {Q;J}gozl C {Q;}j%, such that

Jo lo
QzﬂQj:@ VZ#]E{LL]O}? ﬁ:Uﬁj, w:U?
7j=1 Jj=1

All material parameters are assumed to be piecewise constants, i.e., there exist real
constants c§, cg‘ >0 and c‘j’ > 0 such that

e(x)=cj, wx)=c;, o(x)=c] forae x€Q; andeveryje{1,..., 50}

Furthermore, we denote the lower bounds for € and p, respectively, by €, € (0,00),
i.e., €(x) > € and p(x) > p hold for a.e. v € Q.

2. Well posedness. In all what follows, let Assumption 1.1 be satisfied. Let
{Th}},>¢ denote a quasi-uniform family of triangulations of Q with i > 0 standing for
the largest diameter of T' € 7. The triangulation is chosen such that for every h > 0,
there exists a subfamily 7, of 7, with the property UTeThw T = w, and that €, u and

o are constant in every T' € Tj,. We denote the Nédélec finite element space of the
first family [18] (cf. [2]) by

(2.1) NDy, == {v, € H(curl) | v, = ar + by x - for some ar,br € R3 VT € Tn},
and the piecewise constant finite element space by
(2.2) DGy, = {wy, € L*(Q) | wy,|, = ar for some ap € R* VT € Ty}

Let us now introduce the standard L?(f2)-orthogonal projector onto the space DGy,
by Qn: L*(2) — DGy, defined by
1
(2.3) Qo= xT—/ vdr Yv e L*(9),
TET; |T| T
h

where x7 : R® — {0, 1} denotes the characteristic function of T'. For every v € L?(Q),
it is well known that Qnv — v in L*(Q) as h — 0. Particularly, if v € H*(Q), we
obtain convergence with a linear rate, i.e.,

(2.4) 1Qrv — v||L2) < Chlvl|Ei) Yh >0 Voe HY(Q).
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Further important properties of Qy,: L?(2) — DG, are summarized in the following
lemma.

LEMMA 2.1. Let Assumption 1.1 hold. Then, Qy,: L*(Q2) — DGy, satisfies

(2.5) veL*(Q) = [|Quvllrea) < |vlLz@ VYR >0,
(2.6) veK = Q,ve KNDG, Vh>0,
(2.7) veC(Q) = ||Quv—v|r~@) <Lip(v)h Yh>0,

where Lip(v) > 0 denotes the Lipschitz constant of v € C*1(Q).

Proof. The first property (2.5) is an immediate consequence of the definition.
Suppose that v € L?() satisfies |v(z)| < d for a.e. z € w. Then, for a.e. y € w, it
follows that

Qnv(y

-\ X gy [ v

TETh

1
< XT(Z/)|T|/T|’Ud$§d z xr(y) =

TeT TeT

In conclusion, (2.6) is valid. Now, suppose that v € C**(Q). Then,

ZXT |T\/ dz — v(y)

1Qnv — 'U||Loo(Q) = esssup
yeQ

TETh
< esssup Z xr(y |T\ / |v(z y)| dz < Lip(v)h.
veQ e,
This completes the proof. 0

Let us now state the initial discrete values and right-hand side data involved in
the scheme (P p):

(28) 1% = Quf(t,_y), BY=QuBo, Hf =TLHy Vnec {l,...,N}Vh>0,

where Il : H(curl) - NDj, denotes the classical Hilbert projection.

THEOREM 2.2. Let Assumption 1.1 hold. Then, for every N € N and h > 0,
the fully discrete problem (Py.;) admits a unique solution {(E, z Hn+2)}n 1 C
(K NDGy) x NDy,. In particular, E}TLL—% explicitly comes as

1
n—3

on M, *,
(2.9) E,"_% — 95,

—1
2 _1 1
<€—|—a> g, > on Q\ M, 2
-
with right-hand sides and strict superlevel sets
nfé n*% ’ﬂ*% 2e n—1
g, >=1f, *+curlH, *+ ?Eh ,

(2: + a>1 902 (2)] > d} .

M é::{acew
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1
Proof. Let n € {1,..., N} be arbitrarily fixed. We assume that (E;'~', H, ) is
already computed in agreement with (Py ;). By virtue of [13], we obtain the existence

_1
of a unique solution E: 2 € KNDGy, to the L?(2)-elliptic variational inequality

T

2e n—1 n—1
(2.10) A — 40 |E, ? (v,—E, ?)dx

2/927%'(Uh*E27%)dz Vv, € KNDGy,.
Q

The discrete magnetic field H;LH% € NDy, is then obtained by the Lax-Milgram
lemma since || - [|£2(q) and || - || g (cur1) are equivalent norms in the finite-dimensional
space NDy,. Let us now verify the explicit formula (2.9). Let v, € K N DGy,. First,
it holds that

(2.11) /M"‘i‘

h

d(% +0)
=i

Igh 2

d(% + o)
:/ ) e
M |gh ?|

o1
dlg, ?*|dz <O0.

_1 d(%+o
gZ Z'Uhdx_/n_l (7'71_l )_1
—_—— M2 | 2|

d (2 1
(Tnig)_l: Cfl o —1<0 o M) 3,
|gh 2| (%"‘U) |gh 2|

multiplying (2.11) by a sign implies

1
d(% + el da" "2

(2.12) / 1 (W - 1> g, °- ('Uh_ g:1> dz > 0.
My, |9h | |9h ?

1

By construction, for the set Q\ ./\/lZ 2 there is nothing to show. As a conclusion,
_1

E; " ? as stated in (2.9) is the unique solution to (2.10). ad

3. Stability. From the classical inverse estimate for finite-dimensional subspaces
of H'(Q) (see [1]) and the continuous embedding H'()) — H(curl), we obtain an
inverse estimate for the space NDj. To be specific, there exists a constant Cj,, > 0
such that

inv

C
(31) H curl’v||Lz(Q) < h ||'U||L2(Q) Vv € NDy, .
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Assumption 3.1.
(i) The linear CFL-condition

h

1
3.2 <
( ) T= 2Cuc’inv

holds true. Here, ¢, = 1/\/@ denotes the uniform lower bound for the wave
propagation speed in §Q.

(1) The initial electromagnetic field (Eo, Hy) € (K N Hy(curl)) x H(curl) is assumed
to additionally satisfy Ey € H'(Q).

Both the CFL-condition (3.2) and Eq € H'(Q) serve as the fundamentals for our
stability analysis. In view of (2.4), the corresponding discrete initial value E2 =QLEy
satisfies

(3.3) |E} — EollL2) < Chl|Eo|lmi) Vh> 0.

In what follows, we mainly take advantage of the structure (LFy 5 ), which is by the
construction automatically satisfied by the unique solution to (P p).

LEMMA 3.2. Let Assumptions 1.1 and 3.1 hold. Then, there exists a constant
C > 0 such that for all h > 0 and N € N the unique solution to (Pn ) satisfies

3
(3.4) 6B, || L2y + 10HP || p2(0) < C.

Proof. Let h > 0 and N € N be arbitrarily fixed. We start by setting v, = 0 in
(LF 1) to obtain that

1 11 11 11

(3.5) / e0E) - E? +0E} - E} —curlH? - E? dz < / f? - EZdax.

Q Q
Multiplying the above inequality by 7, applying (1.3), and using that o is nonnegative,

1 1 11 11
/ 2¢(Ef — E))-E? —tcurlH? - Ef da < / Tf2 - EF dz,
Q Q
from which we deduce that
1 1 1 1

(3.6) 2| B | 72() < ITF77 + 2¢Ep, + 7curl H || L2 (o) | B || 22 ()-

11
Now, by construction of f;, H;, and E?| the first norm on the right-hand side of
(3.6) is uniformly bounded. As a consequence, it follows that

(3.7) IEZ L2 < C

with C' > 0, independent of N and h. Let us mention that according to Assumption 3.1
along with Lemma 2.1 and (2.8), the field EY is admissible, i.e., E) € K N DGy,
Thus, we may set v, = E2 in (LFn #) to conclude that (5E}L admits a uniform bound
in L?(Q). This way we receive after multiplication with —% together with applying
(1.3) that

1 1 1
/ e0E} -SE, +0oE} - 0E} —curl H? - SE} dz < / f? - $E; du,
Q Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/22 to 132.252.202.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

NUMERICAL ANALYSIS FOR MAXWELL OBSTACLE PROBLEMS 1091

and therefore
1 1 1
OB, |L2 ) < If7 — 0By + curl Hy |2 10 B}, | L2 (@).
Utilizing (3.7) then leads to
(3.8) 16 B4 Z2(0) < C

3
with C' > 0, independent of NV and h. Let us now prove that  H;? admits a uniform
3
bound in L?(€2). We start by setting wy, = 6H? in (LFy ) to derive

(3.9) / pSH? - 6H? + E} - curl6H}? dz = 0.
Q
To complete the proof, we employ (3.9) to estimate

H||5H§||%Q(Q) < ‘/Q E} - curléH,;% dz

< /(E,ll —E)) ~curl§H§ dz| + /(Eg — Ey) - cur16H§ dz
~~~ Q QO
(14)
+ / curl E - 5Hh% dzx
Q
3 3
< 7I0Ey|L2 (o)l curldHy || 12 (o) + | B} — Eol 2ol curl 6 Hy; || 12 (0
3
+ [l curl Eol| g2 (o) [0 H}? [ 2 (o)
5 1 Cinv 0 Cinv 1 5H%
< [0 B} ||l L2 (o) + || E}, — EollL2() W T [ curl Eol|z2(q) | I0H} [|L2(0)
371)
VEVE 3
< (5E 0B + Cn Bl + ourl Bolaa ) 197 sz
(3.2),(3.3)
3
<  Cl0H} |2 (o)
(38)
with a constant C' > 0, independent of N and h. ]

PROPOSITION 3.3. Let Assumptions 1.1 and 3.1 be satisfied. Then, there exists a
constant C' > 0 such that for every N € N with N > 2 and h > 0 the unique solution
to (Pn.n) satisfies

n—1
(3.10) e {I0B; vz + |6H, e < €.

Proof. Let N € N with N > 2 and h > 0 be arbitrarily fixed. We choose
ng € {2,...,N}and n € {2,...,n0}. Let us first note that it holds that
_E}'+E"? Er+E!
- 2 2

(3.11) E]” - —g(éE,’j +OEM.

1 _3

By construction, both the fields Es 2 and EZ 2 are admissible, i.e., they belong
_3 1

to K N DGy,. Hence we are able to test with E, 2 (resp., with E, ) in the nth
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inequality of (LFx ;) (resp., the (n — 1)th inequality of (LFy ;)) and thus obtain by
multiplication with —2 together with (3.11) that

/ SE] - (GEp + 0B ) + 0B} . (0B + 5B} )
Q

(3.12) 1 1
—curl Hy * - (0B} + 0E; ) de < | f; - (OB} + 0E; ) da
Q
and
n—3
- / eSE; "' - (0B} +0E; ")+ 0B, * - (0E}; +0E; )
(3.13) @

—curlH' " * - (8E! + 0E" V) da < —/ £ (OB + 6EM ) du.
Q

Adding together the inequalities (3.12) and (3.13) as well as using o being nonnegative
yields

_3
n—3

/ €GB} —6E;")- (5B} + 0B} — curl(H, % — H} *)- (5B} + 0B} ") do
Q

(3.14) < / Fr ) OB + 0B da
Q

We sum up the inequality (3.14) over {2,...,n0}:

no
Z/ (0B} —SE 1Y) - OE; +6E; ) da
n=2 Q
o n—1 n—32
(3.15) - Z/ curl(H, > —H,” ?)-(0E;+0E} ") dx
n=2 Q

no 1 E
SZ/( 2 — Z’%)~(5Eg+5E,7—1)dx.
n=2"%

For the left-hand side of (3.15), we have

no

no
) / OB} — 6B ") - (5B} + 0B) ) dr = > 1B} 220 — 10B] 220
n=2

n=2

(3.16) = I6E;° 720y — 10ER I 220
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and
70 nl 3 1
—Z/curl(Hh P HH . (ED + 0B ) da
n=279
no 1
=7 Z/ curl0H, 2 - (6E} + 6E! 1) dx
n=27%
no—1 1 1
=—7 Z /curl(SH;ﬂfi5 -5E,’fdx—r/ curl 6H,° % . §E}° da
(3.17) n=2 /1 @
ng
—TZ/CUI’I(SH}?_% -6E}?71dx—r/cur16Hh% -SE} dx
n=37% Q
no—1 1 1
=—7 Z / curl(éH;Z+§ +0H, %) -SEpdx
n=2 79

—7'/ curléH;;O_% -0E;"° dx—T/ curl&HE -SE;} du.
Q Q

Now, by the definition of the discrete difference quotients, the first summand on the
right-hand side of (3.17) can be rewritten as

ngfl

-7y /Q curlGH} ™ 2 4 6H] " 7) - 6B} da
n=2

no—1

(3.18) =— Z /chrl(cSH:—F% + 5H,T;_%) -Epdx
n=2

nofl

nt3 n—1i _
+ Z/cur1(5Hh+2 +6H] *)-E} 'dz = R.
n=2 7
n+i n—1 . .
Testing with w;, = 5Hh+2 + 0H, ? in the nth (resp., the (n — 1)th) equality of
(LF 1), we continue with

’n,()—l

(319) R= Z/uaﬂfé-(éﬂﬁéwﬂg‘%)dx
n=2 Q

no—l 1 1 1
-> / pdH, 2 - (6H, "% + 6H, *)dzx
n=2 Q

’nofl

-y /Q WGHE ZSH!TE) . GHF £ 6H! ) de
n=2
no—1

n+i n—21 no— L 3
= 30 1 gy 108 gy = 10 o) 1978 Vg0
n=

Let us now consider the inverse estimate (3.1) and the imposed CFL-condition (3.2)
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to obtain that
no—1 o1
7'/ curl0H," * - 6E;° do < 7||curl 6H," 2| p2() [0 E}° || £2(e)
Q

T C’inv

hVeyi
1 no—1 1 "

< 1||5Hh0 : Hig(g) + Z”(SE}LOH%E(Q)'

’I’L*l mn
(3.20) < 10H," 2 || L2 (o) |0 E;° |

1 no—1 "
2@ < §||5Hh0 ez @) I0E ||l L2 (o)

By an analogous argumentation, we infer that
3 1 1 3012 1 P

Finally let us estimate the right-hand side of (3.15) as follows:

(3.22) Z/( nE LGB 4+ 6EP Y do
n=2 Q

o ’n*l nfé —
< Y =1 Cllee@lSER + 0By L2 e
n=2
70 4N | n—1 n—32 - € n— 2
<y ?H«fh P i+ YL 6N (I0E; |20 + I0E L2 @)
n=2 - n=2
4I2T? X ¢ . .
< . + Z IV (||5Eh 2200y + 6B, 1H2L2(sz))
(2.5) n=2
4°7T? N 1 -
< . + ngl WH(SEh”L?(Q)
ALPT? =
<

1 no ||2 1 n||2
< + 1||5Eh0||L§(Q) + Z_:l WHCSE;LHLg(Q)a
where L > 0 denotes the Lipschitz constant of f € C%1([0,7], L?(2)). Applying
(3.16)—(3.22) to (3.15) now yields

1 no||2 3 no—73 |2
(3.23) §||5Eh ||L§(Q)+Z||5Hh 122 (o)
no—l 1

ALPT? .
< E”éEhHiz(Q)'

5 5 3
s—+ Z”(SE}LH%E(Q) + ZH‘SH;? ||2Lg(Q) + Z
n=1

The discrete version of the Gronwall lemma (see, for example, [5]) together with
Lemma 3.2 then leads to

no—1 (|
6B (220 + I0H," ”%ﬁ(ﬂ) < Cexp (Z N) < Cexp(1)
n=1

or, equivalently,

I6E° || L2y + II6H, " 2|2 < C

with C > 0, independent of N and h. This completes the proof. 0
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Remark 3.4. We underline that (3.10) does not guarantee the stability of the
1
term ||(5H,IlvﬂL2 lL2(). The stability of this term can be obtained by performing one

additional step N + 1 in (LFy ;) under an appropriate choice for f,]LV 3 However,
as we shall see in the upcoming section, the estimate (3.10) is readily sufficient for
proving the convergence of the proposed scheme (LFy 1), i.e., without performing one
additional step N 4+ 1 in (LFy p).

COROLLARY 3.5. Let Assumptions 1.1 and 3.1 be satisfied. Then, there exists a
constant C' > 0 such that for every N € N with N > 2 and h > 0 the unique solution
to (Pn.n) satisfies

1
3.24 max [ E? |2 + || H; 2|12 ] <C.
(324) somax (1B e + 1B o) <

Proof. Using the reversed triangle inequality, it follows by the definition of the

difference quotients (1.1) together with Proposition 3.3 and Lemma 3.2 that

=

(1ER lz22) — 1B lza(@) < |10ER L2 < C,
which implies
| ELl L2 < 7C + HEZ‘71||L2(Q) vn e {1,...,N}.
Using the same argumentation for ||H:_% | L2(q2), we derive iteratively that
1B sy + IH, 2 o) < n7C + [ Bl + (n = 1)7C + | H |1z2(a)
(3.25) < UTC + || Bl + | HY oy < C Y€ {1,...,N}

with C > 0, independent of N and h. ]

PROPOSITION 3.6. Let Assumptions 1.1 and 3.1 be satisfied. Then, there exists a
constant C' > 0 such that for every N € N with N > 2 and h > 0 the unique solution
to (Pn.p) satisfies

n—1 n—1
(3:26) el N—1} lewrl Hy ™ [ pw) + [l eurl Hy | p2\e) | < C.

Proof. Let n € {1,..., N — 1} be arbitrarily fixed. We define

deurl H} L
deurlH, *(x) if curl H, é(;10)7'507

273 (@) = |curl H' ? (x)]
(3.27) 0 if curl H' > (z) = 0,
nel z;k% on w,
zh,w -

n-}
E, on O\ w.
_1 _1
Obviously, zZ’wQ is an element of the set KNDGy,, and we can therefore set v;, = zzwz
in (LFn,p) to obtain

-

1 n—1 nl a1 nol
(3.28) /eaE;;.(z,’j F_E Y 4oE (2 B e

h
1
n—3z

1 n—1 n—1 n—1 n—3
—/curlH,? 2. (z, *—E, 2)d$2/ n (2, P E, ?)dx.
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Altogether, in view of Proposition 3.3 and Corollary 3.5, we obtain that
n—1l n—l _1
d|curl H, % ||p1(w) = curl H 2.z *dz
(3.27)7¢

n—=x n—3 n— n—1 n—1 n—3
< / eE; +0E, * - f, 2) (z, Z—Eh 2)d:z:—&—/curth . E, *dz

w

< C’—i—/curlH,?_% ~E:_édx
1 1
= C+= /curlH Eﬁdx—l—i/curlH %-E,’fldw
n+ n 1 _1 n_1
= C’—f/ 0H, 2-Hh2dx—§/u5H 2-Hh 2dx < C.
(LFn,n) v

To obtain a bound for the term || curl H; 2||p2(o\w), we define

1
1 E, * onuw,

n—1
Zy, Q\ = 1 _1
N curlH, > +E; > onQ\w.

Then, zh Q\ is also an element of the set KNDGy, and so using it as a test function
in (LFn 1) leads to

n—3 n— n—i n—3
| curl H,, 2H2L2(Q\w) S/ (66Eh +oE, B b 2) -curl H, 2 dx
QN\w

S CH CllI'l H;:_i ||L2(Q\w)a
where we have used again Proposition 3.3 and Corollary 3.5 for the last inequality.
This completes the proof. 0

4. Convergence. Given N € N with N > 2 and h > 0, we consider the solution

1 1
{(E; 2,HZ+2) N to (Pn.). Invoking those finite element solutions, we set up
linear and piecewise constant interpolations

ENJUEN,M]?N,}LZ [0,7] - DGy,
Eny: [0,7] - K N DGy,
HN,luﬁN,h: [0,7] = NDy,

which, for ¢ € [0,T], are defined by

EY ift =0,
(4.1) ENJL(t) = 271 o
E} "+ (t—th_1)0E} ift € (th_1,tn),
H? if ¢ =0,
Hyu(t) = S H' ™2 4 (t—to 1 )0H 2 ift € (tp1,t) forne {1,...,N -1},
H® if t € (tn_1,tn] for n = N,
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and
E) ift =0,
E; if t € (th_1,tnl,
if t =0,
Hpy p(t) = ift € (tp—1,ty) forne {1,...,N — 1},
_3
(4.2) H) 72 ifte (t,_y,t,] for n=N,
E} ift=0,
E} ift € (tp_1,tn),

R : ift=0,
Inn(t) = ’,Z_% )
A if ¢ € (tno1,tn]-

Note that, since the pointwise electric constraint is applied at the intermediate time
steps &, 1 instead of at the time steps t,, only the range of the piecewise constant

interpolation ENJL is contained in the obstacle set K.
Now, by the above construction and in view of (LFx ) as well as (1.2) it then
follows that

dt
—curl Hy 1, (t) - (v, — Ey (1)) d

/Q L B () (on — Bxn(t) + 0B a(t) - (on — B n(t))

~ ~ T
> fnn() - (v, — Enp(t))de Vv, € KNDGy, Vte (O,T — N:| ,
Q

d —
/ UaHN,h(t) - wyp, + ENJL(t) -curlwyp dz =0
Q

T
Vwp € ND,, Vte <0,T—N:| s

En,i(t)e KNDG, Vte|0,T).

The convergence analysis of (P ~,h) turns out to be challenging due to the lack
of L*((0,T), L?(w))-boundedness of curl H N,n. Provided the worse boundedness
in L*>°((0,7T), L' (w)) (see Proposition 3.6), our first step consists of bypassing the
missing boundedness by exploiting Qpv for functions v € C5°(€2). In this way, we are
able to derive a convergence result towards a solution of a time integrated version of
the variational inequality in (P) with test functions v € K N C°(€2). The final step
is to enlarge the test function set to K N Hy(curl), which requires the construction
of a constraint preserving mollification operator.

4.1. Constraint preserving mollification. Recently, Ern and Guermond [8]
established novel mollification operators with pivotal commuting and convergence
properties (cf. also [4, 9]). Their construction is based on the use of a transversal
vector field [10] along with a cut-off strategy in a careful combination with mollification
techniques. Our goal is to extend [8] to constraint preserving mollification operators
in the sense that the mollification of a function in K lies as well in K. The extension
is mainly complicated due to the fact that there is no a priori knowledge of how
the obstacle region w behaves under the expansion as in [8]. We tackle this issue by
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FI1G. 2. Schematic drawing of O (gray) and its inwardly transversal vector field.

modifying the mollification operator in [8] with a certain scaling and by choosing the
transversal vector field in a way that the obstacle set boundary Ow is transported
inwardly (cf. Figure 2). Given v € L'(Q2) we denote its zero-extension to the whole
space R3 by v € L'(R?). Furthermore, let

1
B if |z < 1,
RS R, ple) = vew(~opp) il
0 if |z| > 1,

where 1 > 0 is chosen such that

(4.3) /R o) de = /B o p(z)dz = 1.

At first, since €2 is bounded, there exist some zq € R3 and a radius rq > 0 such
that Q C B(zq,rq). Then

O = B(zq,ra) \ (2\w) = (B(zq,re) \ ) Uw

represents a bounded and open set with Lipschitz boundary. Therefore, as shown

in [10, Corollary 2.13], the set O (of locally finite perimeter) admits a continuous
inwardly globally transversal vector field, i.e., there exist a vector field kec (00)
and a real number x > 0 with the property E(x) -n(z) < —k for a.e. x € 0. Here,
n denotes the unit normal vector field pointing outward on O. Now, by the piecewise
smoothness of 9O in combination with [25, Lemma 5.9.5] and [15, Remark 15.1], the

measure-theoretic boundary of O defined by

0,0 = {x € 90 | limsupr 2 min {|O N B(z,r)|,|0° N B(z,r)|} > 0}

r—0+

coincides with 9O up to a set of (surface-)measure zero, as a result of which we can
deduce that

(4.4) |00 N B(x,r)| =100N B(z,r)| >0 VYeredO Vr>O0.
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Note that in (4.4) with |-| we refer to the two-dimensional Lebesgue measure. Together
with the boundary 00O being compact, we are able to apply [10, Proposition 2.3 (iv)]
which implies that there exists a vector field k € C*°(R3) whose restriction to 90O is
inwardly globally transversal with |k(y)| = 1 for every y € 0O. By the use of this
special vector field, for every § > 0 we introduce the mapping

(4.5) 0s5: R =Ry y+0k(y).

LEMMA 4.1. There exist 69 > 0 and ¢ > 0 such that

85(0) + B(0,60) C O Y5 € (0,5).

Proof. As shown in the proof of [10, Proposition 4.15], there exists some g1 > 0
such that

965(0) = {y + dk(y) | y € 00} V6 € (0,60,1).

As obtained from the proof of Lemma 4.16 in [10], there exists some dg2 > 0 such
that

H: 00 x (—(50,27(50,2) — RS, (.’E,(S) =Y + 5k(y)

is a bi-Lipschitz mapping. In particular, with Ly denoting the Lipschitz constant of
H, it holds that

|H(y’6) - H(Z,p)| 2 i“yvg) - (va)| V(y,é), (va) € 00 x (*50,2750,2)'

Now let dp = min{dp1,d02} and & € (0,dy) be arbitrarily fixed. Given y € 90,
y+ 0k(y) € 905(0), and z € JO, we have

1 1 1
ly+3k(y) =z = [H(y,0) = H(2,0)| 2 7—|(y,0) = (2,0)] = T—V/|y — 2> + 6% = 0.

H H H
Therefore, dist(005(0), 00) > ﬁé holds for every § € (0,dy). Now, [10, Proposition

4.15] yields that 5;(O) C O, and therefore the claim follows for ¢ = 7 and &y as
above. |

By K;s we denote the Jacobian mapping D@;: R3 — R3*3. It is well known (see
[8, pp. 59-60]) that there exists a constant ¢y > 0 such that for § > 0 it holds that

(4.6) sup || Ks(y) — I|lgsxs < cpo.
yeQ
We now introduce the following mollification operator:

! / p(@)K2 ()5(65(-) + 6¢z) da,
B(0,1)

. 1 1
(7)) Ky LNQ) = D), v g

where ¥ € L*(R?) is the zero-extension of v € L'(Q2). In the following theorem, we
prove the main constraint preserving property of the mollification (4.7) relying on the
use of the following positive constants:

Clo = Tax |k(p)] and X := dist(w, R\ Q).
pEW
Note that A > 0 holds true due to @w C 2.
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THEOREM 4.2. For § € (0,09), it holds that
veL'(Q) = KsvecCrQ),

(4.8) v € Hy(curl) = lim |[|[Ksv — 9| g(cur)) = 0.
6—0

If 0 < § < min {50, ﬁ}, then ICs satisfies
(4.9) veK = KsvelkK.

Proof. The vector field k is particularly inwardly (globally) transversal for the
boundary 9(B(zq,rq) \ ). The proof for (4.8) therefore follows the same arguments

as in [8, Lemma 4.1] and [8, Theorem 4.4] together with the fact that H_lm — 1 for

6 — 0. Now let 0 < § < min {(50, ﬁ} Due to Lemma 4.1 we know that

(4.10) 05(w) + B(0,6¢) C O = (B(zq,r0) \ Q) Uw.

Let us now prove that (4.10) can be refined as

(4.11) 05(w) + B(0,¢) C w.

To this aim, we assume the contrary: There exist y € w and x € B(0, 6¢) such that
(4.12) 0s5(y) + = € B(zq,rq) \ Q.

Then (4.12) leads to a contradiction as follows:

A= dist(w,R?\ Q) < dist(w, O5(y) +2) = iIEIf 105(y) + = — 2| <10s5(y) + = — g

= |6k
~—
(4.5)

(y) +z| < 5rggg|k(p)l +0(=0(ck +¢) <A,

where the last inequality follows from our particular choice of §. This concludes (4.11).
Now let v € K be given. In view of (4.7) and (4.11), it holds for a.e. y € w that

1 ~
Kol = |75 p(2)K5 (y)(05(y) + 6¢x) da
00 JB(0,1)
1 ~
S et o 1P () 1) 505(0) + 060 o
1 ~
T Jpon) [p(x)v(85(y) + 0¢x)| d
1 / T
= p(x) (K; (y) — ) v(05(y) + 6Cx)| da
D 1+¢od Jpo,) —
1
[ p@)e(st) + 3¢ da
Co B(0,1) T
d
< ) [|[KE(y) = 1| g5 dz+ ——— xz)dx
v;K L+ ¢co0 Jp(o,1) o@) K5 W) HR 1+ ¢od Jpo,1) )
Cg(s 1
< d =d
~~ <1+Ce5+ 1+Ce5>
(4.3),(4.6)
In conclusion, (4.9) is valid. d
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4.2. Convergence result. In the following, let N = N(h) € N denote a natural
number depending on h > 0 with the property N(h) — oo as h — 0 maintaining the
linear CFL-condition (3.2).

THEOREM 4.3. Let Assumptions 1.1 and 3.1 hold. Then

(Enxpn, Hxp) = (E,H) weakly-* in L=((0,T), L*(Q) x L*(Q)) as h — 0,
%(EN ny Hyp) = %(E, H) weakly-* in L°°((0,T), L*(Q) x L*(Q)) as h — 0,

where (E, H) is the unique solution to (P). If, additionally,
(4.13) H € LY((0,T), H(curl)), {curl Hy ;}n>0 bounded in LP((0,T), L*(w))
for some p > 1, then
(Exp, Hnp) — (E,H) inC([0,T],L*(Q) x L*(Q)) as h — 0.
Proof. The proof is divided into four parts.

Step 1: Preparation. Proposition 3.3, Corollary 3.5, and Proposition 3.6 yield the
existence of subsequences, denoted w.l.o.g. by the same symbol, such that

(4.14) (Exn,Hyyp) > (E,H) weakly-* in L>((0,T), L*(Q) x L*(Q)) as h — 0,
(Enp,Hyp) > (E,H) weakly-* in L®((0,T), L*() x L*(R)) as h — 0,

Eny = FE weakly-* in L>((0,T), L*(Q2)) as h — 0,
%(ENW,HM) A %(E,H) weakly-* in L°°((0,T), L*(2) x L*(Q)) as h — 0

for some (E,H) € Wh>((0,T)

JL2(Q) x L2(Q)), (E,H) € L>((0,T), L*(Q) x
L%(Q)), and E € L>((0,T), L?(2)).

The constructions (4.1) and (4.2) imply

rc

(415)  |1Bya(t) = Exn®lzz@ < | _max 7B}z < 5 ¥t € 0,71,
IBra(t) - Bxn(®)lzey < max_ ZI0E] oo < o i€ [0,7],

’ ’ ne{l,..,N} 2 2N
|yt — Bxa®llpe < max  r|6H o) < oo Ve [0,T],

’ ’ ne{l,..,N—1} N

from which we conclude that E = E = E and H = H. By standard arguments, the
first and last convergence properties in (4.14) lead to the following pointwise weak
convergence:

(4.16) (Enp, Hxp)(t) — (E, H)(t) weakly in L*(Q)x L*(Q) as h — 0 Vt€[0,T].

Let us now verify the Faraday law for the weak limit (E, H). Given w € H(curl),
there exists a sequence {wyp,}r~o C H(curl) with w, € ND, for all h > 0 such that
wy, — w in H(curl) as h — 0. Using this converging sequence and (4.14), we deduce
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/OT ((MdtH(t), w) o + (E(1), curlw)L2(Q)> o(1) dt
(udHN,h(t), w,,)

T
. d _
= lim (,udHN,h(t),wh) + (ENﬁ(t),curlwh)Lz(Q) ¢(t) dt=0
(Brn) t L

+ (ENﬁ(t),curl'wh)Lz(Q)) o(t)dt
L2(Q)

for all ¢ € C5°(0,T), where the last equality holds true since the integrand is uniformly
bounded in time (Proposition 3.3 and Corollary 3.5). Thus, by the fundamental
theorem of variational calculus and since w € H(curl) was chosen arbitrarily, it
follows from the above identity and (1.4) that

(4.17) E(t) € Ho(curl) with curlE(t) = —M%H(t) for a.e. t € (0,7),

which particularly implies that
(4.18) E ¢ Wh*((0,T), L*(Q)) N L>=((0,T), Hy(curl)).

1

Since (Enp, Hn,)(0) = (E)),H?) — (Ey, Hy) holds, we obtain, thanks to (4.16),
that
(4.19) (E, H)(0) = (Eo, Ho)-

By the construction (4.2), it holds that E’N,h(t) € KNDGy, for all ¢t € [0,T], and so
(4.15) and (4.16) imply that
(4.20) E(t)e K Ytel0,T]
since K is weakly closed in L?(Q).
Step 2: Derivation of the weak system (4.28) for (E,H). Let v € K NCy ()

be arbitrarily fixed. In view of (2.6), Qyv € K N DGy, such that we may insert
vp, = Qpu in (Py ) to deduce that

T
@) [ 0 - B ar

T-% ~
= lim Sup/ (fnn(t),@uv — Enp(t))p2(o) dt
(2.5),(2.7),(4.14) "0 70

T d Tﬁ% d ~
< SE@),v dt — lim inf S Ennt), Exalt dt
O~ /0 <dt © )L2(Q) h—0 /0 <d?f wp(t), B )>L2(Q)
(Bn)s(4.14) ‘ ‘

T T-% N N
+ /O (CE(t),v) 2o dt — liminf /0 (UEN’h(t),EN,h(t))H(Q) dt
-5,
_ 11g1¢51f ; (curl HN,h(t),th) L) dt

T-% g N
+ lim sup/ (curl Hy (), EN,h(t))
0

h—0 L2 ()
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Let us now proceed by estimating the individual parts appearing in the right-hand
side of (4.21). At first, for w € L?(f2), we estimate

where we have used the boundedness of { Ey } and (4.16) for the above conver-
gence. Using the same argumentation for the discrete magnetic fields, we obtain that

(4.22)  (Enn, Hnp) (T - f/,) — (E(T),H(T)) weakly in L*(Q) x L*(Q),

as h — 0. Now, by the weak sequential lower semicontinuity of the squared norm, we
infer that

™% /4
Jim inf / (Em(t), EN,h(t)> dt
h—0 Jo dt L2(Q)

.1 T
azy = ipigrd (B (1= 3L 1R800

1 2 2 T4
> = - - dt
> 2(IIE(T)HLg(m ||E0||Lz(m) /0 (th(t)’E(t)>L2<m @
(4.22) E

2

L2(Q)

and therefore

L2(©)
(4.24) % /4
+liminf/ (EN h(t),ENﬁ(t)) dt
Trd
> / (th(t),E(t)) d
(4.15),(4.23) 0 L)
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Furthermore,

23

~

(UEN,h(t), EN,h(t)) dt

T—
(4.25) lim inf/
0 L2(Q)

h—0

~ ~

T-%
— liminf /0 (o(Brt) — B(1), Exa(t) - B(t)

h=—0 )L?(Q)

~

+ (o(Bua(t) - E(1), E(t))Lz(m + (0B(t), Exalt) dt

)LZ(Q)

> liminf /0 A <U(EN,h(t)—E(t)),E(t)) )—i—(aE(t),EN,h(t)

L2(Q

By the same argumentation as in (4.23) and (4.24), we infer that

h—0

T-Z d - T /4

liminf/ (HN,h(t), HN7h(t)) dt > / (H(t),H(t)) dt,
0 dt L2(Q) 0 dt

from which it follows that

-5 —~ .
lim sup / (curl Hpy (1), ENyh(t)) dt
0

h—0 L2(Q)
%5,
= 1 1H t),FE t dt
(4.15) H:Lljgp/o <cur N’h( ) N’h( ))LQ(Q)
(426) 71T

— —liminf / (L Hy ), Hnn(t) dt

V h—0 0 dt Nk ’ R L2 (Q)
(Pn,n)

T d T
< —/0 (dtH(t)’H(t)) dt = /0 (curlE(t),H(t))LQ(Q) dt.

L2(2)

Due to Proposition 3.6 and Lemma 2.1, it holds that

/OT_JE (curlfI\Mh(t), Qnv — ’u)

dt
L?(2)

< leurl Hy p|l 21 ((0,7),21 (2)) [|Qnv — v L (0) — 0,

and consequently,

T7
lim inf
=0 Jo
T

T—
> lim inf/ " (curl Hyp(t), Qnv — v)
0

28

1Hy (1), )
(cur Nalt) Qo) o

h—0

T-% —~
+ / (curl Hy (1), 'v) dt
0 L*(Q)

L2(Q)
(4.27)

h—0 ~~

T-% , T
= lim inf /0 (HN,;L(thurlv)Lz(m dt = /0 (H(t),curlv) s o dt.
(4.14)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/22 to 132.252.202.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

NUMERICAL ANALYSIS FOR MAXWELL OBSTACLE PROBLEMS 1105

Applying (4.24)—(4.27) to (4.21) and taking (4.17)—(4.20) into account, we conclude
that the weak-star limit (E, H) satisfies

Tra
/0 (th(t), v— E(t)) . + (0E(t),v — E(t))12(q)
— (H(t), curl(v — E(t))) g2 (q) dt

T
) { > [ GO0 B0 @ weKncFo.

M%H(t) +curlE(t) =0 forae. te(0,7T),
(E,H) c Wh*>((0,T), L*(Q) x L*(Q)) N L>=((0,T), Hy(curl) x L*()),
E(t) € K for all t € [0,T] and (E, H)(0) = (Ey, Hp).

Step 3: (4.28) = (P) through a mollification process. Let v € K N Hy(curl) and
0 < & < min {do, ﬁ} In view of Theorem 4.2, Ksv € K NC°() is a feasible test

function for (4.28). For this reason,

T T
| 00 = BO)zaydt i [ (50,150 = B0) 1o

§—0
(4.8) 0

. Trd
lim ; (th(t)a Ksv — E@)) L@ + (0 E(t), Ksv — E(t)>L2(9)
(4.29) — (H(1), curl(Ksv — E(1))) 12 (q) dt

= | (dE(t), v— E(t)>L2(Q) +(OE(),v — E(t)) 20
— (H(t),curl(v — E(t)))LQ(Q) dt.

Since simple (in time) functions with values in Hy(curl) are dense in the space
L?((0,T), Hy(curl)), it follows that

T
/O <dE(t), v(t) — E(t)) + (0E(t),v(t) — E(t)) g2

a L2(Q)
(4.30) . — (H(t), curl(v(t) — E(t))) g2 (q) dt
2/0 (f(t),v(t) — E(t))p2(q)dt Yo € L*((0,T), Hy(curl))
with v(¢t) € K for a.e. t € (0,7).

Finally, to prove that the Ampere-Maxwell VI in (P) is satisfied, let us assume the
contrary: there exist z € K N Hy(curl), and M C (0,7) with |M| > 0, s.t.

d
/Q G&E(t) (z—E(t))dz + /Q cE(t) - (z— E(t)) — H(t) curl(z — E(t))dx

</f(t)~(z—E(t))dx for a.e. t € M,
Q
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which implies
/ / _E(t)dz + /Q GE(t) - (= — B(t)) — H(t) - curl(z — B(t))dzdt

(4.31) / /f E(t)) dz dt.

Inserting v = xn2 + X(0,r)\m E into (4.30) immediately contradicts (4.31). In con-
clusion, we have shown that (E, H) is the unique solution to (P).
Step 4: Uniform convergence. Suppose that H € L'((0,T), H(curl)) and that

the sequence {curl ﬁN,h}h>0 is bounded in LP((0,T), L*(w)) for some p > 1. Let
v € K. As shown in Theorem 4.2, it holds that KCsv € K. Now, [8, Theorem 4.4]
additionally reveals that v € L*() is sufficient to obtain [[KC;v — v||g2(q) — 0 as
§ — 0. Thus, together with H € L*((0,7T), H(curl)), we obtain

(4.32) /Q <e§tE(t) +oE(t) - curlH(t)) (v — B(t))do

/f E(t))dxz Vv e K for ae. t € (0,T).

Now, (Py ) implies that

(4.33) / <€jEN n(t) + o Ena(t) curlfI\N’h(t)) - (vp — Enp(t)) dz
/ho ’Uh—ENh())dx Vv, € KNDGy, VtG(OvT—]CZ\;:|,

For a.e. ¢t € (0,7 — T/N], the inequalities (4.32) and (4.33) allow for testing with
v = ENyh(t) and v, = QrLE(t). Let p € (0,T) be arbitrarily fixed. Adding the
resulting inequalities and integrating over the time interval (0,p) then yields the
estimate

/ / eq; (Evn(t) = E(1) - (Byn(t) — (1) dadt
+/0 /QEEEN*h(t) (E(t) — QnE(t))dzdt
+/OP/QJ(EN,}L(t) —E(t)) - (EN,h(t) ~E(t)dedt

(4.34)
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for sufficiently small h > 0. The first term on the left-hand side of the last inequality
satisfies

limsup/ /6— Enn(t) — Et)) - (Enn(t) — E(t))dzdt

h—0

= liréljgp (/ /6* Enu(t) — E(1) - (Enn(t) — Enp(t)) d dt
(4.35)

1 1
+ §||EN,h(f0) - E(ﬂ)“%z(ﬁ) - §HE2 - E0||2Lg(9)>
= limsup|E - F 2 .
, }HOP [ En,n(p) (P)HLg(Q)
(4.15)
The remaining pointwise norm can be extracted as follows:

(4.36) Jim sup — / ’ / curl(Hy n(t) — H(t)) - (B () — E(1)) da dt

h—0

= lim sup — / / curl HN n(t)— H(t)) - (Enxn(t) — E(t))dedt
13),(4.1 h=0

= lir}?j})lp / / curl HNh ~I,H(t)) (Exn(t) — E(t))dzdt

—~

\=/ hgljgp// pgy (Hn(t — H(t)) - (Hyy(t) — T, H(t)) do dt

(1.4),(P),(P

=l / [ i (F ) = HO)- () = H ) dat

= limsup || Hy,x(p) —H(P)HQLZ(Q)a
h—0 "

where the same argument as in (4.35) was used for the last equality. Let us recall
that, due to Lemma 3.2, Proposition 3.3, and Corollary 3.5, there exists a constant
C > 0, independent of h, such that

(4.37) (B, Hy o) llwos 0.7),L20x 22 (@) T I Ex bl L= (0,1).22(2)) < € VR > 0.

On the other hand, by the convergence property of @ along with the fact that
E € L>=((0,T),L*()) and Lemma 2.1, the Lebesgue dominated convergence theorem
implies that

(4.38) IE - QLE]|

Ls(0,7),L2() — 0 ash—=0 V1<s<oo.

Indeed, given any 1 < s < oo, the necessary bound for the Lebesgue dominated
convergence theorem is obtained as follows:

IE(®t) = QuEMz2(0) < (IE®)llzz0) + 1QnE®)|L2())”
< 2°|E@t)|z2q) forae. t€(0,T)
(2.5)

for the right-hand side being of class L°°(0,T) < L*(0,T). Thus, by (4.37) and the
nonnegativity of o, applying (4.35)—(4.38) to (4.34), using the assumed boundedness of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/29/22 to 132.252.202.89 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1108 MAURICE HENSEL AND IRWIN YOUSEPT

{curl fI\N7h}h>0 in LP((0,T), L*(w)) with p > 1 together with the shown boundedness
in L*°((0,7), L?(Q \ w)) from Proposition 3.6, we find that

lim [|(Ex,n, Hyp)(p) = (B, H)(p)|20)xp2(@) = 0 ash =0 Vp e (0,T).

Finally, utilizing once again the boundedness in (4.37), the proof is finished by the
use of Arzela—Ascoli’s theorem. ]

5. Numerical tests. To close this paper, we carry out numerical tests of the
proposed FEM (P 5). Motivated by our real experiment (see Figure 1), we consider
a numerical simulation with Q = (1,1, T =1, e,u =1, 0 = 0, (Eg, Hy) = (0,0),
and

£:00,1]xQ—R3  f(t,-) = (0,24 10t,0).
The obstacle set is defined by

K ={ve L*Q) | |v(z)| <0.05 for a.e. z € w},

(5.1) ,
w = (—0.25,0.25) x (—0.5,0.5)>.

Note that d = 0.05 for the electric obstacle in K is just an arbitrary choice. We may
as well set d = 0 or any nonnegative real number for the upper bound d.

As stated in the introduction, thanks to Theorem 2.2, there is no need to invoke
an additional nonlinear solver for the computation of the VI in (Py;). Its exact
solution is given by (2.9), which makes the numerical realization of (P j) particularly
efficient and superior to the implicit Euler time-stepping. As to numerical precision,
we went with 320 time-steps and roughly 1.800.000 degrees of freedom (DoF) for
NDj, as well as roughly 4.700.000 DoF for DGy,. Our computations were solely done
on the open-source platform FEniCS [14], and ParaView was used for visualization
purposes. Figure 3 depicts two computed electric fields at the final time step t = T..
The left figure depicts the computed electric field of the classical Maxwell equations
in the absence of an electric obstacle, i.e., K = L%(f)), whereas the second one is the
computed solution based on (Py ;) with the given obstacle (5.1). See also Figure 4
for the evolution of the electric field at t = 1/4,1/2,3/4,1. Evidently, our numerical
method is able to confirm the Faraday shielding effect in the obstacle region w.

Finally, to test the convergence behavior of (Py ), we fix the above-mentioned
computed solution as a reference solution (E,ef, Hyef) since the true solution is un-
known. Thereafter, we consider four different numerical solutions at coarser grids
(maintaining a linear CFL-condition) and compute their error to the reference solu-
tion based on

EI‘I‘NJL(E) = ne{nl(),aX,N} ||EN,h(tn) — Eref(tn)”L?(Q),
E H) = Hpy i (t,) — Hypgt(ty, .
ey, n (H) pemax [ H N, (tn) t(tn)llL2(@)

We should point out that, based on our numerical tests, the error quantities Erry j,(E)
and Erry 5, (H) coincide with the corresponding errors at the final time ty =T, i.e.,
EH‘N’h(E) = HEN,h<T) —Eref(T> ||L2(Q) and EI‘I‘N7h(H) = HHN,h<T) —Href(T) ||L2(Q)
From Table 1, we clearly monitor a convergence behavior as the discretization becomes
finer and finer, which serves as well as a numerical evidence of our convergence result
(Theorem 4.3).
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TABLE 1
Convergence behavior of the scheme.

N 5.22 | 5.23 | 5.24 525 5. 26

h 1/22 1/23 1/24 1/25 1/26
DoF(DGy) || 1.152 | 9.216 | 31.024 | 589.824 | 4.718.592
DoF(NDy,) 604 4.184 | 73.728 | 238.688 | 1.872.064
Erry n(E) || 3.2415 | 1.2647 | 0.9207 | 0.5267 —
Erry ,(H) || 3.1408 | 1.4920 | 0.8186 | 0.4352 —

F1G. 4. Evolution of the shielded electric field (two-dimensional slice) at t =1/4,1/2,3/4,1.
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