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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE
MODEL WITH TEMPERATURE EFFECTS IN
SUPERCONDUCTIVITY *

M. WINCKLER! AND I. YOUSEPTT

Abstract. This paper considers a hyperbolic Maxwell variational inequality with temperature
effects arising from Bean’s critical-state model in type-II (high-temperature) superconductivity. Here,
temperature dependence is included in the critical current density due to its main importance for
the realization of superconducting effects, as confirmed through physical measurements. We propose
a fully discrete scheme based on the implicit Euler in time and a mixed FEM in space consisting
of Nédélec’s edge elements for the electric field and piecewise constant elements for the magnetic
induction. Furthermore, the initial approximation is specified by a compatibility system given by an
elliptic curl-curl variational inequality. This specific setting enables us to derive the well-posedness
of the discrete solution with a certain magnetic induction regularity. Our main result is the uniform
convergence of the proposed fully discrete method. To prove this result, first of all, we establish
stability estimates for the zero-order and first-order terms of the fully discrete solution. These
stability estimates along with the underlying nonlinear structure allow us to derive a weak-star
convergence result, which in particular yields the well-posedness of the governing Maxwell variational
inequality with temperature effects. Finally, through the use of the solution operator for a discrete
mixed variational problem in combination with the involved magnetic induction regularity and the
weak-star convergence result, we are able to complete the proof of the uniform convergence. The last
part of the paper is devoted to the a priori error analysis under a low Sobolev regularity assumption
on the electric field. We close this paper by presenting some 3D numerical results, which especially
confirm the physical Meissner-Ochsenfeld effect in superconductivity.

Key words. Maxwell variational inequality, Bean’s critical-state model with temperature effects,
superconductivity, fully discrete scheme, convergence analysis, error estimates.
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1. Introduction. The physical phenomenon of superconductivity is character-
ized by zero electrical resistance and repulsion of magnetic fields (Meissner-Ochsenfeld
effect) under the condition that the temperature is below some critical level. It was
first discovered in 1911 by H. Kamerlingh-Onnes and has gained tremendous theoreti-
cal and practical attentions ever since. Nowadays, modern magnetic levitation trains,
distributed superconducting magnetic energy storage (D-SMES), magnetic resonance
imaging (MRI) and magnetic confinement fusion cannot be realized without the use
of superconductors, just to mention a few key technologies. A critical-state model de-
scribing the magnetization process of penetration and exit of magnetic flux in type-II
(high-temperature) superconductors was proposed by Bean [5,6]. More precisely, his
model describes a nonlinear and non-smooth constitutive relation between the (total)
current density and the electric field as follows:

(B1) The current density strength |J| cannot exceed the critical current j;

(B2) if |J| is strictly less than j., then the electric field E vanishes;

(B3) the electric field E is parallel to J.
We underline that the (unknown) superconductive region is determined by points
(x,t) € Q x (0,T), for which the strict inequality |J(x,t)| < j. is satisfied. Thus, in
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2 M. WINCKLER, I. YOUSEPT

this region, there is no electrical resistance so that the electric field must vanish.

We refer to Bossavit [7-9] for early contributions towards extended Bean’s law
and the corresponding finite element method. The Bean critical-state model (B1)-(B3)
governed by the eddy current equations with magnetic field dependence j. = j.(H)
leads to a parabolic quasi-variational inequality (QVT) of obstacle type. Prigozhin [31,
32] was the first, who introduced and analyzed this formulation. Barrett and Prigozhin
[3] analyzed it in a scalar two-dimensional (2D) setting and its dual formulation. The
finite element analysis for the associated parabolic variational inequality in a 2D
setting was investigated in [16] (see also [17] for a similar 2D model using an E-J-
formulation). Furthermore, the numerical analysis for the three-dimensional (3D)
setting was investigated in [15]. Recent results on the numerical analysis for the
parabolic QVI in a 2D setting were obtained in [4]. All the previously mentioned
contributions were devoted to the numerical analysis for the eddy current case. In the
full 3D Maxwell case (cf. [22]), the Bean’s critical state model (B1)-(B3) with j. =
Je(z) leads to a hyperbolic Maxwell variational inequality of the second kind [35] (see
[33] for the mathematical analysis in a more general setting). The numerical analysis
for this variational inequality is still in its earlier state. We are only aware of the
recent work [35] for the analysis of the semi-discrete spatial Galerkin approximations.

This paper is devoted to the fully discrete analysis of the Bean critical-state model
(B1)-(B3) governed by the full 3D Maxwell equations with temperature effects. Let
us underline that in all previously mentioned contributions, temperature dependence
was neglected. However, by the nature of superconductivity, temperature effects play
a major role, since superconducting effects strongly depend on the temperature itself
and can only be reached, if the temperature is underneath some critical level. We
refer to [2,14] concerning experimental measurements showing the strong temperature
dependence in the critical current j. = j.(z,6(x,t)) and its physical properties. Let
us now formulate the variational inequality we focused on in this paper:

/QeatE(t) (v —E(®) + 1 '9B(t) - (w — B(t)) do
+ /Q w - curlE(t) -w — u”"B(t) - curlvdx

T o(0(1), v) — p(0(1), B(1)) > / £(t)- (v — B(1)) da

for a.e. t € (0,T) and every (v,w) € Hy(curl) x L?(Q),
(E(0), B(0)) = (Eo, Bo),

with a nonsmooth L!'-type functional
¢ L@ X EQ) SR, 00v) = [ e y(a)v(o)] da.

In this setting, ! C R? is a bounded polyhedral domain with a connected Lipschitz-
boundary 9. The assumption of the connected boundary guarantees that {v €
Hy(curl)nH(div) | curlv =0, div v =0} = {0} (cf. [1, Proposition 3.18.]), which is
required for our analysis in connection with the application of the (discrete) Poincaré-
Friedrichs-type inequality [20, Theorem 4.7]. Furthermore, E : Q x (0,7) — R3
denotes the electric field, B : Q2 x (0,T) — R3 the magnetic induction, f : Qx (0,7) —
R3 the applied current source and @ : 2 x (0,T) — R3 the temperature distribution.
Note that in (VI) and all what follows, we use the abbreviation E(t) = E(-,¢) (the
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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE MODEL 3

same notation is also used for other quantities). The precise assumptions for the data
involved in (VI) will be given in Section 2.

In (VIy, n), we propose a fully discrete scheme for (VI) based on the implicit
Euler in time and a mixed FEM in space consisting of Nédélec’s edge elements [30]
for E and piecewise constant elements for B. Furthermore, we consider finite element
approximations for the initial data (Eg, Bg) by solving an elliptic curl-curl variational
inequality (3.2). This specific setting enables us to prove the well-posedness of (VIy, )
with a magnetic induction regularity in curl Vi, (see Theorem 3.4), where V, denotes
the Nédélec edge element space.

Our main goal is the uniform convergence of (VIy ;) towards (VI) (Theorem 3.10),
which in particular yields the global well-posedness for (VI). The proof follows the
following consecutive steps: First of all, by the compatibility system (3.2) and ex-
ploiting the regularity properties of the critical current density and the given data,
we derive stability estimates for the zero-order and first-order terms of the fully dis-
crete solution (Lemmas 3.6 and 3.7). These a priori estimates together with the
mathematical properties of ¢ allow us to extract weakly-* converging subsequences
whose limits turn out to solve the original variational inequality (Theorem 3.8). In
particular, this implies the well-posedness of (VI). Hereafter, we consider the solution
operator ®;,: Hy(curl) — V), associated with a discrete mixed variational problem
(Definition 3.2) and use its properties in combination with the magnetic induction
regularity in curl V;, and the weak-star convergence result to complete the proof of
the uniform convergence. The final part of the paper is devoted to the a priori error
analysis for the proposed fully discrete scheme (VIy ). Under a low Sobolev reg-
ularity assumption on the electric field E of (VI), we derive a priori estimates for
the error between the fully discrete solution and the continuous one (Theorem 4.4).
The proof is based on the use of the operator ®;: Hy(curl) — V}, and the recent
sharp quasi-interpolation results [13,18,19]. Last but not least, we refer the reader
to some existing works [11,12, 24,25, 28] concerning fully discrete approximations for
time-dependent Maxwell’s equations.

2. Preliminaries. For a given Banach space X, we denote its norm by |||/ x and
the duality pairing with the corresponding dual space X* by (-,-). If X is a Hilbert
space, then (-,-)x stands for its scalar product and || - | x for the induced norm. In
the case of X = R"™, we renounce the subscript in the (Euclidean) norm and write
| - |. The Euclidean scalar product is denoted by a dot. Unless otherwise stated, we
identify the dual space X* with the Hilbert space X itself. The embedding between
two Banach spaces X,Y is denoted by X — Y. Now, we introduce some important
Hilbert spaces throughout this paper:

H(curl):= {veL?(Q):curlveL?(Q)} and H(div):= {veL*(Q):divve L*(Q)},

where curl and div are understood in the distributional sense. Also, note that we use
bold letters for vector-valued functions and the respective spaces. As usual, C§°(12)
denotes the space of all infinitely differentiable functions with compact support in
). The spaces Hy(curl) and H(div) stand for the closure of C3°(£2) with respect
to the H(curl)-norm and the H(div)-norm, respectively. Furthermore, the spaces of
divergence-free vector functions are

H(div=0) := {v € L*(Q) : (v,V¢)12q) =0 V¢ € H(Q)},
Hy(div=0) = {v € L*(Q) : (v,V@)r2(0) =0 Vo € H'(Q)},
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4 M. WINCKLER, I. YOUSEPT

132 which are endowed with the L?(Q)-norm. Material parameters will occur on the prob-
133 lem statement, and thus, for a given positive function a € L°°(£2), we denote by L2 ()
134 the weighted L?(Q)-space with the weighted scalar product (a-, ‘)12(0)- Moreover, we
135 denote by C' > 0 a generic constant, that can change during an estimation. Let us
136 close this section by presenting all the mathematical assumptions for (VI).

S

137 Assumption 2.1 (Regularity assumptions on the material parameters).

138 (Al) The material parameters €, u € L (£2) are strictly positive, i.e., there exist
139 positive constants ¢, €, u, 1z € R5¢ such that

149 e<e(r)<e and p<p(r)<@forae ze

142 (A2) For every y € R, j.(,y): @ — R is Lebesgue-measurable and nonnegative.
143 (A3) For every M > 0, there exists a constant C(M) > 0 such that

144 0 < je(z,y) < C(M)

146 for a.e. €  and every y € [-M, M].

147 (A4) For every M > 0, there exists a constant L(M) > 0 such that
im |jc(l‘,y)—jc(l‘,2’)| SL(M”:U_Z‘

150 for a.e. € Q and every y,z € [—M, M].

151 Let us remark that the local Lipschitz property (A4) and the local boundedness
152 property (A3) for the temperature dependence in the critical current are justified
153 by experimental measurements reported in [2,14]. Note that assumptions (A2)—(A4)
154 seem to be sharp for our mathematical analysis. In contrast to (A2)—(A4), from the
155 mathematical point of view, (A1) is not sharp, as our results can be extended to
156  matrix-valued material parameters € and pu. However, this case leads to a physical
157 model of an anisotropic material, for which Bean’s law (B1)—(B3) is not suitable.
158 Indeed, (B3) is only reasonable for a scalar-valued resistivity, i.e., not for anisotropic
159 materials (see [3,4,8,15,31,32]). Therefore, due to this physical reason, we only
160 consider scalar-valued material parameters.

wt

161 Assumption 2.2 (Regularity assumptions on the given data).
162 (A5) Suppose that

163 £ C®([0,7],L*(Q)) and 6 < C™'([0,T], L*(2)) NC([0,T], L>=(5)).
165 (A6) The initial data (Eg, Bo) € Ho(curl) x Hy(div=0) satisfies the compatibility
166 system

/GEO . (V — Eo) + M71B0 . (W — Bo) dx
Q

+/ pteurlEg-w — !By - curl vdx
Q

167 (2.1)
+(0(0).v) = 9(0(0).E0) > [ £(0)- (v~ Eo) ds
Q
168 for all (v, w) € Hy(curl) x L(Q).
169 3. Fully discrete scheme. As pointed out in the introduction, we focus on the

170 implicit Euler scheme for the time discretization in (VI). To this aim, let us fix N € N
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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE MODEL 5

and define an equidistant partition of [0, 7] in the following way:

T
TZ:N, O=to<t1 <---<ty=T with t,=nr

for all n € {0,..., N}. Furthermore, we define
£ £(t,) € L2(Q), (V) = / jo(@, 0@, t)Iv(z)| dz Vn € {0,..., N},
Q

We choose a family of quasi-uniform triangulations {73 }n>0, i.€.,

Q= (J 1 vh>o,
TETh

and, for hp denoting the diameter of T and pr denoting the diameter of the largest
ball contained in 7', there exist constants p > 0 and v > 0 such that

h h
—Tgp and — <v VI'eT, Vh>D0.
pT hr

The subscript hA denotes the maximum of hy for T € T;,. The finite element space of
Nédélec’s first family of edge elements is defined by

V= {v, € Hy(curl) : vu|r =ar + by x z with ar,br € R3, VT € Tn},
and the finite element space of piecewise constant functions is denoted by
Wy, = {w), € L*(Q) : wu|r = ar with ar € R®, VT € T;,},

which satisfy curl V, C Wy, In addition to these spaces, we introduce the space of
continuous piecewise linear elements with vanishing traces by

Oy, = {(bhEHé(Q) : ¢h|T:aT-x+bT with aT€R3,bT€R VTEIT}L}
Moreover, the family {7}, }x1>0 is chosen such that there exists h > 0 with
(3.1) V;CV, and W; CW, YO<h<h<h.

Having introduced all the required finite element spaces, we now propose the following
fully discrete scheme to (VI):

/eaE;; - (vi —EP) + 1B} - (wy, — B} dw
Q

+/ pteurlEY - wy, — p'BY - curlvy, do
Q

(VIn, 1)
") =" (B > [ £ (v By da
for every (vp,wp) € Vi, x W and n € {1,...,N}
(Ej. B}) = (Eon, Bon),
where
OE} = w and 0B} = BZ%BZA Vn e {l,...,N},

This manuscript is for review purposes only.
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6 M. WINCKLER, I. YOUSEPT

Moreover, (Egp,Bon) € Vi, x Wy, denotes the finite element approximation of the
initial data (Eg, Bg), which is defined as the solution to the discrete mixed problem

/€E0h (v, — Eon) + p~'Bop, - (wy, — Bop) do
Q

+ / pteurlEgy, - wy, — p 'Bgy, - curl vy, dz
(3.2) Q

+ 9(0(0),v1) — 9(6(0), o) > /Q £(0) - (va — Eop) da

for all (Vh,Wh) €V, x Wy,

The well-posedness of (3.2) follows from the classical theory of variational inequalities
[26, Theorem 2.2], as (3.2) is equivalent to an elliptic curl-curl variational inequality
(cf. the proof of Theorem 3.4). In view of (3.2), it makes sense to set (0E),dBY) :=
(Eon, Bop). Indeed, if we replace (0E}, 0B}) by (Eon, Bop,) in (VIn ;) and set n =0,
then we arrive exactly at (3.2). Note that (JEY,dBY) = (Eop, Bop,) is important for
our stability analysis (see (3.22) in the proof of Lemma 3.7).

Remark 3.1. All mathematical findings in this paper remain true, if we replace
W, by W;, N Hy(div). Both W, and W), N Hq(div) are dense in L?(Q) and con-
tain curl V. The condition of curl V;, being a subspace is necessary to prove the
regularity properties By, B} € curlVy, for the solutions to (3.2) and (VIy,.); see
Lemma 3.3 and Theorem 3.4. Furthermore, the density property is required for the
derivation of the weak-* convergence result (Theorem 3.8). We note that the choice
W), = curl V}, is not suitable for our analysis, as curl V}, is not dense in L2(Q).

DEFINITION 3.2. For every h > 0 and 'y € Hy(curl), we denote the solution
operator of the discrete variational mized problem

(curlyp, curlvy)ge2 @ = (curly, curlvy)ge @) Vv, € Vp,
(33) 1/p 1/p
(Y, V¥n)r2 @) = (¥, Vion)L2(0) Vipn € O
by ®;,: Ho(curl) — V, with @y = yp.

The theory of mixed problems (cf. [29, Theorem 2.45]) in combination with the discrete
Poincaré-Friedrichs-type inequality [20, Theorem 4.7] and the discrete LBB condition
(cf. [37, pp. 2802-2803]) implies that for every h > 0 and y € Hy(curl), (3.3) admits
a unique solution y, = ®,y € V, satisfying

(34) ||(phy - YHH(curl) <C ( inf ||y - Xth(curl)) Vy € Ho(CuI‘I).
XhEVh

h

with a constant C' > 0, independent of h and y. In particular, (3.4) yields
(3.5) 1®ryllH(Ecur)) < (C+ DIyllaeuy Yh >0, Vy € Hg(curl).
Moreover, (3.4) along with the density property of V,:

Vv € Hy(curl) V6 > 03h > 0Vh € (0,h) Iv, € Vi, o v — Vi |lHcurn) <0
implies that
(3.6) lim @1y — ¥l#(cury =0 Vy € Hg(curl).

This operator enables us to show the strong convergence of the discrete initial values
towards (Eg, By).

This manuscript is for review purposes only.
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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE MODEL 7

LEMMA 3.3. Under Assumptions 2.1 and 2.2, the discrete approximation of the
initial value (Eqp, Bon) € Vi, X Wy, satisfies Bop, € curl Vy, for all h > 0 and

}lig}) [Eon — EollLz(0) = }lllg%] IBon — BO”Lf/“(Q) =0.
Proof. Let h > 0. Inserting v, = Eqp, in (3.2), we obtain that
(37) / /l_l(B()h + Curlth) . (Wh — BOh)dCE =0 Vwy € Wy.
Q
Since curl V,, € Wy, we may set wy, := 2Bgj, + curl Egy, in (3.7), which implies

(38) B(]h = —curl E0h~

Thus, Bop, € curl V, € Hy(div=0) follows. Moreover, testing (3.2) with (vp, wp) =
(2Eon, 2Bgp) as well as (v, wp) = (0,0) yields

[Eon 2oy + [Bonly oy + [ el 6o, 0)Bon )] do = [ £(0) - B

(3.9 = || Eon|

L2(Q) < ||671/2f(0)||L2(Q)-

Next, we insert (v,w) = (Eon, Boy) into (2.1) and (vi, wy) = (2,E,0) into (3.2)
and obtain after adding the resulting inequalities together that

(3.10)  [[Bor — Eollz(o) + [Bon = Bolliz, (o)
< /Q £(0)- (Eg — ®,Eq) dz + /Q eEop - (®rEg — Eg) dx
— /prl(Boh + curlEgy,) - Bodx + /Q 1 By - curl(Eg — ®,E) dz
+ [ oo 00, 0) (%1Bol - Bo]) da
Due to (3.8), the third term on the right-hand side of (3.10) vanishes. Moreover,

/ ' Bop, - curl(Eg — ®,Eq) dz_= / p~t curl Egy, - curl(Eq — ®,Eg) dr 0.
Q ~~

—
(3.8) @ (3.3)

Thus, applying Holder’s inequality together with (A3), (A5) and (3.9) to (3.10) yields

(1) B~ Eolfze) +[Bon ~ BollZs (o < C1Eo ~ Eolrz(o)

with a constant C' > 0 only depending on €, f, j. and §. Finally, passing to the limit
h — 0in (3.11), (3.6) yields the assertion. |

The following theorem proves the well-posedness of (VIy ;) and gives an important
regularity property for the discrete magnetic induction.

THEOREM 3.4. Let Assumptions 2.1 and 2.2 hold. Then, for everyh > 0 and N €

N, the system of discrete variational inequalities (VI p) admits a unique solution
{(En,B)}IY_, C Vj x curl Vy,.

This manuscript is for review purposes only.
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Proof. Let N € N, h > 0 and n € {1,...,N}. Furthermore, assume that
(EZ_l, BZ_l) is already known. Using the same arguments as in (3.8), we may de-
couple the variational inequality into two parts by testing (VIy ;) with v, = E} to
obtain that

(3.12) 0B}, = —curlE}.
By definition, (3.12) yields the following explicit formula for B}:
(3.13) =B} - rcurlE}.

Next, we insert w;, = B} in (VIy, ;) and employ (3.13) to obtain the variational
inequality

(3.14) / eOE} - (v, — Ep) dz + / it curl E - curl(vy, — E) dx + ¢ (vy)
Q Q
—o"(E}) > / £ (vip —Ep) + p By curl(vy, — Ef)dz Vv, € V.
Q

The well-posedness of (3.14) is covered by a classical result in [26, Theorem 2.2],
because it is equivalent to an elliptic curl-curl variational inequality of the form

(3.15) (B}, vy, —EP) + " (vi) — o"(E}) > (f", v, — E}) Vv, € V),

with the continuous and coercive bilinear form a: Vj x V), — R defined by
a(up,vy) = /QT_leuh -vy dx + /Q ru~teurluy, - curlvy, dz Yup, vy, € Vy,
and the right-hand side f* € Hy(curl)* by
(", v) = /Q(f" + 7B} vde +/§2u’1BZ_1 -curlvdr Vv € Hy(curl).

Inserting the solution E} of (3.14) into (3.13), we finally obtain a unique solution
{(EL, B} € Vi x Wy,

of (VIy, ). Finally, (3.13) and Lemma 3.3 give B} € curl V, by inductive reasoning.]

Remark 3.5. The formulas (3.13) and (3.14) will be the foundation for the com-
putation of the numerical solution.

The following Lemmas prove the zero-order and first-order stability estimates for the
fully discrete solution to (VIy, ;):

LEMMA 3.6. Let Assumptions 2.1 and 2.2 be satisfied. Then, there exists a con-
stant C > 0, depending only on f,Eg,By and T, €, u, such that for every N € N and
h >0, the solution {(E},BM)}N_\ of (VIn ) fulfills the estimate

n=1
n| 2 n|2
(3.16) e fmax IERIL20) + e fmax IBRIL:, (@
N N N
+ Y B B e + Y IBR - Bﬁ_lllig/m) +27) " (E}) < C.
n=1 n=1 n=1

This manuscript is for review purposes only.
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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE MODEL 9
Proof. Let N € N and h > 0. We start by testing (VIy, ;) with (v, wp) =
(2E}, 2B7}) as well as with (v, wy,) = (0,0) to obtain
(3.17)
/ eéE;;-E;;d:ch/ p1BY Bl dx + ¢"(EL) = / f" . El'de Vne{l,...,N}
Q Q Q

Now, fix iy € {1,...,N} and sum (3.17) up over {1,...,ip}. Then, applying the
binomial formulas along with the Holder and Young inequalities, we deduce that

0
(3.18) IE} 1E2 () + 1By Iz, @) + > IIER - E} iz 0

n=1

+Z||B” B~ 1||L2 (Q)+2TZQD (E)

n=1

2Tt
<—Z||f"||p o) + [Eonlz() + [BonllZ: <9)+2TZ||E 220y

This, combined with (A5) and Lemma 3.3 and the fact that 7/T = 1/N <1 gives us
an estimate of the form

Zo 1 2071
% 1 % 1
IE OHL2(Q) <C+ Z |ER ||%g(§z) = ||Eh0||%g(9) < Cexp (Z N) <C,
n=1

where we have used the discrete Gronwall inequality. Since iy was arbitrary, we see
from (3.18) that the proof is finished. d

LEMMA 3.7. Let Assumptions 2.1 and 2.2 hold. Then, there exists a constant
C > 0, depending only on £, Eq, By and T, €, 11,0, j., such that for every N € N and
h > 0 the solution {(E},BM)}_, of (VIy ;) satisfies

(319) | max E;lEe) + max [0BRIE; o

SRR O 2y + 3 198 - 5B o <C
n= n=1

and

(3.20) ne%n H curl EhHL2 () <C.

Proof. Let N €N, h>0andn € {1,...,N}. Inserting (v, ws) = (E} "1, By 1)
in the n-th inequality of (VIy 1) and then adding it with the (n — 1)-th inequality of
(VIn, 1) tested with (v, wy) = (E}, BY) lead to

(3.21) / (SE} — SEPY) - (Ef —EIY) + (6B} — 6B ) - (B} — B! ) da
Q
< / (F7 — £71) - (B — B0 ) da + / el 0z, 1)) (IBR Y| — [B2)) dae
Q Q

4 /Q e, 0(, tar)) (EF] — [E1) da.
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We sum (3.21) up over {1, ... i} for a fixed ig € {1,..., N} and divide the resulting
inequality by 7 to get

i0
> [/ c(OE} — OEI 1) - 6B} dx + / p OBy — 0B ) - 6By dx
n=1 Q Q

< Zl [/Q(f" — 1) . 0B} dx +/ (Ge(, 02, ) — jela, 0(z, ta_1)))

Q
En—l _ |E"
() )
T

Then, as in the proof of Lemma 3.6, the binomial formulas along with the Holder and
Young inequalities yield

(3.22)
10
ISE Ray + 1B 12 () + D IOER — SBR 2200 + 1B — 0BL U2 (o)
n=1

2 2

fr— fn—l

T

jC(x70('Ta tn)) - jc('r7 9('77’ tn—l))

ATT & ATT &
< — + —

& L2(Q) et

n=1 L2(Q)
i0
T n
+ [ Eonllfz(q) + HBohHig/ @t 37 > IOER 120,
. =1

2N

where we have also used dEq, = Eqg, and Bo, = Bgp. Therefore, (A4), (A5) and
Lemma 3.3 applied to (3.22) imply

io—1 iy
; 1 i 1
OB L2 < C+ D> I0EklIE ) = 10EY [Eza) < Cexp (Z N) <G

n=1 n=1

by the discrete Gronwall inequality. Since iy was chosen arbitrarily, applying the
above estimate to (3.22) yields (3.19). Finally, (3.20) follows immediately from (3.12)
and (3.19). 0

With these stability estimates at hand, we will establish a weak-* convergence
result for (VIy 5), which particularly implies the well-posedness of (VI). First, we
denote

(3.23) { En1(0) == Eqp and { EN,h(O) = Eop,

En(t) = EZfl + (t —th—1)0E} Enn(t) = Ep

fort € (tn_1,tn) and n € {1,..., N}. In the same way, we define By, By 5 and fy.
Furthermore, we introduce the function ¢y : [0,7] x L3(Q2) — R by

on(0,v) = ((0),v) :/jc(afﬁ(ar,O))IV(x)ldx
(3.24) @

pn(tv) = @"(V)=/Qjc(x,9(x,tn))l"($)ldz Vt € (tn-1,tn],

This manuscript is for review purposes only.
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376 for v.€ L?2(Q) and n € {1,...,N}. Now, we can rewrite (VIn, ;) in the following

377 manner:
/ B n(t) - (vi — B n(t)) + 1~ 0B n(t) - (W — Bn(t)) do
o
+ / pt curlEy (1) - wy, — ,u_lﬁN,h(t) -curlvy, dr
378 (3.25) ¢ - 7 -
+on(tvi) — ox (6 Bwalt) 2 [ Enlt) - (v, - Bwa(t) de
Q
for every (vp,wy) € Vi, x Wy, and ae. t € (0,7)
(En,1(0), BN, (0)) = (Eon, Bon).
379
380 THEOREM 3.8. Let Assumptions 2.1 and 2.2 hold. Then, there exists a pair

51 (B,B) € WH((0,T), L2(Q) x Hy(div=0)) N L*((0, T), Hy(curl) x Hy(div=0))

383 such that for N = N(h) with N(h) — oo as h — 0 it holds that

384 Eny, —"E and Eyj —~*E  weakly-* in L>=((0,T), Ho(curl)),

385 Byn —*B and By, —* B weakly-* in L>=((0,T), Hy(div=0)),

386 HEn —* OE weakly-* in L=((0,T),L%()),

38%¢ 0By —" 0B weakly-* in L>°((0,T), Ho(div=0)),

389 and (E,B) is the unique solution to (VI).

390 Proof. First of all, we emphasize that N = N(h) denotes a family of natural

391 numbers with N(h) — oo for h — 0. As shown in Lemma 3.6 and Lemma 3.7,
392 {Enn}ths0, BN >0, {ENIR>0, {BNnp}rs0, and {OEni}rs0,{0:Bnn}tr>0 are
393  bounded in their respective spaces. Therefore, we may extract weakly-* converging
394 subsequences, which will not be denoted in a special way:

Enp, —"E weakly-* in L=((0,7T), Ho(curl)),
By —* B weakly-* in L>°((0,7), Ho(div=0)),
5 (3.26) Enp—"E weakly-* in L>((0,T), Ho(curl)),
By —* B weakly-* in L*((0,T), Hyo(div=0)),
HEN, —* € weakly-* in L=((0,7),L2(Q)),
306 BNy =" x  weakly-* in L*°((0,T"), Ho(div=0)),

397 for some E,B,E,B, ¢, x as h — 0. First of all, we verify that E = E and B = B.
308 However, this is readily seen by the definition (3.23) and Lemma 3.7 since

IEnn — TLE9) ST max ||5EZ||L3(Q) < Cr,

ne{l,..,

399 (3.27)

By — Byallpe<(o,1), L, (@) =T max 0Bz, (

400 n sV
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Next, derivation in the sense of distributions gives

T T
/0(€(t)7V)L§(Q)¢(t)dt“\%/o (OEN 1 (1), V)L2()d(t)dt
T T
== | @OV Ot 2~ [ B0 O

(3.26)
for every v € L%(Q) and ¢ € C§°(0,T), which yields £ = §;E and so
E € Wh*°((0,7),L2(R2)) N L*((0,T), Hy(curl)).

Obviously, the same conclusion can be drawn for x = 6;B, which implies that B €
W12 ((0,T),Hy(div=0)). Note that

(E,B) € Wh°((0,T),L3(Q) x Ho(div=0)) < C([0, T], LZ() x Hy(div=0))

implies possibly after a modification on a subset of [0,7] with measure zero that
(E,B) € C([0,T],L2(2) x Hy(div=0)). Next, we prove the pointwise weak convergence

(3.28)
Enn(t) = E(t) weakly in L2(Q) and By (t) — B(t) weakly in Ho(div=0)

for every t € [0,7]. For that purpose, we fix t € (0,7], w € L2(Q) and ¢ € C'([0,1]).
Then, integration by parts yields

(3.29) /O(OtE(s),W)Lg(Q)¢(s)ds<—/O (OEN1(5), W)Lz ()9 (5)ds
- / (B (), Whna @ (5)ds + (B (1), whnz ey d(t) — (Exn(0), W)r2(ey $(0).

Choosing ¢(0) = 0 as well as ¢(t) # 0 and applying integration by parts again gives

Lim (B (1), WLz ) = (B(1), W)iz)  Yw € L*(Q).

Applying the above convergence to (3.29) and choosing ¢(0) # 0 leads to

%%(EN,h(O)vw)Lg(Q) = (E(0), W)L2(q) Vw € L*(2),

The same results hold also for By j,, and so we conclude that (3.28) is valid. From
Lemma 3.3, (3.23) and (3.28) with ¢ = 0, it follows that

(3.30) E(0) = Eq and B(0) = By.
We continue and recall the classical identity:

1

t
1
(3.31) /0 (OEN (), Enn(s))L2()ds = §||EN,h(t)||%g(Q) - §||E0hHig(Q)-
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Combining (3.31) with (3.28) and Lemma 3.3 yields

t
(3.32) liminf/ (atEN)h(S),EN7h(S))Lz(Q)dS
0

h—0

~~ h—0

t
= hmlnf/ (atENJL(S),ENyh(S))Lg(Q)dS
(3.27) 0

o0 1
(~ = ), lim inf iHEN,h(t)”ig(Q) - iHEOhH%S(Q)
3.31

1 1 ¢
> SIEOI0 — 5 EOIE: = [ OB, B s

where the above inequality holds due to the fact that the squared norm is weakly
lower semicontinuous. Analogously, we obtain

t t
(333) lim 1nf/ (atBN,h(S), BN,h(S))L?/ (Q)dS Z / (atB(S)7 B(S))Lf/ (Q)dS
0 # 0 "

h—0

Next, we prove
(3.34) liminf o (B (1)) ds > o(00), B) Vi € [0,7).
—

For ¢t = 0, Lemma 3.3 and (3.23), (3.24), and (3.30) grant even the strong convergence

lim pn (0,En4(0)) = lim / Je(z,0(x,0))|Eon| dx = ¢(6(0), E(0)).
h—0 h—0 Jq
Let now ¢ € (0, 7). Then, for every N € N, there exists a unique n € {1,..., N} such

that ¢ € (tn—1,t,). Hence, the sequence fN,h = t,, fulfills fN,h — t as h — 0. Making
use of this sequence, we obtain that

(3:35) Timinf o (1, B (1)
= lignﬁigf (@(O(t),ENyh(t)) + /Q(jc(x,e(x,f]vﬁ)) — je(z,0(x, 1)) | En.n(t)] dx)
> @(9(15), E(t)) + hhn_igéf/ﬂ(JC(xa 9(35’ tNN,h)) - jC(m7 9(1‘, t)))IEN,h(t)l dl‘,

where we have employed (3.28) and the fact that ¢(0(t),-): L2(Q) — R, for every
fixed t € [0,T], is sequentially weakly lower semicontinuous. In order to pass to the
limit in the second term in (3.35), we make use of (A4) and (A5) to deduce after
selecting a subsequence that

(3.36) }llirr})jc(x,ﬁ(m,fNyh)) —Je(z,0(z,t)) =0 for a.e. x €,
—

and so, thanks to (A3)—(A5) and Lemma 3.6, Lebesgue’s dominated convergence
theorem yields

(3.37) ;IL%/Q [ge(, 0(tnp, @) = Je(z, 0(t, ) [[En p(t)|da = 0.

In conclusion, (3.34) is valid.
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Now, we show that (E, B) is a solution to (VI): Fix ¢t € (0,77, h € (0, h], integrate
(3.25) for h < h over [0,t] and test it with (v, wj,) € Vj, x W; CV;, x W, (cf. (3.1)).
Afterwards, we apply the limit superior to the resulting inequality to deduce

t t
(3.38) / (£(s), vi — E(s))L2()ds = Lim (fn(5), v — Enn(s))L2 (o) ds
0 0
t
< I OEn n(s),vh — B d
S H}I;Sélp [/o (O N,h(S) Vh N,h(S))Lg(Q) S
(3.25)
t — —
+/ (OB n(s), wp — BN,h(S))Lf/ (@) + (curl EN,h(s),wh)Lf/ (@) ds
0 H ©w
t t
— / (Bn.n(s), curlvh)Lf/“(Q)ds +/ on(s,vn) — en(s,Enp(s))ds
0 0
t
< (0:E(s),v = E(s))L2(0) + (0:B(s), w = B(s))r2 | (0)ds

N~~~ 0
(3.26),(3.32),(3.33)

—I—/O (curlE(s),w)Lf/M(Q) - (B(s),curlv)Lf/H(Q)ds
+ / 2(8(5),v) — p(6(s), B(s))ds,

where we have also used (3.34) and Fatou’s lemma to obtain convergence of the last
time integral. Since there is no restriction to h > 0, the density of V, C Hj(curl)
and W, C L2(Q) yields, if we differentiate (3.38) with respect to ¢, that (E,B) €
Woo((0,T),L2(2) x Hy(div=0)) N L>((0,T), Hy(curl) x Hy(div=0)) satisfies the
evolutionary variational inequality (VT).

The uniqueness of the solution to (VI) follows by an energy argument: Let
(E,B) € WbHo((0,T),L3(Q) x Lf/M(Q)) N L>((0,T),Hy(curl) x Lf/H(Q)) be an-
other solution to (VI). Then, inserting (v,w) = (E(t), B(t)) in (VI) associated with
(E,B) and (v, w) = (E(t), B(t)) in (VI) associated with (E, B), and then adding the
resulting inequalities together, we obtain

/96(5tE(t) — OE(t) - (E(t) — B(1)) + 1~ (9B(t) - 8:B(1)) - (B(t) — B(1)) dz <0,

which implies that the difference (e(t),b(t)) = (E(t) — E(t), B(t) — B(t)) fulfills

1d 1d

i%ﬂe(t)”%g(n) + g@ﬂb(t)”if/u(m <0.
Since e(0) = b(0) = 0, the above inequality yields that e(t) = b(t) = 0 for all
t € [0,T]. Hence, (E,B) is the unique solution to (VI). 0

Remark 3.9. A main consequence of Theorem 3.8 is the global well-posedness for
(VI). We point out that, based on a direct approach, i.e., without discretization tech-
niques, [33] proved existence and uniqueness results for hyperbolic Maxwell variational
inequalities with a general nonlinearity. However, due to the temperature-dependent
critical current density j., [33] cannot be applied to deduce the well-posedness of
(VI). Here, the direct approach requires a substantial extension of [33] to the case of
time-dependent nonlinearities.
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We now prove our main result on the uniform convergence of (3.25) towards (VI).

THEOREM 3.10. Let N = N(h) be a family of natural numbers with N(h) — oo
for h — 0. Then, under Assumptions 2.1 and 2.2, the solution (Ex 1, By p) to (3.25)
converges uniformly to the solution (E,B) of (VI), i.e

lim IEx.n — Elleo,r),L2(0) = lim By = Bllego.L2,, @) = 0,

;lfi% [En,n — Elze(0,1),L2(02)) = }ng%) IByn — B||L°°((0,T),L§/“(Q)) =0.
Proof. First of all, we test (VI) with (v,w) = (En4(t), By x(t)) to obtain

339 [ OB)- Byn(t) = BW) + 1 '0B() - Bya(t) = B() do
+/ pteurlE(t) - By p(t) — p 'B(t) - curl Ey p,(t) d
Q

+ o(0(1), Bxa(t)) — p(0(t), (1)) > / £(t) - (B () — B(t)) da

Q

for a.e. t € (0,T). Next, inserting (vi, wp) = (®,E(t),0) € V), x Wy, in (3.25) leads
to

(3.40) /Q €O ENi(t) - (E(t) —Enn(®t) +p ' 0Bnr(t) - (B(t) —Byn(t)de
+ / € Enp(t) (PLE(t) — E(t)) dv — / w OBy (L) - B(t) dx
Q Q
- / ' Byn(t) - curl ®,E(t) de + on (t, PLE(t) — on (6, Ena(t))

/ fN @hE ) EN’h(t))dx

for a.e. t € (0,T). Now, by using the fact that 9;By ,(t) = — curl Ey 4 (¢) holds for
a.e. t € (0,T) (see (3.13) and (3.23)), we obtain

(3.41) / OBy a(t) + curlEyx () - B(t)dz =0 for a.e. t € (0,7).
o

Moreover, we know from Theorem 3.4 that By 5, (t) € curl Vj,, which implies by (3.3)
that

(3.42) / 1 Ba(t) - curl(B(t) — BpE() de = 0 for ae. ¢ € (0,T).
Q

In view of (3.41)—(3.42), adding (3.39) and (3.40) together and then integrating the
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532 resulting inequality over the time interval [0, o] with o € (0,T] yield that

533 (3.43) / / (OEn4(t) — OE®)) - (Byn(t) — E(t)) dedt

534 / / HOBa(t) — BB(1)) - Ban(t) — B(t)) dadt

- < / { [ B @)+ (B(0) ~ 24B(0) + (1) ~ En(0) - (B() ~ Ewa(0) do
0 Q

536 +/QeatEN7h(t) (®rE(t) — E(t)) dz + (on(t, PLE(t) — 0(0(t), E(t)))

537 + (ap(ﬁ(t),EN,h(t)) (pN(t ENh :| ZC

538

539  We proceed by showing the convergence of C;, i € {1,...,5}, towards 0 as h — 0.
540 This obviously exploits the convergence property of ®;. Therefore, we use (3.5) and
541 (3.6) to deduce by Lebesgue’s dominated convergence theorem that

542 (3.44) lim |®LE(t) — E(t)|lL2)dt =0 Yo € [0,T].

13 h—0 Jo €

544  Now, (A5), Lemma 3.7 and (3.44) imply for ¢ € {1,3} that |C;| — 0 as h — 0. Also,
545 the Lipschitz continuity of f (A5) together with Theorem 3.8 implies that [Ca| — 0
546 as h — 0. Next, the convergence for Cy is shown: We begin with

ot
~
~

(3.45)

[ ntt B0~ ot6(0) B0t
0
T T
s < [ len(t ®E0) - ox BONd+ [ lon(tB() - p(0(0). BO)dr
0 0
550 Because of (A3) and (Ab), the first term on the right-hand side of (3.45) satisfies
T

T
(3.46) /O lon (t, @RE(E)) — on (t, E(1))|dt < C/O [®@rE(t) — E(t)|[L2(o)dt,

553  with a constant C' > 0, independent of h. On the other hand, the second term in
554 (3.45) is estimated by using (A4) and (A5):

T
55 (3.47) / lon (8. B()) — o(0(1), B(t))|dt
tn
556 Z/ /|JC (2,0(tn, ) — jo(a,0(t, )| |E(t)| dedt
(%24)n 1
557 <oy / B = OB o 2.
558 n=1""tn-1

559 Thus, combining (3.45)—(3.47) gives

(3.48)
(3.44)

T
560 |O4‘ <cC (/ ||¢hE(t) — E(t)”Lf(Q)dt + T”E”Ll((O,T),Lg(Q))) —0 as h — 0.
561 0
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We reuse the arguments from (3.47) in combination with Lemma 3.6 to obtain the

convergence |Cs5| — 0 as h — 0. Finally, we extract the desired norms on the left
hand side of (3.43) as follows:

(3.49)
| / (OB (1) — OB()) - (B (1) — B(1)) drdt = 1B () — B(o)|50)

_quOh — BollZs 0+ /0 ’ /Q (DB n(t) — OE()) - (Bn(t) — Enn(t)) dadt
and
(350) / / 8tBN h ) - 8tB(t)) . (EN,h(t) - B(t)) dxdt
- *||BN n(0) = B(o)Ls ’(Q)_%HBOh ~Boliz (o)
/ / 8tBN h ) - 8tB(t)) . (EN,h(t) - BN,h(t)) dxdt.

In view of (3.27) and Lemma 3.7, we have

(3.51)

/ 8,5EN h atE( )) . (EN,h(t) — EN)h(t)) dxdt

< ||atEN,h — OE| L1 o,m),L22) 1Enn — Ennll L (0,1),L2(02))
< C7)|0:EN K — OE| L1 (0,1),12(2) < CT(I0:E| L1 ((0,7),L2(0)) + 1),
and analoguously
/ / (O:Bua(t) — B()) - Baalt) — Bya(t)) dxdt‘
Q

<C7([9:Bl L1 ((0,1).12,, @) + 1)

(3.52)

From (3.43) and (3.49)—(3.52) combined with the previously proved convergence for
C; for alli e {1,...,5} and Lemma 3.3, we obtain

(3.53) lim HEN,h(t) — E(t)HLz(Q) = lim ||BN’h(t) ( )HLz L) = =0 Vte [0 T]
h—0 € h—0

On the other hand, Lemmas 3.6 and 3.7 imply the existence of a positive constant
C > 0, independent of N and h, such that

(3.54) IENn By w)llwr o) L2@)xez @) < C VR >0,

which yields the uniform boundedness and the equicontinuity of {(En ., Bn.s)}h>0 C
C([0,T],L(Q) x L}, (). Therefore, by (3.53) and (3.54), the Arzel-Ascoli theorem
for Banach space-valued functions (cf. [23, Theorem 3.1]) implies the existence of a
subsequence of {(En n, Bn.x)}h>o converging uniformly towards (E,B). As (E,B) is
the unique solution of (VI), independent of the choice of the converging subsequence,
a standard argument implies that the whole sequence converges uniformly, i.e.,

fim [|B s~ Blleqorezen =0 S M lByn = Bli~ o) L2@) =0

(3.27)
hm IBy,n = Blleo,m),12 2 @) =0 = hm IBn,h = Bl (0,7),L 2, @) =0
(3.27)
This completes the proof. 0
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4. A priori error analysis. We start by providing an error estimate result with
low regularity fields for ®,: Ho(curl) — V), introduced in Definition 3.2.

LEMMA 4.1. Let s € (0,1]. There exists a constant C > 0, independent of h and
y, such that
”y - th”H(curl) < ChS”Y”HS(curl) Vy € H(S)(Cll['l)
for all h > 0. Here, H(curl) := {y € H*(2) " Hg(curl) : curly € H*()}.

The proof is completely analogous to the one of [19, Theorem 3.3], which follows
from (3.4) in combination with the stable commuting quasi-interpolation operator [19,
Theorem 2.2] (cf. [10]) and the sharp approximation result [18, Corollary 6.5] (cf. [13]).

Assumption 4.2 (Additional assumptions on the initial data and the solution).
(AT) There exists s € (0,1] such that Eg € H§(curl) and the solution of (VI)
satisfies E € L((0,T), H§(curl)).

Assumption 4.2 yields the following error estimate for the initial value, which follows
readily from (3.11) by using (A7) and Lemma 4.1.

LEMMA 4.3. Let Assumptions 2.1, 2.2, and 4.2 hold. Then there exists a constant
C > 0, independent of h > 0, such that

(4.1) [Eon — Eollf2(0) + [Bon — Bonigm(n) <Ch> Vh>0.

THEOREM 4.4. Let Assumptions 2.1, 2.2, and 4.2 hold. Then, there exists a
constant C' > 0, independent of N and h, such that

IBxn = Ellg oz + 1By = Blego ez o)

< C(R°+7)([Ell 1 (0.1). 15 curn)) + 0Bl 1 (0.1).L2(2)) + 0Bl L1 (0,7).22,, (2 +1)

1
holds for every h > 0 and every N € N.

Proof. The lines of the proof are similar to the proof of Theorem 3.10, but, due to
the regularity assumption on E (Assumption 4.2), we may use Lemma 4.1 in place of
(3.6). Thus, we consider again (3.43) and give estimates for C;, i € {1,...,5}, instead
of simply proving their convergence towards 0. The stability results in Lemma 3.6
and Lemma 3.7 combined with the regularity of E (see (A7)) as well as the error
estimates for @, in Lemma 4.1 lead to

(42) ‘Czl < Chs||E|‘L1((O,T),Hg(curl)) Vi € {1,3},

with a constant C', independent of the time variable, N, and h. To estimate Cs, we
use the Lipschitz continuity of f (see (A5)) and Theorem 3.10:

(4.3) 0y < O / IB() — Enn(t)L2o)dt < Cr.
0

Next, Cy is estimated by applying Lemma 4.1 to (3.48)
(4.4) |Ca| < C(h* + 7T)|IE[ 1 ((0,7),H (curl))-

Last but not least, the arguments from (3.47) in combination with Lemma 3.6 imply
|C5] < Cr. The combination of (3.43) and (3.49)-(3.50) with (3.51)-(3.52) as well as
the previously proved estimation for C;, i € {1,...,5} and Lemma 4.3 finally yields
the desired error estimate. O
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Remark 4.5. The results by Ern and Guermond [18,19] are also valid for higher-
order finite elements. Therefore, [18,19] together with the higher-order FEM for linear
Maxwell’s equations [28] would serve as an important basis for the extension of our
approach to the higher-order case.

5. Numerical Results. We close this paper by presenting numerical results for
some particular examples for (VI). When it comes to computing the solution (E,B)
to (VI), Euler’s implicit method provides an iterative algorithm, which also enables
us to split the mixed problem into two associated problems as we did in Theorem 3.4.
We recall (3.13), which gives an explicit formula for B}:

(5.1) r=B}"!' - rcurlE}

provided that E} is already computed. In view of (3.15), E} solves an elliptic curl-
curl variational inequality of the form

(52)  a(By,vih —E}) +¢"(vi) — ¢"(B}) > (T, va — E}) V), € Vi

We solve this variational inequality using the semi-smooth Newton method (cf. [21]).
Our computational domain is the cube 2 = (—1,1)® and we apply a circular
current f: R? — R? defined by

YR (0, =2/ + Y2 y/ (g2 +29)12)  for (v,9,2) € 2
0 for (z,y,2) ¢ Q,

fz,y,2) =

to a cylindrical pipe coil Q, = {(z,y,2) € R® : |z| < 0.5, \/y2 + 22 €[0.3,0.5]}.
The constant R > 0 denotes the electrical resistance of the pipe (here: R = 1).
All implementations were done with the open-source finite-element computational
platform FENICS [27] and as a visualization tool PARAVIEW was used. For this
study, the uniform tetrahedral mesh was refined around the coil. If we do not include
a superconductor in this setup, the applied current induces an orthogonal magnetic
field, which admits its greatest field strength in the center of the coil.

F1a. 1. First numerical example. Left: Magnetic field lines and the clipped pipe coil. Right:
2D-slice of the magnetic field along the -z axis.

In the first example, we place a type-II superconducting ball Q. with radius 0.2
in the center of the pipe, set j. = 80xqn.., € = ¢ = 1 and solve the compatibility
system (3.2) for the discrete initial value (Eqp, Bor). In our computation, the mesh
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. n»~ [ o | t [ 2 | 3 [ 4 | 5 [ 6 |
Je(50(t)) || 80xe.. | 50xe.. | 35Xxa.. | 20xo.. | 10xo.. | 5Xo.. | 0,5X0,.
O(tn) 60,0K | 65,0K | 67,5K | 70,0K | 72,5K | 75,0K | 80,0K
tn 0 1/6 1/3 172 2/3 5/6 1
TABLE 1
Critical current jo and temperature 0 of the superconductor at each the time step.

was refined around the superconductor such that we end up with roughly 240.000
cells and 1.020.000 degrees of freedom (DOFSs) for the mixed finite element space.
The resulting solution (Eqp, Bop) of (3.2) exhibits the physical phenomenon of the
Meissner-Ochsenfeld effect. In Figure 1, we see how the magnetic field lines get re-
pelled by the superconductor and since they are squashed between the superconductor
and the coil, one observes the highest magnetic field strength in this area (see Fig-
ure 1).

Fic. 2. Ewolution of the magnetic field around the superconductor in the time-steps tn for
n € {0,1,2,3,4}.

Keeping the observations of the first example in mind, we continue and compute
a time-dependent problem, where the solution of the first example serves as the dis-
crete initial electromagnetic field, since it satisfies the discrete compatibility system
(3.2). We consider the temperature dependence in the critical current density j. for
a superconductor with the nominal composition Y7 2 Bag.sCu0, as it was suggested
in [2]. Moreover, we set T'=1 as well as 7 = 1/6 and use the same amount of DOF's
and cells as in the first example. We place the cooled down superconductor inside
the coil in the same way it was done in the first example, but now the temperature 0
increases over time (see Table 1), whereas the applied current source f stays constant.
The evolution of the magnetic field over time is shown in Figure 2. One observes that
the magnetic field lines in the squashed area start penetrating the superconductor as
the temperature becomes larger and larger. As soon as the temperature 6 exceeds the
threshold 75K, the magnetical field completely penetrates the superconductor and we
can no longer observe the Meissner-Ochsenfeld effect.

Further Research. As pointed out in the introduction, the Bean critical-state
model is a free boundary problem, as it involves unknown superconductive and nor-
mal regions, which may change their locations in course of time, depending on the
temperature distribution 6 and the applied current source f. Thus, an adaptive mesh
refinement strategy based on rigorous a posteriori error estimators will be useful, not
only for increasing numerical accuracy, but also for capturing the unknown interfaces
between the superconductive and normal regions. We also point out that Theorem 3.8
opens a way to study the temperature control in the magnetization process of type-II
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superconductivity. This leads to a state-constrained optimal control problem governed
by a fully coupled system consisting of (VI) and non-smooth heat equations. This
problem requires a substantial extension of the recently developed optimal control
techniques for electromagnetic problems [34,36,37].
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