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Abstract. This paper considers a hyperbolic Maxwell variational inequality with temperature5
effects arising from Bean’s critical-state model in type-II (high-temperature) superconductivity. Here,6
temperature dependence is included in the critical current density due to its main importance for7
the realization of superconducting effects, as confirmed through physical measurements. We propose8
a fully discrete scheme based on the implicit Euler in time and a mixed FEM in space consisting9
of Nédélec’s edge elements for the electric field and piecewise constant elements for the magnetic10
induction. Furthermore, the initial approximation is specified by a compatibility system given by an11
elliptic curl-curl variational inequality. This specific setting enables us to derive the well-posedness12
of the discrete solution with a certain magnetic induction regularity. Our main result is the uniform13
convergence of the proposed fully discrete method. To prove this result, first of all, we establish14
stability estimates for the zero-order and first-order terms of the fully discrete solution. These15
stability estimates along with the underlying nonlinear structure allow us to derive a weak-star16
convergence result, which in particular yields the well-posedness of the governing Maxwell variational17
inequality with temperature effects. Finally, through the use of the solution operator for a discrete18
mixed variational problem in combination with the involved magnetic induction regularity and the19
weak-star convergence result, we are able to complete the proof of the uniform convergence. The last20
part of the paper is devoted to the a priori error analysis under a low Sobolev regularity assumption21
on the electric field. We close this paper by presenting some 3D numerical results, which especially22
confirm the physical Meissner-Ochsenfeld effect in superconductivity.23
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1. Introduction. The physical phenomenon of superconductivity is character-27

ized by zero electrical resistance and repulsion of magnetic fields (Meissner-Ochsenfeld28

effect) under the condition that the temperature is below some critical level. It was29

first discovered in 1911 by H. Kamerlingh-Onnes and has gained tremendous theoreti-30

cal and practical attentions ever since. Nowadays, modern magnetic levitation trains,31

distributed superconducting magnetic energy storage (D-SMES), magnetic resonance32

imaging (MRI) and magnetic confinement fusion cannot be realized without the use33

of superconductors, just to mention a few key technologies. A critical-state model de-34

scribing the magnetization process of penetration and exit of magnetic flux in type-II35

(high-temperature) superconductors was proposed by Bean [5, 6]. More precisely, his36

model describes a nonlinear and non-smooth constitutive relation between the (total)37

current density and the electric field as follows:38

(B1) The current density strength |J| cannot exceed the critical current jc;39

(B2) if |J| is strictly less than jc, then the electric field E vanishes;40

(B3) the electric field E is parallel to J.41

We underline that the (unknown) superconductive region is determined by points42

(x, t) ∈ Ω × (0, T ), for which the strict inequality |J(x, t)| < jc is satisfied. Thus, in43
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2 M. WINCKLER, I. YOUSEPT

this region, there is no electrical resistance so that the electric field must vanish.44

We refer to Bossavit [7–9] for early contributions towards extended Bean’s law45

and the corresponding finite element method. The Bean critical-state model (B1)-(B3)46

governed by the eddy current equations with magnetic field dependence jc = jc(H)47

leads to a parabolic quasi-variational inequality (QVI) of obstacle type. Prigozhin [31,48

32] was the first, who introduced and analyzed this formulation. Barrett and Prigozhin49

[3] analyzed it in a scalar two-dimensional (2D) setting and its dual formulation. The50

finite element analysis for the associated parabolic variational inequality in a 2D51

setting was investigated in [16] (see also [17] for a similar 2D model using an E-J-52

formulation). Furthermore, the numerical analysis for the three-dimensional (3D)53

setting was investigated in [15]. Recent results on the numerical analysis for the54

parabolic QVI in a 2D setting were obtained in [4]. All the previously mentioned55

contributions were devoted to the numerical analysis for the eddy current case. In the56

full 3D Maxwell case (cf. [22]), the Bean’s critical state model (B1)-(B3) with jc =57

jc(x) leads to a hyperbolic Maxwell variational inequality of the second kind [35] (see58

[33] for the mathematical analysis in a more general setting). The numerical analysis59

for this variational inequality is still in its earlier state. We are only aware of the60

recent work [35] for the analysis of the semi-discrete spatial Galerkin approximations.61

This paper is devoted to the fully discrete analysis of the Bean critical-state model62

(B1)-(B3) governed by the full 3D Maxwell equations with temperature effects. Let63

us underline that in all previously mentioned contributions, temperature dependence64

was neglected. However, by the nature of superconductivity, temperature effects play65

a major role, since superconducting effects strongly depend on the temperature itself66

and can only be reached, if the temperature is underneath some critical level. We67

refer to [2,14] concerning experimental measurements showing the strong temperature68

dependence in the critical current jc = jc(x, θ(x, t)) and its physical properties. Let69

us now formulate the variational inequality we focused on in this paper:70 

∫
Ω

ε∂tE(t) · (v −E(t)) + µ−1∂tB(t) · (w −B(t)) dx

+

∫
Ω

µ−1 curl E(t) ·w − µ−1B(t) · curl v dx

+ ϕ(θ(t),v)− ϕ(θ(t),E(t)) ≥
∫

Ω

f(t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and every (v,w) ∈ H0(curl)× L2(Ω),

(E(0),B(0)) = (E0,B0),

(VI)71

72

with a nonsmooth L1-type functional73

ϕ : L∞(Ω)× L1(Ω)→ R, (y,v) 7→
∫

Ω

jc(x, y(x))|v(x)| dx.74
75

In this setting, Ω ⊂ R3 is a bounded polyhedral domain with a connected Lipschitz-76

boundary ∂Ω. The assumption of the connected boundary guarantees that {v ∈77

H0(curl)∩H(div) | curl v = 0, div v = 0} = {0} (cf. [1, Proposition 3.18.]), which is78

required for our analysis in connection with the application of the (discrete) Poincaré-79

Friedrichs-type inequality [20, Theorem 4.7]. Furthermore, E : Ω × (0, T ) → R380

denotes the electric field, B : Ω×(0, T )→ R3 the magnetic induction, f : Ω×(0, T )→81

R3 the applied current source and θ : Ω× (0, T )→ R3 the temperature distribution.82

Note that in (VI) and all what follows, we use the abbreviation E(t) = E(·, t) (the83
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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE MODEL 3

same notation is also used for other quantities). The precise assumptions for the data84

involved in (VI) will be given in Section 2.85

In (VIN, h), we propose a fully discrete scheme for (VI) based on the implicit86

Euler in time and a mixed FEM in space consisting of Nédélec’s edge elements [30]87

for E and piecewise constant elements for B. Furthermore, we consider finite element88

approximations for the initial data (E0,B0) by solving an elliptic curl-curl variational89

inequality (3.2). This specific setting enables us to prove the well-posedness of (VIN, h)90

with a magnetic induction regularity in curl Vh (see Theorem 3.4), where Vh denotes91

the Nédélec edge element space.92

Our main goal is the uniform convergence of (VIN, h) towards (VI) (Theorem 3.10),93

which in particular yields the global well-posedness for (VI). The proof follows the94

following consecutive steps: First of all, by the compatibility system (3.2) and ex-95

ploiting the regularity properties of the critical current density and the given data,96

we derive stability estimates for the zero-order and first-order terms of the fully dis-97

crete solution (Lemmas 3.6 and 3.7). These a priori estimates together with the98

mathematical properties of ϕ allow us to extract weakly-* converging subsequences99

whose limits turn out to solve the original variational inequality (Theorem 3.8). In100

particular, this implies the well-posedness of (VI). Hereafter, we consider the solution101

operator Φh : H0(curl) → Vh associated with a discrete mixed variational problem102

(Definition 3.2) and use its properties in combination with the magnetic induction103

regularity in curl Vh and the weak-star convergence result to complete the proof of104

the uniform convergence. The final part of the paper is devoted to the a priori error105

analysis for the proposed fully discrete scheme (VIN, h). Under a low Sobolev reg-106

ularity assumption on the electric field E of (VI), we derive a priori estimates for107

the error between the fully discrete solution and the continuous one (Theorem 4.4).108

The proof is based on the use of the operator Φh : H0(curl) → Vh and the recent109

sharp quasi-interpolation results [13, 18, 19]. Last but not least, we refer the reader110

to some existing works [11, 12, 24, 25, 28] concerning fully discrete approximations for111

time-dependent Maxwell’s equations.112

2. Preliminaries. For a given Banach space X, we denote its norm by ‖·‖X and113

the duality pairing with the corresponding dual space X∗ by 〈·, ·〉. If X is a Hilbert114

space, then (·, ·)X stands for its scalar product and ‖ · ‖X for the induced norm. In115

the case of X = Rn, we renounce the subscript in the (Euclidean) norm and write116

| · |. The Euclidean scalar product is denoted by a dot. Unless otherwise stated, we117

identify the dual space X∗ with the Hilbert space X itself. The embedding between118

two Banach spaces X,Y is denoted by X ↪→ Y . Now, we introduce some important119

Hilbert spaces throughout this paper:120

H(curl) := {v∈L2(Ω):curl v∈L2(Ω)} and H(div) := {v∈L2(Ω):div v∈L2(Ω)},121122

where curl and div are understood in the distributional sense. Also, note that we use123

bold letters for vector-valued functions and the respective spaces. As usual, C∞0 (Ω)124

denotes the space of all infinitely differentiable functions with compact support in125

Ω. The spaces H0(curl) and H0(div) stand for the closure of C∞0 (Ω) with respect126

to the H(curl)-norm and the H(div)-norm, respectively. Furthermore, the spaces of127

divergence-free vector functions are128

H(div=0) := {v ∈ L2(Ω) : (v,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)},129

H0(div=0) := {v ∈ L2(Ω) : (v,∇φ)L2(Ω) = 0 ∀φ ∈ H1(Ω)},130131
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4 M. WINCKLER, I. YOUSEPT

which are endowed with the L2(Ω)-norm. Material parameters will occur on the prob-132

lem statement, and thus, for a given positive function α ∈ L∞(Ω), we denote by L2
α(Ω)133

the weighted L2(Ω)-space with the weighted scalar product (α·, ·)L2(Ω). Moreover, we134

denote by C > 0 a generic constant, that can change during an estimation. Let us135

close this section by presenting all the mathematical assumptions for (VI).136

Assumption 2.1 (Regularity assumptions on the material parameters).137

(A1) The material parameters ε, µ ∈ L∞(Ω) are strictly positive, i.e., there exist138

positive constants ε, ε, µ, µ ∈ R>0 such that139

ε ≤ ε(x) ≤ ε and µ ≤ µ(x) ≤ µ for a.e. x ∈ Ω.140141

(A2) For every y ∈ R, jc(·, y) : Ω→ R is Lebesgue-measurable and nonnegative.142

(A3) For every M > 0, there exists a constant C(M) > 0 such that143

0 ≤ jc(x, y) ≤ C(M)144145

for a.e. x ∈ Ω and every y ∈ [−M,M ].146

(A4) For every M > 0, there exists a constant L(M) > 0 such that147

|jc(x, y)− jc(x, z)| ≤ L(M)|y − z|148149

for a.e. x ∈ Ω and every y, z ∈ [−M,M ].150

Let us remark that the local Lipschitz property (A4) and the local boundedness151

property (A3) for the temperature dependence in the critical current are justified152

by experimental measurements reported in [2,14]. Note that assumptions (A2)–(A4)153

seem to be sharp for our mathematical analysis. In contrast to (A2)–(A4), from the154

mathematical point of view, (A1) is not sharp, as our results can be extended to155

matrix-valued material parameters ε and µ. However, this case leads to a physical156

model of an anisotropic material, for which Bean’s law (B1)–(B3) is not suitable.157

Indeed, (B3) is only reasonable for a scalar-valued resistivity, i.e., not for anisotropic158

materials (see [3, 4, 8, 15, 31, 32]). Therefore, due to this physical reason, we only159

consider scalar-valued material parameters.160

Assumption 2.2 (Regularity assumptions on the given data).161

(A5) Suppose that162

f ∈ C0,1([0, T ],L2(Ω)) and θ ∈ C0,1([0, T ], L2(Ω)) ∩ C([0, T ], L∞(Ω)).163164

(A6) The initial data (E0,B0) ∈ H0(curl)×H0(div=0) satisfies the compatibility165

system166 

∫
Ω

εE0 · (v −E0) + µ−1B0 · (w −B0) dx

+

∫
Ω

µ−1 curl E0 ·w − µ−1B0 · curl v dx

+ ϕ(θ(0),v)− ϕ(θ(0),E0) ≥
∫

Ω

f(0) · (v −E0) dx

for all (v,w) ∈ H0(curl)× L2(Ω).

(2.1)167

168

3. Fully discrete scheme. As pointed out in the introduction, we focus on the169

implicit Euler scheme for the time discretization in (VI). To this aim, let us fix N ∈ N170
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FULLY DISCRETE SCHEME FOR BEAN’S CRITICAL-STATE MODEL 5

and define an equidistant partition of [0, T ] in the following way:171

τ :=
T

N
, 0 = t0 < t1 < · · · < tN = T with tn := nτ172

173

for all n ∈ {0, . . . , N}. Furthermore, we define174

fn := f(tn) ∈ L2(Ω), ϕn(v) :=

∫
Ω

jc(x, θ(x, tn))|v(x)| dx ∀n ∈ {0, . . . , N}.175
176

We choose a family of quasi-uniform triangulations {Th}h>0, i.e.,177

Ω =
⋃
T∈Th

T ∀h > 0,178

179

and, for hT denoting the diameter of T and ρT denoting the diameter of the largest180

ball contained in T , there exist constants ρ > 0 and ν > 0 such that181

hT
ρT
≤ ρ and

h

hT
≤ ν ∀T ∈ Th, ∀h > 0.182

183

The subscript h denotes the maximum of hT for T ∈ Th. The finite element space of184

Nédélec’s first family of edge elements is defined by185

Vh := {vh ∈ H0(curl) : vh|T = aT + bT × x with aT ,bT ∈ R3, ∀T ∈ Th},186187

and the finite element space of piecewise constant functions is denoted by188

Wh := {wh ∈ L2(Ω) : wh|T = aT with aT ∈ R3, ∀T ∈ Th},189190

which satisfy curl Vh ⊂Wh. In addition to these spaces, we introduce the space of191

continuous piecewise linear elements with vanishing traces by192

Θh := {φh ∈ H1
0 (Ω) : φh|T = aT · x+ bT with aT ∈ R3, bT ∈ R ∀T ∈ Th}.193194

Moreover, the family {Th}h>0 is chosen such that there exists h̄ > 0 with195

(3.1) Vh̃ ⊂ Vh and Wh̃ ⊂Wh ∀ 0 < h ≤ h̃ ≤ h̄.196

Having introduced all the required finite element spaces, we now propose the following197

fully discrete scheme to (VI):198

(VIN, h)



∫
Ω

εδEn
h · (vh −En

h) + µ−1δBn
h · (wh −Bn

h) dx

+

∫
Ω

µ−1 curl En
h ·wh − µ−1Bn

h · curl vh dx

+ ϕn(vh)− ϕn(En
h) ≥

∫
Ω

fn · (vh −En
h) dx

for every (vh,wh) ∈ Vh ×Wh and n ∈ {1, . . . , N}
(E0

h,B
0
h) = (E0h,B0h),

199

where200

δEn
h :=

En
h −En−1

h

τ
and δBn

h :=
Bn
h −Bn−1

h

τ
∀n ∈ {1, . . . , N},201

202
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6 M. WINCKLER, I. YOUSEPT

Moreover, (E0h,B0h) ∈ Vh ×Wh denotes the finite element approximation of the203

initial data (E0,B0), which is defined as the solution to the discrete mixed problem204 

∫
Ω

εE0h · (vh −E0h) + µ−1B0h · (wh −B0h) dx

+

∫
Ω

µ−1 curl E0h ·wh − µ−1B0h · curl vh dx

+ ϕ(θ(0),vh)− ϕ(θ(0),E0h) ≥
∫

Ω

f(0) · (vh −E0h) dx

for all (vh,wh) ∈ Vh ×Wh.

(3.2)205

206

The well-posedness of (3.2) follows from the classical theory of variational inequalities207

[26, Theorem 2.2], as (3.2) is equivalent to an elliptic curl-curl variational inequality208

(cf. the proof of Theorem 3.4). In view of (3.2), it makes sense to set (δE0
h, δB

0
h) :=209

(E0h,B0h). Indeed, if we replace (δEn
h, δB

n
h) by (E0h,B0h) in (VIN, h) and set n = 0,210

then we arrive exactly at (3.2). Note that (δE0
h, δB

0
h) = (E0h,B0h) is important for211

our stability analysis (see (3.22) in the proof of Lemma 3.7).212

Remark 3.1. All mathematical findings in this paper remain true, if we replace213

Wh by Wh ∩H0(div). Both Wh and Wh ∩H0(div) are dense in L2(Ω) and con-214

tain curl Vh. The condition of curl Vh being a subspace is necessary to prove the215

regularity properties B0h,B
n
h ∈ curl Vh for the solutions to (3.2) and (VIN, h); see216

Lemma 3.3 and Theorem 3.4. Furthermore, the density property is required for the217

derivation of the weak-∗ convergence result (Theorem 3.8). We note that the choice218

Wh = curl Vh is not suitable for our analysis, as curl Vh is not dense in L2(Ω).219

Definition 3.2. For every h > 0 and y ∈ H0(curl), we denote the solution220

operator of the discrete variational mixed problem221 {
(curl yh, curl vh)L2

1/µ
(Ω) = (curl y, curl vh)L2

1/µ
(Ω) ∀vh ∈ Vh,

(yh,∇ψh)L2(Ω) = (y,∇ψh)L2(Ω) ∀ψh ∈ Θh

(3.3)222

223

by Φh : H0(curl)→ Vh with Φhy := yh.224

The theory of mixed problems (cf. [29, Theorem 2.45]) in combination with the discrete225

Poincaré-Friedrichs-type inequality [20, Theorem 4.7] and the discrete LBB condition226

(cf. [37, pp. 2802-2803]) implies that for every h > 0 and y ∈ H0(curl), (3.3) admits227

a unique solution yh = Φhy ∈ Vh satisfying228

‖Φhy − y‖H(curl) ≤ C
(

inf
χh∈Vh

‖y − χh‖H(curl)

)
∀y ∈ H0(curl).(3.4)229

230

with a constant C > 0, independent of h and y. In particular, (3.4) yields231

‖Φhy‖H(curl) ≤ (C + 1)‖y‖H(curl) ∀h > 0, ∀y ∈ H0(curl).(3.5)232233

Moreover, (3.4) along with the density property of Vh:234

∀v ∈ H0(curl) ∀δ > 0 ∃h̃ > 0 ∀h ∈ (0, h̃) ∃vh ∈ Vh : ‖v − vh‖H(curl) ≤ δ235

implies that236

lim
h→0
‖Φhy − y‖H(curl) = 0 ∀y ∈ H0(curl).(3.6)237

238

This operator enables us to show the strong convergence of the discrete initial values239

towards (E0,B0).240
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Lemma 3.3. Under Assumptions 2.1 and 2.2, the discrete approximation of the241

initial value (E0h,B0h) ∈ Vh ×Wh satisfies B0h ∈ curl Vh for all h > 0 and242

lim
h→0
‖E0h −E0‖L2

ε(Ω) = lim
h→0
‖B0h −B0‖L2

1/µ
(Ω) = 0.243

244

Proof. Let h > 0. Inserting vh = E0h in (3.2), we obtain that245 ∫
Ω

µ−1(B0h + curl E0h) · (wh −B0h)dx = 0 ∀wh ∈Wh.(3.7)246
247

Since curl Vh ⊂Wh, we may set wh := 2B0h + curl E0h in (3.7), which implies248

B0h = − curl E0h.(3.8)249250

Thus, B0h ∈ curl Vh ⊂ H0(div=0) follows. Moreover, testing (3.2) with (vh,wh) =251

(2E0h, 2B0h) as well as (vh,wh) = (0, 0) yields252

‖E0h‖2L2
ε(Ω) + ‖B0h‖2L2

1/µ
(Ω) +

∫
Ω

jc(x, θ(x, 0))|E0h(x)| dx =

∫
Ω

f(0) ·E0h dx253

⇒ ‖E0h‖L2
ε(Ω) ≤ ‖ε−1/2f(0)‖L2(Ω).(3.9)254

Next, we insert (v,w) = (E0h,B0h) into (2.1) and (vh,wh) = (ΦhE0, 0) into (3.2)255

and obtain after adding the resulting inequalities together that256

‖E0h −E0‖2L2
ε(Ω) + ‖B0h −B0‖2L2

1/µ
(Ω)(3.10)257

≤
∫

Ω

f(0) · (E0 −ΦhE0) dx+

∫
Ω

εE0h · (ΦhE0 −E0) dx258

−
∫

Ω

µ−1(B0h + curl E0h) ·B0 dx+

∫
Ω

µ−1B0h · curl(E0 −ΦhE0) dx259

+

∫
Ω

jc(x, θ(x, 0))
(
|ΦhE0| − |E0|

)
dx.260

261

Due to (3.8), the third term on the right-hand side of (3.10) vanishes. Moreover,262 ∫
Ω

µ−1B0h · curl(E0 −ΦhE0) dx =︸︷︷︸
(3.8)

∫
Ω

µ−1 curl E0h · curl(E0 −ΦhE0) dx =︸︷︷︸
(3.3)

0.263

264

Thus, applying Hölder’s inequality together with (A3), (A5) and (3.9) to (3.10) yields265

‖E0h −E0‖2L2
ε(Ω) + ‖B0h −B0‖2L2

1/µ
(Ω) ≤ C‖ΦhE0 −E0‖L2

ε(Ω)(3.11)266
267

with a constant C > 0 only depending on ε, f , jc and θ. Finally, passing to the limit268

h→ 0 in (3.11), (3.6) yields the assertion.269

The following theorem proves the well-posedness of (VIN, h) and gives an important270

regularity property for the discrete magnetic induction.271

Theorem 3.4. Let Assumptions 2.1 and 2.2 hold. Then, for every h > 0 and N ∈272

N, the system of discrete variational inequalities (VIN, h) admits a unique solution273

{(En
h,B

n
h)}Nn=1 ⊂ Vh × curl Vh.274
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8 M. WINCKLER, I. YOUSEPT

Proof. Let N ∈ N, h > 0 and n ∈ {1, . . . , N}. Furthermore, assume that275

(En−1
h ,Bn−1

h ) is already known. Using the same arguments as in (3.8), we may de-276

couple the variational inequality into two parts by testing (VIN, h) with vh = En
h to277

obtain that278

δBn
h = − curl En

h.(3.12)279280

By definition, (3.12) yields the following explicit formula for Bn
h:281

Bn
h = Bn−1

h − τ curl En
h.(3.13)282283

Next, we insert wh = Bn
h in (VIN, h) and employ (3.13) to obtain the variational284

inequality285

286

(3.14)

∫
Ω

εδEn
h · (vh −En

h) dx+

∫
Ω

τµ−1 curl En
h · curl(vh −En

h) dx+ ϕn(vh)287

− ϕn(En
h) ≥

∫
Ω

fn · (vh −En
h) + µ−1Bn−1

h · curl(vh −En
h) dx ∀vh ∈ Vh.288

289

The well-posedness of (3.14) is covered by a classical result in [26, Theorem 2.2],290

because it is equivalent to an elliptic curl-curl variational inequality of the form291

a(En
h,vh −En

h) + ϕn(vh)− ϕn(En
h) ≥ 〈f̃n,vh −En

h〉 ∀vh ∈ Vh,(3.15)292293

with the continuous and coercive bilinear form a : Vh ×Vh → R defined by294

a(uh,vh) :=

∫
Ω

τ−1εuh · vh dx+

∫
Ω

τµ−1 curl uh · curl vh dx ∀uh,vh ∈ Vh295
296

and the right-hand side f̃n ∈ H0(curl)∗ by297

〈f̃n,v〉 :=

∫
Ω

(fn + τ−1εEn−1
h ) · v dx+

∫
Ω

µ−1Bn−1
h · curl v dx ∀v ∈ H0(curl).298

299

Inserting the solution En
h of (3.14) into (3.13), we finally obtain a unique solution300

{(En
h,B

n
h)}Nn=1 ⊂ Vh ×Wh301302

of (VIN, h). Finally, (3.13) and Lemma 3.3 give Bn
h ∈ curl Vh by inductive reasoning.303

Remark 3.5. The formulas (3.13) and (3.14) will be the foundation for the com-304

putation of the numerical solution.305

The following Lemmas prove the zero-order and first-order stability estimates for the306

fully discrete solution to (VIN, h):307

Lemma 3.6. Let Assumptions 2.1 and 2.2 be satisfied. Then, there exists a con-308

stant C > 0, depending only on f ,E0,B0 and T, ε, µ, such that for every N ∈ N and309

h > 0, the solution {(En
h,B

n
h)}Nn=1 of (VIN, h) fulfills the estimate310

311

(3.16) max
n∈{1,...,N}

‖En
h‖2L2

ε(Ω) + max
n∈{1,...,N}

‖Bn
h‖2L2

1/µ
(Ω)312

+

N∑
n=1

‖En
h −En−1

h ‖2L2
ε(Ω) +

N∑
n=1

‖Bn
h −Bn−1

h ‖2L2
1/µ

(Ω) + 2τ

N∑
n=1

ϕn(En
h) ≤ C.313

314
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Proof. Let N ∈ N and h > 0. We start by testing (VIN, h) with (vh,wh) =315

(2En
h, 2Bn

h) as well as with (vh,wh) = (0, 0) to obtain316

∫
Ω

εδEn
h ·En

h dx+

∫
Ω

µ−1δBn
h ·Bn

h dx+ ϕn(En
h) =

∫
Ω

fn ·En
h dx ∀n ∈ {1, . . . , N}.

(3.17)

317
318

Now, fix i0 ∈ {1, . . . , N} and sum (3.17) up over {1, . . . , i0}. Then, applying the319

binomial formulas along with the Hölder and Young inequalities, we deduce that320

‖Ei0
h ‖

2
L2
ε(Ω) + ‖Bi0

h ‖L2
1/µ

(Ω) +

i0∑
n=1

‖En
h −En−1

h ‖2L2
ε(Ω)(3.18)321

+

i0∑
n=1

‖Bn
h −Bn−1

h ‖2L2
1/µ

(Ω) + 2τ

i0∑
n=1

ϕn(En
h)322

≤ 2Tτ

ε

i0∑
n=1

‖fn‖2L2(Ω) + ‖E0h‖2L2
ε(Ω) + ‖B0h‖2L2

1/µ
(Ω) +

τ

2T

i0∑
n=1

‖En
h‖2L2

ε(Ω).323

324

This, combined with (A5) and Lemma 3.3 and the fact that τ/T = 1/N ≤ 1 gives us325

an estimate of the form326

‖Ei0
h ‖

2
L2
ε(Ω) ≤ C +

i0−1∑
n=1

1

N
‖En

h‖2L2
ε(Ω) ⇒ ‖Ei0

h ‖
2
L2
ε(Ω) ≤ C exp

(
i0−1∑
n=1

1

N

)
≤ C,327

328

where we have used the discrete Gronwall inequality. Since i0 was arbitrary, we see329

from (3.18) that the proof is finished.330

Lemma 3.7. Let Assumptions 2.1 and 2.2 hold. Then, there exists a constant331

C > 0, depending only on f ,E0,B0 and T, ε, µ, θ, jc, such that for every N ∈ N and332

h > 0 the solution {(En
h,B

n
h)}Nn=1 of (VIN, h) satisfies333

334

(3.19) max
n∈{1,...,N}

‖δEn
h‖2L2

ε(Ω) + max
n∈{1,...,N}

‖δBn
h‖2L2

1/µ
(Ω)335

+

N∑
n=1

‖δEn
h − δEn−1

h ‖2L2
ε(Ω) +

N∑
n=1

‖δBn
h − δBn−1

h ‖2L2
1/µ

(Ω) ≤ C336

337

and338

max
n∈{1,...,N}

‖ curl En
h‖2L2

1/µ
(Ω) ≤ C.(3.20)339

340

Proof. Let N ∈ N, h > 0 and n ∈ {1, . . . , N}. Inserting (vh,wh) = (En−1
h ,Bn−1

h )341

in the n-th inequality of (VIN, h) and then adding it with the (n− 1)-th inequality of342

(VIN, h) tested with (vh,wh) = (En
h,B

n
h) lead to343 ∫

Ω

ε(δEn
h − δEn−1

h ) · (En
h −En−1

h ) + µ−1(δBn
h − δBn−1

h ) · (Bn
h −Bn−1

h ) dx(3.21)344

≤
∫

Ω

(fn − fn−1) · (En
h −En−1

h ) dx+

∫
Ω

jc(x, θ(x, tn))(|En−1
h | − |En

h|) dx345

+

∫
Ω

jc(x, θ(x, tn−1))(|En
h| − |En−1

h |) dx.346
347
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10 M. WINCKLER, I. YOUSEPT

We sum (3.21) up over {1, . . . , i0} for a fixed i0 ∈ {1, . . . , N} and divide the resulting348

inequality by τ to get349

i0∑
n=1

[∫
Ω

ε(δEn
h − δEn−1

h ) · δEn
h dx+

∫
Ω

µ−1(δBn
h − δBn−1

h ) · δBn
h dx

]
350

≤
i0∑
n=1

[∫
Ω

(fn − fn−1) · δEn
h dx +

∫
Ω

(
jc(x, θ(x, tn))− jc(x, θ(x, tn−1))

)
351 (

|En−1
h | − |En

h|
τ

)
dx

]
.352

353

Then, as in the proof of Lemma 3.6, the binomial formulas along with the Hölder and354

Young inequalities yield355

‖δEi0
h ‖

2
L2
ε(Ω) + ‖δBi0

h ‖
2
L2

1/µ
(Ω) +

i0∑
n=1

‖δEn
h − δEn−1

h ‖2L2
ε(Ω) + ‖δBn

h − δBn−1
h ‖2L2

1/µ
(Ω)

(3.22)

356

≤ 4Tτ

ε

i0∑
n=1

∥∥∥∥ fn − fn−1

τ

∥∥∥∥2

L2(Ω)

+
4Tτ

ε

i0∑
n=1

∥∥∥∥jc(x, θ(x, tn))− jc(x, θ(x, tn−1))

τ

∥∥∥∥2

L2(Ω)

357

+ ‖E0h‖2L2
ε(Ω) + ‖B0h‖2L2

1/µ
(Ω) +

τ

2T︸︷︷︸
= 1

2N

i0∑
n=1

‖δEn
h‖2L2

ε(Ω),358

359

where we have also used δE0h = E0h and δB0h = B0h. Therefore, (A4), (A5) and360

Lemma 3.3 applied to (3.22) imply361

‖δEi0
h ‖

2
L2
ε(Ω) ≤ C +

i0−1∑
n=1

1

N
‖δEn

h‖2L2
ε(Ω) ⇒ ‖δEi0

h ‖
2
L2
ε(Ω) ≤ C exp

(
i0−1∑
n=1

1

N

)
≤ C,362

363

by the discrete Gronwall inequality. Since i0 was chosen arbitrarily, applying the364

above estimate to (3.22) yields (3.19). Finally, (3.20) follows immediately from (3.12)365

and (3.19).366

With these stability estimates at hand, we will establish a weak-∗ convergence367

result for (VIN, h), which particularly implies the well-posedness of (VI). First, we368

denote369 {
EN,h(0) := E0h

EN,h(t) := En−1
h + (t− tn−1)δEn

h

and

{
EN,h(0) := E0h

EN,h(t) := En
h

(3.23)370
371

for t ∈ (tn−1, tn] and n ∈ {1, . . . , N}. In the same way, we define BN,h,BN,h and fN .372

Furthermore, we introduce the function ϕN : [0, T ]× L2(Ω)→ R by373 
ϕN (0,v) := ϕ(θ(0),v) =

∫
Ω

jc(x, θ(x, 0))|v(x)| dx

ϕN (t,v) := ϕn(v) =

∫
Ω

jc(x, θ(x, tn))|v(x)| dx ∀t ∈ (tn−1, tn],

(3.24)374

375
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for v ∈ L2(Ω) and n ∈ {1, . . . , N}. Now, we can rewrite (VIN, h) in the following376

manner:377

(3.25)



∫
Ω

ε∂tEN,h(t) · (vh −EN,h(t)) + µ−1∂tBN,h(t) · (wh −BN,h(t)) dx

+

∫
Ω

µ−1 curl EN,h(t) ·wh − µ−1BN,h(t) · curl vh dx

+ ϕN (t,vh)− ϕN (t,EN,h(t)) ≥
∫

Ω

fN (t) · (vh −EN,h(t)) dx

for every (vh,wh) ∈ Vh ×Wh and a.e. t ∈ (0, T )

(EN,h(0),BN,h(0)) = (E0h,B0h).

378

379

Theorem 3.8. Let Assumptions 2.1 and 2.2 hold. Then, there exists a pair380

(E,B) ∈W 1,∞((0, T ),L2
ε(Ω)×H0(div=0)) ∩ L∞((0, T ),H0(curl)×H0(div=0))381382

such that for N = N(h) with N(h)→∞ as h→ 0 it holds that383

EN,h ⇀
∗ E and EN,h ⇀

∗ E weakly-* in L∞((0, T ),H0(curl)),384

BN,h ⇀
∗ B and BN,h ⇀

∗ B weakly-* in L∞((0, T ),H0(div=0)),385

∂tEN,h ⇀
∗ ∂tE weakly-* in L∞((0, T ),L2

ε(Ω)),386

∂tBN,h ⇀
∗ ∂tB weakly-* in L∞((0, T ),H0(div=0)),387388

and (E,B) is the unique solution to (VI).389

Proof. First of all, we emphasize that N = N(h) denotes a family of natural390

numbers with N(h) → ∞ for h → 0. As shown in Lemma 3.6 and Lemma 3.7,391

{EN,h}h>0, {BN,h}h>0, {EN,h}h>0, {BN,h}h>0, and {∂tEN,h}h>0, {∂tBN,h}h>0 are392

bounded in their respective spaces. Therefore, we may extract weakly-∗ converging393

subsequences, which will not be denoted in a special way:394 

EN,h ⇀
∗ E weakly-* in L∞((0, T ),H0(curl)),

BN,h ⇀
∗ B weakly-* in L∞((0, T ),H0(div=0)),

EN,h ⇀
∗ E weakly-* in L∞((0, T ),H0(curl)),

BN,h ⇀
∗ B weakly-* in L∞((0, T ),H0(div=0)),

∂tEN,h ⇀
∗ ξ weakly-* in L∞((0, T ),L2

ε(Ω)),

∂tBN,h ⇀
∗ χ weakly-* in L∞((0, T ),H0(div=0)),

(3.26)395

396

for some E,B,E,B, ξ, χ as h → 0. First of all, we verify that E = E and B = B.397

However, this is readily seen by the definition (3.23) and Lemma 3.7 since398

‖EN,h −EN,h‖L∞((0,T ),L2
ε(Ω)) ≤ τ max

n∈{1,...,N}
‖δEn

h‖L2
ε(Ω) ≤ Cτ,

‖BN,h −BN,h‖L∞((0,T ),L2
1/µ

(Ω)) ≤ τ max
n∈{1,...,N}

‖δBn
h‖L2

1/µ
(Ω) ≤ Cτ.

(3.27)399

400
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Next, derivation in the sense of distributions gives401

402 ∫ T

0

(ξ(t),v)L2
ε(Ω)φ(t)dt ←︸︷︷︸

(3.26)

∫ T

0

(∂tEN,h(t),v)L2
ε(Ω)φ(t)dt403

= −
∫ T

0

(EN,h(t),v)L2
ε(Ω)φ

′(t)dt →︸︷︷︸
(3.26)

−
∫ T

0

(E(t),v)L2
ε(Ω)φ

′(t)dt404

405

for every v ∈ L2(Ω) and φ ∈ C∞0 (0, T ), which yields ξ = ∂tE and so406

E ∈W 1,∞((0, T ),L2
ε(Ω)) ∩ L∞((0, T ),H0(curl)).407408

Obviously, the same conclusion can be drawn for χ = ∂tB, which implies that B ∈409

W 1,∞((0, T ),H0(div=0)). Note that410

(E,B) ∈W 1,∞((0, T ),L2
ε(Ω)×H0(div=0)) ↪→ C([0, T ],L2

ε(Ω)×H0(div=0))411412

implies possibly after a modification on a subset of [0, T ] with measure zero that413

(E,B) ∈ C([0, T ],L2
ε(Ω)×H0(div=0)). Next, we prove the pointwise weak convergence414

EN,h(t) ⇀ E(t) weakly in L2
ε(Ω) and BN,h(t) ⇀ B(t) weakly in H0(div=0)

(3.28)

415416

for every t ∈ [0, T ]. For that purpose, we fix t ∈ (0, T ], w ∈ L2(Ω) and φ ∈ C1([0, t]).417

Then, integration by parts yields418

419

(3.29)

∫ t

0

(∂tE(s),w)L2
ε(Ω)φ(s)ds←

∫ t

0

(∂tEN,h(s),w)L2
ε(Ω)φ(s)ds420

= −
∫ t

0

(EN,h(s),w)L2
ε(Ω)φ

′(s)ds+ (EN,h(t),w)L2
ε(Ω)φ(t)− (EN,h(0),w)L2

ε(Ω)φ(0).421
422

Choosing φ(0) = 0 as well as φ(t) 6= 0 and applying integration by parts again gives423

lim
h→0

(EN,h(t),w)L2
ε(Ω) = (E(t),w)L2

ε(Ω) ∀w ∈ L2(Ω).424
425

Applying the above convergence to (3.29) and choosing φ(0) 6= 0 leads to426

lim
h→0

(EN,h(0),w)L2
ε(Ω) = (E(0),w)L2

ε(Ω) ∀w ∈ L2(Ω).427
428

The same results hold also for BN,h, and so we conclude that (3.28) is valid. From429

Lemma 3.3, (3.23) and (3.28) with t = 0, it follows that430

E(0) = E0 and B(0) = B0.(3.30)431432

We continue and recall the classical identity:433 ∫ t

0

(∂tEN,h(s),EN,h(s))L2
ε(Ω)ds =

1

2
‖EN,h(t)‖2L2

ε(Ω) −
1

2
‖E0h‖2L2

ε(Ω).(3.31)434
435
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Combining (3.31) with (3.28) and Lemma 3.3 yields436

lim inf
h→0

∫ t

0

(∂tEN,h(s),EN,h(s))L2
ε(Ω)ds(3.32)437

=︸︷︷︸
(3.27)

lim inf
h→0

∫ t

0

(∂tEN,h(s),EN,h(s))L2
ε(Ω)ds438

=︸︷︷︸
(3.31)

lim inf
h→0

1

2
‖EN,h(t)‖2L2

ε(Ω) −
1

2
‖E0h‖2L2

ε(Ω)439

≥ 1

2
‖E(t)‖2L2

ε(Ω) −
1

2
‖E(0)‖2L2

ε
=

∫ t

0

(∂tE(s),E(s))L2
ε(Ω)ds,440

441

where the above inequality holds due to the fact that the squared norm is weakly442

lower semicontinuous. Analogously, we obtain443

lim inf
h→0

∫ t

0

(∂tBN,h(s),BN,h(s))L2
1/µ

(Ω)ds ≥
∫ t

0

(∂tB(s),B(s))L2
1/µ

(Ω)ds.(3.33)444
445

Next, we prove446

lim inf
h→0

ϕN (t,EN,h(t))ds ≥ ϕ(θ(t),E(t)) ∀t ∈ [0, T ].(3.34)447
448

For t = 0, Lemma 3.3 and (3.23), (3.24), and (3.30) grant even the strong convergence449

lim
h→0

ϕN (0,EN,h(0)) = lim
h→0

∫
Ω

jc(x, θ(x, 0))|E0h| dx = ϕ(θ(0),E(0)).450
451

Let now t ∈ (0, T ]. Then, for every N ∈ N, there exists a unique n ∈ {1, . . . , N} such452

that t ∈ (tn−1, tn]. Hence, the sequence t̃N,h := tn fulfills t̃N,h → t as h→ 0. Making453

use of this sequence, we obtain that454

lim inf
h→0

ϕN (t,EN,h(t))(3.35)455

= lim inf
h→0

(
ϕ(θ(t),EN,h(t)) +

∫
Ω

(jc(x, θ(x, t̃N,h))− jc(x, θ(x, t)))|EN,h(t)| dx
)

456

≥ϕ(θ(t),E(t)) + lim inf
h→∞

∫
Ω

(jc(x, θ(x, t̃N,h))− jc(x, θ(x, t)))|EN,h(t)| dx,457
458

where we have employed (3.28) and the fact that ϕ(θ(t), ·) : L2
ε(Ω) → R, for every459

fixed t ∈ [0, T ], is sequentially weakly lower semicontinuous. In order to pass to the460

limit in the second term in (3.35), we make use of (A4) and (A5) to deduce after461

selecting a subsequence that462

(3.36) lim
h→0

jc(x, θ(x, t̃N,h))− jc(x, θ(x, t)) = 0 for a.e. x ∈ Ω,463

and so, thanks to (A3)–(A5) and Lemma 3.6, Lebesgue’s dominated convergence464

theorem yields465

lim
h→0

∫
Ω

|jc(x, θ(t̃N,h, x))− jc(x, θ(t, x))||EN,h(t)|dx = 0.(3.37)466
467

In conclusion, (3.34) is valid.468
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Now, we show that (E,B) is a solution to (VI): Fix t ∈ (0, T ], h̃ ∈ (0, h̄], integrate469

(3.25) for h < h̃ over [0, t] and test it with (vh̃,wh̃) ∈ Vh̃×Wh̃⊂Vh×Wh (cf. (3.1)).470

Afterwards, we apply the limit superior to the resulting inequality to deduce471 ∫ t

0

(f(s),vh −E(s))L2(Ω)ds = lim
h→0

∫ t

0

(fN (s),vh −EN,h(s))L2(Ω)ds(3.38)472

≤︸︷︷︸
(3.25)

lim sup
h→0

[∫ t

0

(∂tEN,h(s),vh −EN,h(s))L2
ε(Ω)ds473

+

∫ t

0

(∂tBN,h(s),wh −BN,h(s))L2
1/µ

(Ω) + (curl EN,h(s),wh)L2
1/µ

(Ω)ds474

−
∫ t

0

(BN,h(s), curl vh)L2
1/µ

(Ω)ds+

∫ t

0

ϕN (s,vh)− ϕN (s,EN,h(s))ds

]
475

≤︸︷︷︸
(3.26),(3.32),(3.33)

∫ t

0

(∂tE(s),v −E(s))L2
ε(Ω) + (∂tB(s),w −B(s))L2

1/µ
(Ω)ds476

+

∫ t

0

(curl E(s),w)L2
1/µ

(Ω) − (B(s), curl v)L2
1/µ

(Ω)ds477

+

∫ t

0

ϕ(θ(s),v)− ϕ(θ(s),E(s))ds,478
479

where we have also used (3.34) and Fatou’s lemma to obtain convergence of the last480

time integral. Since there is no restriction to h̃ > 0, the density of Vh ⊂ H0(curl)481

and Wh ⊂ L2(Ω) yields, if we differentiate (3.38) with respect to t, that (E,B) ∈482

W 1,∞((0, T ),L2
ε(Ω) ×H0(div=0)) ∩ L∞((0, T ),H0(curl) ×H0(div=0)) satisfies the483

evolutionary variational inequality (VI).484

The uniqueness of the solution to (VI) follows by an energy argument: Let485

(Ẽ, B̃) ∈ W 1,∞((0, T ),L2
ε(Ω) × L2

1/µ(Ω)) ∩ L∞((0, T ),H0(curl) × L2
1/µ(Ω)) be an-486

other solution to (VI). Then, inserting (v,w) = (Ẽ(t), B̃(t)) in (VI) associated with487

(E,B) and (v,w) = (E(t),B(t)) in (VI) associated with (Ẽ, B̃), and then adding the488

resulting inequalities together, we obtain489 ∫
Ω

ε(∂tE(t)− ∂tẼ(t)) · (E(t)− Ẽ(t)) + µ−1(∂tB(t)− ∂tB̃(t)) · (B(t)− B̃(t)) dx ≤ 0,490
491

which implies that the difference (e(t),b(t)) = (E(t)− Ẽ(t),B(t)− B̃(t)) fulfills492

1

2

d

dt
‖e(t)‖2L2

ε(Ω) +
1

2

d

dt
‖b(t)‖2L2

1/µ
(Ω) ≤ 0.493

494

Since e(0) = b(0) = 0, the above inequality yields that e(t) = b(t) = 0 for all495

t ∈ [0, T ]. Hence, (E,B) is the unique solution to (VI).496

Remark 3.9. A main consequence of Theorem 3.8 is the global well-posedness for497

(VI). We point out that, based on a direct approach, i.e., without discretization tech-498

niques, [33] proved existence and uniqueness results for hyperbolic Maxwell variational499

inequalities with a general nonlinearity. However, due to the temperature-dependent500

critical current density jc, [33] cannot be applied to deduce the well-posedness of501

(VI). Here, the direct approach requires a substantial extension of [33] to the case of502

time-dependent nonlinearities.503
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We now prove our main result on the uniform convergence of (3.25) towards (VI).504

Theorem 3.10. Let N = N(h) be a family of natural numbers with N(h) → ∞505

for h→ 0. Then, under Assumptions 2.1 and 2.2, the solution (EN,h,BN,h) to (3.25)506

converges uniformly to the solution (E,B) of (VI), i.e.,507

lim
h→0
‖EN,h −E‖C([0,T ],L2

ε(Ω)) = lim
h→0
‖BN,h −B‖C([0,T ],L2

1/µ
(Ω)) = 0,508

lim
h→0
‖EN,h −E‖L∞((0,T ),L2

ε(Ω)) = lim
h→0
‖BN,h −B‖L∞((0,T ),L2

1/µ
(Ω)) = 0.509

510

Proof. First of all, we test (VI) with (v,w) = (EN,h(t),BN,h(t)) to obtain511

∫
Ω

ε∂tE(t) · (EN,h(t)−E(t)) + µ−1∂tB(t) · (BN,h(t)−B(t)) dx(3.39)512

+

∫
Ω

µ−1 curl E(t) ·BN,h(t)− µ−1B(t) · curl EN,h(t) dx513

+ ϕ(θ(t),EN,h(t))− ϕ(θ(t),E(t)) ≥
∫

Ω

f(t) · (EN,h(t)−E(t)) dx514
515

for a.e. t ∈ (0, T ). Next, inserting (vh,wh) = (ΦhE(t), 0) ∈ Vh ×Wh in (3.25) leads516

to517

∫
Ω

ε∂tEN,h(t) · (E(t)−EN,h(t)) + µ−1∂tBN,h(t) · (B(t)−BN,h(t)) dx(3.40)518

+

∫
Ω

ε∂tEN,h(t) · (ΦhE(t)−E(t)) dx−
∫

Ω

µ−1∂tBN,h(t) ·B(t) dx519

−
∫

Ω

µ−1BN,h(t) · curl ΦhE(t) dx+ ϕN (t,ΦhE(t))− ϕN (t,EN,h(t))520

≥
∫

Ω

fN (t) · (ΦhE(t)−EN,h(t)) dx521
522

for a.e. t ∈ (0, T ). Now, by using the fact that ∂tBN,h(t) = − curl EN,h(t) holds for523

a.e. t ∈ (0, T ) (see (3.13) and (3.23)), we obtain524

∫
Ω

µ−1(∂tBN,h(t) + curl EN,h(t)) ·B(t) dx = 0 for a.e. t ∈ (0, T ).(3.41)525
526

Moreover, we know from Theorem 3.4 that BN,h(t) ∈ curl Vh, which implies by (3.3)527

that528

∫
Ω

µ−1BN,h(t) · curl(E(t)−ΦhE(t)) dx = 0 for a.e. t ∈ (0, T ).(3.42)529
530

In view of (3.41)–(3.42), adding (3.39) and (3.40) together and then integrating the531
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resulting inequality over the time interval [0, σ] with σ ∈ (0, T ] yield that532 ∫ σ

0

∫
Ω

ε(∂tEN,h(t)− ∂tE(t)) · (EN,h(t)−E(t)) dxdt(3.43)533

+

∫ σ

0

∫
Ω

µ−1(∂tBN,h(t)− ∂tB(t)) · (BN,h(t)−B(t)) dxdt534

≤
∫ σ

0

[∫
Ω

fN (t) · (E(t)−ΦhE(t)) + (f(t)− fN (t)) · (E(t)−EN,h(t)) dx535

+

∫
Ω

ε∂tEN,h(t) · (ΦhE(t)−E(t)) dx+
(
ϕN (t,ΦhE(t))− ϕ(θ(t),E(t))

)
536

+
(
ϕ(θ(t),EN,h(t))− ϕN (t,EN,h(t))

)]
dt =:

5∑
i=1

Ci.537

538

We proceed by showing the convergence of Ci, i ∈ {1, . . . , 5}, towards 0 as h → 0.539

This obviously exploits the convergence property of Φh. Therefore, we use (3.5) and540

(3.6) to deduce by Lebesgue’s dominated convergence theorem that541

lim
h→0

∫ σ

0

‖ΦhE(t)−E(t)‖L2
ε(Ω) dt = 0 ∀σ ∈ [0, T ].(3.44)542

543

Now, (A5), Lemma 3.7 and (3.44) imply for i ∈ {1, 3} that |Ci| → 0 as h→ 0. Also,544

the Lipschitz continuity of f (A5) together with Theorem 3.8 implies that |C2| → 0545

as h→ 0. Next, the convergence for C4 is shown: We begin with546 ∣∣∣∣∫ σ

0

ϕN (t,ΦhE(t))− ϕ(θ(t),E(t))dt

∣∣∣∣(3.45)547

≤
∫ T

0

|ϕN (t,ΦhE(t))− ϕN (t,E(t))|dt+

∫ T

0

|ϕN (t,E(t))− ϕ(θ(t),E(t))|dt.548
549

Because of (A3) and (A5), the first term on the right-hand side of (3.45) satisfies550 ∫ T

0

|ϕN (t,ΦhE(t))− ϕN (t,E(t))|dt ≤ C
∫ T

0

‖ΦhE(t)−E(t)‖L2
ε(Ω)dt,(3.46)551

552

with a constant C > 0, independent of h. On the other hand, the second term in553

(3.45) is estimated by using (A4) and (A5):554 ∫ T

0

|ϕN (t,E(t))− ϕ(θ(t),E(t))|dt(3.47)555

=︸︷︷︸
(3.24)

N∑
n=1

∫ tn

tn−1

∫
Ω

|jc(x, θ(tn, x))− jc(x, θ(t, x))| |E(t)| dxdt556

≤ C

N∑
n=1

∫ tn

tn−1

τ‖E(t)‖L2
ε(Ω)dt = Cτ‖E‖L1((0,T ),L2

ε(Ω)).557

558

Thus, combining (3.45)–(3.47) gives559

|C4| ≤ C

(∫ T

0

‖ΦhE(t)−E(t)‖L2
ε(Ω)dt+ τ‖E‖L1((0,T ),L2

ε(Ω))

)
(3.44)︷︸︸︷→ 0 as h→ 0.

(3.48)

560

561
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We reuse the arguments from (3.47) in combination with Lemma 3.6 to obtain the562

convergence |C5| → 0 as h → 0. Finally, we extract the desired norms on the left563

hand side of (3.43) as follows:564

∫ σ

0

∫
Ω

ε(∂tEN,h(t)− ∂tE(t)) · (EN,h(t)−E(t)) dxdt =
1

2
‖EN,h(σ)−E(σ)‖2L2

ε(Ω)

(3.49)

565

−1

2
‖E0h −E0‖2L2

ε(Ω)+

∫ σ

0

∫
Ω

ε(∂tEN,h(t)− ∂tE(t)) · (EN,h(t)−EN,h(t)) dxdt566
567

and568 ∫ σ

0

∫
Ω

µ−1(∂tBN,h(t)− ∂tB(t)) · (BN,h(t)−B(t)) dxdt(3.50)569

=
1

2
‖BN,h(σ)−B(σ)‖2L2

1/µ
(Ω)−

1

2
‖B0h −B0‖2L2

1/µ
(Ω)570

+

∫ σ

0

∫
Ω

µ−1(∂tBN,h(t)− ∂tB(t)) · (BN,h(t)−BN,h(t)) dxdt.571
572

In view of (3.27) and Lemma 3.7, we have573 ∣∣∣∣∫ σ

0

∫
Ω

ε(∂tEN,h(t)− ∂tE(t)) · (EN,h(t)−EN,h(t)) dxdt

∣∣∣∣(3.51)574

≤ ‖∂tEN,h − ∂tE‖L1((0,T ),L2
ε(Ω))‖EN,h −EN,h‖L∞((0,T ),L2

ε(Ω))575

≤ Cτ‖∂tEN,h − ∂tE‖L1((0,T ),L2
ε(Ω)) ≤ Cτ(‖∂tE‖L1((0,T ),L2

ε(Ω)) + 1),576577

and analoguously578 ∣∣∣∣∫ σ

0

∫
Ω

µ−1(∂tBN,h(t)− ∂tB(t)) · (BN,h(t)−BN,h(t)) dxdt

∣∣∣∣(3.52)579

≤Cτ(‖∂tB‖L1((0,T ),L2
1/µ

(Ω)) + 1).580
581

From (3.43) and (3.49)–(3.52) combined with the previously proved convergence for582

Ci for all i ∈ {1, . . . , 5} and Lemma 3.3, we obtain583

lim
h→0
‖EN,h(t)−E(t)‖L2

ε(Ω) = lim
h→0
‖BN,h(t)−B(t)‖L2

1/µ
(Ω) = 0 ∀t ∈ [0, T ].(3.53)584

585

On the other hand, Lemmas 3.6 and 3.7 imply the existence of a positive constant586

C > 0, independent of N and h, such that587

‖(EN,h,BN,h)‖W 1,∞((0,T ),L2
ε(Ω)×L2

1/µ
(Ω)) ≤ C ∀h > 0,(3.54)588

589

which yields the uniform boundedness and the equicontinuity of {(EN,h,BN,h)}h>0 ⊂590

C([0, T ],L2
ε(Ω)×L2

1/µ(Ω)). Therefore, by (3.53) and (3.54), the Arzelá-Ascoli theorem591

for Banach space-valued functions (cf. [23, Theorem 3.1]) implies the existence of a592

subsequence of {(EN,h,BN,h)}h>0 converging uniformly towards (E,B). As (E,B) is593

the unique solution of (VI), independent of the choice of the converging subsequence,594

a standard argument implies that the whole sequence converges uniformly, i.e.,595

lim
h→0
‖EN,h −E‖C([0,T ],L2

ε(Ω)) = 0 ⇒︸︷︷︸
(3.27)

lim
h→0
‖EN,h −E‖L∞((0,T ),L2

ε(Ω)) = 0.596

lim
h→0
‖BN,h −B‖C([0,T ],L2

1/µ
(Ω)) = 0 ⇒︸︷︷︸

(3.27)

lim
h→0
‖BN,h −B‖L∞((0,T ),L2

1/µ
(Ω)) = 0.597

598

This completes the proof.599
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4. A priori error analysis. We start by providing an error estimate result with600

low regularity fields for Φh : H0(curl)→ Vh introduced in Definition 3.2.601

Lemma 4.1. Let s ∈ (0, 1]. There exists a constant C > 0, independent of h and602

y, such that603

‖y −Φhy‖H(curl) ≤ Chs‖y‖Hs
0(curl) ∀y ∈ Hs

0(curl)604605

for all h > 0. Here, Hs
0(curl) := {y ∈ Hs(Ω) ∩H0(curl) : curl y ∈ Hs(Ω)}.606

The proof is completely analogous to the one of [19, Theorem 3.3], which follows607

from (3.4) in combination with the stable commuting quasi-interpolation operator [19,608

Theorem 2.2] (cf. [10]) and the sharp approximation result [18, Corollary 6.5] (cf. [13]).609

610

Assumption 4.2 (Additional assumptions on the initial data and the solution).611

(A7) There exists s ∈ (0, 1] such that E0 ∈ Hs
0(curl) and the solution of (VI)612

satisfies E ∈ L1((0, T ),Hs
0(curl)).613

Assumption 4.2 yields the following error estimate for the initial value, which follows614

readily from (3.11) by using (A7) and Lemma 4.1.615

Lemma 4.3. Let Assumptions 2.1, 2.2, and 4.2 hold. Then there exists a constant616

C > 0, independent of h > 0, such that617

‖E0h −E0‖2L2
ε(Ω) + ‖B0h −B0‖2L2

1/µ
(Ω) ≤ Ch

s ∀h > 0.(4.1)618
619

Theorem 4.4. Let Assumptions 2.1, 2.2, and 4.2 hold. Then, there exists a620

constant C > 0, independent of N and h, such that621
622

‖EN,h −E‖2C([0,T ],L2
ε(Ω)) + ‖BN,h −B‖2C([0,T ],L2

1/µ
(Ω))623

≤ C(hs+τ)(‖E‖L1((0,T ),Hs
0(curl))+‖∂tE‖L1((0,T ),L2

ε(Ω)) + ‖∂tB‖L1((0,T ),L2
1/µ

(Ω))+1)624
625

holds for every h > 0 and every N ∈ N.626

Proof. The lines of the proof are similar to the proof of Theorem 3.10, but, due to627

the regularity assumption on E (Assumption 4.2), we may use Lemma 4.1 in place of628

(3.6). Thus, we consider again (3.43) and give estimates for Ci, i ∈ {1, . . . , 5}, instead629

of simply proving their convergence towards 0. The stability results in Lemma 3.6630

and Lemma 3.7 combined with the regularity of E (see (A7)) as well as the error631

estimates for Φh in Lemma 4.1 lead to632

|Ci| ≤ Chs‖E‖L1((0,T ),Hs
0(curl)) ∀i ∈ {1, 3},(4.2)633634

with a constant C, independent of the time variable, N , and h. To estimate C2, we635

use the Lipschitz continuity of f (see (A5)) and Theorem 3.10:636

|C2| ≤ Cτ
∫ σ

0

‖E(t)−EN,h(t)‖L2
ε(Ω)dt ≤ Cτ.(4.3)637

638

Next, C4 is estimated by applying Lemma 4.1 to (3.48)639

|C4| ≤ C(hs + τ)‖E‖L1((0,T ),Hs
0(curl)).(4.4)640641

Last but not least, the arguments from (3.47) in combination with Lemma 3.6 imply642

|C5| ≤ Cτ . The combination of (3.43) and (3.49)-(3.50) with (3.51)-(3.52) as well as643

the previously proved estimation for Ci, i ∈ {1, . . . , 5} and Lemma 4.3 finally yields644

the desired error estimate.645
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Remark 4.5. The results by Ern and Guermond [18,19] are also valid for higher-646

order finite elements. Therefore, [18,19] together with the higher-order FEM for linear647

Maxwell’s equations [28] would serve as an important basis for the extension of our648

approach to the higher-order case.649

5. Numerical Results. We close this paper by presenting numerical results for650

some particular examples for (VI). When it comes to computing the solution (E,B)651

to (VI), Euler’s implicit method provides an iterative algorithm, which also enables652

us to split the mixed problem into two associated problems as we did in Theorem 3.4.653

We recall (3.13), which gives an explicit formula for Bn
h:654

Bn
h = Bn−1

h − τ curl En
h(5.1)655656

provided that En
h is already computed. In view of (3.15), En

h solves an elliptic curl-657

curl variational inequality of the form658

a(En
h,vh −En

h) + ϕn(vh)− ϕn(En
h) ≥ 〈f̃n,vh −En

h〉 ∀vh ∈ Vh.(5.2)659660

We solve this variational inequality using the semi-smooth Newton method (cf. [21]).661

Our computational domain is the cube Ω = (−1, 1)3 and we apply a circular662

current f : R3 → R3 defined by663

f(x, y, z) =

 1/R
(

0, −z/(y2 + z2)1/2, y/(y2 + z2)1/2
)

for (x, y, z) ∈ Ωp

0 for (x, y, z) /∈ Ωp
664

665

to a cylindrical pipe coil Ωp := {(x, y, z) ∈ R3 : |x| ≤ 0.5,
√
y2 + z2 ∈ [0.3, 0.5]}.666

The constant R > 0 denotes the electrical resistance of the pipe (here: R = 1).667

All implementations were done with the open-source finite-element computational668

platform FEniCS [27] and as a visualization tool Paraview was used. For this669

study, the uniform tetrahedral mesh was refined around the coil. If we do not include670

a superconductor in this setup, the applied current induces an orthogonal magnetic671

field, which admits its greatest field strength in the center of the coil.672

Fig. 1. First numerical example. Left: Magnetic field lines and the clipped pipe coil. Right:
2D-slice of the magnetic field along the x-z axis.

In the first example, we place a type-II superconducting ball Ωsc with radius 0.2673

in the center of the pipe, set jc = 80χΩsc , ε = µ = 1 and solve the compatibility674

system (3.2) for the discrete initial value (E0h,B0h). In our computation, the mesh675
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n 0 1 2 3 4 5 6

jc(·, θ(tn)) 80χΩsc 50χΩsc 35χΩsc 20χΩsc 10χΩsc 5χΩsc 0, 5χΩsc

θ(tn) 60, 0K 65, 0K 67, 5K 70, 0K 72, 5K 75, 0K 80, 0K
tn 0 1/6 1/3 1/2 2/3 5/6 1

Table 1
Critical current jc and temperature θ of the superconductor at each the time step.

was refined around the superconductor such that we end up with roughly 240.000676

cells and 1.020.000 degrees of freedom (DOFs) for the mixed finite element space.677

The resulting solution (E0h,B0h) of (3.2) exhibits the physical phenomenon of the678

Meissner-Ochsenfeld effect. In Figure 1, we see how the magnetic field lines get re-679

pelled by the superconductor and since they are squashed between the superconductor680

and the coil, one observes the highest magnetic field strength in this area (see Fig-681

ure 1).682

Fig. 2. Evolution of the magnetic field around the superconductor in the time-steps tn for
n ∈ {0, 1, 2, 3, 4}.

Keeping the observations of the first example in mind, we continue and compute683

a time-dependent problem, where the solution of the first example serves as the dis-684

crete initial electromagnetic field, since it satisfies the discrete compatibility system685

(3.2). We consider the temperature dependence in the critical current density jc for686

a superconductor with the nominal composition Y1.2Ba0.8Cu2Ox as it was suggested687

in [2]. Moreover, we set T = 1 as well as τ = 1/6 and use the same amount of DOFs688

and cells as in the first example. We place the cooled down superconductor inside689

the coil in the same way it was done in the first example, but now the temperature θ690

increases over time (see Table 1), whereas the applied current source f stays constant.691

The evolution of the magnetic field over time is shown in Figure 2. One observes that692

the magnetic field lines in the squashed area start penetrating the superconductor as693

the temperature becomes larger and larger. As soon as the temperature θ exceeds the694

threshold 75K, the magnetical field completely penetrates the superconductor and we695

can no longer observe the Meissner-Ochsenfeld effect.696

Further Research. As pointed out in the introduction, the Bean critical-state697

model is a free boundary problem, as it involves unknown superconductive and nor-698

mal regions, which may change their locations in course of time, depending on the699

temperature distribution θ and the applied current source f . Thus, an adaptive mesh700

refinement strategy based on rigorous a posteriori error estimators will be useful, not701

only for increasing numerical accuracy, but also for capturing the unknown interfaces702

between the superconductive and normal regions. We also point out that Theorem 3.8703

opens a way to study the temperature control in the magnetization process of type-II704
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superconductivity. This leads to a state-constrained optimal control problem governed705

by a fully coupled system consisting of (VI) and non-smooth heat equations. This706

problem requires a substantial extension of the recently developed optimal control707

techniques for electromagnetic problems [34,36,37].708
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