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M. Claus, V. Krätschmer and R. Schultz

SM-UDE-790a 2015/2016



Eingegangen am 07.10.2016



WEAK CONTINUITY OF RISK FUNCTIONALS WITH
APPLICATIONS TO STOCHASTIC PROGRAMMING
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Abstract. Measuring and managing risk has become crucial in modern decision making under
stochastic uncertainty. In two-stage stochastic programming, mean risk models are essentially defined
by a parametric recourse problem and a quantification of risk. From the perspective of qualitative
robustness theory, we discuss sufficient conditions for continuity of the resulting objective functions
with respect to perturbation of the underlying probability measure. Our approach covers a fairly
comprehensive class of both stochastic-programming related risk measures and relevant recourse
models. Not only this unifies previous approaches but also extends known stability results for two-
stage stochastic programs to models with mixed-integer quadratic recourse and mixed-integer convex
recourse, respectively.
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1. Introduction. Since the last decade risk management has become an impor-
tant issue from a practical view point, and as a research field as well. The interests
range from pragmatic solutions for practitioners to research which has founded a hy-
brid of a new mathematical discipline integrating several fields such as stochastics
(e.g. [26], [37]), optimization (e.g. [27], [42]), numerical analysis. (e.g. [17]) and,
when integer variables occur, also algebra and discrete mathematics (e.g. [40]). Since
economic risks like credits, prices of stocks or insurance claims are typically faced
with uncertainty, most of the methods are settled within a stochastic framework rep-
resenting risks in terms of random variables. Then basic objects are often stochastic
functionals, i.e. real-valued functions defined on sets of random variables expressing
economic risks. As a prominent example the so called coherent risk measures may
be pointed out. This concept was introduced in [2] as a mathematical tool to assess
the risks of financial positions. They are building blocks in quantitative risk man-
agement (see [26], [27], [37]), and they have been suggested as a systematic approach
for calculations of insurance premia (cf. [19]). Besides the ordinary expectation, the
conditional value at risk and the upper semideviation are the most known examples
for coherent risk measures. However, meanwhile the more general notion of convex
risk measure has replaced coherent risk measures in playing their roles.

Of particular interest are stochastic functionals which are distribution invariant, iden-
tifying risks with identical distributions. For instance the expectation, the conditional
value at risk and the upper semideviation satisfy this property. They all may be re-
defined as functionals on sets of probability measures representing the distributions
of the risks. Recent contributions analyze analytic properties of such functionals like
specific types of continuity and differentiability (cf. [22], [23]). Such properties have
immediate applications for statistical issues of the functionals e.g. the sample average
approximation method (SAA) ([22], [23] again; see also [27], [42], [8], [37]). The aim
of the present paper is to point out how investigations of stochastic programming
problems may profit from continuity properties of distribution invariant stochastic
functionals which are used for objective functions. In technical terms, investigations
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are devoted to topological considerations on spaces of random variables induced in a
natural way by stochastic programming problems.

Stochastic programming is based on the crucial assumption that uncertainty can be
captured by a probability measure which, in turn, has impact on structural and/or al-
gorithmic properties of the objective function and/or the constraints. The probability
measure usually being subjective or resulting from statistical estimation the issue of
stability comes to the fore, i.e., small perturbations of the measure shall lead to only
small perturbations of the optimal value and the optimal solution sets. Beginning
with [12], one line of research in stochastic programming has addressed questions
of stability in the theoretical framework of epi-convergence (cf. e.g. [3], [4], [32]).
However, for the problems considered in this paper, a different approach based on
arguments from [9] appears to be more straightforward (see Remark 1 after Corollary
2.4 for details). It appeals to parametric optimization by aiming at (semi-)continuity
of optimal-value functions and of multifunctions given by sets of optimal solutions.
Typically, the parameter spaces may vary from Euclidean spaces of parameters of
distributions to topological or metric spaces of probability measures equipped with
weak convergence of probability measures [20, 31] or with suitable probability metrics
[36, 29, 33]. In classical stochastic programming the objective function is described
in terms of expectations representing a risk neutral attitude of the decision maker.
More recent contributions try to incorporate risk aversion of the decision makers using
different distribution invariant coherent risk measures, where also both, continuous
or mixed-integer variables are involved (cf. e.g.[35, 25, 41, 42]).

In the nutshell stability of stochastic programming refers to continuity of the distri-
bution invariant functionals used for the objective functions. In the above mentioned
literature this viewpoint has not been exploited systematically. Instead by individ-
ual reasoning suitable settings of uniform integrability or moment conditions had to
be adapted to the individual objectives (starting with [20, 31, 36]), and sufficient
conditions had to be found to transfer weak convergence of sequences of probability
measures to sequences of image measures (see [39] for an example of detailed elabo-
ration).

The present paper is an attempt of systemization. We provide an umbrella for most
of the different settings in the papers referred to in the previous paragraphs. The
line of reasoning is inspired by recent investigations on continuity of distribution
invariant convex risk measures ([22], [24]). They are based on the so called ψ−weak
topologies which is a quite new class of topologies for sets of probability measures
enclosing the topology of weak convergence. We shall extend the studies to more
general distribution invariant stochastic functionals which will be referred to as risk
functionals.

More precisely, we introduce general risk functionals living on sets of probability
measures satisfying some moment condition and allowing for specification by proper
choices of integrands. Every such moment condition corresponds with some particu-
lar ψ−weak topology, and as a basic observation, all the considered risk functionals
are continuous w.r.t. the related ψ−weak topologies. We shall then identify suf-
ficient growth conditions to integrands of risk functionals implying along with the
continuity of the risk functionals the continuity of resulting objective function with
respect to some particular ψ−weak topology induced by the growth condition. In
general, ψ−weak topologies are finer than the topology of weak convergence. How-
ever, we may specify exactly those subsets, where they coincide. Hence in the last
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step we may point out the domains of stability for stochastic programming involving
the considered general objective functions.

We shall apply the technical results to two-stage mean-risk models unifying previous
work. Moreover, this top-down approach foremostly yields verifiable continuity condi-
tions for broader classes of risk functionals than before. For stochastic programs this
enables extension of the continuity, and thus stability, analysis to more comprehensive
classes of models.

The paper is organized as follows. In section 2, we provide a unifying view on a class
of stochastic optimization problems enclosing the two-stage case and various notions
of risk aversion. Our main result is on weak continuity of the objective function w.r.t.
the decision and the underlying probability measure and allows for conclusions about
qualitative stability. The approach is applicable to two-stage problems whenever the
optimal value function of the recourse problem is Borel measurable, polynomially
bounded in terms of the entering parameters and continuous outside of a suitable set.
In section 3, we check these conditions for various recourse models: For stochastic pro-
grams with linear or mixed-integer linear recourse, the conditions hold under standard
assumptions and allow to unify various existing proofs of stability. Furthermore, we
extend the analysis to the cases of mixed-integer quadratic and mixed-integer convex
recourse. Section 4 is devoted to ψ−weak topologies that are an important tool in our
argumentation. Their relationship with the topology of weak convergence will also be
discussed there. Finally, we shall be ready to proof the main result in Section 5.

2. Main result. Let X ⊆ Rn be a nonempty set, f : Rn × Rs → R a Borel-
measurable mapping and let Z : Ω′ → Rs denote a fixed and known random vector on
some probability space (Ω′,F ′,P′). We consider the stochastic programming problem

min
x

{f(x,Z(ω)) | x ∈ X}, (2.1)

where the decision on x has to be made nonanticipatorily of the realization Z(ω).
Two-stage problems arise from (2.1) if f itself is given by the optimal value function
of an optimization problem parametrized in x and Z(ω).

While not well defined because of the nonanticipativity constraint, (2.1) may be un-
derstood as selecting in some sense a minimal random variable out of the family

f(X,Z) := {f(x,Z(·)) | x ∈ X}.

The notion of minimality can be specified by endowing f(X,Z) with a preorder, i.e.
a reflexive and transitive, yet not necessarily antisymmetric binary relation. Pro-
vided that the members of f(X,Z) are all integrable, we might rank them by their
expectations. This approach leads to the risk neutral model

min
x

{E[f(x,Z)] | x ∈ X}. (2.2)

In many applications, the random vector Z may be subject to perturbations. This
motivates stability analysis for the problem’s optimal value and its set of optimal
solutions. Since the only relevant information of Z for problem (2.2) is provided by
its distribution, we might equivalently work with perturbations of this distribution in
the space of Borel probability measures on Rs. For qualitative stability analysis, we
endow this space with the topology of weak convergence (see e.g. [11]).
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The stochastic programming problem (2.2) then reads

min
x

{∫
Rn×Rs

f d δx ⊗ νZ
∣∣ x ∈ X

}
, (2.3)

where δx⊗ νZ denotes the product measure of the Dirac measure at x and the distri-
bution νZ of Z. Qualitative stability of this stochastic programming problem at νZ
is entailed by continuity of

(x, ν) 7→
∫
Rn×Rs

f d δx ⊗ ν =

∫
R
t (δx ⊗ ν) ◦ f−1(dt)

at (x, νZ) for every x ∈ X w.r.t. the product topology of the standard topology on Rn
and the topology of weak convergence on the space of all s-dimensional distributions
(see Corollary 2.4 below).

If we want to take into account risk aversion we might change the objective function
in (2.3) to

R
(
(δx ⊗ νZ) ◦ f−1

)
,

where R denotes a functional on a set N of Borel probability measures on R. Typ-
ically, functionals R which are nondecreasing w.r.t. the increasing convex order
may be considered as suitable choices. Outstanding examples are provided by func-
tionals which are derived from so called law-invariant convex risk measures. More
precisely, let (Ω,F ,P) be an atomless probability space, i.e. it supports some ran-
dom variable U which is uniformly distributed on ]0, 1[. Furthermore, for p ∈ [1,∞[
denote by Lp(Ω,F ,P) the standard Lp−space w.r.t. (Ω,F ,P). Then a mapping
ρ : Lp(Ω,F ,P) → R is called a convex risk measure if it is a convex function which
is nondecreasing w.r.t. the P-almost sure partial order and translation-equivariant,
i.e. ρ(X + t) = ρ(X) + t for X ∈ Lp(Ω,F ,P) and t ∈ R. Popular examples are the
following

Example 1. Average Value at Risk: p = 1,

AV@Rα(Y ) :=
1

1− α

∫ 1

α

F←Y (β) dβ for some α ∈]0, 1[,

where F←Y denotes the left-continuous quantile function of the distribution function
FY of Y .

Example 2. Mean upper semideviation of order p:

ρa,p(Y ) := E[Y ] + a
(
E
[((

Y − E[Y ]
)+)p])1/p

for some a ∈ [0, 1].

In addition, the convex risk measure ρ is called law-invariant if ρ(Y ) = ρ(Ỹ ) whenever

Y and Ỹ have the same law under P. Obviously, the Average Value at Risk as well as
the mean upper semideviation are law-invariant. Now, any law-invariant risk measure
ρ : Lp(Ω,F ,P) → R is associated with a functional Rρ on the set of Borel probability
measures on R with absolute moments of order p via

Rρ(µ) := ρ(F←µ (U)), (2.4)
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where F←µ stands for the left-continuous quantile function of the distribution function
Fµ of µ. This functional is nondecreasing w.r.t. the increasing convex order (cf. e.g.
Theorem 5.2 below).

It will turn out that for our purposes, we may relax the conditions on the mapping ρ
by dropping the requirement of translation-equivariance. So our investigation is built
upon the following assumption:

Assumption 1. ρ : Lp(Ω,F ,P) → R is
• a convex function,
• nondecreasing w.r.t. the P-almost sure partial order,
• law-invariant,
• defined on the Lp−space of the atomless probability space (Ω,F ,P) and p ≥ 1.

Let us mention an example.

Example 3. Mean upper semideviation of order p from a target:

ρa,c,p(Y ) := E[Y ] + a
(
E
[((

Y − c
)+)p])1/p

for some a ∈ [0, 1], c > 0,

which does not fulfill translation-equivariance (cf. [42, Example 6.25]).

We associate the law-invariant mapping ρ with the functional Rρ defined in (2.4) and
consider the parametric stochastic programming problem

min
x

{Q(x, ν) | x ∈ X}, (2.5)

where

Q(x, ν) := Rρ

(
(δx ⊗ ν) ◦ f−1

)
. (2.6)

Q is well defined provided that the image probability measure of δx ⊗ ν under f
has absolute moments of order p. The latter has to be guaranteed by imposing an
additional assumption on the growth of f .

Definition 1. We call a mapping e : Rn×Rs → R limited by the exponent γ ∈]0,∞[
iff there is some locally bounded mapping η : Rn →]0,∞[ such that

|e(x, z)| ≤ η(x)(∥z∥γ + 1) for all (x, z) ∈ Rn × Rs,

where ∥ · ∥ denotes the Euclidean norm on Rs.

We shall work with the following assumption:

Assumption 2. f : Rn × Rs → R is
• Borel-measurable,
• limited by an exponent γ ∈]0,∞[.

Denoting by N some suitable subset of Borel probability measures on R specified
below, it will be shown later on that Assumptions 1 and 2 imply the continuity of the
mapping

Q : Rn ×N → R, Q(x, ν) = Rρ

(
(δx ⊗ ν) ◦ f−1

)
w.r.t. the product topology of the standard topology on Rn and some particular
topology on N which is finer than the ordinary topology of weak convergence. It is a
special case of the so called ψ-weak topology which we shall recall next.
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For this purpose let ψ : Rd → [0,∞[ be a continuous function such that ψ ≥ 1
outside a compact set with some d ∈ N. Such a function will be referred to as a gauge
function. Let Mψ

1 (Rd) be the set of all Borel-probability measures µ on Rd satisfying∫
ψ dµ < ∞, and Cψ(Rd) be the space of all continuous functions g : Rs → R for

which supy∈Rs |g(y)/(1 + ψ(y))| < ∞. The ψ-weak topology on Mψ
1 (Rd) is defined

to be the coarsest topology for which all mappings µ 7→
∫
g dµ, g ∈ Cψ(Rd), are

continuous; cf. Section A.6 in [18]. Since Cψ(Rd) encloses all bounded continuous
real-valued mappings on Rd, the ψ-weak topology is finer than the topology of weak
convergence on Mψ

1 (Rd).

Choosing d = 1 and ψ = | · |p, we may describe formally the functional Rρ by

Rρ : M|·|p
1 (R) → R, Rρ(µ) = ρ(F←µ (U)).

Moreover, under Assumptions 1 and 2, we may choose N = M∥·∥γp

1 (Rs) to define the
domain of the function Q.

Lemma 2.1. Under Assumption 2,
∫
Rs |f(x, z)|p ν(dz) < ∞ holds for any x ∈ Rn

and any ν ∈ M∥·∥γp

1 (Rs).

Proof. By Assumption 2 there exists a locally bounded mapping η : Rn →]0,∞[ such
that

|f(x, z)|p ≤ η(x)p(∥z∥γ + 1)p ≤ η(x)p2pmax{∥z∥pγ , 1} ≤ η(x)p2p(∥z∥pγ + 1)

holds for any (x, z) ∈ Rn × Rs. The statement of Lemma 2.1 follows immediately.

The line of our reasoning will be as follows. First, we shall prove in Theorem 5.3
below that under Assumptions 1 and 2, the mapping

Q : Rn ×M∥·∥γp

1 (Rs) → R, Q(x, ν) = Rρ

(
(δx ⊗ ν) ◦ f−1

)
is continuous w.r.t. the product topology of the standard topology on Rn and the

∥ · ∥γp-weak topology on M∥·∥γp

1 (Rs). Then the key of our argumentation will be to

point out those subsets M of M∥·∥γp

1 (Rs) where the ∥ · ∥γp-weak topology coincides
with the topology of weak convergence. It will turn out (see Section 4 and in particular
Proposition 4.2) that exactly the locally uniformly ∥ · ∥γp−integrating subsets M
satisfy this property. Here a subsetM ⊆ M∥·∥γp

1 (Rs) will be called locally uniformly ∥·
∥γp−integrating if for every ε > 0 and any ν ∈ M there exists some open neighborhood
L of ν w.r.t. the topology of weak convergence such that

lim
a→∞

sup
µ∈L∩M

∫
Rs

∥z∥γp · 1]a,∞[(∥z∥γp) µ(dz) ≤ ε.

This concept has been established recently in [45] as the suitable one to identify
sets of Borel probability measures where the ∥ · ∥γp-weak topology and the topology
of weak convergence are the same. In [24], further equivalent characterizations for
locally uniformly ∥·∥γp-integrating sets of Borel probability measures have been found,
providing also a large amount of examples. Simple examples may be constructed by
imposing restrictions on the absolute moments.

Example 4. Let κ, ε > 0. Then by [18, Corollary A.47, (c)], the set

M∥·∥γp+ε

1,κ (Rs) :=
{
µ ∈ M∥·∥γp+ε

1 (Rs)
∣∣ ∫

Rs

∥z∥γp+ε µ(dz) ≤ κ

}
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is a relatively compact subset of M∥·∥γp

1 (Rs) for the ∥ · ∥γp-weak topology. Then in
view of Lemma 4.3 below it is also a locally uniformly ∥ · ∥γp-integrating subset of

M∥·∥γp

1 (Rs).

Now we are ready to formulate our main result.

Theorem 2.2. Let Assumptions 1 and 2 be fulfilled and Df denote the set of dis-

continuity points of f . Furthermore, let M ⊆ M∥·∥γp

1 (Rs) be a locally uniformly
∥ · ∥γp-integrating subset and (x, ν) ∈ Rn × M such that δx ⊗ ν(Df ) = 0. Then the
restriction Q|Rn×M is continuous at (x, ν) w.r.t. the product topology of the standard
topology on Rn and the topology of weak convergence on M.

Theorem 2.2 has the following specialization.

Corollary 2.3. Let Assumptions 1 and 2 be fulfilled and let M ⊆ M∥·∥γp

1 (Rs) be
a locally uniformly ∥ · ∥γp-integrating subset. Furthermore, let x ∈ Rn be such that
{z ∈ Rs | (x, z) ∈ Df} has Lebesgue measure 0 assume that ν ∈ M is absolutely
continuous w.r.t. the Lebesgue-Borel measure on Rs. Then Q|Rn×M is continuous at
(x, ν) w.r.t. the product topology of the standard topology on Rn and the topology of
weak convergence on M.

Proof. We have δx ⊗ ν(Df ) = 0, so that Theorem 2.2 is applicable.

Theorem 2.2 has immediate implications towards stability of problem (2.5). Let

φ : M∥·∥γp

1 (Rs) → [−∞,∞[, φ(ν) = inf
x
{Q(x, ν) | x ∈ X}

and

Φ : M∥·∥γp

1 (Rs) → 2X , Φ(ν) = {x ∈ X | Q(x, ν) = φ(ν)}

its optimal value function and its optimal solution set mapping.

Corollary 2.4. Let Assumptions 1 and 2 be fulfilled and let M ⊆ M∥·∥γp

1 (Rs)
be a locally uniformly ∥ · ∥γp-integrating subset. Furthermore, let ν ∈ M be such
that (δx ⊗ ν)(Df ) = 0 holds for any x ∈ X. Then the restriction φ|M is upper
semicontinuous at ν w.r.t. the topology of weak convergence on M. If X is compact,
φ|M is continuous at ν and Φ|M is upper semicontinuous at ν w.r.t. the topology of
weak convergence on M. In this case, Φ|M(ν) is nonempty and compact.

Proof. See e.g. [14, Section 4.1] for the first and [9, Theorem 2] for the second part.

Remark 1. One could try to obtain a similar result by employing the theory of
epi-convergence. Such an approach would only require lower semicontinuity of the
functional Q(·, µ) and might allow for a weaker assumption than (δx ⊗ ν)(Df ) = 0.
However, one might have to find additional assumptions under which weak convergence
of a sequence {µn}n∈N ⊂ M to µ ∈ M entails epi-convergence of the associated
sequence of functionals {Q(·, µn)}n∈N. In case that Q(·, µ) is convex, it is sufficient
to ensure pointwise convergence of {Q(·, µn)}n∈N. Whereas in general, even under the
assumptions of Corollary 2.4, the situation is less clear. Note that for the recourse
models considered in Section 3, Q(·, µ) may fail to be convex.
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3. Application to two-stage mean-risk models. Two-stage stochastic pro-
grams can be seen as the special case of (2.1) where f is the optimal value function
of a recourse problem depending on the parameters x and Z(ω). While we may use
Corollary 2.4 to derive stability for such problems, the verification of Assumption 2
becomes an issue. Furthermore, the corollary can only be applied if (δx⊗ ν)(Df ) = 0
holds for any x ∈ X. Hence, situations in which an explicit description of a suitable
superset of the set of discontinuities of f is available are of special interest. In this
section we address these issues by providing sufficient conditions for various classes of
recourse problems.

3.1. Linear recourse. We first turn our attention to the case of a linear recourse
problem, i.e. the situation where

f(x, z) = inf
y
{q(x, z)⊤y | Ay = h(x, z), y ≥ 0} (3.1)

for a matrix A ∈ Rk×m and mappings q : Rn×Rs → Rm and h : Rn×Rs → Rk. Such
problems have been featured prominently in the stochastic programming literature
and our approach using Corollary 2.4 will only slightly extend the existing results
(see e.g. [34]). Nevertheless, it allows to unify and simplify the proofs of stability for
special risk measures (in particular the ones mentioned in Examples 1 to 3). We shall
work with the following assumptions.

Assumption 3.
• A has full rank,
• {y ∈ Rm | Ay = h(x, z), y ≥ 0} ̸= ∅ for any (x, z) ∈ X × Rs,
• {u ∈ Rk | A⊤u ≤ q(x, z)} ̸= ∅ for any (x, z) ∈ X × Rs,
• the mappings q and h are continuous,
• ∥q(·, ·)∥ and ∥h(·, ·)∥ are limited by exponents γq, γh ∈]0,∞[, respectively.

The first three conditions in Assumption 3 are standard assumptions in two-stage
stochastic programming with linear recourse. Note that the other two conditions are
automatically fulfilled if the mappings q and h are linear.

Proposition 1. Under Assumption 3, the mapping f defined in (3.1) is finite,
continuous and limited by γq + γh. In particular, Assumption 2 is fulfilled.

Proof. Finiteness and continuity of f are a well known conclusion from the Basis
Decomposition Theorem in [44]. By the same result, there exists a finite number of
matrices B1, . . . , BN ∈ Rk×m such that for any (x, z) ∈ X × Rs, there is an index
i ∈ {1, . . . , N} satisfying

|f(x, z)| = |h(x, z)⊤Biq(x, z)| ≤ κB∥h(x, z)∥∥q̄(x, z)∥,

where κB := maxj=1,...,N ∥Bj∥L(Rm,Rk) < ∞ denotes the maximal operator norm
among the matrices B1, . . . , BN . Invoking the final part of Assumption 3 and the fact
that

(∥z∥γq + 1)(∥z∥γh + 1) ≤ 3(∥z∥γq+γh + 1)

holds for any z ∈ Rs, we may conclude that f is limited by γq + γh.

Consequently, Corollary 2.4 is applicable whenever f is given by (3.1) and Assump-
tions 1 and 3 are fulfilled. In this case, Df = ∅ and we obtain qualitative stability of

problem (2.5) on every locally uniformly ∥ ·∥(γq+γh)p-integrating subset of M(γq+γh)p
1 .
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3.2. Mixed-integer linear recourse. Let us turn over to the case of a mixed-
integer linear recourse problem, i.e. let f take the form

f(x, z) = inf
y
{q⊤y | Ay = h(x, z), y ≥ 0, y ∈ Rm1 × Zm2} (3.2)

for a vector q ∈ Rm1+m2 , a matrix A ∈ Rk×(m1+m2) and a mapping h : Rn×Rs → R.
Note that the vector q in the objective function does not depend on (x, z) anymore.
While the analytical properties of the problem in (3.2) are weaker than those of the
problem in (3.1), they are still sufficient to derive the conditions of Assumption 2 un-
der standard assumptions. This allows to apply Corollary 2.4 to two-stage stochastic
programs with mixed-integer linear recourse. Again, such problems have been studied
extensively (see e.g. [25] and [41]). In the mentioned papers, the analysis is restricted
to sets of Borel probability measure having uniformly bounded moments of order stri-
clty greater than γp. By Example 4, such sets are locally uniformly ∥ · ∥γp-integrating
and hence a special case of the present framework. On top of this generalization, our
work provides a unified proof of stability for the special risk measures discussed in
Examples 1 to 3. We shall impose the following assumptions.

Assumption 4.
• A has rational entries,
• {y ∈ Rm1 × Zm2 | Ay = t, y ≥ 0} ̸= ∅ for any t ∈ Rk,
• {u ∈ Rk | A⊤u ≤ q} ̸= ∅,
• the mapping h is continuous,
• ∥h(·, ·)∥ is limited by an exponent γh ∈]0,∞[.

Note that the second part of Assumption 4 implies that A has full rank.

Proposition 2. Under Assumption 4, the mapping f defined in (3.2) is finite,
upper semicontinuous and limited by the exponent γh. In particular, Assumption 2 is
fulfilled. Let A1 ∈ Rk×m1 be the matrix of the first m1 columns of A and denote by
A2 ∈ Rk×m2 the matrix of the last m2 columns of A. Then f is continuous outside of

h−1

 ∪
y2∈Zm2 ,y2≥0

({A2y2}+A)

 , (3.3)

where A denotes the boundary of the set {A1y1 | y1 ≥ 0}.

Proof. Under our standard assumptions, finiteness, upper semicontinuity and state-
ment about the discontinuity points of f follow directly from the classical results in
[7] and [13]. By the same results, there exist constants α, β > 0 such that

|f(x, z)− f(x′, z′)| ≤ α∥h(x, z)− h(x′, z′)∥+ β

holds for any (x, z), (x′, z′) ∈ Rn × Rs. From the latter, we may conclude that f is
limited by the same exponent as ∥h(·, ·)∥.

The set in (3.3) is the preimage of a countable union of hyperplanes under the map-
ping h. In particular, if we have k = s and for any x ∈ X, hx : Rs → Rs is a
C1−diffeomorphism, the set {z ∈ Rs | (x, z) ∈ Df} has Lebesgue measure 0 for any
x ∈ X. Consequently, (δx⊗ν)(Df ) = 0 holds for any x ∈ X and any Borel probability
measure µ that is absolutely continuous w.r.t. the Lebesgue measure.
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3.3. Mixed-integer quadratic recourse. In this subsection, we shall consider
recourse problems with quadratic objective, linear constraints and mixed-integer vari-
ables. Consequently, f takes the form

f(x, z) = inf
y
{y⊤Dy + q(x, z)⊤y | Ay ≤ h(x, z), y ∈ Rm1 × Zm2}, (3.4)

where q : Rn ×Rs → Rm1+m2 and h : Rn ×Rs → Rk are mappings, A ∈ Rk×(m1+m2)

and D is a square matrix with (m1 +m2) rows and columns. We will assume D to
be positive definite.

To our knowledge, stability of two-stage stochastic programs with mixed-integer
quadratic recourse has only been studied in [16]. While the authors of the men-
tioned paper also consider the situation where D is positive semidefinite, they fix
a compact set Ξ ⊂ Rs and confine their stability analysis to the class PΞ of Borel
probability measures µ on Rs that satisfy µ[Ξ] = 1. Note that for any gauge function

ψ : Rs → [0,∞) and any compact set Ξ ⊂ Rs, PΞ ⊆ Mψ
1 (Rs) is relatively com-

pact for the ψ−weak topology (cf. [18, Corollary A.47]), and hence locally uniformly
ψ−integrating (see Lemma 4.3 below).

Furthermore, [16] only examines an objective function that is based on the expectation
(although their model may reflect some kind of risk-aversion, see page 465 in [16] for
details) and assumes d and h to be of a special form (for any fixed z, d is linear in x,
while h does not depend on x). Consequently, the present analysis allows some of the
existing results in various directions.

Assumption 5.
• A and D have rational entries,
• D is symmetric and positive definite,
• {y ∈ Rm1 × Zm2 | Ay ≤ t} ̸= ∅ for any t ∈ Rk,
• the mappings q and h are continuous,
• ∥q(·, ·)∥ and ∥h(·, ·)∥ are limited by exponents γq, γh ∈]0,∞[, respectively.

Proposition 3. Under Assumption 5, the mapping f defined in (3.4) is finite, lower
semicontinuous and limited by the exponent max{2γq, 2γh}. In particular, Assumption
2 is fulfilled. Moreover, f is continuous if{

y2 ∈ Zm2 | ∃y1 ∈ Rm1 : A

(
y1
y2

)
≤ h(x, z)

}
does not depend on (x, z).

Proof. Finiteness and lower semicontinuity of f follow from [15, Theorem 2.2] and
[16, Lemma 2.7, Remark 2.8]. By the same results, there exists a constants α, β > 0
such that

|f(x, z)− f(x′, z′)| ≤ αmax{∥H∥, ∥Q∥, ∥H ′∥, ∥Q′∥}(∥H −H ′∥+ ∥Q−Q′∥+ 1) + β,

where H = h(x, z), H ′ = h(x′, z′), Q = q(x, z) and Q′ = q(x′, z′), holds for any
(x, z), (x′, z′) ∈ Rn × Rs. Consequently, we have

|f(x, z)| ≤ α(∥h(x, z)∥+ ∥q(x, z)∥+ 1)2 + β + |f(0, 0)|

for any (x, z) ∈ Rn × Rs. Under Assumption 5, the latter implies that f is limited
by the exponent max{2γq, 2γh}. The second part of the Proposition follows from [16,
Lemma 2.9].
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3.4. Mixed-integer convex recourse. Finally, we consider the fairly general
class of mixed-integer problems where the continuous relaxation is convex. Let f be
given by

f(x, z) = inf
y
{v(y) | g(y) ≤ h(x, z), y ∈ Rm1 × Zm2}, (3.5)

where v : Rm1+m2 → R is convex, the right-hand side of the constraint system is given
by the mapping h : Rn×Rs → Rk and g = (g1, . . . , gk)

⊤ : Rm1+m2 → Rk is such that
for any i ∈ {1, . . . , k}, gi has a closed and convex epigraph.

As far as we know, there is no systematic investigation of stability of two-stage stochas-
tic programs where the recourse is given by (3.5). Under assumptions involving a
compactness condition, we shall show that f is finite, lower semicontinuous and lim-
ited by finite exponent. Hence, Corollary 2.4 can be applied to derive qualitative
stability of the resulting problem (2.5) whenever Assumption 1 is fulfilled.

Let C(x, z) denote the feasible set of the problem in (3.5), i.e. define

C(x, z) := {y ∈ Rm1 × Zm2 | g(y) ≤ h(x, z)}.

In addition, let us consider the sets

Crel(t) := {y ∈ Rm1+m2 | g(y) ≤ t}, t ∈ Rk.

Obviously, C(x, z) = Crel(h(x, z))∩ (Rm1 ×Zm2) holds for any (x, z) ∈ Rn×Rs. The
following is known about Crel(·).

Lemma 3.1 ([5, Corollary 5]).
Assume that Crel(t) ̸= ∅ holds for any t ∈ Rk and that Crel(0) is compact. Let
t1, . . . , tk denote the components of t ∈ Rk, then for any r > 0,

K(r) := sup
t:∥t∥<r, y/∈Crel(t)

inf{∥y − y′∥ | y′ ∈ Crel(t)}
max{gj(y)− tj | j = 1, . . . , k}

is finite and such that

d∞(Crel(t), Crel(t
′)) ≤ K(r)∥t− t′∥,

holds for any t, t′ ∈ Rk satisfying ∥t∥, ∥t′∥ < r. Here, d∞ denotes the Hausdorff
distance.

We shall work with the following assumptions.

Assumption 6.
• The mapping v is convex,
• for every i = 1, . . . , k, the epigraph of gi is closed and convex,
• Crel(t) ∩ (Rm1 × Zm2) ̸= ∅ for any t ∈ Rk,
• Crel(0) is compact,
• the mapping h is continuous,
• ∥h(·, ·)∥ is limited by an exponent γh ∈]0,∞[,
• there are positive constants γv, κv such that |v(y)| ≤ κv(∥y∥γv + 1) holds for
any y ∈ Rm1+m2 ,

• there are positive constants γK , κK such that K(r) ≤ κK(rγK + 1) holds for
any r > 0.
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The technical conditions in the last part of Assumption 6 allow us to prove that f is
limited by a finite exponent.

Proposition 4. Under Assumption 6, the mapping f defined in (3.5) is finite,
lower semicontinuous and limited by the exponent γh(γK + 1)(γv + 1). In particular,
Assumption 2 is fulfilled. Moreover, f is continuous if C(x, z) = Crel(h(x, z)) holds
for any (x, z) ∈ Rn × Rs.

Proof. Fix any (x, z) ∈ Rn×Rs. Since g is convex and hence continuous, Crel(h(x, z))
is closed and the boundedness of Crel(0) and Theorem 3.1 yield that Crel(h(x, z)) is
bounded. Consequently, C(x, z) is the intersection of a compact and closed set and
thus compact. Furthermore, v is convex and hence continuous, which implies that

inf
y
{v(y) | y ∈ C(x, z)}

is finite and that the infimum is attained. Hence, f is real-valued and admits the
representation f(x, z) = miny{v(y) | y ∈ C(x, z)}.

Next, we shall prove that the set-valued mapping C : Rn × Rs → 2R
m1×Zm2

is upper
semicontinuous: Otherwise, there would exist a point (x0, z0) ∈ Rn×Rs, an open set
O ⊆ Rm1+m2 and sequences {(xl, zl)}l∈N ⊆ Rn × Rs and {(yl)}l∈N ⊆ Rm1+m2 such
that C(x0, z0) ⊂ O, yl ∈ C(xl, zl), yl /∈ O,

∥(xl, zl)− (x0, z0)∥ ≤ 1

l
and ∥h(xl, zl)− h(x0, z0)∥ ≤ 1

l

hold for any l ∈ N. By Theorem 3.1 we have

sup
l∈N

d∞(Crel(h(x0, z0)), Crel(h(xl, zl))) ≤ K(∥h(x0, z0)∥+ 1) =: K0,

which implies that

∞∪
l=1

{yl} ⊆
∞∪
l=1

C(xl, zl) ⊆
∞∪
l=1

Crel(h(xl, zl)) ⊆ {Crel(h(x0, z0))}+BK0(0)

is bounded. Here, BK0(0) ⊂ Rm1+m2 denotes the open ∥·∥−ball of radius K0 centered
at 0. Consequently, we can assume yl → ȳ for some ȳ ∈ Rm1+m2 without loss of
generality. yl ∈ C(xl, zl) ⊆ Rm1×Zm2 holds for any l ∈ N and implies ȳ ∈ Rm1×Zm2 .
Furthermore, by h(xl, zl) → h(x0, z0), Theorem 3.1 yields that ȳ ∈ Crel(h(x0, z0)).
Thus,

ȳ ∈ Crel(h(x0, z0)) ∩ (Rm1 × Zm2) = C(x0, z0) ⊂ O.

On the other hand, yl /∈ O for any l ∈ N and O is open, which yields the contradiction
ȳ /∈ O. Hence, C is upper semicontinuous. Since h and v are continuous, the upper
semicontinuity of C allows us to apply [9, Theorem 2] to conclude that f is lower
semicontinuous and hence Borel measurable.

Next, we shall prove that f is limited by the exponent γh(γK + 1)(γv + 1): Let
(x, z) ∈ Rn×Rs be fixed. Based on the considerations above, there exist y∗ ∈ C(x, z)
and y∗0 ∈ C(0, 0) satisfying f(x, z) = v(y∗) and f(0, 0) = v(y∗0). Since Crel(h(0, 0)) is
compact,

d0 := max{∥y − y′∥ | y, y′ ∈ Crel(h(0, 0))}
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is finite. Theorem 3.1 and Assumption 6 yield

∥y∗ − y∗0∥ ≤ d∞(Crel(h(x, z)), Crel(h(0, 0))) + d0

≤ K(∥h(x, z)∥+ ∥h(0, 0)∥+ 1)(∥h(x, z)∥+ ∥h(0, 0)∥) + d0

≤ 2κK(∥h(x, z)∥+ ∥h(0, 0)∥+ 1)γK+1 + d0

≤ κ∗(∥h(x, z)∥γK+1 + 1),

where κ∗ := 2γK+2κK(∥h(0, 0)∥+1)γK+1+d0. For any r > 0, the convex function v is
Lipschitz continuous on the open ∥ · ∥−ball of radius r centered at 0 by [30, Theorem
A, Lemma A] and the Lipschitz constant is given by

Lv(r) :=
2

r

(
max

y∈{2r,−2r}m1+m2

|v(y)|+ 2|v(0)|
)
.

Using Assumption 6, we obtain

Lv(∥y∗ − y∗0∥+ ∥y∗0∥+ 1) ≤ max
y∈{±2(∥y∗−y∗0∥+∥y∗0∥+1)}m1+m2

2|v(y)|+ 4|v(0)|

≤ 4κv(2
√
m1 +m2)

γv (∥y∗ − y∗0∥+ ∥y∗0∥+ 1)γv + 4|v(0)|
≤ κL(∥y∗ − y∗0∥γv + 1),

where κL := 4κv(4
√
m1 +m2)

γv (∥y∗0∥+ 1)γv + 4|v(0)|. Since

∥y∗∥ < ∥y∗ − y∗0∥+ ∥y∗0∥+ 1,

the above considerations yield

|f(x, z)| ≤ |v(y∗)− v(y∗0)|+ |v(y∗0)|
≤ Lv(∥y∗ − y∗0∥+ ∥y∗0∥+ 1)∥y∗ − y∗0∥+ |v(y∗0)|
≤ 2κL∥y∗ − y∗0∥γv+1 + 2κL + |v(y∗0)|
≤ 2κL(κ

∗)γv+1(∥h(x, z)∥γK+1 + 1)γv+1 + 2κL + |v(y∗0)|
≤ κ̄(∥h(x, z)∥(γK+1)(γv+1) + 1),

where κ̄ := 2γv+2κL(κ
∗)γv+1 + 2κL + |v(y∗0)|. Invoking that ∥h(·, ·)∥ is limited by γh,

we finally may conclude that f is limited by the exponent γh(γK + 1)(γv + 1).

The continuity of f in the second part of the proposition follows from [9, Theorem 2]
and the fact that C = Crel ◦ h is both upper and lower semicontinuous by Theorem
3.1.

4. ψ−weak topology and the topology of weak convergence. Throughout
this section we want to gather some useful results on the ψ-weak topologies we have
already introduced in Section 2. So let us fix a gauge function ψ : Rd → [0,∞[,

and recall that Mψ
1 (Rd) denotes the set of all Borel probability measures µ on Rd

satisfying
∫
ψ dµ < ∞. The ψ−weak topology on Mψ

1 (Rd) may be characterized in
the following ways.

Lemma 4.1. The ψ-weak topology is metrizable, and for every sequence (µn)n∈N0 in

Mψ
1 (Rd) the following statements are equivalent.
(1) µn → µ0 w.r.t. the ψ−weak topology.
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(2) µn → µ0 w.r.t. the topology of weak convergence, and
∫
Rd ψ dµn →

∫
Rd ψ dµ0.

(3) µn → µ0 w.r.t. the topology of weak convergence, and

lim
a→∞

sup
n∈N

∫
Rd

ψ · 1]a,∞[(ψ) dµn = 0.

In particular, the ψ-weak topology is metrizable by

dψ : Mψ
1 (R

d)×Mψ
1 (R

d) → R, (µ, ν) 7→ d(µ, ν) +

∣∣∣∣∫
Rd

ψ dµ−
∫
Rd

ψ dν

∣∣∣∣ ,
where d denotes any metric which generates the topology of weak convergence, e.g. the
Prokhorov metric.

Proof. From Theorem A.38 in [18] it is known that the the ψ−weak topology is
metrizable. The equivalence of (1) and (2) has been shown in [21, Lemma 3.4].
Finally, the equivalence of (2) and (3) follows immediately from the convergence of
moments theorem (cf. [43, Theorem 2.20]). Finally, dψ obviously defines a metric,
which by (2) generates the ψ-weak topology.

We are interested in gauge functions of the form ψ := ∥ · ∥q for any q > 0, where ∥ · ∥
denotes the Euclidean norm on Rd. For q ≥ 1, the ∥ · ∥q−weak topology is generated
by so called Wasserstein metric dW,d,q of order q w.r.t. ∥ · ∥q defined by

dW,d,q(µ, ν) := inf

{(∫
Rd×Rd

∥x− y∥q π(dx, dy)
)1/q

| π ∈ M1(µ, ν)

}

=

(
inf

{∫
Rd×Rd

∥x− y∥q π(dx, dy) | π ∈ M1(µ, ν)

})1/q

,

where M1(µ, ν) denotes the set of all Borel probability measures on Rd × Rd with µ
as the first d−dimensional marginal and ν as the second one (cf. [28, Theorem 6.3.1]).
The ∥·∥q−weak topology may be also generated by the Fortet-Mourier metric dFM,d,q

of order q w.r.t. ∥ · ∥q defined by

dFM,d,q(µ, ν)

:= inf

{∫
Rd×Rd

∥x− y∥ max{1, ∥x∥q−1, ∥y∥q−1} π(dx, dy) | π ∈ L1(µ, ν)

}
,

where L1(µ, ν) denotes the set of all finite Borel measures on Rd × Rd satisfying

π(A× Rd)− π(Rd ×A) = µ(A)− ν(A) for every Borel measurable set A ⊆ Rd

(see [28, Theorem 6.3.1]).

Next we want to identify those subsets M ⊆ M∥·∥q
1 (Rd) on which the ∥ · ∥q− weak

topology and the topology of weak convergence coincide. Analogously to Section 2

we shall call a subset M ⊆ M∥·∥q
1 (Rd) locally uniformly ∥ · ∥q− integrating if for any

ν ∈ M and every ε > 0, there exists some open neighbourhood L of ν w.r.t. the
topology of weak convergence such that

lim
a→∞

sup
µ∈L∩M

∫
Rd

∥z∥q · 1]a,∞[(∥z∥q) µ(dz) ≤ ε.
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The following result may be found in [45] (Lemma 3.4 there).

Proposition 4.2. For q > 0 and M ⊆ M∥·∥q
1 (Rd) the following statements are

equivalent.
(1) The ∥ · ∥q−weak topology and the topology of weak convergence coincide on

M.
(2) M is locally uniformly ∥ · ∥q−integrating.

Next, we shall provide a useful criterion to verify a set of Borel probability measures
on Rd as locally uniformly ∥ · ∥q− integrating.

Lemma 4.3. A subset M ⊆ M∥·∥q
1 (Rd) that is relatively compact for the ∥ · ∥q-weak

topology is locally uniformly ∥ · ∥q−integrating.

Proof. The statement of Lemma 4.3 is a special case of Lemma 3.1 from [24].

5. Proof of Theorem 2.2. Let ρ be as in Assumption 1 and consider the
mapping

Θf : Rn ×M∥·∥γp

1 (Rs) → M|·|p
1 (R), (x, ν) 7→ (δx ⊗ ν) ◦ f−1

which is well-defined under Assumption 2 due to Lemma 2.1. Let us equip M∥·∥γp

(Rs)
and M|·|p(R) respectively with the ∥ · ∥γp−weak topology τs,γp and the | · |p−weak
topology τ1,p as defined in Section 4. Furthermore, let τRn ⊗ τs,γp denote the prod-
uct topology of the standard topology on Rn and τs,γp. An important step in our
argumentation is to investigate continuity of the mapping Θf w.r.t. τRn ⊗ τs,γp and
τ1,p.

Proposition 5.1. Let Assumption 2 be fulfilled and let x ∈ Rn and ν ∈ M∥·∥γp

1 (Rs)
be such that δx ⊗ ν(Df ) = 0, where Df is the set of discontinuity points of f . Then
Θf is continuous at (x, ν) w.r.t. τRn ⊗ τs,γp and τ1,p.

Proof. Since τRn ⊗ τs,γp and τ1,p are metrizable, it suffices to show that Φf is sequen-
tially continuous at (x, ν). So let (xl)l∈N be any sequence in Rn converging to x, and

let (νl)l∈N be a sequence in M∥·∥γp

1 (Rs) such that νl → ν ∥ · ∥γp−weakly.

Then obviously δxl
⊗ νl → δx ⊗ ν with respect to the topology of weak convergence

on Rn × Rs. By assumption, δx ⊗ ν(Df ) = 0 holds so that we may conclude from
the continuous mapping theorem (see e.g. [11, Theorem 5.1]) that (δxl

⊗ νl) ◦ f−1 →
(δx ⊗ ν) ◦ f−1 w.r.t. the topology of weak convergence on R.

Furthermore, as in the proof of Lemma 2.1 we obtain

|f(xl, z)|p ≤ η(xl)
p2p(∥z∥pγ + 1) for l ∈ N, z ∈ Rs

and some locally bounded mapping η. Without loss of generality we may assume that
C := supl∈N η(xl) <∞. Thus by Fubini-Tonelli theorem

sup
l∈N

∫
Rn⊗Rs

|f |p1]a,∞[(|f |p) d(δxl
⊗ νl)

≤ 2pCp sup
l∈N

∫
Rn×Rs

(∥z∥γp + 1)1]a/(2pCp),∞[(∥z∥γp + 1) (δxl
⊗ νl)(dx, dz)

= 2pCp sup
l∈N

∫
Rs

(∥z∥γp + 1)1]a/(2pCp),∞[(∥z∥γp + 1) νl(dz)



16 Claus, Krätschmer, Schultz

Since νl → ν ∥ · ∥γp−weakly, we may conclude from Lemma 4.1

lim
a→∞

sup
l∈N

∫
Rs

(∥z∥γp + 1)1]a/(2pCp),∞[(∥z∥γp + 1) νl(dz) = 0.

This implies

lim
a→∞

sup
l∈N

∫
R
| · |p d(δxl

⊗ νl) ◦ f−1 = lim
a→∞

sup
l∈N

∫
Rn⊗Rs

|f |p1]a,∞[(|f |p) d(δxl
⊗ νl) = 0,

so that by Lemma 4.1 again

lim
l→∞

∫
R
| · |p d(δxl

⊗ νl) ◦ f−1 = lim
l→∞

∫
Rn×Rs

|f |p d(δxl
⊗ νl)

=

∫
Rn×Rs

|f |p d(δx ⊗ ν) =

∫
R
| · |p d(δx ⊗ ν) ◦ f−1.

Therefore (δxl
⊗ νl) ◦ f−1 → (δx ⊗ ν) ◦ f−1 w.r.t. the | · |p−weak topology.

The line of reasoning to prove Theorem 2.2 may be described roughly as follows. We
want to verify continuity of

Q : Rn ×M∥·∥γp

1 (Rs) → R, (x, ν) 7→ Rρ

(
(δx ⊗ ν) ◦ f−1

)
= (Rρ ◦Θ)(x, ν)

w.r.t. the production topology of the standard topology on Rn and the ∥ · ∥γp−weak

topology on M∥·∥γp

1 (Rs), invoking then Proposition 4.2. In view of Proposition 5.1
the first part may be concluded if the continuity of Rρ w.r.t. the | · |p-weak topology
can be shown. This will be done next.

Theorem 5.2. Under Assumption 1, Rρ is continuous with respect to the | · |p-weak
topology, and it is nondecreasing w.r.t. the increasing convex order if in addition ρ is
translation-equivariant.

Proof. Let us first recall that Lp(Ω,F ,P), equipped with ordinary Lp−norm ∥·∥p and
the P-almost sure partial order, is a Banach lattice, i.e. ∥ · ∥p is complete satisfying
∥X∥p ≤ ∥Y ∥p whenever |X| ≤ |Y | P−a.s. (see Theorem 13.5 in [1]). Furthermore,
ρ is assumed to be a convex mapping on the Banach lattice Lp(Ω,F ,P) which is
nondecreasing w.r.t. the P-almost sure partial order. Hence it is continuous w.r.t.
∥ · ∥p (cf. [10, Corollary 2]).

Since the | · |p−weak topology is metrizable it suffices to show sequential continuity

for Rρ. So consider any sequence (µl)l∈N in M|·|p
1 (R) which converges to some µ ∈

M|·|p
1 (R) w.r.t. the | · |p-weak topology. Then by Theorem 3.5 in [22] we may find

a sequence (Xl)l∈N in Lp(Ω,F ,P) and some X ∈ Lp(Ω,F ,P) such that µl is the
distribution of Xl for l ∈ N, X has µ as its distribution, and

∫
Ω
|Xl−X|p dP → 0. So

by law-invariance and Lp-norm-continuity of ρ we have

Rρ(µl) = ρ(Xl) → ρ(X) = Rρ(µ).

This shows continuity of Rρ w.r.t. the | · |p-topology. For the second part of the
statement let us assume that ρ is translation-equivariant. Then due to Lp-norm
continuity of ρ the application of [18, Corollary 4.65] yields that the restriction of Rρ

to the set of probability measures on R with bounded support is nondecreasing w.r.t.
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the increasing convex order. Then invoking Lp-norm continuity of ρ again, we obtain
that Rρ is nondecreasing w.r.t. the increasing convex order on its entire domain. This
completes the proof.

Combining Proposition 5.1 with Theorem 5.2, we obtain immediately the following
criterion to guarantee continuity of the function Q w.r.t. the production topology of

the standard topology on Rn and the ∥ · ∥γp−weak topology on M∥·∥γp

1 (Rs).

Theorem 5.3. Let Assumptions 1 and 2 be fulfilled. If x ∈ Rn and ν ∈ M∥·∥γp

1 (Rs)
satisfy δx ⊗ ν(Df ) = 0, the mapping Q is continuous at (x, ν) with respect to the
product topology of the standard topology on Rn and the ∥ · ∥γp−weak topology on

M∥·∥γp

1 (Rs).

Now we are ready to prove the main result.

Proof of Theorem 2.2:
Since M is assumed to be locally uniformly ∥ · ∥γp−integrating, the topology of weak
convergence and the ∥ · ∥γp-weak topology coincide on M due to Proposition 4.2.
Thus Theorem 2.2 follows immediately from Theorem 5.3.

6. Concluding Remarks. We offer a general framework to derive stability re-
sults for mean-risk models with respect to pertubations of the underlying probability
distribution in terms of the topology of weak convergence. Besides unifying already
existing stability results, our framework also allows to identify some strategic points
to tackle this issue for risk-averse stochastic programming in the following general
form:

min
x

{
R((δx ⊗ νZ) ◦ f−1) | x ∈ X

}
.

where

• X ⊆ Rn is nonvoid and compact,

• f : Rn × Rs → R is Borel-measurable and satisfies some polynomial growth
condition in its second variable,

• δx ⊗ νZ stands for the product measure of the Dirac measure at x and the
distribution of a known s-dimensional random vector Z,

• R denotes a functional on the set of probability distributions on R with
absolute moments of order p ∈ [1,∞[ representing a law-invariant convex
function on an Lp-space which is monotone nondecreasing w.r.t. the a.s.
partial order.

This formulation enables us to boil down stability to continuity of the mapping

Q : Rn ×M → R, (x, ν) 7→ R
(
(δx ⊗ ν) ◦ f−1

)
w.r.t. the product topology of the standard topology on Rn and the topology of weak
convergence on a set M containing νZ , and consisting of probability distributions
on Rs which fullfill some moment condition corresponding to the growth condition
of f . The key is that we always have continuity w.r.t. the product topology of the
standard topology on Rn and a specific topology on M finer than the topology of
weak convergence. As this topology on M belongs to the general class of the so called
ψ-weak topologies, we may use a recently obtained concept which describes the sets
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where ψ-weak topologies and the topology of weak convergence coincide. This provides
a fairly general condition on M which guarantees the desired continuity property,
encompassing usually imposed conditions like restrictions on higher moments or fixing
a common compact supports for the probability measures from M.

The argumentation relies on a specific continuity property of the functional R which
is known to hold also for functionals R representing law-invariant, almost surely
pointwise nondecreasing convex functions on Banach spaces more general than the
considered Lp-spaces (cf. [22], [24]). This offers the opportunity to extend the frame-
work by relaxing the polynomial growth condition on the function f e.g. by means
of a general Young function Ψ. Then the set M has to be endowed with a possibly
different ψ-weak topology. Again we might impose the concept from the theory of ψ-
weak topologies to identify such sets M where the chosen ψ-weak topology coincides
with the topology of weak convergence. However, it is beyond the scope of this paper
to work out this sketch of generalization.
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