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Abstract

In any geometrically nonlinear quadratic Cosserat-micropolar extended continuum model for-
mulated in the deformation gradient field F := ∇ϕ : Ω→ GL+(n) and the microrotation field
R : Ω→ SO(n), the shear-stretch energy is necessarily of the form

Wµ,µc
(R ;F ) := µ

∥∥sym(RTF − 1)
∥∥2

+ µc
∥∥skew(RTF − 1)

∥∥2
,

where µ > 0 is the Lamé shear modulus and µc ≥ 0 is the Cosserat couple modulus. In the
present contribution, we work towards explicit characterizations of the set of optimal Cosserat
microrotations argminR∈ SO(n) Wµ,µc

(R ;F ) as a function of F ∈ GL+(n) and weights µ > 0
and µc ≥ 0. For n ≥ 2, we prove a parameter reduction lemma which reduces the optimality
problem to two limit cases: (µ, µc) = (1, 1) and (µ, µc) = (1, 0). In contrast to Grioli’s
theorem, we derive non-classical minimizers for the parameter range µ > µc ≥ 0 in dimension
n=2. Currently, optimality results for n ≥ 3 are out of reach for us, but we contribute explicit
representations for n= 2 which we name rpolar±µ,µc(F ) ∈ SO(2) and which arise for n= 3 by
fixing the rotation axis a priori. Further, we compute the associated reduced energy levels
and study the non-classical optimal Cosserat rotations rpolar±µ,µc(Fγ) for simple planar shear.

Key words: Cosserat, Grioli’s theorem, micropolar, polar media, non-symmetric stretch, zero
Cosserat couple modulus, polar decomposition, euclidean distance to SO(n)
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1 Introduction

In 1940 Guiseppe Grioli proved a remarkable optimality result [6] for the polar factor in dimension
n = 3. To state his result, we denote by Rp(F ) ∈ SO(n) the unique orthogonal factor of F ∈
GL+(n) in the right polar decomposition F = Rp(F )U(F ) and by U(F ) = Rp(F )TF =

√
FTF ∈

PSym(n) the symmetric positive definite Biot stretch tensor. In [6] Grioli proved the special case
n = 3 of the following theorem:

Theorem 1.1 (Grioli’s theorem [6, 12, 3]). Let n ≥ 2 and ‖X‖2 := tr
[
XTX

]
the Frobenius norm.

Then for any F ∈ GL+(n), it holds

argmin
R∈ SO(n)

∥∥RTF − 1∥∥2
= {Rp(F )}, and thus min

R∈ SO(n)

∥∥RTF − 1∥∥2
= ‖U − 1‖2 . (1.1)

The optimality of the polar factor Rp(F ) for n = 3 generalizes to any dimension n ≥ 2, see,
e.g., [12], and it is this more general theorem to which we shall refer as Grioli’s theorem in this
present work. A modern exposition of the original contribution of Grioli has been recently made
available in [21].

In contrast to Grioli’s theorem, it has been noted in [18] that the polar factor Rp(F ) is not
necessarily optimal for a more general formulation of Grioli’s theorem with weights. Hence, our
main objective is to make progress on

Problem 1.2 (Weighted optimality). Let n ≥ 2. Compute the set of optimal rotations

argmin
R∈ SO(n)

Wµ,µc(R ;F ) := argmin
R∈ SO(n)

{
µ
∥∥sym(RTF − 1)

∥∥2
+ µc

∥∥skew(RTF − 1)
∥∥2
}

(1.2)

for given F ∈ GL+(n) and weights µ > 0, µc ≥ 0 such that µ 6= µc. Here, sym(X) := 1
2 (X +XT )

and skew(X) := 1
2 (X −XT ).

For µ = µc, we recover Grioli’s theorem. This case is well understood. However, no systematic
analysis of the proposed weighted optimality problem seems to exist in the literature.

Note that Problem 1.2 is of independent interest in the mechanics of micropolar media and Cosserat
theory in particular. The weighted strain energy contribution Wµ,µc arises in any geometrically
nonlinear Cosserat-micropolar model proposed in, e.g., [15], cf. [2, 4, 10, 26, 13, 15, 25] and for
any 6-parameter geometrically nonlinear Cosserat shell model proposed in [1, 27, 28, 29]. In the
beforementioned material models Wµ,µc

determines the shear-stretch energy contribution. To
obtain a full Cosserat continuum model, Wµ,µc

needs to be augmented by a curvature energy
term [22] and a volumetric energy term, see, e.g., [16] or [18]. However, Problem 1.2 reappears as a
limit case for vanishing characteristic length Lc = 0.1 In this scenario, the curvature term vanishes
identically and the set of global minimizers for (1.2) admits an interpretation as optimal Cosserat
rotations for given deformation gradient F ∈ GL+(n) and material parameters µ and µc. Grioli’s
theorem implies that for µ = µc the optimal Cosserat rotation is uniquely given by Rp(F ), i.e.,
it is the orthogonal part of the right polar decomposition F = Rp U . The corresponding reduced
energy level is the Biot-energy, see [18].

The suitable choice of the so-called Cosserat couple modulus µc ≥ 0 for specific materials or
boundary value problems is an interesting open question [14]. In particular, a strictly positive
choice µc > 0 is debatable [14] and a better understanding of the limit case µc = 0 is hence of
interest. This further motivates to study the weighted formulation stated in Problem 1.2.

We want to stress that although the term Wµ,µc subject to minimization in (1.2) is quadratic in
the nonsymmetric microstrain tensor U−1 = RTF −1 (see, e.g., [4]), the associated minimization
problem with respect to R is nonlinear due to the multiplicative coupling of R and F and the
geometry of SO(n).

1For this interpretation to work, we have to assume that the volume term decouples from the microrotation R,

e.g., W vol(U) := λ
4

[(
det[U ]− 1

)2
+

(
1

det[U ]
− 1

)2
]
, which seems natural, since it is trivially satisfied in the linear

Cosserat models [20, 14, 19]. The linear elastic energy density is of the form W lin(∇u,A) := µ ‖sym(∇u−A)‖2 +
µc ‖skew(∇u−A)‖2 + λ

2
tr [(∇u−A)]2. Here, for all admissible values of µ > 0 and µc > 0, the unique minimizer

is given by A = skew(∇u).
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Remark 1.3 (Existence of global minimizers). The energy Wµ,µc(R ;F ) is a polynomial in the
matrix entries, hence Wµ,µc

∈ C∞(SO(n),R). Further, since the Lie group SO(n) is compact and
∂SO(n) = ∅, the global extrema of Wµ,µc

are attained at interior points.

The previous remark hints at a possible solution strategy for Problem 1.2. Suppose that we
succeed to compute all the critical points Rcrit ∈ SO(n) of Wµ,µc(R ;F ).2 Then, if possible, a
direct comparison of the associated critical energy levels Wµ,µc

(Rcrit ;F ) might allow us to identify
the energy-minimizing branches for given parameters F, µ and µc. Note that any minimal branch
coincides with the reduced Cosserat shear-stretch energy

W red
µ,µc : GL+(n)→ R+

0 , W red
µ,µc(F ) := min

R∈ SO(n)
Wµ,µc(R ;F ) . (1.3)

At present a solution for the three-dimensional problem (let alone the n-dimensional problem)
seems out of reach for us. Therefore, we restrict our attention to the planar case where we can
base our computations on the standard parametrisation

R : [−π, π]→ SO(2) ⊂ R2×2, R(α) :=

(
cosα − sinα
sinα cosα

)
(1.4)

by a rotation angle.3

Regarding the material parameters, we prove that, for any dimension n ≥ 2, it is sufficient to restrict
our attention to two parameter pairs: (µ, µc) = (1, 1), the classical case, and (µ, µc) = (1, 0), the
non-classical case. We shall see that, somewhat surprisingly, the solutions for arbitrary µ > 0 and
µc ≥ 0 can be recovered from these two limiting cases. A large part of this paper is dedicated to
the discussion of the non-classical choice of material parameters in the planar case.

Problem 1.4 (The planar minimization problem). Let F ∈ GL+(2), µ > 0 and µc ≥ 0. The task
is to compute the set of optimal microrotation angles

argmin
α ∈ [−π,π]

∥∥∥∥∥(
√
µ sym +

√
µc skew).

[(
cosα − sinα
sinα cosα

)T (
F11 F12

F21 F22

)
−
(

1 0
0 1

)]∥∥∥∥∥
2

. (1.5)

It turns out that there are at most two optimal planar rotations in what we will discern as the
non-classical parameter range µ > µc ≥ 0. Both of them coincide with the polar factor Rp(F )
in the compressive regime of F ∈ GL+(2), but deviate elsewhere; see Section 3. We denote the
explicit formulae for the optimal Cosserat rotations (i.e., solutions to (1.2)) by rpolarµ,µc(F ) and
the respective rotation angles (i.e., solutions to (1.5)) by αµ,µc(F ) (possibly multi-valued). The
computation of global minimizers in dependence of F is not completely obvious even for the reduced
planar case. We hope that the discovered mechanisms will help to understand the cases n ≥ 3
eventually.

This paper is now structured as follows: we first prove a dimension-independent parameter trans-
formation lemma for µ and µc in Section 2 which allows us to focus on a classical (µ, µc) = (1, 1) and
a non-classical limit case (µ, µc) = (1, 0). In Section 3, we compute the optimal planar Cosserat
rotations and associated formally reduced energies, first for the classical and non-classical limit
cases for µ and µc, then for all admissible values of the material parameters. Finally, the optimal
rotations for the non-classical limit case (µ, µc) = (1, 0) are specialized to the particular case of
planar simple shear in Section 4. A short appendix provides some elementary but useful matrix
identities for n = 2.

2 Parameter reduction for µ and µc

The Cosserat shear-stretch energy (1.2) is parametrized by two material parameters: µ > 0 and
µc ≥ 0. It can be shown that µ must coincide with the classical Lamé shear modulus of linear

2Since the boundary of SO(n) is empty the rotation Rcrit is a critical point at F ∈ GL+(n) if and only if
d
dt

Wµ,µc (R(t) ;F )
∣∣
t=0

= 0 for every smooth curve of rotations R(t) : (−ε, ε) → SO(n) passing through R(0) =
Rcrit.

3Note that π and −π are mapped to the same rotation. In this text, we implicitly choose π over −π for the
rotation angle whenever uniqueness is an issue.

3



elasticity. The interpretation of the Cosserat couple modulus µc is, however, less clear. It seems
that all measurements that can be found in the literature lead to inconsistencies for µc > 0, see,
e.g., [14], and so a better understanding of these material parameters and their interaction is of
interest. In this section, we contribute some helpful representations of the Cosserat shear-stretch
energy in terms of powers of tr

[
U
]

= tr
[
RTF

]
.

Let us introduce the following equivalence relation for continuous functions f, g : X → R defined
on a compact set X:

f ∼X g ⇐⇒ argmin
x ∈ X

f(x) = argmin
x ∈ X

g(x) . (2.1)

An important example is given by f ∼X λf + c for λ > 0 and c both independent of x.4 In the
present work, we consider minimization w.r.t. X = SO(n) and we shall simply write f ∼ g instead
of f ∼SO(n) g.

In this section, we show that it is sufficient to restrict our attention to two representative pairs of
parameters, the classical limit case (µ, µc) = (1, 1) and the non-classical limit case (µ, µc) = (1, 0).
The solutions for arbitrary admissible µ and µc can then be recovered from these two limiting
cases by a suitable transformation, see Section 3.4 for details. To this end, we first introduce the
following

Definition 2.1 (Parameter rescaling). Let µ > µc ≥ 0. We define the singular radius ρµ, µc by

ρµ, µc
:=

2µ

µ -µc
> 0 , and further define λµ,µc :=

ρµ, µc

ρ1,0
=

µ

µ− µc
, (2.2)

as the induced scaling parameter. Note that ρ1,0 = 2 and λ1,0 = 1. Further, we define the
parameter rescaling given by

F̃µ,µc := λ−1
µ,µc F =

µ− µc
µ

F ∈ GL+(n) . (2.3)

For µ > 0 and µc = 0, we obtain F̃µ,0 = F , i.e., the rescaling is only effective for µc > 0. We can
now state the key result of this section which is independent of the dimension.

Lemma 2.2 (Parameter reduction). Let n ≥ 2 and let F ∈ GL+(n), then

µc ≥ µ > 0 =⇒ Wµ,µc(R ;F ) ∼ W1,1(R ;F ) , and

µ > µc ≥ 0 =⇒ Wµ,µc
(R ;F ) ∼ W1,0(R ; F̃µ,µc) .

(2.4)

We have to defer the proof for a bit, since we need some more preparations.

In particular, the foregoing Lemma 2.2 implies that we can focus on the classical and non-classical
limit cases. Once these are solved, the solutions for general values of µ and µc can be recovered.
Note that for the non-classical limit case (µ, µc) = (1, 0), the Cosserat shear-stretch energy defined
in (1.2) which is subject to minimization, takes the explicit form

W1,0 : SO(n)×GL+(n)→ R+
0 , W1,0(R ;F ) = ‖ sym(RTF − 1)‖2. (2.5)

Remark 2.3 (Immediate generalizations). The parameter reduction in Lemma 2.2 and the
optimality results for n = 2 in Section 3 both extend to bijective parameter transformations
τ : GL+(n) → GL+(n). For example, τ(F ) := Cof (F )T , Cof (X) := det[X]X−1 arises in the
cofactor shear energy

W cof
µ,µc(R ;F ) : SO(n)×GL+(n)→ R+

0 ,

W cof
µ,µc(R ;F ) := µ ‖ sym(Cof (RTF )− 1)‖2 + µc ‖ skew(Cof (RTF )− 1)‖2

= µ ‖ sym(RT τ(F )− 1)‖2 + µc ‖ skew(RT τ(F )− 1)‖2 .

Our results extend to this case in the natural way, i.e., the optimal rotations are (rpolarµ,µc ◦ τ)(F ).

In what follows, we take a detailed look at the parameters µ and µc and the role they play in the
weighted minimization in Problem 1.2.

4Note that f and λf + c share the same critical point structure, whereas f ∼ g does not imply this.
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2.1 Reduction of the classical parameter range: µc ≥ µ > 0

For the classical parameter range µc ≥ µ > 0, we essentially rediscover Grioli’s theorem (see The-
orem 1.1) on the optimality of the polar factor Rp(F ), since the minimization problem reduces to
the limit case (µ, µc) = (1, 1).

Proof of Lemma 2.2 (first part). For µc ≥ µ > 0, we have µc − µ ≥ 0 which gives us the following
lower bound

Wµ,µc(R ;F ) := µ ‖ sym(RTF )− 1‖2 + µc ‖ skew(RTF − 1)‖2

=µ ‖RTF − 1‖2 + (µc − µ) ‖ skew(RTF − 1)‖2

≥µ ‖RTF − 1‖2 = µW1,1(R ;F ) .

Since Wµ,µc
(Rp(F ) ;F ) = µW1,1(Rp(F ) ;F ), it follows that Wµ,µc

∼ W1,1 for the entire classical
parameter range. �

In passing, we have proved the following immediate generalization to Grioli’s theorem.

Corollary 2.4. Let µc ≥ µ > 0 and F ∈ GL+(n), then

argmin
R∈ SO(n)

Wµ,µc
(R ;F ) = argmin

R∈ SO(n)

{
µ ‖ sym(RTF )− 1‖2 + µc ‖ skew(RTF − 1)‖2

}
= {Rp(F )} ,

i.e., the polar factor Rp(F ) is the unique global minimizer. �

2.2 Reduction of the non-classical parameter range: µ > µc ≥ 0

A sparking idea which enters the proof of the second part of Lemma 2.2 is due to M. Hofmann-
Kliemt (then at TU Darmstadt [7]) who contributed to the study of the influence of the parameters
µ and µc by spotting the applicability of the following elementary identity [8]:

Lemma 2.5 (Expanding the square). Let R ∈ SO(n) and F ∈ GL+(n), then the following identity
holds:

tr
[(
RTF − ρµ,µc1

)2]
= tr

[
(RTF )2

]
− 2ρµ,µctr

[
RTF

]
+ ρ2

µ,µctr [1]. (2.6)

Proof.
tr
[(
RTF − ρµ,µc1

)2]
= tr

[(
RTF − ρµ,µc1

) (
RTF − ρµ,µc1

)]
= tr

[
(RTF )2 − 2 ρµ,µc R

TF + ρ2
µ,µc 1

]
. (2.7)

The claim follows by linearity of the trace operator.

This leads now to a reduction of the minimization of the energy Wµ,µc to W1,0 for the non-classical
parameter range. The main ingredient is the rescaling of the parameter space GL+(n) in Definition
2.1.

Proof of Lemma 2.2 (second part). We proceed by successive term expansion, gathering the con-
tributions which are constant with respect to R at each step. To this end, we split

Wµ,µc
(R ;F ) = µ ‖ sym(RTF − 1)‖2︸ ︷︷ ︸

=: I

+ µc ‖ skew(RTF − 1)‖2︸ ︷︷ ︸
=: II

(2.8)

and simplify the summands I and II separately. For the first term, we get

I = µ ‖ sym (RTF − 1)‖2 =
µ

2

(
‖F‖2 + 2‖1‖2 + tr

[
(RTF )2

]
− 4 tr

[
RTF

])
. (2.9)

Similarly, for the second term

II = µc ‖ skew(RTF )‖2 =
µc
4

〈
RTF − FTR, RTF − FTR

〉
=
µc
2

(
‖F‖2 − tr

[
(RTF )2

])
(2.10)

5



is obtained. Summation of I and II while shifting all terms constant in R to the right yields

Wµ,µc
(R ;F ) = I + II =

µ− µc
2

tr
[
(RTF )2

]
− 2µ tr

[
RTF

]
+
µ+ µc

2
‖F‖2 + µ ‖1‖2. (2.11)

We shall collect all terms which are constant with respect to R in a sequence of suitable constants,

starting with c
(1)
µ,µc(F ) := µ+µc

2 ‖F‖
2 + µ‖1‖2. This yields the expression

Wµ,µc
(R ;F ) =

µ− µc
2

tr
[
(RTF )2

]
− 2µ tr

[
RTF

]
+ c(1)

µ,µc(F ). (2.12)

Introducing the singular radius ρµ,µc from Definition 2.1, we can write the preceding equation as
follows

Wµ,µc
(R ;F ) =

µ

ρµ,µc
tr
[
(RTF )2

]
− 2µ tr

[
RTF

]
+ c(1)

µ,µc(F ) , (2.13)

which inspires us to define a rescaled energy

W̃µ,µc(R ;F ) : SO(n)×GL+(n)→ R+
0 , W̃µ,µc(R ;F ) :=

ρµ,µc
µ

Wµ,µc
(R ;F ) . (2.14)

We now expand using (2.13) to get

W̃µ,µc(R ;F ) =
ρµ,µc
µ

Wµ,µc
(R ;F ) =

ρµ,µc
µ

(
µ

ρµ,µc
tr
[
(RTF )2

]
− 2µ tr

[
RTF

]
+ c(1)

µ,µc(F )

)
= tr

[
(RTF )2

]
− 2ρµ,µc tr

[
RTF

]
+ c(2)

µ,µc(F ) , (2.15)

with c
(2)
µ,µc(F ) :=

ρµ,µc
µ c

(1)
µ,µc(F ), and observe that Wµ,µc

and the rescaled energy W̃µ, µc
share the

same local and global extrema in SO(n). This gives us W̃µ, µc
∼ Wµ,µc

which also holds for the

particular choice of parameters µ = 1 and µc = 0, i.e., W̃1,0 ∼W1,0. For the latter specific choice
of parameters, the rescaled energy takes the form

W̃1,0(R ;F ) = tr
[
(RTF )2

]
− 2ρ1,0 tr

[
RTF

]
+ c

(2)
1,0(F ). (2.16)

The next step of the proof is to show an affine relation between W̃µ, µc and W̃1,0. With Lemma
2.5, we proceed by completing the square to get

W̃µ,µc(R ;F ) = tr
[
(RTF )2

]
− 2ρµ,µc tr

[
RTF

]
+ c(2)

µ,µc(F )

= tr
[
(RTF )2

]
− 2ρµ,µc tr

[
RTF

]
+ ρ2

µ,µc − ρ
2
µ,µc + c(2)

µ,µc(F )

= tr
[
(RTF − ρµ,µc1)2

]
+ c(3)

µ,µc(F ) , (2.17)

where c
(3)
µ,µc(F ) := c

(2)
µ,µc(F )− ρ2

µ,µc . Inserting µ = 1 and µc = 0, we obtain the special case

W̃1,0(R ;F ) = tr
[
(RTF − ρ1,01)2

]
+ c

(3)
1,0(F ) . (2.18)

We can now reveal the connection between the minimization problem with parameters µ > µc ≥ 0
and the non-classical limit case (µ, µc) = (1, 0). Note first that

W̃µ,µc(R ;F ) = tr
[(
RTF − ρµ,µc1

)2]
+ c(3)

µ,µc(F ) = tr

[(
RTF − ρµ,µc

ρ1,0
ρ1,0 1

)2
]

+ c(3)
µ,µc(F )

= λ2
µ,µc tr

[(
RT F̃µ,µc − ρ1,0 1

)2
]

+ c(3)
µ,µc(F ) . (2.19)

In the last equation, we easily discover the trace term of equation (2.18) with one essential change:

F was replaced by F̃µ,µc := λ−1
µ,µcF . We now solve (2.18) for the trace term, and insert F̃µ,µc for

the parameter F . This gives

tr
[
(RT F̃µ,µc − ρ1,01)2

]
= W̃1,0(R ; F̃µ,µc)− c

(3)
1,0(F̃µ,µc) . (2.20)

6



Next, we substitute the trace term in (2.19) by its expression in terms of W̃1,0 and finally obtain

W̃µ,µc(R ;F ) = λ2
µ,µc

(
W̃1,0(R ; F̃µ,µc)− c

(3)
1,0(F̃µ,µc)

)
+ c(3)

µ,µc(F )

= λ2
µ,µc W̃1,0(R ; F̃µ,µc) + c(4)

µ,µc(F ) , (2.21)

with c
(4)
µ,µc(F ) := c

(3)
µ,µc(F ) − λ2

µ,µc c
(3)
1,0(F̃µ,µc). This establishes the missing link W̃µ, µc

(R ;F ) ∼
W̃1,0(R ; F̃µ,µc), since λ2

µ,µc > 0 and the final constant c
(4)
µ,µc(F ) depends only on F . With this, the

chain
Wµ,µc

(R ;F ) ∼ W̃µ, µc
(R ;F ) ∼ W̃1,0(R ; F̃µ,µc) ∼W1,0(R ; F̃µ,µc) (2.22)

is now complete. All four energies give rise to the same energy-minimizing rotations in SO(n). �

Once the optimal energy-minimizing rotations for W1,0 are available, the optimal rotations for
Wµ,µc with general weights µ > µc ≥ 0 can be directly inferred by a substitution of F with

F̃µ,µc . This procedure is detailed in Section 3.4. In this sense, surprisingly, the non-classical case
µ > µc > 0, i.e., with strictly positive Cosserat couple modulus µc, is completely governed by the
case with zero Cosserat couple modulus µc = 0 which is highly interesting in view of [14]!

3 Optimal rotations for the Cosserat shear-stretch energy

In this section, we compute explicit representations of optimal planar rotations for the Cosserat
shear-stretch energy, i.e., we focus on dimension n = 2. The parameter reduction strategy
in Lemma 2.2 allows us to concentrate our efforts towards the construction of explicit solutions
to Problem 1.4 on two representative pairs of parameter values µ and µc. The classical regime
is characterized by the limit case (µ, µc) = (1, 1) and the unique minimizer is given by the polar
factor Rp(F ) for any dimension n ≥ 2, see Corollary 2.4. The non-classical case represented by
(µ, µc) = (1, 0) turns out to be much more interesting and we compute all global non-classical
minimizers rpolar1,0(F ) for n = 2. This is the main contribution of this section. Furthermore,

we derive the associated reduced energy levels W red
1,1 (F ) and W red

1,0 (F ) which are realized by the
corresponding optimal Cosserat microrotations. Finally, we reconstruct the minimizing rotation
angles for general values of µ and µc from the classical and non-classical limit cases.

3.1 Explicit solution for the classical parameter range: µc ≥ µ > 0

By Corollary 2.4 the polar factor Rp(F ) is uniquely optimal for the classical parameter range in
any dimension n ≥ 2. Let us give an explicit representation for n = 2 in terms of αp ∈ (−π, π]. In
view of the parameter reduction, distilled in Lemma 2.2, it suffices to compute the set of optimal
rotation angles for the representative limit case (µ, µc) = (1, 1).

Thus, to obtain an explicit representation of αp ∈ (−π, π] which characterizes the polar factor
Rp(F ) in dimension n = 2, we consider

argmin
α ∈ [−π,π]

W 1,1(R(α) ;F ) = argmin
α ∈ [−π,π]

∥∥∥∥∥
[(

cosα − sinα
sinα cosα

)T (
F11 F12

F21 F22

)
−
(

1 0
0 1

)]∥∥∥∥∥
2

. (3.1)

Let us introduce the rotation J :=

(
0 −1
1 0

)
∈ SO(2). Its application to a vector v ∈ R2

corresponds to multiplication with the imaginary unit i ∈ C. In what follows, the quantities
tr [F ] = F11 + F22 and tr [JF ] = −F21 + F12 play a particular role and we note the identity

tr [F ]
2

+ tr [JF ]
2

= ‖F‖2 + 2 det[F ] = tr [U ]
2
. (3.2)

The reduced energy W red
1,1 (F ) := minR∈SO(n)W1,1(R ;F ) realized by the polar factor Rp(F ) can be

shown to be the euclidean distance of an arbitrary F in Rn×n to SO(n). For n = 2, we obtain
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Theorem 3.1 (Euclidean distance to planar rotations). Let F ∈ GL+(2), then

W red
1,1 (F ) = dist2(F,SO(2)) = ‖U − 1‖2 = ‖F‖2 − 2

√
‖F‖2 + 2 det[F ] + 2 . (3.3)

The unique optimal rotation angle realizing this minimial energy level satisfies the equation(
sinαp

cosαp

)
=

1

tr [U ]

(
−tr [JF ]

tr [F ]

)
. (3.4)

In particular, we have αp(F ) = arccos
(

tr[F ]
tr[U ]

)
.

Proof. See [11][Appendix A2.1]. �

Corollary 3.2 (Explicit formula for Rp(F )). Let F ∈ GL+(2), then the polar factor Rp(F ) has
the explicit representation

Rp(F ) = R(αp) :=

(
cosαp − sinαp

sinαp cosαp

)
=

1

tr [U ]

(
tr [F ] tr [JF ]

−tr [JF ] tr [F ]

)
. (3.5)

3.2 Symmetry of the first Cosserat deformation tensor

The goal of this subsection is two-fold: first, we want to solve the equation skew(RTF ) = 0 for
R ∈ SO(2) which is equivalent to RTF ∈ Sym(2). The unique polar factor Rp(F ) is certainly a

solution, but are there others? Second, we want to introduce an approach based on a rotation R̂
relative to the polar factor Rp(F ). This turns out to be essential to fully grasp the symmetry of
the non-classical minimizers rpolar(F ). This is the content of the next lemma.5

Lemma 3.3 (Symmetry of the planar first Cosserat deformation tensor). Let F ∈ GL+(2) be
given. The first Cosserat deformation tensor U(R) := RTF is symmetric if and only if

R = ±Rp(F ) . (3.6)

Proof. Let us first transform the equation into the orthogonal coordinate system induced by the
principal directions of stretch. The orthogonal basis given by the eigendirections of U makes up
the columns of a matrix Q ∈ SO(2). As it turns out, it is natural to define a relative rotation in
principal stretch coordinates which is given by

R̂(β) := QTR(α)T Rp(F )Q = R(α)T Rp(F ) . (3.7)

Note that the rightmost equality holds only for SO(2), because it is commutative. We expand
U := RTF = RT Rp(F )U = RT Rp(F )QDQT and exploit QT skew(X)Q = skew(QTXQ), i.e., the
fact that skew is an isotropic tensor function. This gives

skew(U) = 0 ⇐⇒ QT skew(RT Rp(F )QDQT )Q = 0 ⇐⇒ skew(QTRT Rp(F )Q︸ ︷︷ ︸
=:R̂

D1) = 0 , (3.8)

where D := diag(σ1, σ2) :=

(
σ1 0
0 σ2

)
, is the diagonalization of U . A simple computation in com-

ponents leads to the necessary and sufficient condition

0 = skew(R̂(β)D) =

(
0 1

2 (σ1 + σ2) sinβ
− 1

2 (σ1 + σ2) sinβ 0

)
= sinβ

tr [D]

2

(
0 1
−1 0

)
. (3.9)

We conclude that the necessary and sufficient condition for U ∈ Sym(2) is sin(β) = 0. Let us
restrict β ∈ (−π, π], then β = 0 ∨ β = π, i.e., R̂(β) = ±1. Substituting this into (3.7) and solving
for R(α) yields the claim. �

5Cf. also [18, Eq. (2.12)] for the case n = 3.
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Remark 3.4 (Symmetry of strains vs. symmetry of stresses). Consider an energy W ](U). Then,
the symmetry of the Cauchy stress tensor σ(F ) := 1/det[F ]RDUW

](U)FT is equivalent to the

symmetry of DUW
](U)U

T
as was shown in [18]. We recall that the microstrain tensor U − 12

is symmetric if and only if R = ±Rp(F ). This symmetry does imply that the Cauchy stress
tensor is symmetric. It is, however, possible that non-symmetric microstrains induce a
symmetric Cauchy stress tensor. This may be unexpected, but it is the natural scenario for
the case of non-classical optimal Cosserat rotations. A thorough discussion is given in [18].

3.3 The limit case (µ, µc) = (1, 0) for µ > µc ≥ 0

We now approach the more interesting non-classical limit case (µ, µc) = (1, 0) and compute the
optimal rotations for Wµ,µc(R ;F ). Note that, due to Lemma 2.2, this limit case represents the
entire non-classical parameter range µ > µc ≥ 0.

In the proof to Lemma 2.2, we have introduced W̃1,0 ∼W1,0, i.e., a modified energy that gives rise
to the same optimal rotations. In a similar spirit, inserting the particular values (µ, µc) = (1, 0)
into (2.11) from the proof of Lemma 2.2, we can specialize to n = 2 as follows:

W1,0(R ;F ) =
1

2
tr
[
(RTF )2

]
− 2 tr

[
RTF

]
+

1

2
‖F‖2 + ‖12‖2

(A.1)
=

1

2
tr
[
RTF

]2 − 2 tr
[
RTF

]
︸ ︷︷ ︸

=: W̊ (R ;F )

+
1

2
‖F‖2 − det[F ] + 2︸ ︷︷ ︸

=: c̊(F )

=: W̊ (R ;F ) + c̊(F ) . (3.10)

This implies W̊ ∼W1,0, since both energies differ by a constant (with respect to R)

c̊(F ) =
1

2
‖F‖2 − det[F ] + 2

(A.1)
=

1

2
tr [U ]

2 − 2 det[U ] + 2 . (3.11)

The next step is to determine the critical rotations for W1,0(R ;F ) by taking derivatives w.r.t.
R ∈ SO(2). Let us compute the necessary conditions.

Theorem 3.5 (Characterization of the critical rotations for W1,0(R ;F )). Let F ∈ GL+(2). A
rotation R ∈ SO(2) is a critical point for the energy W1,0(R ;F ) if and only if

skew(RTF ) = 0 , or tr
[
RTF

]
= 2 ∧ tr [U ] ≥ 2 .

Proof. Taking variations δR = A ·R ,A ∈ so(2), we arrive at the stationarity condition

∀A ∈ so(2) :
(
tr
[
RTF

]
− 2
) 〈
RTF, A

〉
= 0 . (3.12)

This equation holds good, if and only if either of the two factors on the left hand side vanishes.

In Lemma 3.3, we have shown that skew(RTF ) = 0, if and only if R = ±Rp(F ). Let us discuss
the second possibility

tr
[
R(α)TF

]
= 2 ⇐⇒

〈(cosα
sinα

)
︸ ︷︷ ︸

=:v(α)

,

(
tr [F ]

tr [JF ]

)
︸ ︷︷ ︸

=:w(F )

〉
= 2 (3.13)

as an equation for α. The equation on the right hand side is easily obtained by a short computation
in components. From the relation

〈
v(α), w(F )

〉
= cosα ‖v(α)‖‖w(F )‖ = 2 it follows that the angle

α can only be solved for, if

2

‖w(F )‖
=

2√
tr [F ]

2
+ tr [JF ]

2
=

2

tr [U ]
≤ 1 . (3.14)

For tr [U ] ≥ 2, due to the symmetry of the cosine, there exist two symmetric solutions for α
(which may coincide). For 0 < tr [U ] < 2 there is no solution. �
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Let us enumerate the previously obtained necessary conditions for a critical point:

1.) R = −Rp(F ) , 2.) R = + Rp(F ) , and 3.) tr
[
RTF

]
= 2 ∧ tr [U ] ≥ 2 .

Note that for the two classical critical points ∓Rp(F ), we have tr
[
RTF

]
= ∓tr [U ]. Due to the

particular expression of the energy W̊ in terms of tr
[
U
]
, we can insert the critical values of

tr
[
RTF

]
into the defining equation (3.10) for W̊ to obtain the associated critical energy levels:

W̊ (1)(F ) =
1

2
tr [U ]

2
+ 2 tr [U ] , W̊ (2)(F ) =

1

2
tr [U ]

2 − 2 tr [U ] , and W̊ (3)(F ) = −2 .

Our first observation is that W̊ (1)(F ) ≥ W̊ (2)(F ) for all F ∈ GL+(2). Further, if tr [U ] ≥ 2, then
the branch W̊ (3)(F ) exists and we have W̊ (1)(F ) ≥ W̊ (2)(F ) ≥ W̊ (3)(F ), i.e., the non-classical
branch W̊ (3) realizes the global minimum when it exists. For 0 < tr [U ] < 2, the branch W̊ (3) does
not exist and the global minimum is realized by the classical branch W̊ (2), i.e., Rp(F ) is uniquely

optimal. Finally, for tr [U ] = 2, we have W̊ (1) > W̊ (2) = W̊ (3).

Theorem 3.6 (The formally reduced energy W red
1,0 (F )). Let F ∈ GL+(2), let the energies W̊ (1),

W̊ (2) and W̊ (3) as above and W (i)(F ) := W̊ (i)(F )+ c̊(F ), i = 1, 2, 3. Then, the formally reduced
energy

W red
1,0 (F ) := min

R ∈ SO(2)
W1,0(R ;F ) := min

R∈ SO(2)
‖ sym(RTF − 1)‖2 (3.15)

is given by

W red
1,0 (F ) =

{
W (2)(F ) = tr

[
(U − 1)2

]
= dist2(F,SO(2)) , if tr [U ] < 2

W (3)(F ) = 1
2 ‖F‖

2 − det[F ]
(A.1)
= 1

2 tr [U ]
2 − 2 det[U ] , if tr [U ] ≥ 2 .

(3.16)

Proof. It suffices to add the constant c̊(F ) to the minimal energy levels for W̊ (R ;F ).
Since W (2)(F ) corresponds to R = Rp(F ) for which RTF = U is symmetric, we find that
W (2)(F ) = minR∈SO(2)W1,1(R ;F ) = dist2(F,SO(2)). Note that for tr [U ] = 2, we have

W (2)(F ) = W (3)(F ). �

It is well-known that any orthogonally invariant energy density W (F ) admits a representation in
terms of the singular values of F , i.e., in the eigenvalues of U . Let us give this representation.

Corollary 3.7 (Representation of W red
1,0 (F ) in the singular values of F ). Let F ∈ GL+(2) and

denote its singular values by σi, i = 1, 2. The representation of W red
1,0 (F ) in the singular values of

F is given by

W red
1,0 (F ) = W red

1,0 (σ1, σ2) =

{
(σ1 − 1)2 + (σ2 − 1)2 , if σ1 + σ2 < 2
1
2 (σ1 − σ2)2 , if σ1 + σ2 ≥ 2 .

(3.17)

Proof. We insert ‖F‖2 = ‖U‖2 = σ2
1 + σ2

2 and det[F ] = det[U ] = σ1σ2 into (3.16). It is not hard
to see that both pieces of the energy coincide for σ1 + σ2 = 2. �

Note that the previous formulae are independent of the enumeration of the singular values.

3.3.1 Optimal relative rotations for µ = 1 and µc = 0

Our next goal is to compute explicit representations of the rotations rpolar±1,0(F ) which realize the

minimal energy level W (3)(F ) in the non-classical limit case (µ, µc) = (1, 0). This is the content
of the next theorem for which we now prepare the stage with the following

Lemma 3.8. Let D = diag(σ1, σ2) > 0, i.e, a diagonal matrix with strictly positive diagonal
entries. Then, assuming tr [D] ≥ 2, the equation tr [R(β)D] = 2 has the following solutions

β± = ± arccos

(
2

tr [D]

)
∈ [−π, π] . (3.18)

For tr [D] < 2, there exists no solution, but we can define β = β± := 0 by continuous extension.
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tr [U ]

β±
1,0(tr [U ])

tr [U ] = 2

1 2 3 4 5 6

−π
2

−π
4

0

π
4

π
2 β+

1,0(tr [U ])

β−
1,0(tr [U ])

Figure 3.1: Plot of the two optimal relative rotation angles β±1,0 = ± arccos
(

2
tr[U ]

)
for the non-

classical limit case (µ, µc) = (1, 0). Note the pitchfork bifurcation in tr [U ] = ρ1,0 = 2. For
0 < tr [U ] < 2, the polar angle αp is uniquely optimal and the relative rotation angle β vanishes
identically.

Proof. We compute

2 = tr

[(
cosβ − sinβ
sinβ cosβ

)(
σ1 0
0 σ2

)]
= (σ1 + σ2) cosβ = tr [D] cosβ . (3.19)

Since tr [D] > 0, we may divide to obtain the relation cosβ = 2/tr [D]. This is solvable if
and only if 2/tr [D] ≤ 1 which is equivalent to tr [D] ≥ 2. There are two symmetric solutions
β± = ± arccos(2/tr [D]). Since both vanish for tr [D] = 2, we can continously extend β = β± := 0
for tr [D] < 2. �

Our Figure 3.1 shows a plot of the optimal relative rotation angle β(tr [U ]). In the classical parame-
ter range 0 < tr [U ] ≤ 2, αp(F ) is uniquely optimal and β vanishes identically. In tr [U ] = 2, a clas-
sical pitchfork bifurcation occurs. In particular, due to tr [U(12)] = tr [12] = 2, the identity matrix
is a bifurcation point of β±(F ). Further, we note that the branches β±(tr [U ]) = ± arccos(2/tr [U ])
are not differentiable at tr [U ] = 2. This has implications on the interaction of the Cosserat
shear-stretch energy with the Cosserat curvature energy Wcurv.

Theorem 3.9 (Optimal non-classical microrotation angles α±1,0). Let F ∈ GL+(2) and consider
(µ, µc) = (1, 0). The optimal rotation angles for W1,0 are given by

α±1,0(F ) =

{
αp(F ) = arccos( tr[F ]

tr[U ] ) , if tr [U ] < 2

αp(F )± arccos
(

2
tr[U ]

)
, if tr [U ] ≥ 2 .

(3.20)

Proof. The first statement follows from Theorem 3.6 which shows that Rp(F ) realizes W (2). Fur-
ther, by Theorem 3.5 (see also the proof) the branch W (2) uniquely corresponds to Rp(F ). In
other words

tr [U ] < 2 =⇒ αµ,µc(F ) = αp(F ) =⇒ rpolar(F ) = Rp(F ) . (3.21)

Let us now assume tr [U ] ≥ 2. In this case, by Theorem 3.5, globally energy minimizing rotations R
realize W (3). Thus, α ∈ (−π, π] is a solution of tr

[
R(α)TF

]
= 2 for given F ∈ GL+(2). Consider

again the relative rotation (cf. the proof of Lemma 3.3) given by

R̂(β) := R(α)T Rp(F ) . (3.22)

The uniqueness of Rp(F ) implies a one-to-one correspondence between R(α) and R̂(β). In terms
of rotation angles, we find that

α = αp − β , (3.23)
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where αp denotes the rotation angle of the polar rotation Rp(F ), i.e., R(αp) = Rp(F ). After a
transformation into the coordinate system given by the principal directions of stretch (i.e., given
by the eigendirections of U), we obtain

2 = tr
[
RTF

]
= tr

[
R̂(β)D

]
. (3.24)

Applying Lemma 3.8 we find that there are two energy-minimizing relative rotation angles

β± = ± arccos

(
2

tr [D]

)
= ± arccos

(
2

tr [U ]

)
, for tr [U ] ≥ 2 . (3.25)

We can now solve (3.23) for the corresponding microrotation angles α±1,0 which gives

α±1,0 = αp − β± = αp ∓ arccos

(
2

tr [U ]

)
. (3.26)

The second equality is just another application of Lemma A.1. �

3.4 General values for µ and µc

The reduction for µ and µc in Lemma 2.2 asserts that the optimal rotations for arbitrary values
of µ > 0 and µc ≥ 0 can be reconstructed from the limit cases (µ, µc) = (1, 1) and (µ, µc) = (1, 0).
We now detail this procedure which essentially exploits Definition 2.1.

Note first that the rescaled deformation gradient F̃µ,µc := λ−1
µ,µcF induces a rescaled stretch tensor

Ũµ,µc =

√
(F̃µ,µc)

T F̃µ,µc = λ−1
µ,µc · U . (3.27)

The right polar decomposition takes the form F̃µ,µc = Rp(F̃µ,µc) Ũµ,µc . From Rp(F̃µ,µc) =

F̃µ,µcŨ
−1
µ,µc follows the scaling invariance Rp(F̃µ,µc) = Rp(F ). For the non-classical parameter

range µ > µc ≥ 0, the quantity

tr
[
Ũµ,µc

]
= tr

[
λ−1
µ,µc · U

]
=

ρ1,0

ρµ,µc
tr [U ] (3.28)

plays an essential role. This leads us to

tr
[
Ũµ,µc

]
≥ 2 = ρ1,0 ⇐⇒ tr

[
ρ1,0

ρµ,µc
· U
]
≥ ρ1,0 ⇐⇒ tr [U ] ≥ ρµ,µc . (3.29)

In particular, this implies that the bifurcation in tr [U ] allowing for non-classical optimal planar
rotations is characterized by the singular radius ρµ, µc

:= 2µ
µ -µc

.

Theorem 3.10. Let F ∈ GL+(2). For µc ≥ µ > 0 the optimal microrotation angle is given by

αµ,µc(F ) = αp(F̃µ,µc) = αp(F ) = arccos

(
tr [F ]

tr [U ]

)
. (3.30)

For µ > µc ≥ 0, the two optimal rotation angles are given by

α±µ,µc(F ) = α±1,0(F̃µ,µc) =

αp(F ) = arccos
(

tr[F ]
tr[U ]

)
, if tr [U ] < ρµ,µc

αp(F )∓ arccos
(
ρµ, µc
tr[U ]

)
, if tr [U ] ≥ ρµ,µc .

(3.31)

Proof. By Corollary 2.4, Rp(F ) is uniquely optimal for the classical parameter range µc ≥ µ > 0.
The associated rotation angle αp(F ) is immediately obtained from the explicit formula for the polar
factor given in Corollary 3.2. Let us now discuss the more delicate non-classical parameter regime
µ > µc ≥ 0. Here, the rescaling F̃µ,µc plays a decisive role. First, the condition 0 < tr [U ] < ρµ, µc

is equivalent to 0 < tr
[
Ũµ,µc

]
< 2. In this case, the polar factor Rp(F̃µ,µc) = Rp(F ) is uniquely
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optimal. For the parameter domain tr [U ] ≥ ρµ, µc
which is equivalent to tr

[
Ũµ,µc

]
≥ 2, however,

we obtain the optimal relative rotation angles

β±µ,µc(F ) = β±1,0(F̃µ,µc) = ± arccos

 ρ1,0

tr
[
Ũµ,µc

]
 = ± arccos

(
ρµ,µc
tr [U ]

)
. (3.32)

This gives α±1,0(F̃µ,µc) = αp(F̃µ,µc)− β±1,0(F̃µ,µc) = αp(F )− β±1,0(F̃µ,µc). �

4 Optimal rotations for planar simple shear

We now apply our previous optimality results to simple shear deformations. Previously, in [23],
Neff and Münch contributed the optimal planar rotations for simple shear. A simple shear of
amount γ ∈ R is a homogeneous linear deformation represented by a matrix of the form

Fγ :=

(
1 γ
0 1

)
. (4.1)

In this section we derive the energy-minimizing rotation angles αµ,µc(γ) := αµ,µc(Fγ) for simple
shear.

Let us shortly consider the classical limit case (µ, µc) = (1, 1) which represents the entire classical
parameter range µc ≥ µ > 0. Essentially due to Theorem 1.1 the polar rotation Rp(Fγ) is
then uniquely optimal, see Corollary 2.4. Thus, we proceed with the non-classical limit case
(µ, µc) = (1, 0) which represents the entire non-classical parameter range µ > µc ≥ 0, as we have
seen in Lemma 2.2.

Let us collect some properties of simple shear Fγ . We have ‖Fγ‖2 = 2 + γ2 and det[Fγ ] = 1, i.e.,
simple shear is volume preserving for any amount γ. This allows us to compute

tr [Uγ ] =

√
‖Fγ‖2 + 2 det[Fγ ] =

√
4 + γ2 ≥ 2 . (4.2)

Thus, the reduced energy always satisfies W red
1,0 (Fγ) = W (3)(Fγ) for simple shear Fγ , i.e., the

non-classical branch is always optimal.

Corollary 4.1 (Optimal non-classical Cosserat rotations for simple shear). Let (µ, µc) = (1, 0)
and let Fγ ∈ GL+(2) be a simple shear of amount γ ∈ R. Then,

γ 6= 0 =⇒ rpolar±1,0(Fγ) 6= Rp(Fγ) . (4.3)

Proof. First, tr [Uγ ] ≥ 2 for all γ ∈ R and with Theorem 3.5 the optimal relative rotation angle
β ∈ [−π, π] satisfies

|β(Uγ)| = arccos(
2

tr [Uγ ]
) ∈ [0, π] . (4.4)

For γ 6= 0, it is easy to see that tr [Uγ ]
2
> 4. Since arccos(2/x) is strictly increasing for x ≥ 2, we

finally conclude:

0 < |β(Fγ)| = arccos(
2

tr [Uγ ]
) = arccos(

2√
4 + γ2

) . �

Remark 4.2 (Symmetry of the first Cosserat deformation tensor U in simple shear). A simple
shear Fγ by a non-zero amount γ 6= 0 automatically generates an optimal microrotational response
rpolar±(Fγ) which deviates from the continuum rotation Rp(F ). This implies that the associated

first Cosserat deformation tensor U
±
1,0(Fγ) := rpolar±1,0(Fγ)TFγ is not symmetric for any γ 6= 0;

cf. Lemma 3.3.

Remark 4.3 (Consistency with [23]). It is not hard to show that the explicit minimizers
rpolar±1,0(Fγ) for the optimal Cosserat rotations previously obtained do exactly match those com-
puted in [23][p. 12, Equation (3.24)]. We have found the following identity to be helpful for the
verification: arctan(γ2 ) = sign(γ) arccos( 2√

4+γ2
) = sign(γ) arccos( 2

tr[Uγ ] ) .
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Figure 4.1: Plot of the critical energy levels W (i)(Fγ), i = 1, 2, 3, of W1,0 for a simple shear
Fγ of amount γ. Note that W (1) ≥W (2) ≥W (3). The critical energy levels are realized by
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Figure 4.2: Plot of the optimal microrotation angles α±1,0(γ) for W1,0 and simple shear Fγ of

amount γ ∈ R. The negative optimal branch α−1,0(γ) [dashed green curve] exactly eliminates

the angle αp(F ) and vanishes identically. The positive branch α+
1,0(γ) [continuous blue curve]

corresponds to a rotation by 2αp(γ) [dot-dashed red curve]. Note the symmetry w.r.t. to the
continuum rotation angle αp(γ)

4.1 Simple glide and cancellation of the polar factor

For the case of simple shear, one of the optimal Cosserat rotations for the shear-stretch energy
W1,0 exactly cancels the polar factor. More precisely, one of the two rotations rpolar±(Fγ) is
the identity element 12 ∈ SO(2), while the other solution is given by Rp(Fγ)2, i.e., a rotation by
2αp(Fγ), see also Figure 4.2. It would be quite intriguing if this “gliding” behavior were specific
to simple shear, but, as it turns out, it is possible to construct other examples showing the same
behavior.

To see this, note first that

|αp|
(Cor. 3.2)

= arccos

(
tr [F ]

tr [U ]

)
, and |β| (Thm. 3.9)

= arccos

(
2

tr [U ]

)
. (4.5)
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The condition that one of the relative rotations cancels the continuum rotation is given by

|β| = |αp| ⇐⇒ tr [F ]

tr [U ]
=

2

tr [U ]
, (4.6)

whenever tr [U ] ≥ 2. Hence the set of matrices for which the polar rotation is canceled by a
minimizing relative rotation is given by {F ∈ GL+(2) | tr [F ] = 2 ∧ tr [U ] ≥ 2}. This set is
nonempty, because it contains the family of simple shears Fγ . In order to see that this set also
contains homogeneous deformations which are not simple shears, we consider the matrix

1
∗ :=

(
1 0
0 −1

)
(4.7)

and set

Fγ,κ := Fγ + κ1∗ and Uγ,κ :=
√
FTγ,κ Fγ,κ . (4.8)

Note that det[Fγ,κ] = 1− κ2 implies that Fγ,κ ∈ GL+(2) for 0 < |κ| < 1. Further,

∀γ, κ ∈ R : tr [Fγ,κ] = tr [Fγ ] and tr [JFγ,κ] = tr [JFγ ] , (4.9)

which implies

tr [Uγ,κ]
2

= tr [Fγ,κ]
2

+ tr [J(Fγ,κ)]
2

= tr [Fγ ]
2

+ tr [JFγ ]
2

= tr [Uγ ]
2
. (4.10)

Hence, both quantities tr [Uγ,κ] and tr [Fγ,κ] are independent of κ and condition (4.6) is automat-
ically satisfied for all admissible Fγ,κ, i.e., for 0 < |κ| < 1.

We conclude that, given any simple shear Fγ of amount γ ∈ R, there is a one parameter family
Fγ,κ, 0 < |κ| < 1 of matrices that are not simple shears for which one of the optimal relative rota-

tions R̂ exactly cancels the continuum rotation Rp(F ). The interesting “glide behavior” observed
in Section 4 is not specific to simple shear.

5 Conclusion

In Section 2, we have seen that it is sufficient to construct energy-minimizing rotations for the
classical limit-case (µ, µc) = (1, 0) and the non-classical limit case (µ, µc) = (1, 1), respectively.
For the classical parameter range µc ≥ µ > 0, the unique minimizing rotation for Wµ,µc(R ;F )
is given by Rp(F ), in any dimension n. For µ = µc, the reduced Cosserat shear energy can be
formally reduced to

W red
µ,µ(F ) = Wµ,µ(Rp(F ) ;F ) = WBiot,µ,0(F ) . (5.1)

Hence, setting the Cosserat curvature coefficient Lc = 0, one can expect the full quadratic Cosserat
model to behave essentially like a classical Biot model, see, e.g., the introduction to [18].

However, a fundamental motivation to use extended continuum models such as Cosserat models,
is to generate solutions showing non-classical effects. For the quadratic Cosserat model (without
curvature), this is the case if there is a deviation R 6= Rp(F ), since the model (formally) reduces
to the well-known Biot energy otherwise. In Section 3, we have shown that this is only to be
expected for the non-classical parameter range µ > µc ≥ 0. If non-classical solutions should be
generated already in the identity 12, then we even have to require µc = 0, since ρµ,µc > 2 otherwise.
The existence of the presented non-classical minimizers rpolar(F ) is highly interesting. In strong
contrast, if we replace the non-symmetric strain tensor U − 1 by log U in Problem 1.2, which is
natural in view of the Cartan decomposition of gl(n), one can show that no non-classical solutions
exist for arbitrary µ > 0 and µc ≥ 0

argmin
R∈ SO(n)

{
µ
∥∥sym log(RTF )

∥∥2
+ µc

∥∥skew log(RTF )
∥∥2
}

= {Rp(F )} . (5.2)

For a proof and a deep discussion of the nature and properties of logarithmic strain measures,
see [17, 9, 24].

In our introduction, we have stated that the solution to Problem 1.2 for n ≥ 3 is currently out of
reach. However, we have successfully computed non-classical critical Cosserat microrotations for
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n = 3 using a parametrisation by unit quaternions and computational algebra. Further, we have
managed to select the energy minimal branches, experimentally. An extensive numerical validation
shows, moreover, that our candidates are very likely the global minimizers. The mechanisms
discovered for the case n = 2 in the present work do carry over to the case n = 3 quite literally up
to the determination of the microrotation axis. This is the content of a forthcoming second part
of this paper [5]. For dimensions n > 3, the weighted Problem 1.2 is, to the best of our knowledge,
still completely open. It seems to us, however, reasonable to guess that a transformation into the
principal directions of stretch, i.e., the eigendirections of U , is a good plan of attack.

Remark 5.1 (Final Conclusion). To ascertain the complete absence of a non-classical response
within a geometrically nonlinear quadratic Cosserat-micropolar shear-stretch energy, one must
choose a classical parameter set, i.e., µc ≥ µ > 0.
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A Appendix

A.1 Some planar matrix identities for U and F

Let n = 2. Applying the trace to both sides of the Cayley-Hamilton equation and exploiting
linearity, we obtain

tr
[
X2 − tr [X]X + det[X]12

]
= tr [0] ⇐⇒ tr

[
X2
]

= tr [X]
2 − 2 det[X] . (A.1)

This leads us to the following identity.

Lemma A.1. Let F ∈ GL+(2) and U :=
√
FTF ∈ PSym(2). Then,

tr [U ] =

√
‖U‖2 + 2 det[U ] =

√
‖F‖2 + 2 det[F ] . (A.2)

Proof. Note first that tr
[
U2
]

=
〈
U, U

〉
= ‖U‖2 and that tr [U ] > 0. The expression in terms

of F ∈ GL+(2) is implied by det[F ] = det[Rp(F )TF ] = det[U ] and ‖F‖2 =
∥∥Rp(F )TF

∥∥2
= ‖U‖2.�
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