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Abstract

We show that the reasoning in favor of a symmetric couple stress tensor in Yang et al.’s introduction of
the modified couple stress theory contains a gap, but we present a reasonable physical hypothesis, implying
that the couple stress tensor is traceless and may be symmetric anyway. To this aim, the origin of couple
stress is discussed on the basis of certain properties of the total stress itself. In contrast to classical contin-
uum mechanics, the balance of linear momentum and the balance of angular momentum are formulated at
an infinitesimal cube considering the total stress as linear and quadratic approximation of a spatial Taylor
series expansion.
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1 Introduction

Toupin [37, 38] and Mindlin et al. [24, 20, 21, 22, 23] have established strain gradient theories to evaluate size
effects by allowing the total stress tensor to become asymmetric. Additionally, the work conjugated quantity to
the strain gradient, namely the couple stress tensor, was also accepted to be asymmetric. Such models usually
reproduce the size effect in the sense that “smaller is stronger”, which is a central point of strain gradient
modeling [3, 5, 35, 4].

The special strain gradient theory in the work of Yang et al. [40] is a subclass of the former and uses a
symmetric second order couple stress tensor m for the so called modified couple stress model, whose decisive
advantage is to reduce the number of additional constitutive coefficients to just one characteristic length scale.
In effect, they try to motivate that the couple stress tensor itself should be symmetric. Many subsequent pa-
pers have used this approach. From our point of view, an artificial equilibrium condition is used to imply the
symmetry of the couple stress tensor. Therefore, their argument is not consistent, as has also been previously
noted by Lazopoulos [18] and Hadjesfandiari and Dargush [14]. However, this does not mean that symmetry
of the couple stress tensor in itself violates any physical law, as repeatedly claimed by Hadjesfandiari and Dar-
gush [14]. Indeed, several different motivations for a symmetric couple stress tensor have already been given.
For example, a sequence of smaller and smaller samples should have bounded stiffness in bending and torsion
since the physics dictates bounded energy. However, in the framework of the isotropic, linear Cosserat model
(and the indeterminate couple stress model is a limit of that model) such boundedness necessitates to take a
symmetric moment stress tensor m [29, 16].

In this work we will therefore review the indeterminate couple stress model in order to appreciate some
of the modeling issues which are involved in the discussion above. First, we are presenting the couple stress
framework based on a variational derivation. This derivation starts from assuming a certain energy involving
second (rotational) gradients and immediately uses the small strain kinematics and the isotropy assumption. In
this way, a format of the balance equations is derived as Euler-Lagrange equations, together with the assumed
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constitutive relations and various boundary conditions. Here, the couple stress tensor is already seen to be
trace-free: tr(m) = 0. In addition we touch further upon conformal invariance requirements which are naturally
connected with symmetric couple stresses.

This variational development will be compared with another derivation of the couple stress model, which
does not make use of any constitutive assumptions like small strains, linearity or isotropy. We will only invoke
balance principles applied to infinitesimal cubes and the existence of a total (in general non-symmetric) stress
field σ̃. The couple stress tensor m will be identified with its assignment to be an exclusive stress resultant for
the balance of angular momentum. On the other hand, the couple stress tensor will not appear in the balance
of linear momentum.

However, contrarily to what is classically done, we allow higher order variations of the total stress field over
the cube with the result of being able to clearly identify the couple stress tensor m. The final outcome is a
set of two coupled balance equations having exactly the same format as the indeterminate couple stress model
derived with the variational approach. Since no constitutive assumptions are yet involved, no condition for the
trace of the couple stress tensor is included. Interestingly, if we assume from the outset the symmetry of the
total stress tensor σ̃ we arrive consistently at tr(m) = 0 in this framework. However, the total stress tensor
in the indeterminate couple stress model is not symmetric in the standard approach. This can be modified by
adding a self-equilibrated stress-field (thus, the balance equations are the same, but different boundary condi-
tions are implied) and the full correspondence can be established to the model, see our paper [6]. Additionally,
relating couple stress effects to isochoric deformation modes only, we find again an argument for the symmetry
of the couple stress tensor m. Both results can also be found in continuum theories with conformally invari-
ant curvature measure, which reduces the number of constitutive parameters to a minimum [29, 30]. Thus,
our procedure provides constitutive statements from an equilibrium method and reasonable assumptions of the
classical continuum theory, recovering previous results obtained via variational procedures now using a suitable
balance approach.

Finally, we critically discuss in detail the underlying reasoning of the motivation of a symmetric couple stress
tensor in Yang et al. [40] and come to the conclusion that it is not tenable: the authors do not present a con-
vincing argument for symmetric couple stress tensors. This, however, does not imply that assuming symmetry
of the couple stress tensor violates any fundamental physical law, as erroneously claimed in Hadjesfandiari and
Dargush [14, 12]. We show this by some simple examples.

The paper is structured as follows. The classical indeterminate couples stress model including some of its
variants in the isotropic and hyperelastic setting and some remarks on conformal invariance of the curvature
energy are recalled. Then, the balance equations for couple stress models are treated in general. Next, the
origin and properties of couple stress are systematically investigated on the basis of the total stress function,
the balance of linear momentum, and the balance of angular momentum. Then we try to explain the approach
of Yang et al. [40] bona fide and indicate where their argument fails. Finally, we give an analytical example to
verify results of this paper.

1.1 Notational agreements

With R
3×3 we denote the set of real 3 × 3 second order tensors, written with bold capital letters. Vectors in

R
3 are denoted by small bold letters. The components of tensors and vectors are given according to orthogonal

unit vectors e1, e2, e3. We use Lagrangian coordinates x to describe physical fields. Throughout this paper
(when not specified otherwise) Latin subscripts specify the direction of components and take the values 1, 2, 3.
For repeating subscripts Einstein’s summation convention applies.

For vectors a,b ∈ R
3 we let 〈a,b〉R3 denote the canonical scalar product on R

3 with associated vector norm
‖a‖2

R3 = 〈a, a〉R3 . The standard Euclidean scalar product on R
3×3 is given by 〈X,Y〉R3×3 = tr(XYT ), and

thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉R3×3 . In the following we omit the index R
3,R3×3. The

identity tensor on R
3×3 will be denoted by 1, so that tr(X) = 〈X,1〉. We adopt the usual abbreviations of

Lie-algebra theory, i.e., so(3) := {X ∈ R
3×3 |XT = −X} is the Lie-algebra of skew-symmetric tensors and

sl(3) := {X ∈ R
3×3 | tr(X) = 0} is the Lie-algebra of traceless tensors. For all X ∈ R

3×3 we set symX =
1
2 (X

T +X) ∈ Sym(3), skewX = 1
2 (X−XT ) ∈ so(3) and the deviatoric part devX = X− 1

3 tr(X) · 1 ∈ sl(3)
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and we have the orthogonal Cartan-decomposition of the Lie-algebra gl(3)

gl(3) = {sl(3) ∩ Sym(3)} ⊕ so(3)⊕ R·1 , X = dev symX+ skewX+
1

3
tr(X)1 , (1.1)

simply allowing to split every second order tensor X ∈ R
3×3 uniquely into its trace free symmetric part, skew-

symmetric part and spherical part, respectively. Typical conventions for differential operations are implied such
as comma followed by a subscript to denote the partial derivative with respect to the corresponding cartesian
coordinate. For

A =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 ∈ so(3) , A · v = a× v , ∀v ∈ R

3 , a = axl[A] , A = anti[a] , (1.2)

the operators axl : so(3) → R
3 and anti : R3 → so(3) are given by

(axl[A])k := −
1

2
ǫijk Aij , (anti[a])ij := −ǫijk ak = Aij . (1.3)

The components ǫijk of the third order Levi-Cività tensor are ǫijk = +1 for even and ǫijk = −1 for odd
permutation, else ǫijk = 0. The cross product of the gradient operator with a vector v or a tensor X yields the
curl operator reading

curl v = ∇× v = ǫijk vk,j ei , Curl X = ∇×XT = −X×∇ = −Xia,k ǫakj ei ⊗ ej . (1.4)

We consider a body which occupies a bounded open set B of the three-dimensional Euclidian space R
3 and

assume that its boundary ∂B is a piecewise smooth surface. An elastic material fills the domain B ⊂ R
3 and

we refer the motion of the body to rectangular axes ei.

2 The isotropic linear indeterminate couple stress theory

In this paper we limit our analysis to isotropic materials and only to the second gradient of the displacement:

D2
xu =

∂2ui

∂xj ∂xk︸ ︷︷ ︸
ui,jk

ei ⊗ ej ⊗ ek = (εji,k + εki,j − εjk,i) ei ⊗ ej ⊗ ek , (2.1)

where

ε = εij ei ⊗ ej =
1

2
(ui,j + uj,i) ei ⊗ ej =

1

2
(Grad[u] + (Grad[u])T ) = symGrad[u] . (2.2)

is the symmetric linear strain tensor. Thus, from eq.(2.1) all second derivatives D2
x
u of the displacement field

u can be obtained from linear combinations of Grad[ε]. In general, strain gradient models do not introduce
additional independent degrees of freedoms1 aside the displacement field u. Thus, the higher derivatives in-
troduce a “latent-microstructure” (constraint microstructure [9]). However, this apparent simplicity has to be
payed with more complicated and intransparent boundary conditions, as treated in a series of papers [19, 27, 34].

The linear indeterminate couple stress model is a particular second gradient elasticity model, in which the
higher order interaction via moment stresses is restricted to the gradient of the continuum rotation curl u,
where u : B 7→ R

3 is the displacement of the body. The linear indeterminate couple stress model is therefore
interpreted to be sensitive to rotations of material points and it is possible to prescribe boundary conditions of
rotational type. Superficially, this is the simplest possible generalization of linear elasticity in order to include
the gradient of the local continuum rotation as a source of additional strains and stress with an associated energy.

1In contrast to Cosserat models where an independent rotation field is under consideration.
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Further, we assume the isotropic quadratic elastic energy to be given by

W (ε, k̃) =

∫

B

Wlin(ε) +Wcurv(k̃) dV

=

∫

B

µ‖ε‖2 +
λ

2
[tr(ε)]2 + µL2

c (α1 ‖ dev sym[k̃]‖2 + α2 ‖skew [k̃]‖2) + α3 [tr(k̃)]
2 dV , (2.3)

where µ and λ are the classical Lamé constants and the curvature energy is expressed in terms of the second
order curvature tensor

k̃ := Grad[axl(skewGrad[u])] =
1

2
Grad[curl u] , (2.4)

with additional dimensionless constitutive parameters α1, α2, α3, and Lc > 0 as characteristic length. Taking
free variations δu ∈ C2(Ω) of the elastic energy W (ε, k̃) yields the virtual work principle

d

dt
W (Grad[u] + tGrad[δu]) =

∫

B

2µ 〈ε,Grad[δu]〉+ λ tr(ε) tr(Grad[δu)]

+ 2µL2
c α1 〈dev sym(k̃), dev symGrad[axl skewGrad[δu]]〉

+ 2µL2
c α2 〈skew (k̃), skew (Grad[axl skew Grad[δu]])〉

+ 2µL2
c α3 tr(k̃) tr(Grad[axl skewGrad[δu]]) + 〈f , δu〉dV = 0 . (2.5)

Using the classical divergence theorem for the curvature term in eq.(2.5) it follows after some simple algebra
that

∫

B

〈Div (σ + τ̃ ) + f , δu〉 dV −

∫

∂B

〈(σ + τ̃ ).n, δu〉 dA+

∫

∂B

〈m.n, axl skewGrad[δu]〉dA = 0 , (2.6)

where σ is the symmetric local force-stress tensor from isotropic, linear elasticity

σ = 2µ ε+ λ tr(ε)1 ∈ Sym(3) , (2.7)

and τ̃ represents the additional non-local force-stress tensor

τ̃ = −
1

2
antiDiv[m] ∈ so(3) , (2.8)

which here is automatically skew-symmetric. The second order couple stress2 tensor m in eq.(2.8) reads

m = µL2
c [α1 dev sym(Grad[curl u]) + α2 skew (Grad[curl u]) + α3 tr(Grad[curl u])︸ ︷︷ ︸

=0

1]

= 2µL2
c [α1 dev sym(k̃) + α2 skew (k̃)] , (2.9)

which may or may not be symmetric, depending on the material parameters α1, α2. Moreover, m in eq.(2.9)
is automatically trace free since both the deviator and the skew operator yield trace free tensors. This is in
accordance with our subsequent discussion at an infinitesimal cube in Section 3.2, where symmetric total force
stress will yield tr(m) = 0 in eq.(3.28).

Note, however, that the skew-symmetry of the non-local force stress τ̃ appears as a constitutive assumption.
Thus, if the test function δu ∈ C∞

0 (Ω) also satisfies axl(skewGrad[δu]) = 0 on Ω (equivalently curl δu = 0),
then we obtain the balance of momentum

Div

{
2µ ε+ λ tr(ε)1︸ ︷︷ ︸

local force stress σ ∈ Sym(3)

− antiDiv{µL2
c α1 dev sym(k̃) + µL2

c α2 skew (k̃)︸ ︷︷ ︸
hyperstress

1
2m∈ gl(3)

}

︸ ︷︷ ︸
completely skew-symmetric non-local force stress τ̃ ∈ so(3)

}
+ f = 0 . (2.10)

2Also denominated hyperstress or moment stress.
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The balance of angular momentum is given by eq.(2.8). Both are combined to the compact equilibrium equation

σ̃ = σ + τ̃ total force stress ,

Div σ̃ + f = 0 ⇔ Div [σ − 1
2 antiDivm] + f = 0 ,

Divm+ 2 axl(τ̃ ) = 0 ⇔ Divm+ 2 axl(skew σ̃) = 0 .

(2.11)

2.1 Related models in isotropic second gradient elasticity

Let us consider the following strain and curvature energy as a minimization problem

I(u) =

∫

B

[
µ ‖symGrad[u]‖2 +

λ

2
[tr(symGrad[u])]2 +Wcurv(D

2
x
u)

]
dV 7→ min. w.r.t.u , (2.12)

admitting unique minimizers under some appropriate boundary condition. Here λ, µ are the Lamé constitutive
coefficients of isotropic linear elasticity, which is fundamental to small deformation gradient elasticity. If the
curvature energy has the formWcurv(D

2
xu) = Wcurv(D

2
x sym∇u), the model is called a strain gradient model.

We define the hyperstress tensor of third order as m = DD2
x
uWcurv(D

2
x
u). Note that Divm is in general not

symmetric such that the total force stress tensor in a general gradient elasticity theory is not anymore symmetric.
In the following we recall some curvature energies proposed in different isotropic second gradient elasticity

models for the convenience of the reader:

• the indeterminate couple stress model (Grioli-Koiter-Mindlin-Toupin model) [8, 1, 17, 24, 38, 36, 9]
in which the higher derivatives (apparently) appear only through derivatives of the infinitesimal continuum
rotation curl u. Hence, the curvature energy has the equivalent forms

Wcurv(k̃) =
µL2

c

4
(α1 ‖ symGrad[curl u]‖2 + α2 ‖skewGrad[curl u]‖2

= µL2
c (α1 ‖ symGrad[axl(skewGrad[u])]︸ ︷︷ ︸

k̃

‖2 + α2 ‖skew Grad[axl(skewGrad[u])]︸ ︷︷ ︸
k̃

‖2 , (2.13)

m = 2µL2
c (α1 sym k̃+ α2 skew k̃) . (2.14)

We remark that the spherical part of the couple stress tensor is zero since tr(2 k̃) = tr(∇ curl u) =
div(curl u) = 0, as seen before. In order to prove the pointwise uniform positive definiteness it is
assumed that α1 > 0, α2 > 0. Note that pointwise uniform positivity is often assumed [17] when deriving
analytical solutions for simple boundary value problems because it allows to invert the couple stress-
curvature relation.

• the modified symmetric couple stress model - the conformal model. On the other hand, in the
conformal case [33, 32] one may consider α2 = 0, which makes the couple stress tensor m symmetric and
trace free [2]. This conformal curvature case has been derived by Neff in [33], the curvature energy having
the form

Wcurv(k̃) = µL2
c α1 ‖ dev sym k̃‖2, m = 2µL2

c α1 dev sym k̃ . (2.15)

Indeed, there are two major reasons uncovered in [33] for using the modified couple stress model. First,
in order to avoid non-physical singular stiffening behaviour for smaller and smaller samples in bending
[30] one has to take α2 = 0. Second, a homogenization procedure invoking a natural “micro-randomness”
assumption (a strong statement of microstructural isotropy) implies conformal invariance, which is again
α2 = 0. Such a model is still well-posed [15] leading to existence and uniqueness results with only one
additional material length scale parameter, although it is not pointwise uniformly positive definite.

• the skew-symmetric couple stress model. Hadjesfandiari and Dargush strongly advocate [10, 11,
13, 12] the opposite extreme case, α1 = 0 and α2 > 0, i.e. the curvature energy

Wcurv(k̃) = µL2
c

α2

4
‖skewGrad[curlu]‖2 = µL2

c α2 ‖skew k̃‖2 , m = 2µL2
c α2 skew k̃ . (2.16)
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In that model the non-local force stress tensor τ̃ is skew-symmetric as before, but the couple stress tensor
m is assumed to be completely skew-symmetric as well. Their reasoning, based on a certain restricted
understanding of boundary conditions, is critically discussed in Neff et al. [34].

2.2 A variant of the indeterminate couple stress model with symmetric total force

stress

In Ghiba et al. [6] the isotropic, linear indeterminate couple stress model has been modified so as to have
symmetric total force stress σ̂, while retaining the same weak form of the Euler-Lagrange equations. This is
possible since the force stress tensor appearing in the balance of forces is only determined up to a self-equilibrated
stress-field σ̄, i.e.

Div σ̃ + f = 0 ⇔ Div (σ̃ + σ̄) + f = 0 , for any σ̄with Div σ̄ = 0 . (2.17)

The curvature energy expression of this new model is

Wcurv(D
2
x
u) = µL2

c(α1 ‖ dev symCurl (symGrad[u])‖2 + α2 ‖skew Curl (symGrad[u])‖2) . (2.18)

The strong form of the new model reads

Div σ̂ + f = 0 , σ̂ = σ + τ̂ ∈ Sym(3) symmetric total force stress

σ = 2µ symGrad[u] + λ tr(Grad[u])1 , τ̂ = symCurl (m̂)

m̂ = 2µL2
c (α1 dev symCurl (symGrad[u]) + α2 skew Curl (symGrad[u])) .

(2.19)

The total force stress tensor is now σ̂ = σ+ τ̂ and the second order couple stress tensor is m̂. Note that similarly
as in the indeterminate couple stress theory we have tr(m̂) = 0. Compared to the classical indeterminate couple
stress theory one can show that Div (σ̃ − σ̂) = 0, as claimed. Thus, eq.(2.19) is a couple stress model with

symmetric total force stress σ̂ and trace free couple stress tensor m̂. Moreover, the couple stress tensor m can
be symmetric itself for the possible choice α2 = 0.

2.3 Conformal invariance of curvature in favor of the modified couple stress theory

An infinitesimal conformal mapping [29, 33] preserves angles and shapes of infinitesimal figures to the first
order. The inhomogeneity is therefore only a global feature of the mapping and locally no shear or distortional
deformation appears. Therefore it seems natural to require that a second gradient model based on couple
stresses should not ascribe curvature energy to such deformation modes. Put in other words, we will require
that

there should not be any couple stress response under deformations of infinites-
imal cubes if the cubes are only rigidly rotated and dilated.

(2.20)

In order to prepare the stage for the subsequent development let us introduce a further axiom which is tacitly
assumed in classical mechanics. We call it the axiom of localized response:

The constitutive equations can be investigated based on the response of the
material on the level of the deformation of infinitesimal cubes.

(2.21)

The axiom of localized response, together with requirement (2.20) yields that the couple stress tensor m should
be independent of conformal curvature.

7



Since this is part of our discussion, we give a short introduction to conformal invariance. A map x̄ = φc(x) :
R

3 → R
3 is infinitesimally conformal if and only if its Jacobian satisfies∇φc(x) ∈ R·1+so(3), where R·1+so(3)

is the conformal Lie-algebra. This implies [29, 33, 30] the representation of that map as a special second order
polynomial function

φc(x) =
1

2

(
2〈axlŴ,x〉x− axlŴ)‖x‖2

)
+ [p̂ · 1+ Â] · x+ b̂ , x̄ = φc(x) , (2.22)

where Ŵ, Â ∈ so(3), b̂ ∈ R
3, p̂ ∈ R are arbitrary but constant. In Fig.1 and 2 possible deformation modes of

φc are drawn. By conformal invariance of the curvature energy, we mean that it vanishes on infinitesimal
conformal mapping.

The axiom of localized response (2.21) is tacitly assumed in classical continuum mechanics to avoid the
necessity of higher order terms in the Taylor series expansion of the total stress σ̃. The constitutive equations
can be discussed (similar to the balance equations as done in section 3.2) based on the response of the material
on the level of the deformation of infinitesimal cubes. Similarly, assuming the couple stress tensor m to be
independent of conformal curvature is such a kind of localization: m(D2

xφc) = 0 ⇒ m ∈ Sym(3).

general
affine

mapping

not
conformal

locally only
rotation and
dilation

conformal

Figure 1: General affine (left) and conformal mapping (right), which is locally only rotation and dilation.

Figure 2: Infinitesimal conformal mappings [33] locally preserve angles and shapes but may be globally inho-
mogeneous.

This is equivalent to

Wcurv(D
2
x
φc) = 0 or m(D2

x
φc) = 0 for all conformal mapsφc . (2.23)

The classical linear elastic energy still ascribes energy to such a deformation mode but strictly related only to
the bulk modulus

Wlin(Grad[φc]) =
3λ+ 2µ

2
[tr(Grad[φc])]

2 , (2.24)
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i.e. to volumetric deformation parts inherent in φc. Note that in case of a classical plasticity formulation with
von Mises deviatoric flow rule, conformal mappings are precisely those inhomogeneous mappings that never
lead to plastic flow [26] since

dev symGrad[φc] ≡ 0 . (2.25)

In that perspective, conformal mappings are ideally elastic. Introducing the displacement field u = φ(x) − x :
B ⊂ R

3 → R
3, it can be remarked that

Wcurv(D
2
xu) = Wcurv(dev symGrad[curl u]) , m(k̃) = 2µL2

c α1 dev sym k̃ (2.26)

is conformally invariant. But e.g. the curvature energy chosen by Hadjesfandiari and Dargush [14]

Wcurv(D
2
xu) = Wcurv(skewGrad[curl u]) , m(k̃) = 2µL2

c α2 skew k̃ (2.27)

is not conformally invariant. We note that our new model (2.19) with α2 = 0 yields

Wcurv(D
2
x) = µL2

c α1 ‖ dev symCurl (symGrad[u])‖2 , m̂ = 2µL2
c(α1 dev symCurl (symGrad[u]) , (2.28)

which is also conformally invariant. Thus, the underlying additional invariance property of the modified couple
stress theory is precisely conformal invariance. In the modified couple stress model, these deformations are
free of size-effects. Put in other words, the generated couple stress tensor m̃ in the modified couple stress
model is zero for this deformation mode, while in the model by Hadjesfandiari and Dargush m̃ is constant and
skew-symmetric under infinitesimal conformal mappings.

3 Another derivation of the equations for the couple stress model

There are several ways to arrive at the equilibrium equations of the couple stress model: the formal way postu-
lates energy minimization and results in Euler-Lagrange equation (2.11). Therefore, constitutive assumptions
on the energy function need to be made. This procedure has been followed in the first part of this paper.
Another route consists in looking at a discrete lattice model, making some assumptions on the next to nearest
neighbor interaction and homogenizing the results. This has been followed e.g. in [33]. There, the homogenized
energy is obtained and equilibrium follows again as an Euler-Lagrange equation.

In this section, equilibrium equations are obtained by another approach. We start from a given, generally
inhomogeneous total stress distribution σ̃ and postulate equilibrium at subdomains. Subdomains are considered
to be infinitesimal and cubic, as traditionally used in classical continuum mechanics. This yields the standard
equilibrium equations. Additionally, it can be shown how the equilibrium equations generalize, if the Taylor
series expansion of the stress distribution σ̃ allows for higher order terms than usually considered in classical
continuum mechanics.

In doing so, we do not introduce other physical quantities besides the total force stress tensor σ̃ for the
balance of linear and angular momentum. However, fluctuations of the stress function over infinitesimal cubes
are evaluated up to quadratic terms in a spatial Taylor series expansion, which is assumed to be valid within the
cubes. On that basis, certain properties of stress can be elaborated with respect to the center of the cube. We
extract the couple stress m from its assignment to be a stress resultant for the balance of angular momentum,
reading

m :=

∫

∂Bc

polar(σ̃).n dA . (3.1)

Note that the polar operator in eq.(3.1) is not the polar decomposition but this will be explained later. Our
analysis is in principle applicable to any medium, no further constitutive assumptions need to be made. It
is perfectly Newtonian in the sense that the whole discussion is based on the statement of balance laws only.
However, let us immediately point out the limitations of such an approach:

• It is impossible to obtain more general higher gradient models. The interaction will always be limited to
some “rotational” type of effects through the structure of eq.(2.11): Divm = 2 axl(skew σ̃).

9



• It is impossible to obtain a true micromorphic type kinematics since the coupling of moment stresses
necessary there would also be beyond the presented framework [28, 7, 31].

• The approach would offer the possibility for a true Cosserat type kinematics with independent rotations
but does not necessitate these independent degrees of freedom [25].

As a preliminary conclusion we can say: The procedure in the next section 3.1 is one of the many possibilities
to motivate the indeterminate couple stress model. Since its assumptions are taken from the traditional balance
laws of the kinematics of rigid bodies, some authors claim that this is “the one and only” motivation for such a
model. Clearly, we need to dismiss such a strong claim: it is well accepted that continuum mechanics extends
far beyond the kinematics of rigid bodies. On the positive side, this derivation let us better understand the
engineering way of motivation for the couple stress model. It also allows us to see the fallacy of Yang et al.’s
argument later in this paper.

3.1 Taylor series expansion of total stress

We treat the total stress tensor σ̃ as spatial function and no restrictions on its symmetry apply a priori. We
assume that the contact forces acting in the body are fully described by this total stress σ̃. Cauchy’s principle
states that the traction σn on any surface of a body derives from the force stress σ̃ and the surface normal n
via

σn = σ̃.n , σn ∈ R
3 , σ̃ ∈ R

3×3 . (3.2)

It is a generalization to use this principle also for the couple stress m as already proposed by Koiter [17], reading

mn = m.n , mn ∈ R
3 , m ∈ R

3×3 . (3.3)

Here, eq.(3.2) and (3.3) are axiomatic in nature. However, the similarity of σ̃ and m concerning Cauchy’s
principle implies that stress and couple stress relate to the same physical quantity: the bonding force between
neighboring material points. In our opinion, couple stress represents a certain kind of non-local bonding force of
the force stress function, being neglected within a local continuum formulation. The effect of non-local bonding
forces is due to the inhomogeneity of the force-stress function. Thus, we consider the split of this stress function
into several parts subsequently.

In accordance with [39], the index i of stress components σij characterizes the component (σn)i of the
subsequent force traction in the direction of the associated base vector ei, and the index j characterizes the
plane that σn is acting upon3, i.e. n = ei specifies the direction of the plane. The same convention is considered
for the couple stress tensor [38], see Fig.3.

The components of the force stress tensor are usually drawn in a simple way at single points centered on
each face of Cauchy’s cube Bc. However, the total stress tensor depends on its position x in space. Generally,
fluctuations may appear from point to point, exemplarily sketched for a tangential and a normal stress compo-
nent in Fig.4. Reducing the cube Bc to the size of a point gives some motivation for the simplified representation
with single arrows centered on faces.

Remark 3.1. Even in classical continuum mechanics, stress components generally need to vary linearly between
opposite faces of the infinitesimal cube to appear in the balance equation of linear momentum, as will be shown
below. On the other hand, the same stress components are treated as constant on faces, where they appear as
traction σ̃.n. Such a directional selection of stress gradients eliminates moment couples in the stress function,
which is due to excluding couple stress in the model.

3Some authors reverse this convention by identifying the first index with the plane and the second index with the vector
component.
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Figure 3: Faces of a finite cube Bc showing components of the force stress tensor σ̃ and the couple stress tensor
m, respectively.

Next, we discuss this issue in detail with the help of the second-order Taylor series expansion of the total stress

σ̃(x0 +∆x) = σ̃(x0)︸ ︷︷ ︸
σ̃0

+
∂σ̃(x0)

∂x1
∆x1 +

∂σ̃(x0)

∂x2
∆x2 +

∂σ̃(x0)

∂x3
∆x3

︸ ︷︷ ︸
Dσ̃(x0).∆x

+
∂2σ̃(x0)

∂x1 ∂x2
∆x1 ∆x2 +

∂2σ̃(x0)

∂x1 ∂x3
∆x1 ∆x3 +

∂2σ̃(x0)

∂x2 ∂x3
∆x2 ∆x3

︸ ︷︷ ︸
D

b
2σ̃(x0).∆x2

b

+
1

2

∂2σ̃(x0)

∂x2
1

∆x2
1 +

1

2

∂2σ̃(x0)

∂x2
2

∆x2
2 +

1

2

∂2σ̃(x0)

∂x2
3

∆x2
3

︸ ︷︷ ︸
D

q
2σ̃(x0).∆x2

q

+ o(∆x3, ∆x4, ...) , (3.4)

with ∆x = x− x0 describing the distance from the center to any point of the cube Bc.
The derivatives of the stress function Dσ̃(x0), D

b
2σ̃(x0), and D

q
2σ̃(x0) are evaluated in the center of the cube

and constant in Bc and on ∂Bc. As products with ∆x, ∆x2
b, and ∆x2

q, a fully bilinear representation of stress is
given after neglecting higher order terms o(∆x3, ∆x4, ...). We split second order derivatives in two terms. As we
show later, this split is motivated by different effects of each term concerning the balance of angular momentum.

To illustrate the decomposition of the total stress function σ̃, a tangential and a normal stress component
in Fig.4a are exemplarily decomposed into a linear function in Fig.4b and higher order terms in Fig.4c. Note

= +

Figure 4: Left: Stress fluctuation for a tangential and a normal stress component. Taylor series expansion
results in linear (middle) and higher order terms (right).

that even linear fluctuations of stress, represented by Dσ̃(x0).∆x, generally yield couples regarding the center
of faces. In Fig.5 a linearized tangential and normal stress component are drawn. Their decomposition into
constant and linear terms are shown. Obviously, constant stress does not generate a couple concerning the
center of the face, where it acts on. This is in contrast to the linear fluctuation, which obviously results in a
couple. Since this physical effect of generating a couple or not is essential for this paper, we use the following
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terminology:

Terms of stresses generating tractions σ̃.ni such that a couple emerges with
respect to the center of the surface are called polar.

(3.5)

Let us repeat that in classical continuum mechanics, stress components are treated as linear functions between

= +

Figure 5: Decomposition of linearized stress components (left) in constant (middle) and linear (right) parts.

opposite faces of an infinitesimal cube. But the same stress components are assumed to be constant on faces,
where they appear as traction σ̃.n. Therefore, by completely keeping such linear terms of stress, exemplarily
shown in Fig.5, the classical approach of continuum mechanics is extended. We will show in the next section that
certain terms of the Taylor series expansion yield contributions to the balance of linear momentum. Similarly,
some terms yield contributions to the balance of angular momentum. This is why we define a second terminology:

Terms of stresses generating neither polar tractions nor contributing to the
balance of angular momentum are called nonpolar.

(3.6)

It is crucial for this paper that linear and bilinear terms from the Taylor series expansion in eq.(3.4) will be
considered in order to find the origins and properties of couple stress.

3.2 Discussion of origins and properties of the couple stress

From now on, a local cartesian coordinate system with basis vectors ei aligned to the edges of the finite cube
Bc is used. The origin x0 is considered in the center of the cube, as shown in Fig.6. Thus, the increments ∆x1,
∆x2, and ∆x3 in eq.(3.4) are aligned along the cartesian coordinates x1, x2, x3. Further, dimensions of Bc are
limited to the infinitesimal length dx such that ∆xi = xi ∈ [− dx/2 , dx/2] , i = 1, 2, 3. The volume of the cube
is given by Vc = dx3. The six faces of the cube are indicated according to their normal vectors:

n1 = e1 onB1
c , n2 = e2 onB2

c , n3 = e3 onB3
c ,

n4 = −e1 onB4
c , n5 = −e2 onB5

c , n6 = −e6 onB6
c .

(3.7)

The cubes faces are parameterized by cartesian coordinates defining the tangent vectors

r1 = r4 =




0
x2

x3


 , r2 = r5 =




x1

0
x3


 , r3 = r6 =




x1

x2

0


 . (3.8)

Note that each parametrization ri is face centered and perpendicular to the normal ni and hence tangent to
the surface itself.
First, the balance of linear momentum is discussed in view of using the Taylor series expansion of eq.(3.4). By
Gauss’s theorem, the sum of tractions on all faces of the cube reads

6∑

i=1

∫

∂Bi
c

σ̃(x0 +∆x).ni dA =

∫

Bc

Div σ̃(x0 +∆x) dV . (3.9)
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Figure 6: Finite cube Bc with cartesian coordinate system ei, center x0, dimensions dx, and normals ni on its
faces. Vectors xP and ri point to the surface ∂Bc from their origin in the center of the cube and the center of
faces, respectively.

Taking the divergence of the second-order Taylor series expansion of σ̃ from eq.(3.4) gives

Div σ̃(x0 +∆x) = [σ̃i1,1(x0) + σ̃i2,2(x0) + σ̃i3,3(x0) + (σ̃i1,11(x0) + σ̃i2,12(x0) + σ̃i3,13(x0))∆x1

+ (σ̃i2,22(x0) + σ̃i1,12(x0) + σ̃i3,23(x0))∆x2 + (σ̃i3,33(x0) + σ̃i1,13(x0) + σ̃i2,23(x0))∆x3] ei . (3.10)

Naturally, constant terms σ̃0 do not appear in eq.(3.10), which, by recalling again Gauss’ theorem, is in accor-
dance with

6∑

i=1

∫

∂Bi
c

σ̃
0.ni dA = 0 . (3.11)

The last eq.(3.11) implies that σ̃0 yields opposite constant tractions at opposite faces, due to opposing normal
vectors defined in (3.7). Of course, it is a well known fact that σ̃0 has no influence on the balance of linear
momentum, which only involve incremental quantities.

Note that linear terms concerning one component of ∆x appear in eq.(3.10). Thus, symmetric bounds of
integration − dx/2 to dx/2 cancel each other out when performing the body volume integration in eq.(3.9).
Consequently, the terms Db

2σ̃(x0).∆x2
b and D

q
2σ̃(x0).∆x2

q do not contribute to the balance of linear momentum.
In formulas:

6∑

i=1

∫

∂Bi
c

(Db
2σ̃(x0).∆x2

b + D
q
2σ̃(x0).∆x2

q).ni dA =

∫

Bc

Div (Db
2σ̃(x0).∆x2

b + D
q
2σ̃(x0).∆x2

q) dV = 0 . (3.12)

Thus, we can further work on eq.(3.9) which, using (3.11) and (3.12) implies

6∑

i=1

∫

∂Bi
c

σ̃(x0 +∆x).ni dA =
6∑

i=1

∫

∂Bi
c

(σ̃0 + Dσ̃(x0).∆x+ D
b
2σ̃(x0).∆x2

b + D
q
2σ̃(x0).∆x2

q).ni dA

=

∫

Bc

Div (Dσ̃(x0).∆x) dV , (3.13)

or equivalently

6∑

i=1

∫

∂Bi
c

σ̃(x0 +∆x).ni dA =

∫

Bc

Div (Dσ̃(x0).∆x) dV

=

∫

Bc

[σ̃i1,1(x0) + σ̃i2,2(x0) + σ̃i3,3(x0)]︸ ︷︷ ︸
const.

ei dV = Vc Div (σ̃(x0)) , (3.14)
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where Vc is the volume of the cube. The result in eq.(3.14) shows that even for the bilinear approximation of
stress within the Cauchy cube Bc, the evaluation of Div (σ̃) in its center x0 is sufficient to represent the sum of
tractions on ∂Bc

4. The reader should be aware of the fact that we do not postulate Div (σ̃(x)) = Div (σ̃(x0))
in Bc and, therefore, the result in eq.(3.14) is not trivial and only valid if we limit the Taylor series expansion
in eq.(3.4) up to second order.

Further, the balance of angular momentum contains only some terms of Dσ̃(x0), being constant in eq. (3.14)
and reading [σ̃i1,1(x0) + σ̃i2,2(x0) + σ̃i3,3(x0)]. Thus, the argument Dσ̃(x0).∆x in eq.(3.13) will be decomposed
into

Dσ̃(x0).∆x = D
npσ̃(x0).∆x︸ ︷︷ ︸
nonpolar

+D
pσ̃(x0).∆x︸ ︷︷ ︸

polar

, (3.15)

with

D
npσ̃(x0).∆x :=




σ̃11,1 0 0
σ̃21,1 0 0
σ̃31,1 0 0


∆x1 +




0 σ̃12,2 0
0 σ̃22,2 0
0 σ̃32,2 0


∆x2 +




0 0 σ̃13,3

0 0 σ̃23,3

0 0 σ̃33,3


∆x3 , (3.16)

and

D
pσ̃(x0).∆x :=




0 σ̃12,1 σ̃13,1

0 σ̃22,1 σ̃23,1

0 σ̃32,1 σ̃33,1


∆x1 +




σ̃11,2 0 σ̃13,2

σ̃21,2 0 σ̃23,2

σ̃31,2 0 σ̃33,2


∆x2 +




σ̃11,3 σ̃12,3 0
σ̃21,3 σ̃22,3 0
σ̃31,3 σ̃32,3 0


∆x3 . (3.17)

Since D
npσ̃(x0).∆x solely affects the balance of linear momentum, we can simplify eq.(3.9) with help of our

decomposition in eq.(3.15) reading

6∑

i=1

∫

∂Bi
c

σ̃(x0 +∆x).ni dA =

∫

Bc

Div (Dσ̃(x0).∆x) dV =

∫

Bc

Div (Dnpσ̃(x0).∆x) dV . (3.18)

The index “np” and “p” abbreviates “nonpolar” and “polar”, respectively, which is anticipated from subsequent
results. According to eq.(3.18) and considering a constant net force f within Bc, the balance of linear momentum
is given by5

6∑

i=1

∫

∂Bi
c

σ̃(x0 +∆x).ni dA+

∫

Bc

f dV = 0 ⇔

∫

Bc

[DivDnpσ̃(x0).∆x + f ] dV = 0

⇔ [Div (σ̃(x0)) + f ]Vc = 0 . (3.19)

The well known result in eq.(3.19) shows that our barycentric coordinate system is appropriate to cover classical
results. Since only terms of Dnpσ̃(x0) contribute to the balance of linear momentum, it legitimates the classical
continuum theory to handle stress components constant on faces, where they appear as traction σ̃.n. The term
D

npσ̃(x0).∆x is sufficient to obtain the classical equation for the balance of linear momentum.

For the following discussion, we need to specify and extend our terminology from section 3.1, which was
motivated by two physical effects:

• Traction from total stress may generate a couple concerning the mid point of a corresponding face ∂Bi
c.

• Traction from total stress may generate a couple concerning the mid point of the cube Bc, which affects
the balance of angular momentum of Bc.

4However, including higher order terms o(∆x3) would let appear higher order derivatives of σ̃.
5Here, we neglect dynamical effects.
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Combining both effects leads to altogether four cases. Terms of stresses in our expansion can be distinguished
by four cases of polarity:

1. polar: Terms of total stress generating tractions σ̃.ni such that couples
emerge with respect to ri on ∂Bi

c are called polar.

2. nonpolar: Terms of total stress which are not polar by definition 1 nor
contributing to the balance of angular momentum with respect to the
center of a cube Bc are called nonpolar.

3. semipolar: Terms of total stress which are not polar by definition 1 but
contributing to the balance of angular momentum with respect to the
center of a cube Bc are called semipolar.

4. bipolar: Terms of total stress which are polar by definition 1 and con-
tribute to the balance of angular momentum with respect to the center
of a cube Bc are called bipolar.

(3.20)

Naturally, the center of faces and the center of the cube are neutral points of rotation to define couples on faces
and the balance of angular momentum. Thus, the lever arms of tractions acting on the cubes faces ∂Bi

c are
given by ri and xP , respectively. Face centered lever arms ri and the origin vector xP are sketched in Fig.6.

We start our discussion with the polarity properties of σ̃0. Since σ̃0.ni is constant on ∂Bc it yields the
resulting couple on each face ∂Bi

c with respect to their center to be zero, reading

∫

∂Bi
c

ri × σ̃
0.ni dA = 0 , i = 1, ..., 6 . (3.21)

Thus σ̃0 is not polar according to our Definition (3.20)1. On the other hand, it is not nonpolar but semipolar
since skew-symmetric parts of σ̃0 contribute to the balance of angular momentum via

6∑

i=1

∫

∂Bi
c

xP × σ̃0.ni dA =




σ̃0
32 − σ̃0

23

σ̃0
13 − σ̃0

31

σ̃0
21 − σ̃0

12


 dx3 = −ǫ : σ̃0 Vc = ǫ : (σ̃

0)T = 2 axl skew σ̃0 Vc . (3.22)

Remark 3.2. In accordance with our terminology on polarity in Definition (3.20) we conclude that constant
stress is in general semipolar. In case of σ̃ ∈ Sym(3), constant stress is indeed nonpolar.

Next, using the split from eq.(3.15) to analyze stress gradients from D
npσ̃(x0) reveals

∫

∂Bi
c

ri × (Dnpσ̃(x0).∆x).ni dA = 0 , i = 1, ..., 6 , (3.23)

and

∑

i

∫

∂Bi
c

xP × (Dnpσ̃(x0).∆x).ni dA = 0 . (3.24)

Since the surface traction in eq.(3.23) and (3.24) has generally no polar effect we conclude:

Remark 3.3. Stress gradients specified by D
npσ̃(x0).∆x from eq.(3.16) are generally nonpolar even if the total

stress σ̃ /∈ Sym(3).
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In contrast, Dpσ̃(x0).∆x given by eq.(3.17) yields

∫

∂B1
c

r1 × (Dpσ̃(x0).∆x).n1 dA =
dx4

12




σ̃31,2 − σ̃21,3

σ̃11,3

−σ̃11,2


 ,

∫

∂B2
c

r2 × (Dpσ̃(x0).∆x).n2 dA =
dx4

12




−σ̃22,3

σ̃12,3 − σ̃32,1

σ̃22,1


 ,

∫

∂B3
c

r3 × (Dpσ̃(x0).∆x).n3 dA =
dx4

12




σ̃33,2

−σ̃33,1

σ̃23,1 − σ̃13,2


 , (3.25)

∫

∂B4
c

r4 × (Dpσ̃(x0).∆x).n4 dA = −

∫

∂B1
c

r1 × (Dpσ̃(x0).∆x).n1 dA ,

∫

∂B5
c

r5 × (Dpσ̃(x0).∆x).n5 dA = −

∫

∂B2
c

r2 × (Dpσ̃(x0).∆x).n2 dA ,

∫

∂B6
c

r6 × (Dpσ̃(x0).∆x).n6 dA = −

∫

∂B3
c

r3 × (Dpσ̃(x0).∆x).n3 dA3 .

Thus, stress gradients Dpσ̃(x0).∆x are polar but do not contribute to the balance of angular momentum. This
results from

6∑

i=1

∫

∂Bi
c

xP × (Dpσ̃(x0).∆x).ni dA = 0 , (3.26)

which in turn follows from n1 = −n4, n2 = −n5, and n3 = −n6. Such a behavior is similar to constant internal
stress σ̃0, which does not influence linear momentum. Therefore we may claim that the physical quantities
detected in eq.(3.25) are the constant components of couple stress, reading

m := dx2

12




(σ̃31,2 − σ̃21,3) −σ̃22,3 σ̃33,2

σ̃11,3 (σ̃12,3 − σ̃32,1) −σ̃33,1

−σ̃11,2 σ̃22,1 (σ̃23,1 − σ̃13,2)


 . (3.27)

Again, couple stress components found from stress gradients D
pσ̃(x0).∆x are constant within Bc and their

convention of sign is as illustrated in Fig.3. Since constant couple stress should not contribute to the balance
of angular momentum, eq.(3.26) is in accordance with physical requirements.

Let us discuss next the formula for the couple stress tensor m from eq.(3.27) in detail. The main diagonal
components in eq.(3.27) represent couple stress normal to Bc according to eq.(3.3). Thus, couple stress normal
to Bc is caused by fluctuation of shear components in σ̃ as illustrated in Fig.7. It is an interesting result of this
derivation that symmetric total force stress σ̃ yields trace free couple stress m when it takes the form given in
eq.(3.27). In fact:

σ̃ ∈ Sym(3)
(3.26)
=⇒ tr(m) =

dx2

12
(σ̃31,2 − σ̃13,2 + σ̃12,3 − σ̃21,3 + σ̃23,1 − σ̃32,1)

=
dx2

12
((σ̃31 − σ̃13),2 + (σ̃12 − σ̃21),3 + (σ̃23 − σ̃32),1) ≡ 0 . (3.28)

Remark 3.4. Since the main diagonal components of the couple stress tensor in eq.(3.27) are associated to
space variations of shear stress components, they are not connected to any volume change of an elastic body.
The corresponding deformation modes are pure twist of the finite cube.

In Section 3.4 we present a symmetric force stress function which yields trace free and constant couple stress
m. It is another interesting result of our derivation that:
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Figure 7: Varying shear stress components yielding main diagonal components of couple stress. For a symmetric
total stress tensor the sketched stress gradients with corresponding color need to be equal.

Remark 3.5. The indeterminate couple stress model must have a trace free couple stress tensor tr(m) = 0
provided that one assumes a symmetric total stress tensor σ̃ ∈ Sym(3) at the beginning. This result is otherwise
independent of any further constitutive assumption.

The off-diagonal components in eq.(3.27) are couples tangential to Bc resulting from gradients of normal
force stress on Bc. Let us seperate the diagonal (torsion) and off-diagonal (bending) parts

m = mtorsion +mbending (3.29)

in order to distinguish normal and tangential couples on ∂Bc:

mtorsion :=
dx2

12




(σ̃31,2 − σ̃21,3) 0 0
0 (σ̃12,3 − σ̃32,1) 0
0 0 (σ̃23,1 − σ̃13,2)


 , (3.30)

mbending :=
dx2

12




(0 −σ̃22,3 σ̃33,2

σ̃11,3 0 −σ̃33,1

−σ̃11,2 σ̃22,1 0


 . (3.31)

In Fig.8 the normal couples from eq.(3.30) are drawn. Since these torsional components have two causes from
coplanar stress gradients, let us discuss next if, and how, both are related. Note that e.g. the distribution of

e1

e2

e3

31,2s
12,3s

23,1s

13,2s

32,1s

21,3s

m11

m22

m33

Figure 8: Varying shear stress components as origin of main diagonal components of couple stress.

shear stresses on ∂B1
c is invariant under rotations around the e1 axis if σ31,2 = −σ21,3, as sketched in Fig.9.

With the same invariance argument on ∂B2
c and ∂B3

c , we obtain truly spatial conditions on gradients of total
stress σ̃, reading

σ31,2 = −σ21,3 , σ12,3 = −σ32,1 , σ23,1 = −σ13,2 . (3.32)

In other words, assuming that mtorsion is given, e.g. by a balance equation, the statements of eq.(3.32) yield
rotationally-invariant coplanar stress gradients on the Cauchy cube.
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e1
e2

e3

31,2s

21,3s

e1

e2

e3

31,2s

21,3s

e1

e2

e3

31,2s

21,3s

Figure 9: Invariance of coplanar stress gradients under rotations around the e1-axis.

We proceed our discussion by postulating that

in an elastic solid, couple stress m should neither be connected to the spherical
part of the total stress field σ̃ nor to its gradient:

Grad[3 sph σ̃] = Grad[tr σ̃] ≁ f(m) .
(3.33)

This is motivated by two aspects:

• The gradient of dilational stress σd = p1 typically affects the dynamics of fluids where couple stresses
are meaningless.

• Conformal mappings, which are generally non-isochoric, should yield no couple stress m.

Thus, the gradient of spherical stress should not be related to m. However,

Grad[tr σ̃] =




σ̃11,1

σ̃22,2

σ̃33,3


+




(σ̃22 + σ̃33),1
(σ̃11 + σ̃33),2
(σ̃11 + σ̃22),3




︸ ︷︷ ︸
=axl(skewm)

= Div (Diag σ̃) + axl(skewm) , (3.34)

contains the skew-symmetric parts of m. Thus, postulating eq.(3.33) together with eq.(3.34) necessitates m ∈
Sym(3), constraining the bending part mbending by three further conditions:

σ̃11,3 = −σ̃22,3 , −σ̃11,2 = σ̃33,2 , σ̃22,1 = −σ̃33,1 . (3.35)

Each condition in eq.(3.35) states that symmetric couple stress m originates from just the spatial variation of
deviatoric stress. It seems to be a physically reasonable constitutive requirement to distinguish couple stress
from the gradient of dilational stress σd. If we want couple stress to be independent of spatial pressure variations,
the couple stress tensor must be chosen symmetric! Vice versa, if we want pressure gradients independent of
couple stress we must choose the couple stress tensor m to be symmetric.6

Although the condition in eq.(3.35) concerns normal components of the stress tensor, it forces the stress
field to be altered such that a deviatoric process results, as exemplarily drawn in Fig.10 for the condition given
in eq.(3.35)1. The infinitesimal cube becomes stretched and squeezed such that alternating pure shear in the
e1-e2- plane appears. Since we discuss here the second order stress resultant m, it is natural that the three
conditions in eq.(3.35) apply to gradients of the first order quantity, namely the total stress σ̃.

Remark 3.6. The assumption of symmetric couple stress tensors m excludes that the change of volume is
connected to couple stress. This is a physically meaningful assumption to decouple volumetric and deviatoric
effects of secondary order within an elastic continuum theory of higher order.

Note that some stress gradients in D
pσ̃(x0).∆x do not contribute to the couple stress tensor m. Such stress

gradients appear from tangential tractions (shear components) varying parallel to their direction of action. This
motivates to enhance our split from eq.(3.15) further into

Dσ̃(x0) = D
npσ̃(x0) + D

p1σ̃(x0) + D
p2σ̃(x0)︸ ︷︷ ︸

Dpσ̃(x0)

, (3.36)

6Interestingly, Hadjesfandiari and Dargush [14], coming from couple stress models for fluid dynamics, need to connect pressure
gradients to couple stresses and assume therefore the opposite, namely that m ∈ so(3) is skew-symmetric.
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e1

e2

e3

22,3-s11,3s

Figure 10: Linear gradients of normal stress stretch and squeeze a finite cube from the symmetry condition of
m such that its overall volume is not affected.

with

D
p1σ̃(x0).∆x =




0 σ̃12,1 σ̃13,1

0 0 0
0 0 0


∆x1 +




0 0 0
σ̃21,2 0 σ̃23,2

0 0 0


∆x2 +




0 0 0
0 0 0

σ̃31,3 σ̃32,3 0


∆x3 . (3.37)

Since terms from D
p1σ̃(x0).∆x do not correspond to couple stress, they may be related to conformal mappings,

which are generally not isochoric.

Next, we investigate the term D
b
2σ̃(x0).∆x2

b. Similar to eq.(3.36) we split

D
b
2σ̃(x0) = D

b1
2 σ̃(x0) + D

b2
2 σ̃(x0) , (3.38)

with

D
b1
2 σ̃(x0).∆x2

b =




0 σ̃12,12 σ̃13,12

σ̃21,12 0 σ̃23,12

0 0 σ̃33,12


∆x1 ∆x2 +




0 σ̃12,13 σ̃13,13

0 σ̃22,13 0
σ̃31,13 σ̃32,13 0


∆x1 ∆x3

+




σ̃11,23 0 0
σ̃21,23 0 σ̃23,23

σ̃31,23 σ̃32,23 0


∆x2 ∆x3 , (3.39)

and

D
b2
2 σ̃(x0).∆x2

b =




σ̃11,12 0 0
0 σ̃22,12 0

σ̃31,12 σ̃32,12 0


∆x1 ∆x2 +




σ̃11,13 0 0
σ̃21,13 0 σ̃23,13

0 0 σ̃33,13


∆x1 ∆x3

+




0 σ̃12,23 σ̃13,23

0 σ̃22,23 0
0 0 σ̃33,23


∆x2 ∆x3 . (3.40)

This split is motivated by the equalities

∫

∂Bi
c

ri × (Db1
2 σ̃(x0).∆x2

b).ni dA = 0 , i = 1, ..., 6 (3.41)

and

6∑

i=1

∫

∂Bi
c

xP × (Db1
2 σ̃(x0).∆x2

b).ni dA = 0 , (3.42)
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stating that Db1
2 σ̃(x0).∆x2

b is nonpolar. However, we find

∫

∂B1
c

r1 × (Db2
2 σ̃(x0).∆x2

b).n1 dA =
dx5

24




σ̃31,21 − σ̃21,31

σ̃11,31

−σ̃11,21


 ,

∫

∂B2
c

r2 × (Db2
2 σ̃(x0).∆x2

b).n2 dA =
dx5

24




−σ̃22,32

σ̃12,32 − σ̃32,12

σ̃22,12


 ,

∫

∂B3
c

r3 × (Db2
2 σ̃(x0).∆x2

b).n3 dA =
dx5

24




σ̃33,23

−σ̃33,13

σ̃23,13 − σ̃13,23


 , (3.43)

∫

∂B4
c

r4 × (Db2
2 σ̃(x0).∆x2

b).n4 dA =

∫

∂B1
c

r1 × (Db2
2 σ̃(x0).∆x2

b).n1 dA ,

∫

∂B5
c

r5 × (Db2
2 σ̃(x0).∆x2

b).n5 dA =

∫

∂B2
c

r2 × (Db2
2 σ̃(x0).∆x2

b).n2 dA ,

∫

∂B6
c

r6 × (Db2
2 σ̃(x0).∆x2

b).n6 dA =

∫

∂B3
c

r3 × (Db2
2 σ̃(x0).∆x2

b).n3 dA ,

and

6∑

i=1

∫

∂Bi
c

xP × (Db2
2 σ̃(x0).∆x2

b).ni dA =
dx5

12




σ̃31,21 − σ̃21,31 − σ̃22,32 + σ̃33,23

σ̃11,31 + σ̃12,32 − σ̃32,12 − σ̃33,13

−σ̃11,21 + σ̃22,12 + σ̃23,13 − σ̃13,23




= dx3




m11,1 +m12,2 +m13,3

m21,1 +m22,2 +m23,3

m31,1 +m32,2 +m33,3


 = Vc Div (m) . (3.44)

Remark 3.7. Stress gradients D
b2
2 σ̃(x0).∆x2

b are bipolar and are connected to the divergence of couple stress.

Finally, we investigate D
q
2σ̃(x0).∆x2

q, obtaining

∫

∂Bi
c

ri × (Dq
2σ̃(x0).∆x2

q).ni dA = 0 , i = 1, ..., 6 , (3.45)

and

∑

i

∫

∂Bi
c

xP × (Dq
2σ̃(x0).∆x2

q).ni dA

=
dx5

12




σ̃32,22 − σ̃23,33

σ̃13,33 − σ̃31,11

σ̃21,11 − σ̃12,22




︸ ︷︷ ︸
2 axl skew [Grad[σ̃]:∇]

+
dx5

24




(σ̃32 − σ̃23),11 + (σ̃32 − σ̃23),22 + (σ̃32 − σ̃23),33
(σ̃13 − σ̃31),11 + (σ̃13 − σ̃31),22 + (σ̃13 − σ̃31),33
(σ̃21 − σ̃12),11 + (σ̃21 − σ̃12),22 + (σ̃21 − σ̃12),33




︸ ︷︷ ︸
DivGrad[2 axl skew (σ̃)]

. (3.46)

Thus, Dq
2σ̃(x0).∆x2

q is semipolar.

For compact symbolic notation in eq.(3.46) we define the nabla-operator ∇ ∈ R
3×3×3 reading:

∇ := ∇i ei ⊗ ei ⊗ ei . (3.47)

Einstein’s summation convention for repeating subscripts does not apply for Grad[σ̃] : ∇ in eq.(3.46), which is
given in detail by

Grad[σ̃] : ∇ = σab,c ea ⊗ eb ⊗ ec : ∇i ei ⊗ ei ⊗ ei = σab,c δbi δci∇i ea ⊗ ei

= σai,i ∇i ea ⊗ ei = σai,ii ea ⊗ ei ∈ R
3×3 . (3.48)
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The first term in eq.(3.46) generally contributes to the balance of angular momentum defining

dx5

12
2 axl skew [Grad[σ̃] : ∇] = 2Vc axl skew

[
dx2

12
Grad[σ̃] : ∇

]

︸ ︷︷ ︸
=:χ

= 2Vc axl skew [χ] . (3.49)

The second term in eq.(3.46) contributes to the balance of angular momentum if σ̃ /∈ Sym, yielding

dx5

24
DivGrad[2 axl skew (σ̃)] = Vc Div

[
dx2

24
Grad[2 axl skew (σ̃)]

]

︸ ︷︷ ︸
ψ

= Vc Div [ψ] . (3.50)

3.3 Balance of angular momentum

Assuming a constant external loading from net couples c within the cube Bc, we conclude from eq.(3.22), (3.44),
and (3.46) that the balance of angular momentum reads

6∑

i=1

∫

∂Bi
c

xP × (σ̃0 + D
b2
2 σ̃(x0).∆x2

b + D
q
2σ̃(x0).∆x2

q).ni dA+

∫

Bc

cdV = 0

⇔ Vc [Divm+Divψ + 2 axl skew (σ̃0 + χ) + c] = 0 . (3.51)

We omit the mixture of polar and semipolar quantities in the Div-operator of eq.(3.51), because m arises from
a bipolar term of the Taylor series expansion, whereas ψ originates from a semipolar term, which vanishes
for σ̃ ∈ Sym(3). However, couple stress is often introduced axiomatically via kinematic and constitutive
assumptions such that both contributions to the balance of angular momentum may appear from a single
quantity m̃ = m+ψ. Note that for σ̃ ∈ Sym(3) the balance of angular momentum already reduces to

Divm+ ǫ : χT + c = 0 , tr(m) = 0 , χ =
dx2

12
Grad[σ̃] : ∇ . (3.52)

Remark 3.8. Eq.(3.52) is an extension to the balance of angular momentum in eq.(2.11). Thus, the linear
couple stress theory (in this interpretation) neglects Dq

2σ̃(x0).∆x2
q. It is similar to the classical continuum theory

neglecting D
pσ̃(x0).∆x in the balance of linear momentum.

Note that the couple stress vector mn = m.n is a 1st moment. Thus, it is independent of its point of
application within a rigid body. On first sight, assuming a rigid body to discuss the properties of couple
stress seems to be allowed. Yang et al. [40] mention that argument on page 2733: “In conventional mechanics,
a couple of forces is a free vector in the space of the material particle system. The couple can be translated and
applied to any point in the system, which means that the motive effect of a couple on the system of material
particles is independent of the location where the couple is applied. Thus, the forces Fi and the couples of
forces Li applied to a set of material particles within the system is equivalent to a resultant force and a resultant
couple of forces, and the couple can be applied to an arbitrary point within the system.” But rigidity and inde-
pendence of point of application is irrelevant and even perplexing when discussing the properties of couple stress.

Force stress and couple stress localize to the center of infinitesimal cubes Bc to define balance
equations. Both force traction and couple traction arise from the same total stress function σ̃, its Taylor
series expansion, and barycentric balance equations. Moving the point of application for couple stress would
also move the stress function itself, which is not admissible. Thus, the properties of couple stress do not arise
from an argument, which is only true in a rigid body. The properties of couple stress are polar properties of
stress and its barycentric fluctuation.

Generally, deformation enters the continuum theory independent of balance equations via kinematic and
constitutive equations. The derivation of static balance equations usually does not break down force stress by
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Taylor series expansion but also considers subdomains Bs. By assuming constant net forces f , and constant net
couples c in Bs, the balance of linear and angular momentum becomes

∫

Bs

f dV +

∫

∂Bs

σ̃n(x) dA = 0, ∀Bs ⊂ B (3.53)

and
∫

Bs

x× f + c dV +

∫

∂Bs

x× σ̃n(x) +mn(x) dA = 0 ∀Bs ⊂ B , (3.54)

respectively. In eq.(3.54) the couple traction mn(x) is axiomatic again and the position vector x defines the
lever arm of forces. With the help of Cauchy’s principle and the divergence theorem

∫

∂Bs

σ̃n dA =

∫

∂Bs

σ̃.n dA =

∫

Bs

Div σ̃ dV , (3.55)

eq.(3.53) becomes

∫

Bs

(Div σ̃ + f) dV = 0 ∀Bs ⊂ B ⇔ Div σ̃ + f = 0 , (3.56)

which is in accordance with the local statement of eq.(3.19)3. Similarly, using Cauchy’s principle and the
divergence theorem for the couple stress vector yields

∫

∂Bs

mn dA =

∫

∂Bs

m.n dA =

∫

Bs

Divm dV , (3.57)

as well as
∫

∂Bs

x× σ̃n dA =

∫

∂Bs

x× (σ̃.n) dA

=

∫

∂Bs

(x× σ̃).n dA =

∫

Bs

Div (x× σ̃) dV =

∫

Bs

x×Div σ̃ + 2 axl skew σ̃ dV . (3.58)

With eq.(3.58) the balance of angular momentum in eq.(3.54) becomes

∫

Bs

x×


 (Div σ̃ + f)︸ ︷︷ ︸
=0due to eq.(3.56)

+2 axl skew σ̃ +Divm+ c


 dV = 0 ∀Bs ⊂ B

⇔ 2 axl skew σ̃ +Divm+ c = 0 . (3.59)

Putting together eq.(3.56) and eq.(3.59) we have obtained the statement of balance equations:

Div σ̃ + f = 0 , Divm+ 2 axl skew σ̃ + c = 0 , (3.60)

which are the force and moment balance laws governing the translational and rotational equilibrium by consid-
ering infinitesimal elements of matter and fully equivalent to system (2.11).

In order to augment the equations in the above box basing ourselves on particular constitutive relations
we place ourselves in a small strain, isotropic linearized setting. There, the basic kinematical variables are the
displacement gradient and we may constitutively prescribe (only) the symmetric part of the total stress tensor
by

sym σ̃ = 2µ symGrad[u] + λ tr(symGrad[u])1 . (3.61)

22



Moreover, consistent with isotropy we require the couple stress tensor m to be an isotropic tensor function of
the curvature tensor k̃ = 1

2 Grad[curl u]. Then, the most general representation of m is given by

m = α1 dev sym k̃+ α2 skew k̃+ α3 tr(k̃)︸ ︷︷ ︸
=0

1 . (3.62)

Note that there cannot be an independent constitutive prescription for skew σ̃ = τ̃ , instead we have the require-
ment τ̃ = − 1

2 antiDivm, whence the name “indeterminate couple stress model.” Once the linear constitutive
requirements (3.61), (3.62) are introduced, the resulting equations of equilibrium lose objectivity, as is already
clear in linear elasticity.

3.4 A symmetric stress function implying trace free couple stresses

The classical indeterminate couple stress model leads to trace free couple stresses, as seen in eq.(2.9) and
eq.(3.62). The question arises: Can we find a symmetric total force stress function σ̃ which is in accordance
with this statement? Naturally, the normal components of the couple stress tensor m appear as key figures.
Thus, claiming couple stress to be skew-symmetric [14] would not allow for the following discussion.

Let us consider a cube Bm with dimensions Lc and symmetric total force stress σ̃ due to infinitesimal
deformation. We are able to find a symmetric, linear stress function

σ̃ = σ̃a + σ̃b + σ̃c = aBa + bBb + cBc , a, b, c ∈ R, Ba,Bb,Bc ∈ Sym(3) (3.63)

with off-diagonal basis elements

Ba =




0 −z y
−z 0 0
y 0 0


 , Bb =




0 z 0
z 0 −x
0 −x 0


 , Bc =




0 0 −y
0 0 x
−y x 0


 . (3.64)

The origin of the orthogonal x, y, z coordinate system is barycentric in Bm and aligned to the e1, e2, e3 directions,
as drawn in Fig.6. Since the stress function from eq.(3.63) fulfills

DivBa = 0 , DivBb = 0 , DivBc = 0 , (3.65)

it satisfies the static balance of linear momentum in the absence of body forces f .
To satisfy balance of angular momentum, a classical continuum theory requires the stress function from

eq.(3.63) with a, b, c → 0 for any infinitesimal body with x → dx, y → dy and z → dz. Note, however, that
in a couple stress theory with x, y, z ∈ [−Lc/2, Lc/2] the stress function σ̃ yields the normal components of the
couple stress tensor m defined on ∂Bc by

L2
c m11 =



∫ Lc

2

−
Lc
2

∫ Lc
2

−
Lc
2




0
y
z


× σ̃.e1 dy dz


 .e1 , (3.66)

L2
c m22 =



∫ Lc

2

−
Lc
2

∫ Lc
2

−
Lc
2




x
0
z


× σ̃.e2 dx dz


 .e2 , (3.67)

L2
c m33 =



∫ Lc

2

−
Lc
2

∫ Lc
2

−
Lc
2




x
y
0


× σ̃.e3 dx dy


 .e3 . (3.68)

Evaluating eq.(3.66) - (3.68) for σ̃a yields

ma
11 =

a

L2
c



∫ Lc

2

−
Lc
2

∫ Lc
2

−
Lc
2




y2 + z2

0
0


 dy dz


 .e1 =

a Jp
L2
c

, (3.69)
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ma
22 =

a

L2
c



∫ Lc

2

−
Lc
2

∫ Lc
2

−
Lc
2




0
−z2

0


 dx dz


 .e2 = −

a J2
L2
c

, (3.70)

ma
33 =

a

L2
c



∫ Lc

2

−
Lc
2

∫ Lc
2

−
Lc
2




0
0

−y2


 dx dy


 .e3 = −

a J3
L2
c

, (3.71)

with the polar moment of inertia Jp = L4
c/6 and the moment of inertia J2 = L4

c/12 and J3 = L4
c/12, respectively.

Equivalently, for σ̃b and σ̃c we obtain

mb
11 = −

b J1
L2
c

, mb
22 =

b Jp
L2
c

, mb
33 = −

b J3
L2
c

, (3.72)

and

mc
11 = −

c J1
L2
c

, mc
22 = −

c J2
L2
c

, mc
33 =

c Jp
L2
c

, (3.73)

with J1 = L4
c/12. In summary, the stress function σ̃ from eq.(3.63) leads to the couple stress tensor

m =
L2
c

12




2a− b− c 0 0
0 2b− a− c 0
0 0 2c− a− b


 , (3.74)

which is in accordance with eq.(3.27). Further, this couple stress tensor m is symmetric and trace free for any
choice of a, b, c ∈ R.

4 The gap in the initial motivation of the modified couple stress

theory

Yang et al. [40] define the residual body couple vector

2 axl skew σ̃ + c =: m∗ (4.1)

from body couples c and skew-symmetric parts of the total stress tensor σ̃. These quantities balance in case of
a local continuum theory assuming m∗ ≡ 0. Then, the total stress tensor σ̃ becomes symmetric if body couples
c are absent. This is the Cauchy-Boltzmann axiom:

σ̃ = σ̃T Cauchy-Boltzmann Axiom (4.2)

Yang et al. also define the cross product of the position vector x with a couple L as “couple of couple” or
“moment of couple”7

M := x× L . (4.3)

Thus, they presume individual points of application xi for couples Li. Neither the definition in eq.(4.3) nor the
presumption of given points of application for couples is problematic. However, in a system of material particles
the set of balance equations

∑
Fi = 0

︸ ︷︷ ︸
balance of linear momentum

,
∑

(xi × F+ Li) = 0
︸ ︷︷ ︸

balance of angular momentum

,
∑

xi × Li = 0
︸ ︷︷ ︸

proposed balance equation from Yang et al.

(4.4)

7We denote a force couple by L in accordance with the notation in Yang et al. The couple stress vector m relates to an area a,
such that L = am.
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given in [40], p.2736, is untenable concerning the third statement (marked in red)8. The statement in [40],
pp.2735 (above eq.(18)) initiates the fallacy: “The couple vector LA at A in a system of material particles in
Fig.2(a) is equivalent to a couple L′

A and a couple of couples M′
A applied to the point B in Fig.2(c).” However,

such an equivalence does not exist. It is motivated by the physical property of forces, while LA is a couple
vector.

Some sentences above, in the same section, we can read: “The couple of forces is a free vector in the
conventional mechanics, which means that the effect of the couple applied on an arbitrary point in the space
of the system of material particles is independent of the position of the point. In other words, the couple can
translate to any point in space freely and the resulting motive effects are unchanged.”

Yang et al. argue that a couple stress theory locates the point of application for couples. We agree with
this statement, but eq.(4.4)3 is not a proper balance equation even for rigid bodies9. Thus, the statement in
eq.(4.4)3 can yield no proof for the symmetry of couple stresses.

The error occuring in eq.(4.4)3 can be revealed in basic examples: consider e.g. a cantilever with a couple
vector L as loading at its tip, see Fig.11a. A basic choice for the origin of x0 is the point of clamping. Then
reaction forces and couple do not contribute to the sum in eq.(4.4)3 since x = 0 at the point of clamping. But
the “moment of couple” M = x0 × L does not vanish, since x and L are not linearly dependent. Hence, we
find a simple example where eq.(4.4)3 does not hold. This is independent on whether the cantilever is rigid or not.

Regarding in addition the cantilevers elasticity, the point of application for the couple vector L is fundamental
for its deformation. In Fig.11b we placed the couple vector L to the point x 6= x0. From x to the tip of the
cantilever no curvature can appear, whereas in Fig.11a it does. The “moment of couple” M = x×L applies in
x but cannot compensate the lack of curvature between x and the tip. Thus, the localization of couple vectors
is not an exclusive requirement of couple stress theories but of any elastic theory. The shift of couple vectors
from their point of application to another place is not allowed and can not be compensated by “moments of
couples”. This is in accordance with the effect of forces in elasticity. It is not allowed to shift forces along their
direction of action if the body is elastic10. Finally we remark that “moments of couples” are not objective, since
they depend on the origin of coordinates.

L

M

L

M‘

xx0

L

M‘

L

M ?

a) b)

Figure 11: a) Cantilever with couple L applying at x0. The couple generates bending within the whole structure
and the moment of the couple reads M = x0 × L. b) Placing the couple to x 6= x0 modifies the moment of the
couple into M′ = x× L. Thus, the cantilever does not bend between x and x0. A compensating effect via M′

is questionable.

Nevertheless, Yang et al. consider a generalization11 of eq.(4.4)3 for all couple vectors with their point of

8The first two statements are clear and express the linear and angular momentum.
9Lazopoulos [18] and Hadjesfandiari and Dargush [14] have also noted the inappropriateness of Yang et al.’s additional balance

equation.
10For the equilibrium of rigid bodies it is allowed to shift forces along their direction of action.
11Here, generalization means, that a statement motivated by point mechanics is used for a similar statement in continuum

mechanics.
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application x and claim
∫

V

x×m∗ dV +

∫

∂V

x×mn dA = 0 ⇔

∫

V

x× (c+ 2 axl(skew σ̃)) dV +

∫

∂V

x×mn dA = 0 for all subdomains V ⊂ B. (4.5)

From Cauchy’s principle and the divergence theorem for mn it follows that
∫

∂V

x×mn dA =

∫

∂V

(x×m).n dA =

∫

V

Div (x ×m) dV =

∫

V

x×Divm+ 2 axl(skew m) dV. (4.6)

Thus, eq.(4.5) can be rewritten as

∫

V


x× (2 axl(skew σ̃) + Divm+ c︸ ︷︷ ︸

=0 from (3.59)

) + 2 axl(skew m)


 dV = 0. (4.7)

Since the balance of angular momentum is given by eq.(3.59), Yang et al. conclude
∫

V

2 axl(skew m) dV = 0 for all subdomains V ⊂ B. (4.8)

Assuming that m is a continuous couple stress tensor field it follows by localization that

axl(skew m) = 0 ⇔ skew m = 0 (4.9)

i.e. that the couple stress tensor m must be symmetric. However, we do not agree with eq.(4.5), since the
cross product of couple vectors with arbitrary position vectors does not vanish - except if position vectors and
couple vectors are linearly dependent, see also section A.2. But such a linear dependency is arbitrary and not
a physical law. Thus, the argument by Yang et al. is incomplete, even though as seen in the previous sections,
a symmetric couple stress tensor m is indicated on different grounds.

5 Torsion example

Let us consider simple torsional deformation of a circular beam by the angle α as linear function of the Lagrangian
coordinate z, reading

α(z) =
α0

H
z = α z , x =




x
y
z


 , x ∈ B0 . (5.10)

The beam is fully clamped at z = 0 and loaded by the moment MT in e3-direction at its tip z = H . Each
horizontal cross section rotates uniformly by the angle α with α0 at z = H . Thus, we define the constant
gradient of rotation by α = α0/H . In Fig.12 the system is shown in its initial state B0 and after deformation
indicated by the actual state Bt. In the actual state the Lagrangian position vector x is mapped to x̄ via the
rotation R(z) reading

x̄ = Rx , with R =




cos(α z) − sin(α z) 0
sin(α z) cos(α z) 0

0 0 1


 ∈ SO(3) . (5.11)

Abbreviating cos(α z) = c , sin(α z) = s, the actual position vector x̄, the displacement vector u, and its gradient
read

x̄ =




c x− s y
s x+ c y

z


 , u = x̄− x =




(c− 1)x− s y
s x+ (c− 1) y

0


 ,

Grad[u] =




(c− 1) −s (−s x− c y)α
s (c− 1) (c x− s y)α
0 0 0


 . (5.12)
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Figure 12: Clamped circular beam obtaining simple torsional deformation Φ from the moment MT at its tip.

Simple torsion does not alter the position of points in the direction of the beam, which is the e3-axis here.
Further, it is an isochoric deformation, resulting from the determinant of the deformation gradient F = LinΦ
given by

F = 1+Grad[u] =




c −s (−s x− c y)α
s c (c x− s y)α
0 0 1


 , det F = 1 · det

[
c −s
s c

]
= c2 + s2 = 1 . (5.13)

Next, let us assume isotropic and elastic Saint-Venant-Kirchhoff material. Therefore, we calculate the Green-
Lagrange strain tensor:

E =
1

2
(FT F− 1) =

1

2




c2 + s2 − 1 0 −α(s c x+ c2 y − s c x+ s2 y)

s2 + c2 − 1 α(s2 x+ s c y + c2 x− s c y)

sym α2(s2 x2 + 2 s c x y + c2 y2 + c2 x2 − 2 s c x y + s2 y2)




=
1

2




0 0 −αy
0 αx

sym α2 (x2 + y2)︸ ︷︷ ︸
≈0


 . (5.14)

Since we want to discuss linear couple stress models here, we restrict this example to small rotations with α2 ≈ 0
yielding trE ≈ 0. Thus, the volumetric inner energy in this example vanishes and the second Piola-Kirchhoff-
stress tensor S2 becomes

W SVK = µ ||E||2 +
λ

2
(trE︸︷︷︸

≈0

)2 ⇒ S2 = 2µE+ λ trE1 ≈ µ




0 0 −αy
0 αx

sym 0


 . (5.15)

Since the components of S2 are defined in B0, we can draw them in the reference state, which is not rotated.
In Fig.13a we consider an axially centered cube with mid point at x = 0, y = 0, and arbitrary z. If we consider
the dimension of the cube to be dx, then, the maximum total value of stress components is given by

S̄ = |
1

2
αµ dx| . (5.16)

Next, let us calculate the couple along e1 on ∂B1
c from the traction

S2.n1 =




(S2)11
(S2)21
(S2)31


 =




0
0

−µα y


 , (5.17)
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Figure 13: a) Trend of components of the second Piola-Kirchhoff-stress tensor S2 for an axially centered cube.
b) Couples generated by tractions from S2 concerning the center of corresponding faces.

yielding

M =

∫

∂B1
c

r1 × S2.n1 dA1 =

∫

∂B1
c




0
y
z


×




0
0

−µαy


 dA1 =

∫ dx
2

−
dx
2

∫ dx
2

−
dx
2

−µα y2 dy dz e1

= −µα dx

[
y3

3

] dx
2

− dx
2

e1 = −µα
dx4

12
e1 . (5.18)

Similarly, we can calculate the couples resulting from (S2)13, (S2)23 and (S2)32 on the other surfaces of the
cube. We obtain that couples in e3-direction are doubled and reverse to the result in eq.(5.18). The results are
drawn in Fig.13b. Since the whole set of couples are constant in B and in a state of self-equilibrium, the balance
of angular momentum remains classical, stating skewσ = 0. Moreover, the Saint-Venant-Kirchhoff material
does not attain such a constant state of inner couples with curvature energy. However, a strain gradient the-
ory accounts for such couples by introducing a curvature measure and additional constitutive laws. How must
we constitute the linear indeterminate couple stress theory to be in accordance with the stress state from above?

Naturally, the linear strain measure symGrad[u] is equivalent to the Green strain measure E in eq.(5.14)
for small rotations α ≪ 1 assuming α2 = 0, c → 1 and s → α z:

ulin =




−αy z
αx z
0


 , Grad[ulin] =




0 −α z −αy
α z 0 αx
0 0 0


 ,

symGrad[ulin] =
1

2




0 0 −αy
0 0 αx

−αy αx 0


 . (5.19)

Thus, the linear stress tensor becomes equivalent to the second Piola-Kirchhoff-tensor S2 for the above assump-
tions. Further, the curvature k̃ is given by

k̃ =
1

2
Grad[curl ulin] = Grad[axl skewGrad[ulin]] = Grad



axl




0 −α z − 1
2α y

α z 0 1
2αx

1
2α y − 1

2αx 0







= Grad



α




− 1
2x

− 1
2y
z





 = α




− 1
2 0 0
0 − 1

2 0
0 0 1


 . (5.20)
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Thus, the linear indeterminate couple stress model from Section 2 generates the couple stress tensor

m = 2µL2
c (α1 symk+ α2 skewk) = αµL2

c α1




−1 0 0
0 −1 0
0 0 2


 . (5.21)

Comparing m with the couple generated by the traction from eq.(5.17) we obtain

∫

∂Bc
1

m11 dA e1 = M ⇔ −αµL2
c α1 dx2 e1 = −µα

dx4

12
e1 ⇔ L2

c α1 =
dx2

12
. (5.22)

Obviously, the internal length scale Lc corresponds to the dimension dx of the underlying cube to set up the
couple stress itself from gradients of stress. Considering L2

c α1 > 0 yields the indeterminate couple stress model
to become stiffer than the Saint-Venant-Kirchhoff material. In the limit case L2

c α1 → ∞ the external couple
MT is balanced by the constant component m33 of the couple stress tensor m such that α → 0 and one observes
unbounded stiffness of the torsion beam.

Note that the symmetric stress function in Section 3.4 includes this example with parameters a = 0, b = 0
and c = 12αµα1. Therefore, the general case a, b, c ∈ R in Section 3.4 represents the arbitrary mode of spatial
torsion.

6 Conclusions and outlook

Couple stresses are usually postulated for higher gradient theories from constitutive assumptions on curvature
energy or from kinematical considerations. In this paper, an independent approach is used to discuss the
properties of couple stresses within continuum theories. We assume that couple stress can be represented in
terms of stress gradients at the infinitesimal Cauchy cube, which is the basic model for mechanical equilibrium
equations. This is in accordance with usual conceptions that couple stress appears

• in the vicinity of mechanical singularities (i.e. nooks) because of large stress gradients.

• at small or thin samples with bending or torsion deformation. Since curvature is size dependent, it
increases its value on small scales, where appropriate stress gradients need to be transformed into couples.

• for material with distinct inner structure on small scales accounting for curvature as mentioned above
(foams, granular material).

At the infinitesimal level, we show that stress gradients may be divided into distinct parts contributing to
the balance of linear momentum and into several terms contributing to the balance of angular momentum.
Since couple stresses are postulated to balance angular momentum, we can identify these terms arising from
the Taylor series expansion of total force stress σ̃. Next, by postulating symmetry of the total stress σ̃, we
find that the couple stress tensor m must be traceless. Further, assuming isochoric deformation via couple
stress, we find an argument for its symmetry. This is consistent with a proposed variant of the linear isotropic
indeterminate couple stress model with symmetric local force-stress, symmetric non-local force-stress, symmetric
couple-stresses and complete traction boundary conditions which we published recently [6].

However, we do not agree with the argument used in Yang et al. [40] for the intrinsic symmetry of the couple
stress tensor. In accordance with Hadjesfandiari and Dargush [14] we question their symmetry argument, which
is a physically artificial postulate. On the other hand, we also challenge the statement from Hadjesfandiari
and Dargush [12] that the couple stress tensor m is purely skew-symmetric: our development clearly shows the
contrary under suitable hypotheses. In our point of view, symmetry of the couple stress tensor m is a physically
consistent additional constitutive requirement.

In a subsequent paper we will extend the strain gradient model to a Cosserat model with extra degrees of
freedom. Then, simulating basic deformation modes, we can show that couple stresses are generally not skew-
symmetric. Since we do not anticipate this result from constitutive or equilibrium assumptions, these results
are based on minimization of elastic energy, which provides a neutral point of departure.
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A.1 The classical balance of linear momentum

The classical balance of linear momentum considers tractions from the stress tensor σ̃ as vectors in the center of corresponding
faces of the Cauchy cube. Therefore, components of tractions can be simply represented by single arrows in the center of faces as
sketched in Fig. 14a. Gradients of components tangential to the corresponding faces are disregarded such that the derivation of
stress components appear in normal direction of faces only, see Fig. 14b-d. Further, one assumes the body force f to be constant
and barycentric within Bc.

e1
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e3

f

f1

f2
f3
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11,1s+ dx11s

13,3s+ dx13s

11s

13s
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23s
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21,1s+ dx21s

21s
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33s
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31s
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32s

a) b)

c) d)

Figure 14: a) Cauchy cube Bc with components of tractions and body force f . b) Equilibrium of forces in
1-direction. c) Equilibrium of forces in 2-direction. d) Equilibrium of forces in 3-direction.
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The balance of forces sum up the volume integral of the body force f and the surface integral of tractions σ̃.ni of each face
∂Bi in the direction ek . Since the volume is given by dV = dx dx dx and each face has the area dA = dx dx, one obtains three
equations from each spatial direction ek :

6∑

i=1

∫

∂Bi

(σ̃.ni).e1 dA+

∫

B

f .e1 dV = 0

⇔ (σ̃11 + σ̃11,1 dx− σ̃11 + σ̃12 + σ̃12,2 dx− σ̃12 + σ̃13 + σ̃13,3 dx− σ̃13) dx dx+ f1 dx dx dx = 0

⇔ σ̃11,1 + σ̃12,2 + σ̃13,3 + f1 = 0 , (A.1)

6∑

i=1

∫

∂Bi

(σ̃.ni).e2 dA+

∫

B

f .e2 dV = 0

⇔ (σ̃21 + σ̃21,1 dx− σ̃21 + σ̃22 + σ̃22,2 dx− σ̃22 + σ̃23 + σ̃23,3 dx− σ̃23) dx dx+ f2 dx dx dx = 0

⇔ σ̃21,1 + σ̃22,2 + σ̃23,3 + f2 = 0 , (A.2)

6∑

i=1

∫

∂Bi

(σ̃.ni).e3 dA+

∫

B

f .e3 dV = 0

⇔ (σ̃31 + σ̃31,1 dx− σ̃31 + σ̃32 + σ̃32,2 dx− σ̃32 + σ̃33 + σ̃33,3 dx− σ̃33) dx dx+ f3 dx dx dx = 0

⇔ σ̃31,1 + σ̃32,2 + σ̃33,3 + f3 = 0 , (A.3)

reading



σ̃11,1 + σ̃12,2 + σ̃13,3

σ̃21,1 + σ̃22,2 + σ̃23,3

σ̃31,1 + σ̃32,2 + σ̃33,3



+




f1
f2
f3



 = 0 ⇔ Div σ̃ + f = 0 , (A.4)

as a vector equation with help of the divergence operator.

A.2 Position independency of force couples in rigid bodies

Let us consider two forces F1 and F2 applying at position x1 and x2, respectively. We presume the following properties:

F1 = −F2 , F1,F2 ∈ R
3 (A.5)

and

∆x = x2 − x1 , ∆x 6= 0 , x1,x2,∆x ∈ R
3 . (A.6)

The couple of forces define the moment M by their distance ∆x within a cross product

M := x1 ×F1 + x2 × F2 = x1 × (−F2) + (x1 +∆x)× (F2) = ∆x× F2. (A.7)

Applying F1 and F2 onto a rigid body creates no acceleration to its center of mass due to eq.(A.5). However, the forces give spin
to the body due to the amount of M in eq.(A.7). The spin is generally independent of the position of the moment M within the
rigid body. This can be shown by translating the couple of forces by an arbitrary distance x. The distributive property of the
cross product implies

M = (x1 + x)× F1 + (x2 + x)×F2 = x1 × F1 + x2 × F2 + x× (F1 + F2)︸ ︷︷ ︸
=0

= ∆x×F2 . (A.8)

Thus, a pure moment is a free vector in space. Vice versa, applying the forces F1, F2 as couple, they are free vectors as well, see
Fig.(15).

Of course, the cross product is not associative. The cross product of ∆x with M from eq.(A.7) does not vanish

∆x×M = ∆x× (∆x×F2) 6= (∆x×∆x)︸ ︷︷ ︸
=0

×F2 . (A.9)

Similarly, the cross product of a position vector x with a linear independent force F results in a moment of force, which is not
linear dependent on x, thus

(x×F) 6= 0 ⇔ x× (x× F) 6= 0 . (A.10)

We suppose, that disregarding eq.(A.9) or eq.(A.10) lead Yang et al. [40] to eq.(4.5), which represents an artificial balance law12.

12[14, p. 25] write with regard to the development in Yang et al. [40]: “The symmetric character of the couple stress tensor [m̃]
is based on an artificial fundamental law for equilibrium of couples, which has no physical reality.”
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Figure 15: A couple of forces applied to a rigid body can be represented by the moment M . The spin given to
the rigid body does not depend on the position of the moment.

A.3 Divergence theorem including a cross product on tensorial quantities

Let us consider a second order tensor A = a⊗ b, defined by vectors a,b ∈ R
3. On a surface ∂V the tensor A transforms a normal

vector to the surface, n, into a vector A.n given by

A.n = (a ⊗ b)n = ai bj nk ei 〈ej , ek〉 = ai bj nk δjk ei = ai bj nj ei = a〈b,n〉. (A.11)

For index notation we use orthogonal unit vectors ei and Einstein’s summation convention for repeating subscripts.
With help of the divergence theorem the surface integral

∫

∂V

x×A.n da =

∫

∂V

x× (a ⊗ b)n da =

∫

∂V

(x× a ⊗ b)n da =

∫

V

Div (x× a⊗ b) dv (A.12)

becomes a body integral since vector products are associative. Within eq.(A.12) one can express the cross product by using the
Levi-Civita tensor ǫ by

x× a⊗ b = ǫmni xm an ei ⊗ bj ej = ǫ : x⊗A. (A.13)

Applying the divergence operator to the expression in eq.(A.13) yields

Div (ǫ : x⊗A) =
∂ǫmni xm Anj

∂xk

ei 〈ej , ek〉 = (ǫmni δmk Anj + ǫmni xm Anj,k) δjk ei (A.14)

= (ǫjni Anj + ǫmni xm Anj,j) ei = −ǫ : A+ x×DivA = 2 axlA+ x×DivA.

Thus, the divergence theorem including a cross product on tensorial quantities reads
∫

∂V

x×A.n da =

∫

V

2 axlA+ x×DivA dV. (A.15)

We make use of eq.(A.15) for transformations within eq.(3.58) and eq.(4.6), respectively.
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