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Abstract. The issue of justifying the eddy current approximation of Maxwell’s
equations is re-considered in the time-dependent setting. Convergence of the so-
lution operators is shown in the sense of strong operator limits.
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0 Introduction

Somewhat simplified, the topic of this paper is the study of the limit ε→ 0+ in the standard
Maxwell system in a non-empty open set Ω ⊆ R3, which in convenient block operator matrix
notation is given by(

∂0

(
ε 0
0 µ

)
+

(
σ 0
0 0

)
+

(
0 − curl
˚curl 0

))(
E
H

)
=

(
−J
K

)
,

with the limit case ε = 0 being the so-called eddy current case. Here, following standard
physics notation ∂0 denotes the time derivative, E, H, denote the electric and magnetic
field, respectively, and J, K corresponding external source terms, ε denotes the dielectricity
and µ the magnetic permeability, σ denotes the conductivity. The overset circle in ˚curl is
supposed to indicate that the so-called electric boundary condition is imposed on E, which

makes
(

0 − curl
˚curl 0

)
skew-selfadjoint in L2(Ω,C3×C3) ≡ L2(Ω,C6). For the purpose of this

introduction we may think of ε, µ, σ simply as non-negative real numbers. The approximation
question ε → 0+ has been considered in the literature commonly in the second order form,
whereH has been eliminated from the equations, i.e. the equations discussed are not Maxwell’s
equations but rather the abstract wave equation

ε∂2
0E + σ∂0E + curlµ−1 ˚curlE = −∂0J + curlµ−1K =: −J̃ .
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Following common wisdom indeed a time-harmonic regime is assumed, where ∂0 is replaced
by iω, where ω is a real number referred to as frequency, leading to

(εω2 − iωσ)E − curlµ−1 ˚curlE = J̃ .

Due to the selfadjointness of curlµ−1 ˚curl in L2
(
Ω,C3

)
we have that for σ 6= 0 the number

εω2 − iωσ is actually in the resolvent set of curlµ−1 ˚curl and so the limit ε → 0+ is well
controlled by the analyticity of the resolvent

z 7→
(
z − curlµ−1 ˚curl

)−1

on C \ [0,∞ [ . The situation is less clear if ε, σ are allowed to vary – say they are piece-wise
constant. For example there may be a decomposition of Ω into a relative compact, non-empty,
open subset Ωc ⊆ Ω, where σ = σc > 0 and ε = εc ≥ 0, and the rest, where σ = 0 and ε > 0.
For bounded and sufficiently regular domains Ω such that a suitable compact embedding result
holds, the limit εc → 0+ can still be established and so a justification of the eddy current
problem can be given. For a survey see [1] and the literature quoted there.

A dramatically different situation arises if Ω is unbounded, e.g. Ω = R3. Then σ = 0 becomes
the dominant case with the material behavior in Ωc just being a compact perturbation. In
this situation

εω2E − curlµ−1 ˚curlE = J̃

is our reference case, where now εω2 ∈ R \ {0} is always in the continuous spectrum of the
operator curlµ−1 ˚curl. Thus in contrast to what seems to be claimed in [2] a solution theory in
L2
(
Ω,C3

)
is unavailable. The much more demanding issues involved to study such perturba-

tion problems and to discuss limiting problems is well developed in connection with the solution
theory for exterior boundary value problems and the study of low-frequency asymptotics in
e.g. [7], [10, 11, 12], [4, 5], [6], [3]. A comparison between the low-frequency asymptotics
for the full time-harmonic Maxwell’s equations and their eddy current approximation can be
found in [6, Kapitel 5, Satz 5.7].

On the other hand, keeping in mind that time-harmonic problems are non-physical in so far
as they produce infinite energy solutions and merely serve to describe the time-asymptotic
behavior in presence of a – perpetual – time-harmonic forcing, it seems appropriate to by-pass
the above spectral issues altogether by discussing the original – physical – dynamic system
directly. This is the perspective of the following presentation, which is based on concepts
derived in e.g. [8, 9]. After a brief introduction into the needed framework we discuss the
limit to the eddy current case in full generality in section 2. In particular, we emphasize that
size and boundary regularity of the underlying domain Ω play no role in the final result. This
is due to the fact that the classical boundary trace results are superfluous for the basic solution
theory and for obtaining the convergence result.

1 The Functionalanalytical Framework

Key to the approach presented here is to consider the closure of differentiation acting on
C1(R, H)-functions with compact support, i.e. functions in C̊1(R, H), as an operator in
H%(R, H) with % ∈ ]0,∞[ , a weighted L2-type space with inner product

〈ϕ |ψ〉% :=

ˆ
R

〈
ϕ(t) |ψ(t)

〉
H

exp(−2%t) dt,
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where 〈 · | · 〉H denotes the inner product of the Hilbert space H. The resulting operator

∂0 : D(∂0) ⊆ H%(R, H)→ H%(R, H)

turns out, [8, 9], to be normal with
Re ∂0 = %. (1.1)

This observation implies that for bounded linear operators M0 : H → H and M1 : H → H,
where M0 is selfadjoint, and for a skew-selfadjoint linear operator A : D(A) ⊆ H → H, which
is possibly unbounded, the relation

Re
〈
u | (∂0M0 +M1 +A)u

〉
%

=
〈
u | (%M0 + ReM1)u

〉
%

holds for all u ∈ D(∂0) ∩D(A). With the assumption that

%M0 + ReM1 ≥ c > 0 (1.2)

for all sufficiently large % ∈ ]0,∞[ , we obtain that the closure ∂0M0 +M1 +A and its adjoint
(∂0M0 + M1 + A)∗ = ∂0M0 +M∗1 −A both have continuous inverses bounded by 1/c. In
particular, the null spaces of ∂0M0 +M1 +A and (∂0M0 +M1 + A)∗ are both trivial. Thus,
we have the following well-posedness result, see e.g. [8, 9].

Theorem 1.1. Let Mk : H → H, k = 0, 1, be continuous linear operators, M0 selfadjoint,
such that (1.2) holds for some c ∈ ]0,∞[ and for all % ∈ ]%0,∞[ with %0 ∈ ]0,∞[ sufficiently
large. Moreover let A : D(A) ⊆ H → H be skew-selfadjoint. Then

(∂0M0 +M1 +A)u = f

has for any f ∈ H%(R, H) a unique solution u ∈ H%(R, H). Furthermore, u depends on f
continuously, i.e.

(∂0M0 +M1 +A)−1 : H%(R, H)→ H%(R, H)

is a continuous linear operator for % ∈ ]%0,∞[ .

As a refinement of (1.1) we also find by integration by parts that for u ∈ C̊1(R, H)
(
and so

for u ∈ D(∂0M0 +M1 +A)
)

Re
〈
u |χ

]−∞,a]
(∂0M0 +M1)u

〉
%
≥ c
〈
χ

]−∞,a]
u |χ

]−∞,a]
u
〉
%
.

This yields that we have also causality in the sense of the following theorem.

Theorem 1.2. [Causality] Under the assumptions of Theorem 1.1 we have

χ
]−∞,a]

(∂0M0 +M1 +A)−1 = χ
]−∞,a]

(∂0M0 +M1 +A)−1χ
]−∞,a]

for all sufficiently large % ∈ ]0,∞[ .

We plan to approach the eddy current approximation within this abstract framework, which
simplifies matters in so far as we can deal with the time-dependent situation under very general
assumptions on the coefficients, which can indeed be operators acting in the underlying spatial
Hilbert space.
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2 Convergence to the Eddy Current Model

2.1 Maxwell’s Equations with General Material Laws

Maxwell’s equations with a general, simple material law read:

(∂0M +N +A)

(
E
H

)
=

(
−J
K

)
, A :=

(
0 − curl
˚curl 0

)
. (2.1)

Here ˚curl is defined as the closure in L2
(
Ω,C3

)
of the classical vectoranalytic operation curl

on C1

(
Ω,C3

)
-vector fields with compact support in the non-empty open set Ω ⊆ R3, which

is obviously symmetric in L2
(
Ω,C3

)
and therefore indeed closable. We define

curl := ˚curl
∗
,

which is nothing but the classical weak L2
(
Ω,C3

)
-curl. Due to the structure of A as

A =

(
0 − ˚curl

∗

˚curl 0

)
we read off that A is skew-selfadjoint. Since every closed, linear operator gives rise to a
canonical Hilbert space by equipping its domain with the graph inner product, we have Hilbert
spaces

H( ˚curl), H (curl)

from the respective domains D( ˚curl), D (curl). One frequently finds already H( ˚curl) defined
in terms of boundary traces, which unnecessarily limits the applicability of the results. Even
worse, it suggests to the uninitiate or confused reader that boundary regularity is required to
ensure that the physical model actually works. We note that since

˚curl = curl∗ ⊆ curl

we have for E ∈ H( ˚curl), with 〈 · | · 〉L2 denoting the inner product of L2
(
Ω,C3

)
, that

〈E | curl Ψ〉L2 = 〈 ˚curlE |Ψ〉L2 = 〈curlE |Ψ〉L2

for all Φ ∈ H (curl). We read off that conversely

〈E | curl Ψ〉L2 = 〈curlE |Ψ〉L2 for all Ψ ∈ H (curl)

characterizes E ∈ H( ˚curl). This shows that

E ∈ H( ˚curl)

is a suitable generalization of the electric boundary condition for the topological boundary of
arbitrary non-empty open sets.

According to the above abstract framework, the solvability constraint on the operator coeffi-
cients M = M0, N = M1 is

%M + ReN ≥ c > 0

for some real constant c and all sufficiently large % ∈ ]0,∞[. The underlying Hilbert space is
H = L2(Ω,C6). We recall that causality of the solution operator is also implied by our general
framework.
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2.2 Classical Electrodynamics and the Eddy Current Problem

On this basis we are now able to discuss the limiting behavior to the eddy current case. Let

Ms :=

(
εs 0
0 µs

)
, Ns :=

(
σs 0
0 0

)
, s ∈ [0, 1[ .

Assuming that for some %̂ ∈ ]0,∞[ we have for all % ∈ ]%̂,∞[ and all s ∈ [0, 1[

%Ms +Ns ≥ c > 0,

we have uniform boundedness for the solution operators in the sense that∥∥(∂0Ms +Ns +A)−1
∥∥ ≤ 1

c

for s ∈ [0, 1[ . On the other hand, we have the following resolvent equation type result for the
solution operators:

(∂0Ms +Ns +A)−1 − (∂0M0 +N0 +A)−1

= (∂0Ms +Ns +A)−1
(
(M0 −Ms)∂0 +N0 −Ns

)
(∂0M0 +N0 +A)−1

If now
Ms

s→0+−−−−→M0, Ns
s→0+−−−−→ N0 strongly in L2(Ω,C6),

we read off that we have

(∂0Ms +Ns +A)−1F
s→0+−−−−→ (∂0M0 +N0 +A)−1F for every F ∈ D(∂0).

Due to the uniform boundedness of the solution operators, however, we can use the density
of D(∂0) in H%

(
R, L2(Ω,C6)

)
and the above H%

(
R, L2(Ω,C6)

)
-convergence for elements in

D(∂0). In fact we get

(∂0Ms +Ns +A)−1F
s→0+−−−−→ (∂0M0 +N0 +A)−1F for every F ∈ H%

(
R, L2(Ω,C6)

)
by the principle of uniform boundedness1, i.e. strong convergence of the solution operators. In
cases, where ε0 vanishes, i.e. ε0|L2(Ω)3 = 0, we have the case of the eddy current approximation.
We note that the usually considered case assumes Ω = R3.

Let us conclude with some remarks:
1Indeed, more explicitly, for F ∈ H%

(
R, L2(Ω,C6)

)
and F̃ ∈ D(∂0) we see∣∣(∂0Ms + Ns + A)−1F − (∂0M0 + N0 + A)−1F

∣∣
%

≤
∣∣(∂0Ms + Ns + A)−1F̃ − (∂0M0 + N0 + A)−1F̃

∣∣
%

+
∣∣(∂0Ms + Ns + A)−1(F − F̃ )

∣∣
%

+
∣∣(∂0M0 + N0 + A)−1(F̃ − F )

∣∣
%

≤
∣∣(∂0Ms + Ns + A)−1F̃ − (∂0M0 + N0 + A)−1F̃

∣∣
%

+
2

c
|F − F̃ |%,

from which the desired convergence result follows by first choosing F̃ ∈ D(∂0) to make the last term
sufficiently small (independently of s ∈ [0, 1[ ) and then, for this fixed choice of F̃ , we choose s0 ∈ ]0, 1[
sufficiently small to make the first term sufficiently small for all s ∈ ]0, s0[ .
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• The above rationale clearly also works for completely general sequences (Ms)s, (Ns)s
with M∗s = Ms of continuous linear operators converging strongly to M0 and N0 with

%Ms + ReNs ≥ c > 0

for some c ∈ ]0,∞[ and all s ∈ [0, 1[ . We have focused on the classical eddy current
context to make the approach more tangible.

• Again we emphasize that our results depend

– neither on the size (bounded or unbounded)

– nor on the topology (genus, Betti-numbers)

– nor on the regularity (no regularity is assumed)

of the underlying domain resp. non-empty open set Ω. Moreover, our methods extend
immediately to domains resp. non-empty open sets Ω ⊂ RN , N ∈ N, or even to Rie-
mannian manifolds Ω by replacing the curl-operators by the exterior resp. co-derivative.

• Our results remain valid even if mixed boundary conditions are considered. We just
have to modify the skew-selfadjoint unbounded linear operator A by

A =

(
0 − ˚curl

∗
Γ1

˚curlΓ1 0

)
=

(
0 − ˚curlΓ2

˚curlΓ1 0

)
.

Here the boundary Γ := ∂ Ω is decomposed into, let’s say, two relative open disjoint
subsets Γ1 6= Γ and Γ2 := Γ \ Γ1. Following our definitions from above, we define
˚curlΓ1 as the closure in L2

(
Ω,C3

)
of the curl-operator acting on the restrictions to

Ω of C1

(
R3,C3

)
-vector fields having compact support in R3 bounded away from the

boundary part Γ1 as well as
˚curlΓ2

:= ˚curl
∗
Γ1
.

Once more, the structure of A shows that A is skew-selfadjoint.

• It is also clear that for uniform convergence of the coefficients we get uniform convergence
of the solution operators in the sense that

∂−1
0 (∂0Ms +Ns +A)−1 s→0+−−−−→ ∂−1

0 (∂0M0 +N0 +A)−1

in L
(
H%(R, L2(Ω,C6)), H%(R, L2(Ω,C6))

)
.

2.3 A Realistic Case

For illustrational purposes we conclude with a realistic example, where the above limit sit-
uation occurs, e.g. an electromagnetic field in the presence of a laminated iron core in air
(possibly with an air gap). Whereas in air the standard Maxwell equations are used, in the
iron core the eddy current model is frequently assumed, see Figure 2.1. A possible, simple
description would be that µ > 0 is a constant and ε and σ are piece-wise constant with

ε =


εair in air,
εlam in the insulating parts of the laminated iron core,
εcor in the metal parts of the laminated iron core,
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Figure 2.1: Laminated iron core in air.

and

σ =


0 in air,
0 in the insulating parts of the laminated iron core,
σcor in the metal parts of the laminated iron core,

for εair, εlam, εcor, σcor positive numbers. In the above we have established that replacing the
– relative to σcor – small value of the dielectricity εcor can indeed be replaced by zero, i.e.
εcor = 0. In this situation the approximation result holds for any % ∈ ]0,∞[ .
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