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Abstract

Let (Q, F,P) be a classical Wiener space endowed with a filtration (F)¢ecjo,77, T > 0
with the usual assumptions, D C R? be a bounded Lipschitz domain, Q := (0,T7) x D
and p > 2. Our aim is the study of the problem

du — div(|Vu|P™2Vu 4 F(u)) dt = H(u) dW in Qx (0,T) x D
(P)qu=0 on Q x (0,T) x 8D
u(0,-) = uo inQxD

for a cylindrical Wiener process in L?(D) and F : R — R Lipschitz continuous. We
consider the case of multiplicative noise with H : L?(D) — HS(L*(D)), HS(L?*(D))
being the space of Hilbert-Schmidt operators, satisfying appriopriate regularity con-
ditions. By an implicit time discretization of (P), we obtain approximate solutions.
Using the theorems of Skorokhod and Prokhorov, we are able to pass to the limit and
show existence of martingale solutions.

Keywords: pseudomonotone problem, multiplicative noise, cylindrical Wiener process,
martingale solution

AMS Classification: 35K92, 35K55, 60H15

1 Introduction

Let (92, F, P) be a complete, countably generated probability space (for example the classical
Wiener space) endowed with a filtration (F}V )tefo,r], T > 0 with the usual assumptions,
D C R% be a bounded Lipschitz domain, @ := (0,7) x D and p > 2. For a separable Hilbert
spaces U, H, we denote the space of Hilbert-Schmidt operators from U to H by HSU;H).
We are interested in existence of a solution to

du — div(|Vu|P™2Vu + F(u)) dt = H(u) dW in Qx (0,T) x D
(P){u=0 on Q2 x (0,T) x 9D
u(0,) = ug inQxD

for ug € VVO1 P(D), F : R — R? Lipschitz continuous. We will give the precise assumptions
on H : L?(D) — HS(L*(D)) in the next section. W (t) is a cylindrical Wiener process
with values in L?(D). More precisely: Let (ex)ren be an orthonormal basis of L?(D) and
(Bk(t))ken be a family of independant, real-valued brownian motions adapted to (F}V). We
(formally) define

W(t) = exB(t). (1)
k=1

It is well-known that the sum on the right-hand side of (1) does not converge in L?(D),
therefore we have to give a meaning to (1) following the ideas of [5] and [11]: For u =
e uker and v =Y _p° | Ve

> URv
(U,U)U = bk
k?

k=1
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is a scalar product on L?(D). Now we define the (bigger) Hilbert space U as the completion
of L?(D) with respect to the norm | - || induced by (-, -)rs. It is then easy to see that (key)
is an orthonormal basis of U. Note that

Z erBr(t Z %kekﬂk (2)
k=1 k=1

and therefore W (t) can be interpreted as Q-Wiener process with covariance Matrix @ =
diag(%) with values in U. Since Q2 (U) = L*(D), for all square integrable and predictable
®:Q x (0,T) = HS(L?(D)) the stochastic integral with respect to the cylindrical Wiener
process W (t) can be defined by

t
/(I)dW
0

Z/ D(er) dP
: Z / kex) dfi
— o QY2 (ke :
;/0 ® o Q' (key) dpy (3)
Since ® 0 Q= € HS(U; L2(D)),
Z / 0 Q/2(kex) By € IA(: C((0,T); IA(D))).

In particular, for all k € N, ®(ey,) € L?(Q x (0,T); L?(D)) is predictable process, i.e. ®(ey)
is Pr/B(L?(D))-measurable where P is the (predictable) o-field on Q x (0,7') generated
by

(s,f] x A, 0<s<t<T, AecFl.

1.1 Strong and martingale solutions

In the theory of stochastic evolution equations two notions of solutions are typically consid-
ered for equations with multiplicative noise namely strong solutions and martingale solutions.
A strong solution is defined as follows:

Definition 1.1. A solution to (P) is a predictable process u : Q x [0,T] — L?(D) with a.e.
paths )
ulw, ) € C([0,T); W=7 (D)) N L>(0,T; L*(D)),

such that u € LP(Q; LP(0,T; Wy *(D))), u(0, ) = ug in L*(D) and
t t
w(t) — ug — / div(|VulP "2V + F(u)) ds = / H(w) dW,
0 0

in L2(D) for all t € [0,T], a.s. in Q.

In the former definition, the probabilistic quantities (2, F, P), (F}V) and W are fixed.
In many cases, it is necessary that (2, F, P), (F}V) enter as unknowns into the problem, for
example, if one uses the theorems of Prokhorov and Skorokhod to obtain a.s convergence of
approximative solutions. More precisely,

Definition 1.2 (see, e.g. [5], [6], [8]). We say that (P) has a martingale solution, iff there

exist a probability space (Q,F, P), a filtration (F;), a cylindrical Wiener process W and a
predictable process u : Q x [0,T] — L*(D) with a.e. paths

u(w,-) € ([0, T); W=7 (D)) N L*(0,T; L*(D)),



such that u € LP(Q; LP(0,T; W, *(D))), u(0, ) = ug in L*(D) and
¢ ¢
u(t) —ug — / div(|VuP~2Vu + F(u)) ds = / H(u) dW (4)
0 0
holds in L*(D) for allt € [0,T], a.s. in Q.

1.2 Main results and outline

Our aim is to prove the following result:

Theorem 1.1. For any ug € Wy (D) and any H : L2(D) — HS(L?*(D)) as defined in
Section 2 there exists a martingale solution to (P).

The proof of Theorem 1.1 is based on a approximation procedure by an implicit time
discretization corresponding to (P), which will be introduced in Section 3.1. Since there is
a lack of compactness with respect to w € 2, will have to use the theorems of Prokhorov
and Skorokhod that allow us to find a.s. convergence of approximate solutions uy to a
measurable function u., in a new probability space (Q, F, P) (see Subsection 3.4). Pass-
ing to the limit we have to face two different difficulties: Firstly, we have to show that
the limit of the stochastic integrals is a stochastic integral with respect to a cylindrical
Wiener process defined on a possibly enlarged probability space. This can be done using
the Martingale Representation Theorem from [5]. Secondly, since weak convergence is not
compatible with nonlinear operators, we have to identify the weak limit of |Vuy|P~2Vuy
with |Vieo|P"2Vus. Once we have identified the stochastic perturbation at the limit, we
may use the It6 formula for the identification of the nonlinearity. Subsection 3.5 is devoted
to the solution of these two problems.

2 Technical assumptions
For an orthonormal basis (e,,) of L?(D), u € L*(D) let us define

H(u)(en) :={z = hn(u(z))},

where, for any n € N, h, : R — R is a continuously differentiable function such that
hy(0) = 0 satisfying

(H1) There exists C7 > 0 not depending on p, A such that

Z [in( n(W)? < CrA = pf?

for all pu, A € R.
(H2) There exists Cy > 0 such that

[eS)
Do lmlE < Co.
n=1

For example, h,(\) = a,A or hy,(\) = a, sin(\) with n € N and (a,,) € [?(N) are satisfying
(H1) and (H2). In particular for any v € L?(D) thanks to (H1) we have

H) 2wy = 3 TH@) ()220 / Zm )? de
n=1

CullullZs(p) ()

and herefore H(u) is a Hilbert-Schmidt operator in L?(D) and H : L?(D) — HS(L?(D)) is
continuous. Thanks to (H2), we also have the following result:
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Proposition 2.1. H : W, *(D) — HS(L*(D); H} (D)) is continuous.

Proof: Let us fix (u;) C WyP(D) such that there exists u € W, ?(D) with u; — u in
Wy (D) for j — co. Then,

([ H (u;) — H(U)”?JS(LZ(D);H(}(D)) = Z ([ (1) — hn(“)”?{g(D)
n=1

= > /D | (i) V (g = w) + Vu(hi, (uj) = b, (u))]? da. (6)

We can extract a not relabeled subsequence (u;) such that |Vu,| < ga.e. in D forall j € N
and some g € LP(D) and
Uj —» U,
Vu; — Vu

for j — oo a.e. in D. For any fixed n € N, since h/, is continuous we have,
[ () V (= ) + Vu(hi, (ug) = by, (w)? =0 (7)

for j — oo a.e. in D. Let C > 0 be a constant not depending on j and n that may change
from line to line. By (H2) we have

[ (i) V (uj = w) + Vu(hi, (uz) = by, ()
Clibnll5 (IVu; = Vul* + | Vul?)

<
< CCy(|g)* + [Vul?) (8)

and the right-hand side of (8) is in L'(D). Therefore, by Lebesgue dominated convergence
theorem,

lim i | (i)Y (uj = w) + Vu(hi, (uz) = by, (w))? dz =0 9)

j—o0
for every n € N. Since such a subsequence with can be extracted from every subsequence of
(uj), (7) holds for the whole sequence (u;). In particular, for any N € N, we have

N
lim Z /D |hL (u;)V (uj —u) + Vu(hl (uj) — bl (u))* dz = 0. (10)

Jj—o0

Let us fix e > 0. For any N € N, we have

g/D IRt (ui)V (uj — u) + Vu(hl, (uj) — bl (u)? de

< Y4 / 112 9 (i — )2 + 4|Vl |12, da
n=N D

< 3 16 (/D 1V (u; — 0 + [Vaf? dw). ()
n=N

By (H2),
> b %, < oo,
n=1

thus there exists Ny € N such that

oo
Do 3 <e
n=N



for all N > Ny. Therefore, now we get
1H (uj) = H(u) | Fr5 2Dy (m))

= > [ )V )Vl ) = @) o

+ Z /|h’ u; )V (u; —u) + Vu(hl,(uj) — bl (v)* dz

n=Nop+1

< g [ 1) g = )+ Vit )~ B ) o

+ € </ IV (u; —w)|? + | Vul? da:) (12)
D
using (10) in (12) now it follows that
. 2 —
jlggo I1H (u;) — H(U)”HS(H(D);H(}(D)) =0. (13)

In particular, for any u € LP(Q x (0, T); W, *(D)), using (H2) we get

T
E/HHWMMHMHMWﬁ

p/2
/ (Znh ||H1D>> dt
T/ p/2
E / AR / Vul? dr

T
@”@E/|ngﬁ (14)
0
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where C}, > 0 is a constant which is independent of u.

3 Proof of Theorem 1.1

3.1 Time discretization

For N e Nlet 0 =ty < t; < ... <ty =T be an equidistant subdivision of the interval
[0,T] with 7 := T/N = tp41 — tg for all k = 0,...,N — 1. Let us introduce the implicit
Euler scheme

D) ug = u(to) € Wy (D)
uF Tl — b — rdiv(|Vur L P20k 4 F(uF ) = H(uP) A W

where Ap 1 W = Wi(tg1) — W(tg) for k=0,...,N — 1.
Remark 3.1. Since A1 W takes values in the Hilbert space U, we have
tht1
/‘_mmmw =

i

= nen)(ﬁn(tkH) Bn(tk))

Q7 (nen) (Ba(trsr) — Bultr)) (15)

n=1



for allk =0,...,N —1. Since H(u") o Q: € HS(U; L?(D)), the last expression converges
in L2(Q;C([0,T); L?(D))). Therefore we will use the formal notation

tht1
HuF) Ay W o= H(WF) dW = H(u*) 0 Q2 (W (tps1) — W(ts)).
tr
Lemma 3.1. For any k =0,...,N — 1, there exists a unique, ft‘;VH—measumble function

uF o Q — Wy P(D) such that for a.e. w € Q
T — ok — rdiv(|VeF T P2V - PP ) = H(uF) A W (16)
in L*(D).
Proof: We fix 7 > 0. Since p > 2, the operator A : Wol’p(D) — W‘l’p/(D) defined by

(A2 ). Vs i = ()2 +7 [ (VUP=2Fut F(w) - Vo de
D

for u, v € WO1 P(D) is a pseudomonotone operator and therefore, by Brezis’ theorem, A, is
onto W=7 (D).

In order to show that A, is injective, we fix f € WL (D) and assume that uy, ug are two
solutions to A,u = f in W~1#' (D). Then we take v = sign; as a test function, where signs
is a Lipschitz continuous approximation of the sign function and obtain u; = uy by passing
to the limit when § goes to 0.

It is left to show that A7 : W~=1¢ (D) — Wy (D) is continuous. For f € W% (D) and
u such that A;(u) = f, using the Gauss-Green theorem on the convection term we get

T ’
lully + 7Vl = (F w1 oy ooy < SNV + CollF Iy (17)

Let (fn) € W12 (D) be a sequence converging to f in W~1# (D). For for all n € N, we
define

Uy = A7 (f). (18)
From (17) it follows that there exists a not relabeled subsequence of (u,), u € Wy?(D) and
B in L” (D)% such that u, — u in Wy ?(D), u, — u in LP(D) and |Vu,[P~2Vu, — B in
v’ () for n — co. Using these convergence results and (18), we get

Jull2 + 7 lim sup / Cun [PV - Vu, di
n—oo D

= {fWw-rs ) wir D)

|ull3 + T/D B -Vu dz, (19)

thus from (19) it follows that

linisup<A(un), Up — u)W,l,p,(D)ng,p(D)

= limsup/ |V, P2V, - Vu, da:—/ B-Vu dx
D D

n—roo

=0 (20)

and since A, is pseudomonotone, (20) implies A,u = f. In particular, B = |Vu[P~2Vu and

n—oo

lim / |[Vu — Vu,|P dz
D

IN

2pr—2 limsup/ (|Vun P2V, — [VulP~2Vu) - V(u, — u) dx
D

n— oo

= 0. (21)



From (21) it follows that our not relabeled subsequence (u,) converges strongly to u in
WP (D) for n — co. Since u is unique it follows that the whole sequence (u,) converges to
w in Wol’p(D) for n — oo and A;! is continuous.

Since, for all k=0,...,N —1

WP — P o — div(|VeET PV PR ) = H(WF) A W
& upp = A7 (HWH) AW +ub), (22)

and the argument on the right-hand side of (22) is ftvgﬂ—measurable assuming that u” is
,Ft‘/]y-measurable, the assertion follows by induction.

3.2 Estimates

Lemma 3.2. Let (u**1) be a solution to (D). Then,

1 1
52 (I8 = I¥13) + TBI ! =B+ B [ 1Vaip o

< TE|H W) s 20y (23)

forallk=0,1,...,N — 1.

)

k+1

Proof: Taking the L2-scalar product with u in (16), we get

™3 = (u, u )y — 7 (div([Va PTG 4 F), ut ),

= (HW")Ap W, u 1),
= Il+IQ+I3:I4 (24)
where
1
o= R = ), = 5 (e — 3 et - aB)
I, = T/ VP da,
D
I; = 7'/ FuM vt de =0,
D
I4 = (H(uk)Ak+1W uk+1 — uk)g + (H(Uk)Ak+1W Uk)g.

Taking expectation on both sides of (24) we arrive at
1

2

= E(Hu")App W, ub ™ —uf)y + E(H (") Ap W, ub)s. (25)

B (13 = 3 + o+ = u3) + 7B /D Vur P da

Since uy, H(u¥) are F}V-measurable and W (ty41) — W (tx) is F}V-independent, we have

E(HW!) A W,ub); = EB [(H(u’“) 0 QYA (W (ths1) - W), u") !ftk.]

— E(uk,E /tkHH(uk) detkD =0. (26)
2

tr
Using Hélder and Young inequality it follows that for any a > 0

E(HuP) Mg WuM T —ub)y < B(|@kAp iy Wlla - [ — o)
2

+ ozE||ukJrl - ukH% (27)
2

te4+1

! H(u®) aw

< 11ig
- 2\«

tr



By It6 isometry and for o = 3 from (27) it follows that

E(H W) Ay W, u —uF)

IN

th+1 1
B[ IO ey dt+ BN — oI
23

1
= TEHH(UIC)”%IS(LQ(D)) + ZEHU]CH — "3 (28)
and therefore we arrive at

1
5B (I 113 = b3 + o = u3) + 7B /D VUt da
1
< TE|H W) sr2 0y + ZEHUkH —u"|3, (29)

hence (23) holds.

Definition 3.1. For N € N, 7 > 0 we introduce the right-continuous step function

N-1

un(t) = uk+1X[tk’tk+l)(t), te [O,T],
k=0

the left-continuous, F,V -adapted step function

N—1
ur(t) = D uF X (0] () ¢ € (0,7, ur(0) = uo,
k=0
the continuous, square-integrable F}V -martingale
t
Bu(t) = [ H(ur) aw, 1€ [0.7]
0

and the piecewise affine functions

N—-1

N _ S R . N N

Un(t) == (= t) +u" | X (), £ €(0,7), AN (T) = u,
k=0

N-—-1
B = 3 (P =IO ) 4 Be(n)) i (0 € 071
k=0

Lemma 3.3. There exists a constant K > 0 not depending on the discretization parameters
such that

"3 <K
jnaxlu; < K, (30)
N-1
> Bl — k5 < 4K+ 2fluoll3. (31)
k=0

In particular, by (H1) there exists K(Cy,Ca, |luoll, T) > 0 such that

T
E / 1 () |12yt < K(Ca, C, lugl], T). (32)
Moreover we have
E sup |luy|5=E sup [lun|5 <K, (33)
te[0,T) t€[0,T
r 1
E/ / |Vuy|? de dt < K+ =|juol|3. (34)
0 D 2



Proof: We fix n € {1,..., N}, take the sum over 0,...,n — 1 in (23) to get
1 1 lnfl n—1
SN = 5Bl + 3 Bt — ot 3+ Y [ v da
k=0 k=0

< Z TE|H (") |52 (py) ds (35)

Discarding nonnegative terms by (H1) it follows that

n—1
1 n
SElu"3 < EIIUonJr;)ClTEIIU’“Hz (36)

Applying the discrete Gronwall inequality in (36) yields
Ellu™3 < [luol3e*™ (37)

and (30) follows from (37) with K := |jug|3e2“*T. Now (31) follows from (30) and (35) by
taking n = N and keeping the nonnegative term

1 n—1
k k
7 Bl — k3.
k=0

(32) is a direct consequence of (H1) and (30). Moreover,

E sup [un|3=FE sup [uyllf <E max [u*]; < K. (38)
te[0,T tefo,77 F=Les

Finally, (34) follows now from (35) and (30) by keeping the nonnegative term

n—1
> rE / |Vub P de
k 0

and taking n = N.

Lemma 3.4. There exists C > 0 not depending on N € N such that

/0 1 i = By e
T
< C <E/ lun3 + [[Vun|? dt+1>. (39)
0

Proof: For all t € (tg,tr41), and allk=0,...,N —1

d uFtl — b — H(uF)Ap i W
— By) =
dt Ay N) T
= div(|VuF T P2 vt Fuf ). (40)

Since p > 2, there exists a constant C' > 0 not depending on N € N that may change from



line to line such that
d _ ~
Ha(uN _BN)”W*LP’(D)

= sup / [|Vuk+1|pf2Vuk+1 + F(ukﬂ)} Vo dx
<1Jp

[EMEN

< s (Ve Vel 4+ R 2] Vele)
1l .2y <

< s (IVERPE - CIR@Y )96l
1l .2y <1

<V P,

Therefore, for p’ < 2, L > 0 the Lipschitz constant of F

d . ~ / _ p/
|Gy =By oy < (IVEET + CIF@E)2)
< 2P (|| VU 4+ CLu 8
< YVurE 4+ O+ Wb ).
Hence
T 4 _ ,
A~ _ p
|15 = Bl s
N-1 N—1
< 2y Vet p+C (1 +r >y |uk+1|§> 7
k=0 k=0
and
T 4 N ,
o (a _ p
B [5G = Bl sy
N-1 N-1
< > EIVEEFT B+ C(L+ 7Y EutT3)
k=0 k=0

T
< C (E/ lun |3+ [Vun]lb dt+1> :
0

From Lemma 3.3 and Lemma 3.4 we get

Lemma 3.5. There exists a constant C' > 0 not depending on N € N such that

T 4 _ ,
&~ P
B [5G = Bl sy < C
Lemma 3.6. For T >0, N € N we define an equidistant subdivision of [0,T] by

O=to<ti1i <...<ty=T

with T = % =tgps1—tg fork=0,...,N—1. Let I, H be separable Hilbert spaces and W be
a Wiener process in K with covariance operator Q. For a ]-',LV -measurable random variable

Dy with values in HS(Ql/Q(lC),’H) we define the left-continuous, F}V -adapted process

N—-1
P, = Z ‘I)kx(tk’tk+1].
k=0

10



For any p > 2, there exists constants v > 0 and C, > 0 not depending on N € N and an
integrable, real-valued random variable X such that

S
sup sup || [ @ dW|n
k€{0,...N—=1} s€[tp,trt1]  Jtn

< Cyr7 ( sup T||¢k||1;13(;g ) t1+ X) .
ke{o,...,N—1} ’

Moreover, there exists a constant C' > 0 such that
E(X) < Ctr(Q). (43)

Proof: Let us fix s € [tg, tg41] and k € {0,..., N — 1}. Then we have
I [ 0 Wl < 10 lmsiean W () = Wt
k

Now, from [10], [16, Ex. 2.4.1] (see Lemma 4.6 in the Appendix) for any ¢ > 1 and « > %
it follows that

W (s) = W(t)llx

e W - welg o\
Claro-1/a / / K dt dr
’ tr tr ‘t - 7ﬂlaq—i_l

T T 1/q
Cé/gTa—l/q / / ”W(t) _ W(T)HQIC dt dr
’ o Jo |t — rloatt

_ (/ara-1/qx1
= Ca(gT lax1/q (44)

T AT B q
xom [ [ OO,
o Jo |t —r|vatt

is a real-valued random variable. Thus,

IN

IA

where

S
sup sup || [ @, dW|xn
ke{0,....,N—=1} s€[tr,tut1] Jitx
< sup sup [P llmsc,w W (s) — Witk)lIx
kG{O,...,Nfl} Se[tk,tk+1]
< < sup ‘I’k|HS(/c,H)> sup sup [[W(s) — W (tx)llx
ke{0,...,N—1} ke{0,...,N—1} s€[tx,trt1]
and from (44) it follows that
sup sup H/ O dW ||y
k€{0,....N—1} s€[tx,trt1] th
< cMaremtaxle  sup || @] g
’ ke{0,...,.N—1} '
= Ci/gTafl/qfl/p sup Tl/p”(I)kHHS(IQH)Xl/q
’ ke{0,...,N—1}
< cYaro—t/a=i/p I | O [ Xxv'/a
’ ke{0,....N—1} ’
< CYaro-t/a=i/p sup 7| Prllgpe ) 1 HX
’ ke{0,...,N—1} ’



where ¢ > 1 is such that

vyi=a-1/g-1/p>0, p/g<1.

Moreover,

_ [T [T EIW () - W)
E(X)_/O /0 7 e K dt dr.

Since
it follows that there exists Cy > 0 such that

E[W (1) = W(r)llg < Cqtr(Q)It — 7|72,

and one gets, choosing ¢ such that ¢ > p > 2 and a € (% + é, 1)

E(X) < Cytr(Q) /OT /OT |t —r|9/27297 gt dr =: Ctr(Q).

3.3 Regularity of approximate solutions

Lemma 3.7. There exists a constant K1 > 0 not depending on the discretization parameters
such that

T
B [ a0y < Ko (45)

Proof: We fix an orthonormal basis (e, ) C L?(D). Then,
N-1
E / 1) s acoymgon 4 = 2 IO s ooy anyco

[e’e] P/2
= Er Z (Z | H (u*) (e, ||H1(D)> (46)

n=1

Now we use (H2) to estimate

N-1 p/2 ) N-1
2 p/2 k|p
Er (Z [ H (u (en)lng(D)) < ECYPr Y | Vuk|8

k=0 \n=1 k=0

IN

N-1
2
C3*rE (Z Va5 + IIVUO’2’>

k=0

IN

T
R / IV unll? + [ Vo1 dt
0

T
cg/QcpE/O Vun|[? dt + T Vol dt (47)

where C), > 0 is a constant not depending on the discretization parameters. According to
Lemma 3.3, (34), from (47) it follows that

T
B [ 1) ysqos oy 41 < K (48)
with K1 = max(C5/*Cy(K + [[uo[3), C5*C || Vuo ).

12



Definition 3.2. For a Banach space V, T > 0,0 < a <1 and 1 < p < oo we recall the
definition of the fractional Sobolev space (see also [1], p.111, [15] for more information):

WP, T;V) = {f € L*(0, T3 V) | [ fllwerriv) < 400},

1)~ FOI
1wy = (/ / |t_r|ap+1 dr dt

Lemma 3.8. For any o € (0, %) there exists a constant C(c, p) > 0 such that

where

E||/ H(uz) AW 3 an o oz (py) < Clp) K1, (49)

where K1 > 0 is defined in Lemma 3.7. In particular,

/HuT

is bounded in LP(Q; WP(0,T; H}(D)))

Proof: We recall that . is a left-continuous, F}V-adapted process with values in W, * (D)
and H : WyP(D) — HS(L?(D); HL(D)) is continuous. Thus, H(u,) is a left-continuous,
FV-adapted process and therefore it is progressively measurable. From [8], Lemma 2.1.,
p-369 (Lemma 4.7 in the Appendix) it follows that there exists C(«,p) > 0 such that

Bl [ 07 Wy o3

T
< C(Oé,p)E/O ”H(UT)H?{S(Lz(D);Hé(D)) dt. (50)

Now, the assertion is a direct consequence of Lemma 3.7.

Lemma 3.9. (By) is uniformly bounded in LP(S; WP (0,T; HL(D))) for any o € (0,7)
and vy = % — %.

Proof: We have to verify the assumptions of Lemma [2], Lemma 3.2 (Lemma 4.8 in the
Appendix) for G = By: For any [ € {0,..., N} we have

7Y 1Bn (tryr) — BN () o 01 ()

N—I1 thotl
= T E” H(UT) dW”I}JIé(D)
k=0 tk
N—I1 thtl
= T E” o H(“T)X(tk,tk+l] dW”Z;[é(D)' (51)
k=0

We use the Burkholder-Davies-Gundy and the Holder inequality to get

T 1B = By @l oy

tht p/2
T Z E (/ 1H (ur)l Frs(22 Dy 2 () dt)

T
Er Z(tk-‘rl - tk)%_l (/0 ||H(UT)“I[7—IS(L2(D);H&(D)) dt) . (52)
k=0

IA

IN
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From (51) and Lemma 3.7 it follows that there exists a constant K; > 0 not depending on
the discretization parameters such that

N-—1
T Z ||BN(tk+l) - BN(tk)||1£2(Q,H3(D))
k=0

T
2
< r(N—Dif E/O A"

p—2
'Ky < 2TKqt, ® (53)

p__
2

< (T+ tl)tl

>0, and C := (2T K;)'/? from (53) it follows that

N-—I
7 BN (tst) = By ()ll} oy pr1 1y < C74"- (54)
k=0

According to Lemma [2], Lemma 3.2 (Lemma 4.8 in the Appendix), from (54) it follows that
(By) is uniformly bounded in the Nikolskii space

NY2(0,T; LP(Q; Hy(D))) < W*?(0,T; LP(Q x Hy(D)))

with continuous imbedding for any o € (0,7) (see [1], p.111, [15]). Thanks to the Fubini
theorem this implies

BNl Le@iwerorm3 () < C
for all N € N and a constant C' > 0 not depending on N € N.

Remark 3.2. [t is well-known (see, e.g. [13], Lemma 7.1, p.202 and Lemma 7.7, p.208)
that the space

d , /
W= {v e (0, T HY(D)) | oo e IV (0,757 (D))}

is continuously embedded into C([0, T); W= (D)) and compactly embedded into L2(0,T; L*(D)).

Lemma 3.10. There exists a constant C > 0 such that

HaNHLP(Q;LP(O,T;W(}'P(D))) + [lun — BN”LP'(Q;W) <cC (55)
for all N € N.

Proof: Elementary calculations yield that there exists a constant C' > 0 not depending
on the discretization parameters such that

N
7|1 S kP
Elan|, o raviemy < CETkZ_OHU [

IN

T
CE ( / IVunl i+ ||Vuo||s> (56)
0

and by Lemma 3.3 the right-hand side of (56) is bounded. From Lemma 3.9 it follows
that (By) is bounded in LP(Q; W*P(0,T; H}(D))) for a € (0,3 — %) Thus, (uy — Bn) is
bounded in LP(; LP(0,T; H}(D))). Now, the assertion is a direct consequence of Lemma
3.5.

14



3.4 Tightness

Next, we set
X :=C([0,T]; L*(D)) x L*(0,T; L*(D)).

For N € N, we denote the law of Uy by pz, = P o (uy)™! on L?(0,T; L*(D)) and the
law of By by upy = Po (Bx)~! on C([0,7T]; L?(D)). Their joint law on X is denoted by

UN = (ILLBN7/‘L77N)'

Proposition 3.11. The sequence (uz, ) is tight on L*(0,T; L?(D)) and the sequence (up, )
is tight on C([0,T); L*(D)). In particular, the sequence of their joint laws (un) is tight on
X.

Proof: For a € (0, %), the linear space
Vi={u=v+w, veW, we W*P(0,T; Hy(D))}
endowed with the norm

= inf o,
[ully nf max([[vllw, [[wllwe.z2)
weW*P(0,T;Hj (D)),

u=v+w

is a Banach space which is compactly embedded into L?(0,T; L?(D)) (see Lemma 4.9 in the
Appendix). Since

uny = (uy — Bn) + By
for all N € N, it follows from Lemma 3.9 and Lemma 3.10 that (%y) is bounded in L? (€2 V).
Now, let us fix € > 0. For any R > 0 the set

By(R,0) :={ueV||uly < R}

is compact in L2(0,T; L?(D)). There exists a constant C' > 0 not depending R > 0, such
that for any R > 0, and any N € N

NﬂN(BV(Rv O)) =1 _MﬁN(B\C)(R7 O))

- 1 —/ 1dP
{weQ | llanllv>R}
1 / o

> 1— — [Ny, dP
R Jiwea | Janlv>RY
1 C

> 1—ﬁE(HUNH1{;>:1—ﬁ (57)

and from (57) it follows that we can find R, > 0 such that
piy (By(Re,0)) > 1 —¢

for all N € N.
According to [14], p.82, Corollary 2,

Wer(0,T; Hy(D)) — €([0,T]; L*(D))

with compact imbedding for all & € (1, 1). Thus, for any R > 0 and any a € (%, 1),

=

Bye.s(R,0) := {u € W(0,T; Hy (D)) | l|ullwer(o,r;my(py < R}
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is compact in C([0, T]; L%(D)).
By Lemma 3.8 (By) is uniformly bounded in L?(€; W*?(0,T; H} (D))) for o € (0, 1), hence
there exists a constant C' > 0 not depending R > 0 such that

1By (Bwer(R,0)) =1 — upy (Biye.r(R,0))
1 C
ﬁE(HBNH:gva,p(o’T;Hé(D))) =1- ﬁ

Thanks to (58), for any € > 0 we can find R, > 0 such that

> 1- (58)

KB (Bwap(Rg,O)) Z 1—e.

Remark 3.3. From Prokhorov theorem (see Theorem 4.1 and 4.3 in the Appendix for ref-
erences) and Proposition 3.11 it follows that the sequence (un) = (LBy, My ) @8 Telatively
compact, i.e. there exists a (not relabeled) subsequence of (un) and a probability measure
poo = (pl, 12)) on X, such that

lim ¥ dupy = / b dul, (59)
N=oo Je([0,1]:L2(D)) c([0,T];L* (D))

for all bounded, continuous functions v : C([0,T]; L*(D)) — R,

lim o duzy = [ o i, (60)
N=oo Jr2(0,1;L2(D)) L2(0,T;L2(D))

for all bounded, continuous functions ¢ : L*(0,T; L?(D)) — R. In particular,

/ @ dug, = / p(uy) dP = Elp(uy)],
L2(0,T;L2(D)) Q

/ ¥ dusy = [ $(Bx) dP = E[(By)
c([0,T];L2(D)) Q
hence (59) implies By Z_ul, and (60) implies uyn L. u2, .

3.5 Existence of martingale solutions

Now, we use the following version of the theorem of Skorokhod (see [18], Theorem 1.10.4
and Addendum 1.10.5, p.59 and [1], Theorem 2.3, p.119-120), which can be found in the
Appendix, to conclude:

There exists a sequence of measurable mappings
(By,in): (Q,F,P) = X, N e NU{oo},
on some probalility space (Q, F, ]5) such that
i.) G — Uso in L2(0,T; L*(D)) for N — oo a.s. in {,
ii.) By = Boo in C([0,T); L*(D)) for N — 00 a.s. in €

iii.) The joint laws un = (Uup, s Hay) and fin = (up, ,pay) are the same for all N €
N U {oco}. In particular, this implies

E[U(By,un)] :/ Vdun = /X‘I’ diiy = E[¥(By, iy)]

X

for all N € N and all ¥ € C(X).
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iv.) There exist measurable mappings ¢y : (Q,ﬁ) — (Q,F) such that 4y = un o dn,
By =Byog¢y and P = Po ¢y forall N € N.

We can assume without loss of generality (see Remark 4.2 in the Appendix for a reference)
that F is countably generated.

Definition 3.3. For N € N we define Wy := W o ¢n and
¥ i=uFopn, k=0,... N.

For all t € [0,T], we introduce the left-continuous function

N-1

UkX(tkvthrl] e (Oa T]a v'r(o) = Uo,
k=0

the right-continuous function

N—1
Uk+1X[t1c trt1) ( )’ te [OvT]
k=0

and the piecewise affine function

N-1 / ~ A
b (t) = Z <BN(tk+1)T_ By (ty) (t—t) + BN(tk)> Xit,tnsn) (1), t€[0,T].
k=0

Lemma 3.12. For any N € N and any k=0,..., N — 1 we have
oM —oF — rdiv(|VoRTHPTEVOR T 4 P(0PT)) — H(0F) A1 Wy =0 (61)
a.s. in €.

Proof: Since P = Po (bj\,l, by definition of the image measure for any A € F we have
/A VR —oF — 2 div(| Vo P2O0R Y PR TY)) — H(0F) A W dP
A

_ / M b (Ve PR 4 R Y) - H () Ay W dP
~N(4)
= 0 (62)

Lemma 3.13. For any N € N, Wy is a Q-Wiener process in U with Q) = diag(k ) thus a
cylindrical Wiener process in L*(D) = Q'/?(U) adapted to the natural filtration (F}'~).

Proof: For all ¢ € [0,7] and all N € N, Wi (¢) is ﬁ/l’)’A(LQ(D))—measurable as the com-
position of the F/F-measurable function ¢y with the F/B(L?(D))-measurable function

Q'/2 o W (t). Thus, Wy : Q x [0,T] — L?*(D) is a stochastic process. All further properties
follow from the representation

??‘\»—t
N

in L2(€;¢([0,T); L2(D))), for an orthonormal basis (e;) of L2(D) and (8;) independant,
real-valued Brownian motions on (Q, F, P).

Lemma 3.14. We have .
Ba(t) = / H(v,) dWy, (63)
0
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for all t € 0,T], a.s. in S,

k1 _ ok

an(t) = 7(15 — ) + 0", (64)
forallt € [tg,ty41), K =0,...,N =1 and un(T) = oV a.s. in Q. Moreover, there exist
constants K, Ky > 0 such that

E sup |lan(t)|5=E sup [lon(t)]5 < K, (65)
te[0,T te[0,T)
T o1
E/ / |Von|P do dt < K + = ||uol|3. (66)
o Jp 2
T ~
B [y < K (67

for all N € N.
Proof: For any t € [tg,tk+1) and k=0,...,N — 1 we have

By(t) = (Bnyoon)(t)

k—1
= S H o dw) 0 QVA(W(tis1) 0 by — W(t) 0 éw)

l

n quk o pn) 0 QYAHW (t) o o — W (ty) 0 )
- kilH(vl) 0 QY2 (Wi (tig1) — W (t))
n ;(()Uk) o QV2(Wi(t) — Wi (ty))
= /O t H(v,) dWy. (68)
(64) follows since
an(@,t) = an(on(),t)
_ u’“+1(¢N(@))T— u*(on (@) (t — t) + v (o (@) (69)

for a.e. w € Q, all t € [tg,tg+1), £ =0,... N — 1. Moreover,
in(@,T) = un (¢n (@), T) = v (¢n (@) = o™

Thanks to (61), (65) and (66) follow repeating the arguments in the proof of Lemma 3.3
with recpect to v*t1. Then, (67) follows repeating the arguments in the proof of Lemma
3.7 with respect to v..

Lemma 3.15. For N — oo, we have the following convergences:
By — By, in LP(Q; WP(0,T; HY(D))),

)
)
) AN = Ueg @n LIS L2(0,T; L2(D))) for all 1 < q < p,
) UN = oo i L2 X Q),

)

18



6.) Gy = uso in L2(Q; L(0,T; L2(D))), where
12,(0; L%(0,T; 13(D))) ~ (L*(@: L0, T: IA(D))))
and the space on the left-hand side contains all weak-x measurable mappings
w: Q= L=(0,T; L*(D)), Ellullpe(0,r:22(p)) <

(see [7], Th. 8.20.3, p.606).

Proof: For o € (%, 1),
LP(Q; WP(0,T; Hy (D)) < LP(;C([0,T}); L*(D)))

with continuous imbedding. Thus, using Lemma 3.14, (67) and [8], Lemma 2.1., p.369
(Lemma 4.7 in the Appendix) it follows that there exists C' > 0 such that

IBN N o eucqio,ri;22(0y)) T IBN o @wen o, (py)) < € (70)

for all N € N and therefore (By) is equi-integrable in L4((; C([0, T]; L*(D))) for all 1 < ¢ <
p. Since By — By in C([0,T]; L*(D)) for N — oo a.s. in €, 1.) follows from the Vitali
theorem. Passing to a not relabeled subsequence, from (70) also follows that there exists
g € LP(Q; WeP(0,T; H}(D))), such that

By — g in LP(Q; W*P(0,T; Hy(D)))

for N — oo. Since
LP(Q; WP(0,T; Hy (D)) — L*(; L*(Q))
)

Q;
with continuous imbedding and By — Bs in L2(Q x Q) for N — oo, it follows that
g = By as. in QO x @. Thus, the whole sequence (BN) converges weakly to By, in
LP(Q; We(0,T; H} (D)) and we have shown 2.).
There exists a constant C' > 0 not depending on N € N such that

T
Elan|l}, o ravio(py < CF (/O IVon |2 dt + ||Vuo||§> : (71)

By Lemma (66) and the Poincaré inequality it follows that () is bounded in L?(€; L?(Q))
and therefore equi-integrable in Lq(Q;LQ(Q)) for all 1 < g < p. Together with the a.s.
convergence of (fix) t0 us in L3(Q) for N — oo, 2.) follows from the Vitali theorem.
From Lemma 3.12 and Lemma 3.14 it follows with similar arguments as in Lemma 3.3 that
there exists a constant C' > 0 such that

N—1
BT - k3 < C (72)
k=0
For any N € N we have

E / i () — v (8)]3 dt

N-1 tet1 vk+1 _ ’Uk 2
= EZ/ (t —t) + 0% —oF L at
t T
k=0 "'k 2
N-1 ther /4y 2
= FE [|ok+t —vk||§/ < b 1) dt
k=0 t T
N-—1
C
— g Eo* ! — ok < T (73)
k=0
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therefore 3.) follows. Finally, from (72) we also have

T N—-1
E/ v —on|2 dt = EZ/
0 k=0 VYt

k

tht1
o+ — o2 dt

N-1
= Er) [ —of3<Cr (74)
k=0

and 4.) follows from (74).

Using Lemma 3.14, (65), from the Banach-Alaouglu theorem it follows that there exists
f e L2 (€ L>(0,T; L2(D))) such that, passing to a not relabeled subsequence, @iy — f in
L2(Q; L>(0,T; L*(D))) for N — co. Now, taking test functions y4¢ with ¢ € D(Q) and
A e F, it follows that f = us a.s. in  x Q.

Lemma 3.16. u., € L>®(0,T; L2(D)) a.s. in €.
Proof: Since uq, € L2(€; L°°(0,T; L2(D))), the mapping
Q05 @ > [Ju(@)llL=ori2(p)) €R
is F-measurable and therefore the assertion follows.

The next lemma is a direct consequence of Lemma 3.14, (66):

Lemma 3.17. There exists a not relabeled subsequence of (vn) such that
Von — Ve in LP(Q x Q)% (75)
for N — co. Moreover, there exists G € LPI(Q x Q)¢ such that
[Von[P2Voy — G in LP () x Q) (76)
for the same subsequence and N — oo.

Lemma 3.18. There exist constants v > 0, C, > 0, C > 0 such that

E sup | Bn(t) = bn(t)]mi(p)
te[0,T]

T
< C (E /0 [1ZACS ] A——— dt+1+C’tr(Q)>, (77)

for all N € N, where Q = diag(7)-
Proof: We fix N € N. For k€ {0,...,N —1} and t € [ty t;,1) we have a.s. in Q)
1B () = bn (Dl 2 ()

l /Ot H(v,) dWy — BN(tk+1)T_ BN(tk)

th+1
/ H(v;) dWNHHg(D)

ty

(t = tx) = Bn(tr) |l 1 ()

t— 1t
T

t
||/ H(v;) dWy —
ty

IN

t tet1
I [ Hen) Wiy +1 [ Hor) Wyl o
tr tr
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and therefore

sup || By (t) = by ()l )
t€[0,T]

= sup sup  ||Bn(t) = bn(t)|l 11 (p)
k:O,...,N—ltE[tk,tk+1)
t
<2 swp s | / H(vr) dWi s ) (79)
tr

k=0,....N—=1t€[ty,ty41) k

By Lemma 3.13, Wy is a @Q-Wiener process on U, thus according to Lemma 3.6, there exists
v >0, C, > 0 not depending on IV € N such that

E sup [By(t) = by (t)|lmy(p)
te[0,T]

IN

20,17 (E S T”H(vk)HZ;-IS(L?(D);Hol(D)) +1+ Ctr(Q))

IN

T
20,77 (E /0 (OB A— dt+1+Ctr(Q)>. (80)

Corollary 3.19. From Lemma 3.14, (67) and Lemma 3.18 it follows that

E e 1Bw (8) = by (8)ll sy () < Co7" (K1 + 1+ Ctr(Q))
te[0,T

for all N € N.

Proposition 3.20. us : % [0,T] — L2(D) is a stochastic process with u.o(0) = ug such
that

¢
o () = Boo(t) + o + / div(G + Fus)) ds (81)
0
holds in L2(D) a.s. in ) for all t € [0,T].
Proof: For all k =0,..., N — 1 from (61) it follows that

Rt gk — (BN(tk+1) - BN(tk))

Multiplying (82) with y 4 for A € F, ¢ € W '*(D), £ € D(0,T), integrating over [ty, ty41] X
D x Q and summing over k =1,..., N — 1 it follows that

/A/oT /D(aN — by)&t da dt dP

T A
= /A/ /(|VUN‘1’*2VUN+F(1)N)).V¢§ de dt dP (83)
0 D

Let us write (83) as

= div(|Vor T P2k 1 P(oR ) (82)

I+ Iy = I3 + Iy, (84)

where
n = /A/OT/D@NBN)&M@ dx dt dP,

/A/OT/D(BN—bN)ftw(.T) dz dt dP

Iy = /A/OT/D|VUN|p2VUN'V1/J§ dz dt dP

/A/OT/DF(UN) Ve da dt dP (85)
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Since By — tiy — Boo — oo in L2(2 x Q) for N — oo, it follows that

T
Jim 1 = /A /O /D (tso — Boo)&ut0(z) da dt dP. (86)

Moreover, by Hélder inequality,

T
Ll < / / leutb 2| By — bullz dt dP
AJO
R . T
- /sup 1By — by (1) dP/ &z dt
QO tel0,T] 0
R T
< CpE swp [Bu(®) — ()l o) / el de (87)
te[0,7) 0

where Cp > 0 is a constant not depending on N € N. From Corollary 3.19 it now follows
that

T
L] < CpCyr (B + 1+ Cta(Q)) / €]l dt. (8)
0
therefore limy_, o Io = 0. Since
IVon[P2Voy — G in L (Q x Q)¢

for N — oo (see Lemma 3.18), we get

T
lim I3 = / / / G - V¢ dx dt dP. (89)
N— o0 AJo D

From Lemma 3.15 it follows that vy — e in L2(Q x Q) for N — oo, thus we can extract
a not relabeled subsequence such that

UN — Ugo a.€. in QX Q

and there exists g € L2(Q x Q) such that |vy| < g for all N € N a.e. in  x Q. Since F is
Lipschitz continuous, it follows by Lebesgue dominated convergence theorem that

lim F(vy) = F(uso). (90)

N—o0

in L? (Q x Q)%. Since this argument can be repeated with any arbitrary subsequence of (vy),
(90) holds for the whole sequence and therefore

T
lim 14:// / Flus) - VY& dz dt dP. (91)
N—o00 AJo D
Now from (86)-(91) it follows that

// / oo — Boo)&sth + (G + F(uno)) - V€ da dt dP = 0 (92)

for all A € F, € € D(0,T) and all ¢ € W, P(D). (92) implies that

d
a(uoo — Boo) = div(G + F(ux)) (93)
in L¥ (Q; LP' (0, T; W~=7'(D))). Moreover, from Lemma 3.18 (75) and Lemma 3.15, 2.) it
follows that A

Uoe — Boo € LP(4 LP(0, T Hy (D)),
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thus e — Boo € LP (Q;C([0,T); W1 (D))). Thanks to Lemma 3.16 and [17], Lemma
1.4, p.263, it follows that (us — Beo) is weakly continuous with values in L2(D) a.s. in €.
Consequently,

(1o — Bo)() € L3(D)

for all ¢ € [0,T], a.s. in €2, hence

(B = )0 D)0y wi iy = [ (00 = Bo)(O d (09

D

for all 1 € Wy (D), a.s. in Q for all t € [0,7]. With this information we may fix ¢ € [0,T)
and choose a test function ¢ € D([t, T)) with £(t) = 1. Then, for any ¢ € W,?(D), a.s. in
Q using (93) and (94) we get

/ / Uoo — Boo)&t) da dr

/t §{(Bo — o) (1), )y oy i )

/tT & <(uoo — Boo)(1) + /t div(G + F(ueo))(5) ds’w>ww'<D>7W“’<D>

dr,

and using Fubini theorem we get

/ / o)t da dr+/( — Boo)(t) da

/t /t £ (r){div(G + F(uoo))(8), V) w107 (D), wior () 48 dr

= [ @G+ P (6 Vs o /st dr ds

//G—I—Fuoo Ve dr. (95)

From (95) it follows that

_/A/tT/D(ﬁN—bN)&i/J dz dt dp_/A/D(ﬁN_bN)(t)T/J dz dP

T
+/ / / (|Vun[P~2Vun + F(oy)) - V¢ da dt dP =0

/// e dx dr dP — //uoo— (t)¢ da dP
+/A/t /D(G+F(uoo))-v¢§ dz dr dP. (96)

From Lemma 3.14, (65) it follows that there exists a subsequence (un,(t)) of (un(t)) con-
verging weakly some x(t) in L?(2 x D). With respect to this subsequence we have

// N, —bN) () do dP =1, + I, (97)

where, for N — oo,

I = //uN By )( wdde—>// ) do dP
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and, using Corollary 3.19,

Ll < /A 1By (8) — by (8) ][]} dP

< |¢l:CpE sup [By(t) = by (t)l|ma(p)
t€[0,T]

< CpC,7 (K, + 1+ Ctr(Q)) — 0.

Passing to the subsequence N, we can pass to the limit with Ny — oo in (96) and it follows
that

| o do= [ uto ao (98)

D

a.s. in Q. Thus, x(t) = us(t) a.s. in @ x D for all t € [0,T). In particular, for ¢ = 0, we get
Uoo(0) = ug in L?(D) and equation (81) holds true. Moreover, for any t € [0,T) the weak
convergence to x(t) holds for the whole sequence (un(t)). With this information, using the
weak continuity of u., and @y we can prove that x(T') = ueo(T) a.s. in Q x D and we have

Corollary 3.21. For all t € [0,T], un(t) = uso(t) in L2(Q x D).
With the proof of the following lemma the proof of Proposition 3.20 is completed:
Lemma 3.22. u,, is a stochastic process with values in L?(D).

Proof: Since u is weakly continuous with values in L2(D) for a.s. in €, it follows that
Q50 us(@)(t) € L2(D)

for all ¢ € [0,T]. We fix ¢ € [0,T] and prove that us(t) is a random variable: By Pettis
theorem, us(t) is measurable, if it is weakly measurable, i.e. the mapping

Q30— (u(t)(@),h)a
is measurable for all h € L?(D). Recall that
Boo € LX(:€([0,T]; L*(D)))

and o ,
Boo — us € LP (;C([0, T); WP (D)),

hence it follows that u., € LP (€ C([0,T]; W—1#'(D))), thus for all h € Wy (D)
Q50— (u(t)(@), h)2 = (u(t) (@), h>W71.p’(D),W01'P(D)

is measurable. Now, the assertion follows since any h € L?(D) can be approximated by a
sequence (h,,) C Wy*P(D) in L*(D).

Proposition 3.23. B. is an Fy°-martingale with respect to the augmentation (F2) of
the natural filtration F7° 1= 0(Boo(S), Uco(5))o<s<t, t € [0,T] (i.e. the smallest complete,
right-continuous filtration containing (F5°)) such that

t
< Boo 3= / H(us) o H (u0) ds (99)
0

for allt €10,T).
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Proof: To show that By is a FP°-martingale, it is enough to show that it is a ﬁfo—
martingale (see [4], p.75). By definition, B, is adapted to (F7°). Thus we have to prove
that

E((Bso(t) = Boo(s))xa) =0 (100)

for all A € F° and all 0 < s < t. (100) is equivalent to

E[(Boo(t) = Boo(8), 1)21(Boo, o)) = 0 (101)

for all t € [0,T], 0 < s < t, 1 € Cy(C([0, s]; L2(D)) x L?(0,s; L*>(D))) and all h € L*(D). By
Lemma 3.15, 4.), we may pass to a not relabeled subsequence of (v;), such that v, — ue
for N — oo in L?(; L*(Q)) and a.s. in L?(Q). We will show that

E[(BOO(t)A_ BOO(S): h)2t¢) (B, “fO)]
= 1\/1LmooE[(BN(t) — Byn(8),h)2¢(Bn,v,)] = 0. (102)
for all t € [0,7], 0 < s < t, 9 € Cy(C([0, s]; L*(D)) x L*(0,s; L?>(D))) and all h € L?(D).
For any N € N, for t € [0,T] the process

Bt = | CH(o,) AW (10

is a continuous, square-integrable martingale with respect to (FV~). Moreover, By is
FT = 0(Bn(s),v-(5))o<s<t C F;'N-adapted and for all t € [0, T, for all A € F] we have

S

El(By(t) = By (s))xa] = E[B(Bx(t) - ( )xalF)]
= BlxaB((Bn(t) - By(s))|F7)]
= ENaE(E(By(t) — By ()| F2™)|F])]
0. (104)
Thus By is also a F{-martingale with
< By >= /t H(v,) o H*(v,) ds. (105)
0
For any N € N, (104) is equivalent to
E[(Bx(t) = By (s), )2t (B, vr)] = 0 (106)

for any t € [0, 7], 0 < s < t, ¥ € C,(C([0, s]; L2(D)) x L?(0,s; L*(D))), h € L*(D).
We fix t € [0,7], 0 < s <t, 9 € Cp(C([0, s]; L>(D)) x L*(0,s; L?(D))) and h € L?(D). Our
aim is to pass to the limit with NV — oo on the left-hand side of

E[(Bn(t) = Bx(s), h)2¢(By, vr)] = 0. (107)
To this end, we will show that
i.) (Bn(t) = Bn(5),h)2 = (Boo(t) — Boo(s), h)2 in L*(Q),
ii.) Y(Bn,vr) = ¥(Boo, Uiso) in L2(12).

For all t € [0,7], 0 < s < t, 8p_y : L2(Q;C([0,T]; L2(D))) — L2(Q x D) defined by
6—s(f) = f(t) — f(s) is a continuous, linear mapping. We recall that by Lemma 3.15, 1.),
By — B in L2(Q;C([0,T); L*(D))) for N — oo, thus

Bn(t) = Bn(s) = 0¢—s(Bn) = 6t—s(Bos) = Bao(t) — Bao(s)
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for N — oo in L2({) x D) and we have shown i.). R
To show 4i.), we recall that ¥(By,v;) = ¥(Boo, Uso) a.s. in § for N — co. With Lebesgue’s
dominated convergence theorem it follows that

Jim (B, vr) = $(Boo, tioc)

in L2(2). The convergences in i.) and ii.) are sufficient to pass to the limit with N — oo in
(107) and we obtain (102). In particular, (102) implies that By, is a martingale with respect
to (F7°).

Now let us calculate the quadratic variation process of B,: Let (e,) be an orthonormal
basis of L?(D). To prove (99), we recall that for any N € N (105) is equivalent to

0= E[((Bu(t).ex)s = (Br(s),e5)2 = Als,tyvr,ene)) ) ¥(Bu,vr)] - (108)
for all k,j € N, t € [0,T],0 < s < t, ¢ € Cp(C([0,s]; L>(D)) x L?(0, s; L?(D))) and
A(s,t,u, ex,ej) == (l/ H(u)o H*(u) dr] (ek),e]) (109)

for u € L*(D). We show that

lim E[((By (1), ex)z — (Bu(s),e5)2 = Als, b, vr, e, ;) ) (B, vr)]

N—o0
= E[((Boo(t)7ek)2 - (BOO(S)76j)2 - A(SvtauOO76kvej)) w(BOO7uOO)]
(110)
for all k,j € N, t € [0,7], 0 < s < t, ¥ € C(C([0,s]; L*>(D)) x L*(0,s; L*(D))) for a
suitable, not relabeled subsequence. To this end, we fix k,j € N, ¢t € [0,7], 0 < s < ¢,

¥ € Cp(C([0,5]; L*(D)) x L*(0,s; L*(D))) and pass to a not relabeled subsequence of (v),
such that v; — us for N — oo in L%(; L?(Q)) and a.s. in L?(Q). Since ¥(By,v,) is

uniformly bounded in L () and ¥(By,v;) = 9(Boo, o) a.s. in €,
G(BN,vr) = (Boo, tioc) (111)
for N — oo in L°°(£2). We will show
(B (1) ex)2 — (Bn(s), ;)2 — Als, 1, vr, ex, €5)
— (Bso(t), ex)2 — (Boo(8),€5)2 — A(s, 1, Uoo, €k, €5) (112)
for N — oo in L'(€2). For any n € N, the mapping
L2(Qx D)3 ur (u,e,)s € L2(Q)

is continuous. Since By (r) = Boo(r) for N — oo in L(2 x D) for any r € [0, T, it follows
that

(By(t),er)2 = (Bn(s);€j)2 = (Boo(t), €x)2 — (Boo(s), €)2
for N — oo in L2(Q), thus also in L'(2). Now, the term A(s,t,v,,ex,e;) deserves our
attention a.s. in

/ H(vy)o H*(v,) dr] (ek),ej>

:(/HmWHWM%W@>
s 2

- / (H(vr) o H*(vr)(ex), €5)2 dr. (113)

A(s,t,vr,ep,e5) = (

2
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Now from Cauchy inequality it follows that

E|A(s,t,vr,ex,€5) — A(s,t, Uso, €k, €5)]

< E/ [([H(vr) o H* (v7) — H(uoo) © H (uoo)](er), €5)2| dr
< E/ [[H (vr) 0 H*(vr) — H(uso) 0 H* (uso)](ex) |2 dr

t
< CE/ [ H (vr) o H*(vr) — H(uso) oI{*(UOO)”HS(L?(D)) dr (114)

for a constant C' > 0. Therefore,

E|A(S,t,1}7—,€k,€j) - A(Satvuocaek;ej”

t
< CF / V(02 o [H(02) — H* (o) rscuacoy dr
t
+ CE / NH (0r) — Huoo)] © H* (uoo) | 1522y dr
t
< OF / VH (o) sz oy L (0r) — H* (o)l sz dr

t
+ CE [ 1H(0r) — Hlu)lmswaoll " (w)lmsiaeco dr

(115)
Using Hoélder inequality, from (114) we get
E|A(8a t7 Ur, €k, ej) - A(S7 ta Uoo, €k ej)‘
1/2
< c ( / (T2 (O] A dr)
1/2
( / ||f[>‘< ’UT (Uoo)HHS(Lz(D)) d?‘)
1/2
+c ( / 1 (o) 22 dr)
1/2
( / | H (vr) — H(uco)l| s (L2(D)) d7“> (116)
By Parseval identity it follows that a.s. in € x (0, T) we have
||H*(U'r) EFK(”OO)”HS(L2 ||H(U‘r> H(UOO)||HS(L2(D)) (117)
and from (117) using (H1) we get
t
B [ IH(v0) — B (une) Brszco
t
= B [ 10,) = ) rsaaoy dr
- / Z o (07) = (e )3y
< ClE/ vy — uool3 dr. (118)
0
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Since v, — Uy in L2(2 x Q) for N — oo, from (118) it follows that
H*(v;) =& H*(uoo) and H(v;) — H(ueo) (119)

in L2(Q x (s,t); HS(L*(D))) for N — co. In particular, there exists C' > 0 such that

t
”H(UT)HLZ(QX (s,t); HS(L2(D))) l ”H(HT)”%S(LQ(D)) dr <C (120)
for all N € N. Using (116), (119) and (120), it follows that
E|A(s,t,vr,ex,€5) — A(S,t, oo, €k, €5)| — 0 (121)

for N — oo and therefore (112) holds true. The convergences in (111) and (112) are enough
to conclude (110).

Proposition 3.24. There exists an enlarged probability space (Q, F, P), an enlarged filtra-

tion (Fy) and a_cylindrical Wiener process W with values in L*(D) defined on (2, F, P)
and adapted to (Fy), such that

_ / ' Hus) diW (122)
0

for all t € [0,T] and a.s. in Q.

Proof: According to Proposition 3.23, By, is a Fy°-martingale with quadratic variation
process

t
< B >>t:/ H(uso) 0 H* (o) ds.
0

Since uq is a F°-adapted process with values in L?(D) and it is a.s. weakly continuous,
for any h € L?(D) the process (us, h)2 is Ff°-adapted with values in R and a.s. continuous
trajectories. Therefore, (1o, h)2 is a predictable process for all h € L?(D) and by Pettis
theorem one gets that u, is a predictable process with values in L?(D). Now the assertion
follows from [5], Theorem 8.2, p.220 (see Theorem 4.5 in the Appendix): There exists a
probability space (0, F, IP’) a ﬁltratlon (.7-}) and a cylindrical Wiener process W with values
in L2(D), defined on (Q,F,P) for Q@ := O xQ, F := Fx F, P := P x P adapted to
(F¢) == (F° x F;), such that

Buo(t, ) = Boo(t, m) = /0 H(ua (&) dTV (5,5

for all t € [0,7], a.s. in Q.

Remark 3.4. Without changing notation, we can zdentzfy any random variable X in Q to
a random variable in Q by setting X (&, &) := X(&) a.s. in Q. In particular, all previous
estimates and convergences remain true with respect to the probability space ). In particular,
Uoo : Q x [0,T] = L*(D) is a predictable process with a.e. paths

oo (w, ) € C([0,T]; W~L¥ (D)) N L=(0, T; L*(D)),

such that us, € LP(Q; LP(0,T; Wy (D)), teo(0,-) = ug in L2(D) and
oo () = 10 + /0 div(G(s) + Flu(s))) ds + /0 H(us) AWV (123)

in L*(D) for all t € [0,T] a.s. in Q.
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Lemma 3.25. G = |V [P 2Vuy, in LP (2 x Q)¢
k+14n (61), we get
(" =% oM ), — (By(tirr) — Bu(t), o)z

+ 7'/ (VR T P=27R L 4 P(oPHL)) . Vol da
D

Proof: Taking the scalar product with v

_— (124)

Using the identity
Lo 2 1 2
(a —b)a= §(|a| —b]°) + §|a—b| , a,b €R,
Gauss-Green theorem on the convection term and taking expectation we get
1 1 1
B (104 - SH18) + Bl - o¥13

—  E(By(tps1) — By (tp),v" )5 + TE/ 2 Lt VAL VAV A
= 0 } (125)
Since v* is ftvlz/”—measurable, E(BN(tkH) — BN(tk), v¥)y = 0, thus using
~ab=—glal* ~ 2P + gla—bP, a,b € R
we can write
—E(By(tit1) — By (te), v" )2 = —E(Bn (tey1) — By (te), v"+ — vF)y
= —BylBx(tirn) — Bt — E5ltt — o3

1. - .
+ EgllBn(terr) — By (tk) — (Gl (126)

and therefore

1 1 1
0= B (G104 - 3I0HI ) + Eg ot — o1

— BglBu(tee) ~ Bt} - Bglot ™t — o3

£ B Bataen) — Bu(te) — 05 —ob))3

+ TE/D |Vor T P=2gyk+l . gkt gy

> B (I - 5IH1B) - B3llEn i) - BB

+ TE/D N A VAL VAT L (127)
Summing over kK =0,...,N — 1 from (127) it follows that

1 T
B3+ 8 [ [ [FoxP Yoy Voy do di
0 D

N—-1 L1
S EI[ T Hw) awl}
ty

k=0

= N

IN

5”“0”3 (128)
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where, by It6 isometry,

N-1 tht1 ) N-1 tht1 )
SB[ HE) W= 3B [ e sy d
k=0 tk k=0 123

T
- F / DI —s (129)

On the other hand, by Ito formula from (123) it follows that

1 2 1 2 r

S lue (T2 = Slluollz — G - Ve dz dt

2 2 0 D

I T _

a.s in Q, therefore
1 2 g 1 T 2
BB+ E [ [ G Vudzdt— 3B [ 1 @) Brsiam d
o JD 0
1
= 5”“0”3 (131)
From (128), (129) and (131) it follows that
1 2 g 1 T 2
S Bllue(D)z + £ G Vs dr dt — 5B | ||H (uoo) s (z2(p)) 4t
0o JD 0

1 T
> BylanMB+E [ [ [Vonl? o Yoy de i
0 D

1 T
= 5E [ 1O sy (152)
hence
T
1 . 2 2
E G+ Voo dv di > S E (||in (T)llz — [ue(T)]3)
o Jp
1 ’ 2 2
- §E A ||H(”T)HHS(L2(D)) - HH(Uoo)”HS(L?(D)) dt
T
+ E/ / |Von|P~2Vuy - Voy do dt. (133)
o Jp
Since the mapping | - [|3 : L2(Q x D) — [0,00) is continuous and convex, it is weakly Ls.c.

and from Corollary 3.21 it follows that

0 < liminf Bllan (T)[|3 — Elluce (T)[3- (134)
N —o0

Moreover, from (118) in particular it follows that

lim H(v,) = H(us) in L*(Q x (0,T); HS(L*(D))),

N—oc0
thus
T T
E / Vo) Py o) dt — E / 1 (o) 252 lt (135)
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for N — oo. Therefore from (133) and (135) it follows that

T
1
E/ / G- Vuy dr dt > = <1iminfEaN(T)||§ - E||uOO(T)||§>
0 D 2 N—o0

T
limsupE/ / |Von|P~?Vuy - Voy dz dt
o Jp

+
N—oc0
1 r 2 2
= 5 dm ([0 rsiaaon — 1) s @
T
> limsupE/ \/‘V’L)N|p72V’UN'V1)N dx dt. (136)
N—oc0 0 D

Since p > 2, there exists a constant C' > 0 not depending on N € N such that

T
ClimsupE/ / |[Von — Vueo|P dz dt
o Jp

N—oc0

T
< limsupE/ / (IVon|[P2Von — [V P2 Vius) - V(vy — ts) da dt
N—o00 0 D
T T
< limsupE/ / Vo |P~2Voy - Vo dz dt—E/ / G - Ve, dz dt
N —o00 0 D 0 D
< 0, (137)

where the last inequality is a consequence of (136). From (137) it now follows that Vo —
Vi in LP(Q x Q)? for N — oo and therefore

[Von[P~2Von = [Vite [P 2V, in L (8 x Q)%
4 Appendix

4.1 On Prokhorov compactness theorem

Definition 4.1 (see [3], p.59). Let II be a family of probability measures on the metric space
V' with the Borel o-algebra B(V'). The family 11 is tight iff, for every ¢ > 0, there exists a
compact set K. such that

P(K)>1—¢

for every P € II.

Tightness can be used as a compactness criterion in the narrow topology, this is the
direct half of Prokhorov theorem:

Theorem 4.1. [see [3], Theorem 5.1., p.59] If 11 is tight, then it is relatively compact with
respect to the narrow topology o(Cp(V)',Co(V)), i.e. for any subsequence (P,) C II there
exists a subsequence (P, ) and a probability measure p such that

lim /V fdpP,, = /v fdu (138)

k— o0
for all f € Cp(V).
We have the following subsequence principle:

Corollary 4.2. If the sequence of probability measures (P, )nen is tight, and if each sub-
sequence that converges narrowly at all in fact converges narrowly to p, then the entire
sequence converges narrowly to fi.
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If, in addition, V is a Polish space, then the converse part of Prokhorov theorem also
holds true:

Theorem 4.3. [see [3], Theorem 5.2, p.60] Suppose that V is separable and complete. If 11
is relatively compact with respect to the narrow topology o(Cy(V)',Co(V)), then it is tight.

4.2 On Skorokhod representation theorem

Definition 4.2 (see [18] p.17). Forn € N, let X,, : (Q,F,P) — (V,B(V)) be a random
variable with values in a metric space V. We say that (X,,) converges to a Borel measure
p? in law, (or distribution), and write X, Z_u, iff

Ef(X,) = /V f dy

for any bounded, continuous function f on V.

Remark 4.1. Note that X,,.Z_,u is equivalent to P o X' 2y with respect to the narrow

topology on the bounded Borel measures where P o X, ! is the image measure of X,, for all
n € N.

Theorem 4.4 (see [18], Theorem 1.10.4, p.59). Let (Q, F,P) be a probability space, V
a separable metric space and X, : Q@ — V be a sequence of random wvariables such that
Xn L Xoo. Then there exists a sequence of random variables Xn Q0 - V, n e NU{oo},
on some probability space (Q,]:", 15) with the following properties:

i.) X, = Xoo inV for N = 00 a.s. in ()

1i.) The laws of X,, and X, are the same for all n € NU {oo}. In particular, for any

bounded measurable function f .V — R, Ef(X,) = Ef(X,,) for alln € N.

Remark 4.2. According to [5], Theorem 2.4., p.33, we can assume that F s countably
generated.

Remark 4.3. According to [18], Addendum 1.10.5. p.59, there exist random variables
bn Q0 — Q such that X, = X, 0 ¢, and P = Pog¢_ .

4.3 Martingale representation theorem

Theorem 4.5 (see [5], Theorem 8.2, p.220). Assume U, H are separable Hilbert spaces, M
18 a square-inegrable martingale with

t
<<M>>t=/ (®oQY?) o (®oQY?)* ds, tel0,T],
0

where Uy = QY2 (U), ® is a predictable, HS(Uy, H)-valued process and Q a given, bounded,
symmetric nonnegative operator in U. Then there exists a probability space (0, F,P), a
filtration (F;) and a Q-Wiener process W with values in U, defined on (2 x Q, F x F, Px P)
adapted to (F; x Fy), such that

t
M(t,w,w)z/ (s, w,3) AW (s,w,3), t € [0,T],
0

for a.e. (w,w) € (Q x Q) where
M(t,w,w) = M(t,w), Pt w,w) = P(t,w)

for allt € [0,T], a.s. in Q x Q.

3i.e. a measure on the Borel sets, finite on the compact ones.
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4.4 Technical lemmas
4.4.1 On the Garsia-Rodemich-Rumsey inequality

Lemma 4.6. (Garsia-Rodemich-Rumsey inequality, see [10],[16, Fx. 2.4.1]) Let ¢ > 1,
a>1/q and f:[a,b] = V be continuous, then

b b _ r q
1£(s) = F(HIY < ca,q|s—s/\aq—1/ / ”f|(t)f()”v dt dr. (139)

t— r|oatt

4.4.2 W>P-regularity

Lemma 4.7 ([8], Lemma 2.1., p.369). Let K, H be separable Hilbert spaces and W be a

cylindrical Wiener process in K. Assume p > 2, a € (0, %) Then, for any progressively

measurable process f € LP(Q2 x (0,T); HS(K; H)) we have
/ F AW € LP(Q; WP (0, T; H))
0

and there exists a constant C(p,«) > 0 such that

. T
Bl [ £ Wy r < Can)E [ 1F O s

Lemma 4.8 ([2], Lemma 3.2). Let V be a Banach space. Assume that T > 0 and that I, =
{tx}N_, is an equidistant mesh of size T > 0 covering [0,T]. Assume that G € C([0,T);V)
is such that, for every k € {0,...,N — 1} the function

[tk>tk+1) St— Q(t)

is affine. Assume that, for somep > 1, « >0 and C >0 and everyl € {1,... N},

N—I
7Y NG (tksr) = GR)T < CPEP.
k=0

Then, G is uniformly bounded in the Nikolskii space N*P(0,T; V) and there exists a constant
C =C(T) > 0, which does not depend on 7 > 0 such that

G| v 0,3y = sup s7NG(+5) =G lpr(—s,7—s5v) < C.

4.4.3 Further results

Lemma 4.9. Let W be a Banach space which is compactly embedded into L*(0,T; L*(D))
andp > 2. For a € (0, %), the linear space

Vi={u=v+w, veW, wec W*P(0,T; Hy (D))} C L*(0,T; L*(D))
endowed with the norm

Jullv = inf max(||v]lw, [|w|lwe.r)
wWEW P (0,T5L%(D)),
u=v+w

is a Banach space which is compactly embedded into L?(0,T; L?(D)).
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Proof: It follows from [9], Remark 5.13, p.12-13 that (V, || - |v) is a Banach space. There
exists C' > 0 such that for any u € V and any v € W, w € W*P(0,T; H}(D)) with u = v+w

lullz20,7L2(Dyy < Cmax([[v]lw, [w|we.sr) (140)

and therefore the imbedding V < L?(0,T; L*(D))) is continuous. Let (u,) be a bounded
sequence in V', i.e. there exists R > 0 such that ||u,|ly < R for alln € N. Let n € N be
fixed. According to the definition of the norm in V, for any k € N, there exist v¥ € W,
wk € W*P(0,T; H (D)) such that u,, = v¥ +wk and

1

lofllw < R+ 3

1
Mwllwer < R+

Consequently, choosing k = n we can construct (v) C W, (w?) C W*P(0,T; H} (D)) such
that u,, = v +w) and

o lw < R4+1, [w?|lwez < R+1

for all n € N. Passing to a not relabeled subsequence if necessary, there exists v €
L2(0,T; L*(D)) such that v — v in L?(0,T; L*(D)). Following [14], Corollary 2, p.82,

W?(0,T; Hy(D)) — L*(0,T; L*(D))

with compact imbedding. Therefore passing to a not relabeled subsequence if necessary,
there exists w € L?(0,T; L?(D)) such that w” — w in L?(0,T; L?*(D)). Therefore, passing
to a not relabeled subsequence if necessary,

Up =V + W), = v+w

in L2(0,T; L?(D)) and therefore the imbedding V < L?(0,T; L?(D)) is compact.
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