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AN ELEMENTARY METHOD OF DERIVING A POSTERIORI ERROR EQUALITIES
AND ESTIMATES FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS
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Abstract. In this paper we present a simple method of deriving a posteriori error equalities and estimates for

linear elliptic and parabolic partial differential equations. The error is measured in a combined norm taking
into account both the primal and dual variables. We work only on the continuous (often called functional) level

and do not suppose any specific properties of numerical methods and discretizations.
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1. Introduction

The results presented in this paper are functional type a posteriori error equalities and estimates. This type
of error control is applicable for any usually (but not necessarily) conforming approximation and involves only
global constants, typically norms of the corresponding inverse operators, i.e., reciprocals of the first non-zero
eigenvalues of the respective differential operators, such as Friedrichs, Poincaré, or Maxwell constants. The first
way of deriving these type error equalities and estimates is the dual variational technique, exposed in detail in
the book [5] by Repin and Neittaanmäki. In this method the starting point of deriving functionals controlling
the error is the dual variational formulation of the problem in question. This method can be applied to a
large class of static problems, namely, to convex problems. The second way to arrive at these type equalities
and estimates is the method of integral identities, exposed in detail in the book [6] by Repin (for a more
computational point of view see [4] by Mali, Repin, and Neittaanmäki). In this method the starting point is
the weak formulation of the problem in question. The latter method is easily applicable to linear problems, also
including time-dependent problems.

In this paper we expose a way of deriving functional type error equalities and estimates which does not require
knowledge of variational or weak formulations of the corresponding problems, and involves only elementary
operations. This method was already used in [1] for static problems with lower order terms, and is extended
in the present work to problems without lower order terms, and, more interestingly, to parabolic problems.
We note that the method presented here will produce a posteriori error equalities and estimates for mixed
approximations, i.e., the error will be measured in a combined norm taking into account both the primal and
the dual variable. This is especially useful for mixed methods where one calculates an approximation for both the
primal and dual variables, see, e.g., the book [2] by Brezzi and Fortin. Naturally, we call such an approximation
pair a mixed approximation.

We demonstrate our method for the following two elliptic and two parabolic model problems formulated in
a domain Ω ⊂ Rd and a space-time cylinder Ξ = I × Ω ⊂ Rd+1, respectively:
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Subsection 2.1 (elliptic) time-independent Laplace reaction-diffusion − ∆̊ + 1
Subsection 2.2 (elliptic) time-independent Laplace diffusion (Poisson equation) − ∆̊
Subsection 3.1 (parabolic) time-dependent Laplace reaction-diffusion ∂◦− ∆̊ + 1
Subsection 3.2 (parabolic) time-dependent Laplace diffusion (heat equation) ∂◦− ∆̊

Here we denote as usual by ∆ = div∇ the Laplace operator and by ∂◦ the time-derivative. Note that ∆̊ denotes
the Dirichlet Laplacian. The crucial underlying idea is to use the following four isometries for the respective
solution operators mapping to the appropriate Sobolev spaces:

u = (−∆̊ + 1)−1f, |f |2L2(Ω) = |∆u|2L2(Ω) + 2|∇u|2L2(Ω) + |u|2L2(Ω)

u = (−∆̊)−1f, |f |2L2(Ω) = |∆u|2L2(Ω)

u = (∂◦ − ∆̊ + 1)−1(f, u0), |u0|2L2(Ω) + |f |2L2(Ξ) + |∇u0|2L2(Ω) = |∂◦u|2L2(Ξ) + |∆u|2L2(Ξ) + |∇u(T, · )|2L2(Ω)

+ 2|∇u|2L2(Ξ) + |u|2L2(Ξ) + |u(T, · )|2L2(Ω)

u = (∂◦ − ∆̊)−1(f, u0), |f |2L2(Ξ) + |∇u0|2L2(Ω) = |∂◦u|2L2(Ξ) + |∆u|2L2(Ξ) + |∇u(T, · )|2L2(Ω)

For simplicity, in this paper we restrict our results to real valued cases, homogenous Dirichlet boundary
conditions, and homogeneous isotropic material coefficients equal to 1. Our results can be easily extended to
more general cases (complex valued functions and vector fields, inhomogeneous boundary conditions of different
type, inhomogeneous and anisotropic material laws) and even to a general operator setting.

2. Time-Independent Elliptic Model Problems: Laplace-Problems

For time-independent problems we denote by Ω ⊂ Rd, d ≥ 1, an arbitrary (bounded or unbounded) domain,
and denote by 〈 · , · 〉L2(Ω) resp. | · |L2(Ω) the inner product resp. norm for scalar functions or vector fields in
L2(Ω). We define the usual Sobolev spaces

H1(Ω) := {ϕ ∈ L2(Ω) | ∇ϕ ∈ L2(Ω)}, D(Ω) := {ψ ∈ L2(Ω) | divψ ∈ L2(Ω)},
D0(Ω) := {ψ ∈ D(Ω) | divψ = 0},

where also the notations D(Ω) = H(div,Ω) and D0(Ω) = H(div 0,Ω) can be found in the literature. These are
Hilbert spaces equipped with the respective graph norms | · |H1(Ω), | · |D(Ω). The space of functions belonging
to H1(Ω) and vanishing on the boundary ∂Ω is defined as the closure of smooth and compactly supported test
functions

H̊1(Ω) := C̊∞(Ω)
H1(Ω)

,

and hence no regularity assumption on Ω resp. ∂Ω is needed for its definition. By approximation and continuity
we immediately have the rule of partial integration

(2.1) ∀ϕ ∈ H̊1(Ω) ∀ψ ∈ D(Ω) 〈∇ϕ,ψ〉L2(Ω) = −〈ϕ,divψ〉L2(Ω).

We also define the spaces

H1,∆(Ω) := {ϕ ∈ H1(Ω) | ∇ϕ ∈ D(Ω)} = {ϕ ∈ H1(Ω) | ∆ϕ ∈ L2(Ω)},

H̊1,∆(Ω) := H1,∆(Ω) ∩ H̊1(Ω),

which are Hilbert spaces with the norm defined by

| · |2H1,∆(Ω) := | · |2H1(Ω) + |∇ · |2D(Ω) = | · |2L2(Ω) + 2|∇ · |2L2(Ω) + |∆ · |2L2(Ω).

If the domain is bounded (at least in one direction, i.e., it lies between two parallel hyperplanes), we have the
Friedrichs inequality

(2.2) ∀ϕ ∈ H̊1(Ω) |ϕ|L2(Ω) ≤ cF|∇ϕ|L2(Ω),

where cF > 0 denotes the Friedrichs constant. We note that generally the exact value of the Friedrichs constant
is unknown, but it is easy to estimate it from above.

2.1. Reaction-Diffusion (−∆ + 1). In this section we do not need (2.2) to hold, i.e., the domain is arbitrary.
A simple reaction-diffusion problem in mixed form consists of finding a scalar potential u ∈ H̊1(Ω) and a flux
p ∈ D(Ω), such that

(2.3)
−∇u+ p = 0 in Ω,
−div p+ u = f in Ω,
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where the source f belongs to L2(Ω). The variables u and p are often called primal and dual variable, respectively.
Problem (2.3) has a unique solution u = (−∆̊ + 1)−1f and p := ∇u, which can also be found by Riesz’
representation theorem.

Lemma 2.1 (isometry). The solution operator

L : L2(Ω)→ H̊1,∆(Ω); f 7→ u

related to the problem (2.3) is an isometry, i.e., | L | = 1.

Proof. We simply compute

|f |2L2(Ω) = | −∆u+ u|2L2(Ω) = |∆u|2L2(Ω) + |u|2L2(Ω) − 2〈∆u, u〉L2(Ω) = |u|2H1(Ω) + |∇u|2D(Ω)

by −〈∆u, u〉L2(Ω) = 〈∇u,∇u〉L2(Ω), finishing the proof. �

This directly results in an error equality for sufficiently regular/conforming primal approximations.

Theorem 2.2 (error equality for very conforming primal approximations). Let u, ũ ∈ H̊1,∆(Ω) be the exact
solution and an arbitrary approximation of the problem (2.3), respectively. Then

|u− ũ|2H1(Ω) + |∇(u− ũ)|2D(Ω) = |f − ũ+ ∆ũ|2L2(Ω).

Proof. Since ũ ∈ H̊1,∆(Ω) is very regular, it is the exact solution of ũ ∈ H̊1(Ω) and

−∆ũ+ ũ =: f̃ in Ω,

i.e., we have L(f̃) = ũ. Because L is linear we then have L(f − f̃) = u − ũ, and because it is an isometry as
well, we directly have

|u− ũ|2H1(Ω) + |∇(u− ũ)|2D(Ω) = |f − f̃ |2L2(Ω).

�

This error equality has limited applicability due to the high regularity requirement. The next theorem holds
for mixed approximations where both the primal and dual variables are conforming.

Theorem 2.3 (error equality for conforming mixed approximations). Let (u, p), (ũ, p̃) ∈ H̊1(Ω) × D(Ω) be the
exact solution pair and an arbitrary approximation pair of the problem (2.3), respectively. Then

|u− ũ|2H1(Ω) + |p− p̃|2D(Ω) = |f − ũ+ div p̃|2L2(Ω) + |p̃−∇ũ|2L2(Ω).

Proof. By the second equation of (2.3) and inserting 0 = ∇u− p we obtain

|f − ũ+ div p̃|2L2(Ω) + |p̃−∇ũ|2L2(Ω) = |u− ũ+ div(p̃− p)|2L2(Ω) + |p̃− p+∇(u− ũ)|2L2(Ω)

= |u− ũ|2L2(Ω) + |div(p̃− p)|2L2(Ω) + 2〈u− ũ,div(p̃− p)〉L2(Ω)

+ |p̃− p|2L2(Ω) + |∇(u− ũ)|2L2(Ω) + 2〈p̃− p,∇(u− ũ)〉L2(Ω)

= |u− ũ|2H1(Ω) + |p− p̃|2D(Ω),

since by (2.1) the two cross terms cancel each other. �

Remark 2.4. We note:
(i) The error equality of Theorem 2.2 is a special case of Theorem 2.3 with ũ ∈ H̊1,∆(Ω) and p̃ = ∇ũ.
(ii) Looking at the proof, in Theorem 2.3 is it sufficient that the difference u − ũ satisfies the boundary

condition, i.e., (ũ, p̃) ∈ H1(Ω) × D(Ω) with u − ũ ∈ H̊1(Ω), which immediately extends the results for
problems with inhomogeneous Dirichlet boundary conditions.

Remark 2.5 (upper bounds for conforming primal approximations). Let ũ ∈ H̊1(Ω). Choosing p̃ = φ ∈ D(Ω)
in the latter theorem we obtain

|u− ũ|2H1(Ω) ≤ |u− ũ|
2
H1(Ω) + |p− φ|2D(Ω) = |f − ũ+ div φ|2L2(Ω) + |φ−∇ũ|2L2(Ω),

which - without the term in the middle - is the well known conforming error estimate for the reaction-diffusion
problem, see, e.g., [6, (4.2.11)]. Note that for p̃ ∈ D(Ω) and choosing ũ = ϕ ∈ H̊1(Ω) in the latter theorem we
obtain

|p− p̃|2D(Ω) ≤ |u− ϕ|
2
H1(Ω) + |p− p̃|2D(Ω) = |f − ϕ+ div p̃|2L2(Ω) + |p̃−∇ϕ|2L2(Ω).
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The next results involving non-conforming approximations are all simple applications of Theorem 2.3 and
the following two trivial inequalities involving the exact solution pair (u, p):

(2.4) |f − ϕ+ div φ|2L2(Ω) = |u− ϕ+ div(φ− p)|2L2(Ω) ≤ 2
(
|u− ϕ|2L2(Ω) + |div(p− φ)|2L2(Ω)

)
,

which holds for all (ϕ, φ) ∈ L2(Ω)× D(Ω), and

(2.5) |φ−∇ϕ|2L2(Ω) = |φ− p+∇(u− ϕ)|2L2(Ω) ≤ 2
(
|p− φ|2L2(Ω) + |∇(u− ϕ)|2L2(Ω)

)
,

which holds for all (ϕ, φ) ∈ H1(Ω)× L2(Ω).

Theorem 2.6 (upper bounds for non-conforming approximations). Let (u, p) ∈ H̊1(Ω) × D(Ω) be the exact
solution pair and let (ũ, p̃) ∈ L2(Ω)×L2(Ω) be an arbitrary approximation pair of the problem (2.3), respectively.
Then

(i) |u− ũ|2L2(Ω) ≤
(
1 +

1
γ

)(
|f − ϕ+ div φ|2L2(Ω) +

1
2
|φ−∇ϕ|2L2(Ω)

)
+ (1 + γ) |ϕ− ũ|2L2(Ω),

(ii) |p− p̃|2L2(Ω) ≤
(
1 +

1
γ

)(1
2
|f − ϕ+ div φ|2L2(Ω) + |φ−∇ϕ|2L2(Ω)

)
+ (1 + γ) |φ− p̃|2L2(Ω),

(iii) |u− ũ|2L2(Ω) + |p− p̃|2L2(Ω) ≤
(
1 +

1
γ

)(
|f − ϕ+ div φ|2L2(Ω) + |φ−∇ϕ|2L2(Ω)

)
+ (1 + γ)

(
|ϕ− ũ|2L2(Ω) + |φ− p̃|2L2(Ω)

)
hold for arbitrary (ϕ, φ) ∈ H̊1(Ω)× D(Ω) and every γ > 0.

Proof. Applying (2.4) and (2.5) in the form

|u− ϕ|2L2(Ω) + |div(p− φ)|2L2(Ω) ≥
1
2
|f − ϕ+ div φ|2L2(Ω),

|p− φ|2L2(Ω) + |∇(u− ϕ)|2L2(Ω) ≥
1
2
|φ−∇ϕ|2L2(Ω)

to the left hand side of the equation in Theorem 2.3 with (ũ, p̃) = (ϕ, φ) we obtain

|u− ϕ|2L2(Ω) + |div(p− φ)|2L2(Ω) ≤ |f − ϕ+ div φ|2L2(Ω) +
1
2
|φ−∇ϕ|2L2(Ω),(2.6)

|∇(u− ϕ)|2L2(Ω) + |p− φ|2L2(Ω) ≤
1
2
|f − ϕ+ div φ|2L2(Ω) + |φ−∇ϕ|2L2(Ω).(2.7)

Parts (i) and (ii) then follow from applying (2.6) and (2.7) to

|u− ũ|2L2(Ω) ≤
(
1 +

1
γ

)
|u− ϕ|2L2(Ω) + (1 + γ) |ϕ− ũ|2L2(Ω),

|p− p̃|2L2(Ω) ≤
(
1 +

1
γ

)
|p− φ|2L2(Ω) + (1 + γ) |φ− p̃|2L2(Ω),

respectively. Part (iii) follows similarly from

|u− ũ|2L2(Ω) + |p− p̃|2L2(Ω) ≤
(
1 +

1
γ

)(
|u− ϕ|2L2(Ω) + |p− φ|2L2(Ω)

)
+ (1 + γ)

(
|ϕ− ũ|2L2(Ω) + |φ− p̃|2L2(Ω)

)
and estimating the first two norms on the right hand side from above using Theorem 2.3 with (ũ, p̃) = (ϕ, φ). �

Remark 2.7. Parts (i) and (ii) of Theorem 2.6 without the factor 1/2 follow directly from (iii) by setting
p̃ := φ and ũ := ϕ.

Specializing ϕ := ũ and φ := p̃, Theorem 2.6 (iii) implies upper bounds for the primal-dual and dual-primal
mixed approximations we well.

Corollary 2.8 (upper bounds for semi-conforming approximations).

(i) For (ũ, p̃) ∈ H̊1(Ω)× L2(Ω) we have

|u− ũ|2L2(Ω) + |p− p̃|2L2(Ω) ≤
(
1 +

1
γ

)(
|f − ũ+ div φ|2L2(Ω) + |φ−∇ũ|2L2(Ω)

)
+ (1 + γ) |φ− p̃|2L2(Ω)

for an arbitrary φ ∈ D(Ω) and γ > 0.
(ii) For (ũ, p̃) ∈ L2(Ω)× D(Ω) we have

|u− ũ|2L2(Ω) + |p− p̃|2L2(Ω) ≤
(
1 +

1
γ

)(
|f − ϕ+ div p̃|2L2(Ω) + |p̃−∇ϕ|2L2(Ω)

)
+ (1 + γ) |ϕ− ũ|2L2(Ω)

for an arbitrary ϕ ∈ H̊1(Ω) and γ > 0.
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The results from Corollary 2.8 can be improved:

Corollary 2.9 (upper and lower bounds for semi-conforming approximations).

(i) For (ũ, p̃) ∈ H̊1(Ω)× L2(Ω) we have
1
2
|p̃−∇ũ|2L2(Ω) ≤ |u− ũ|

2
H1(Ω) + |p− p̃|2L2(Ω)

≤
(
1 +

1
2γ
)
|f − ũ+ div φ|2L2(Ω) +

(
1 +

1
γ

)
|φ−∇ũ|2L2(Ω) + (1 + γ) |φ− p̃|2L2(Ω)

for an arbitrary φ ∈ D(Ω) and γ > 0.
(ii) For (ũ, p̃) ∈ L2(Ω)× D(Ω) we have

1
2
|f − ũ+ div p̃|2L2(Ω) ≤ |u− ũ|

2
L2(Ω) + |p− p̃|2D(Ω)

≤
(
1 +

1
γ

)
|f − ϕ+ div p̃|2L2(Ω) +

(
1 +

1
2γ
)
|p̃−∇ϕ|2L2(Ω) + (1 + γ) |ϕ− ũ|2L2(Ω)

for an arbitrary ϕ ∈ H̊1(Ω) and γ > 0.

Proof. The lower bounds in (i) and (ii) follow immediately by the triangle inequality, see (2.4) and (2.5). The
upper bound in (i) can be proved by introducing an arbitrary φ ∈ D(Ω) and using the triangle inequality such
that

|u− ũ|2H1(Ω) + |p− p̃|2L2(Ω) ≤ |u− ũ|
2
H1(Ω) +

(
1 +

1
γ

)
|p− φ|2L2(Ω) + (1 + γ) |φ− p̃|2L2(Ω).

The error equality of Theorem 2.3 for the pair (ũ, φ) ∈ H̊1(Ω)× D(Ω) yields

|u− ũ|2H1(Ω) + |p− φ|2L2(Ω) ≤ |f − ũ+ div φ|2L2(Ω) + |φ−∇ũ|2L2(Ω)

and the remaining unknown term can be estimated by (2.7), i.e.,
1
γ
|p− φ|2L2(Ω) ≤

1
2γ
|f − ϕ+ div φ|2L2(Ω) +

1
γ
|φ−∇ϕ|2L2(Ω).

The upper bound in (ii) is shown analogously by using Theorem 2.3 and the estimate (2.6). �

2.2. Laplace (−∆). For this section we assume that the domain Ω is bounded at least in one direction such
that the Friedrichs inequality (2.2) holds. The Poisson problem in the mixed form consists of finding a scalar
potential u ∈ H̊1(Ω) and a flux p ∈ D(Ω), such that

(2.8)
−∇u+ p = 0 in Ω,
− div p = f in Ω,

where the source f belongs to L2(Ω). Again, the variables u and p are often called primal and dual variable,
respectively. As before, problem (2.8) has a unique solution u = (−∆̊)−1f and p := ∇u, which can also be
found by Riesz’ representation theorem. We define an alternative norm on H̊1,∆(Ω) by |∆ · |L2(Ω). Note that
this is indeed a norm: By (2.2) we have

∀ϕ ∈ H̊1,∆(Ω) |∇ϕ|L2(Ω) ≤ cF|∆ϕ|L2(Ω)(2.9)

as

|∇ϕ|2L2(Ω) = −〈ϕ,∆ϕ〉L2(Ω) ≤ |ϕ|L2(Ω)|∆ϕ|L2(Ω) ≤ cF|∇ϕ|L2(Ω)|∆ϕ|L2(Ω).(2.10)

Together with (2.2) the equivalence of | · |H1,∆(Ω) and |∆ · |L2(Ω) on H̊1,∆(Ω) follows, i.e.,

∀ϕ ∈ H̊1,∆(Ω) |∆ϕ|2L2(Ω) ≤ |ϕ|
2
H1,∆(Ω) = |ϕ|2L2(Ω) + 2|∇ϕ|2L2(Ω) + |∆ϕ|2L2(Ω) ≤ (1 + c2F)2|∆ϕ|2L2(Ω).

We also emphasize that (2.9) immediately implies the following divergence estimate for irrotational vector fields

∀φ ∈ ∇H̊1(Ω) ∩ D(Ω) |φ|L2(Ω) ≤ cF|div φ|L2(Ω).(2.11)

Lemma 2.10 (isometry). The solution operator

L : L2(Ω)→
(
H̊1,∆(Ω), |∆ · |L2(Ω)

)
; f 7→ u

related to the problem (2.8) is an isometry, i.e., | L | = 1.

Proof. Note |f |L2(Ω) = |∆u|L2(Ω). �

Similarly to Theorem 2.2 we immediately get the following.
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Theorem 2.11 (error equality for very conforming primal approximations). Let u, ũ ∈ H̊1,∆(Ω) be the exact
solution and an arbitrary approximation of the problem (2.8), respectively. Then

|∆(u− ũ)|L2(Ω) = |f + ∆ũ|L2(Ω).

Note that the Friedrichs constant is absent from the above error equality.
Next we consider conforming mixed approximations for which a two-sided error estimate can be derived by

using the error equality for the reaction-diffusion problem from Theorem 2.3.

Theorem 2.12 (upper and lower bounds for conforming mixed approximations). Assume (u, p), (ũ, p̃) in
H̊1(Ω)× D(Ω) to be the exact solution and an arbitrary approximation of the problem (2.8), respectively. Then

max
{
|f + div p̃|2L2(Ω) +

1
2
|p̃−∇ũ|2L2(Ω) ;

1
1 + c2F

|p̃−∇ũ|2L2(Ω)

}
≤ |∇(u− ũ)|2L2(Ω) + |p− p̃|2D(Ω) ≤

(
1 + 4c2F

)
|f + div p̃|2L2(Ω) + 2|p̃−∇ũ|2L2(Ω).

Proof. By writing the second equation of (2.8) as

−div p+ u = f + u,

u solves the reaction-diffusion problem (2.3) with right hand side f + u. Theorem 2.3 gives then

(2.12) |u− ũ|2H1(Ω) + |p− p̃|2D(Ω) = |f + u− ũ+ div p̃|2L2(Ω) + |p̃−∇ũ|2L2(Ω).

The rest of the proof concentrates on removing the exact solution from the right hand side. By using (2.2) we
estimate the first term on the right hand side as

|f + u− ũ+ div p̃|2L2(Ω) = |f + div p̃|2L2(Ω) + |u− ũ|2L2(Ω) + 2〈f + div p̃, u− ũ〉L2(Ω)

≤ |f + div p̃|2L2(Ω) + |u− ũ|2L2(Ω) + 2cF|f + div p̃|L2(Ω)|∇(u− ũ)|L2(Ω)(2.13)

≤ |f + div p̃|2L2(Ω) + |u− ũ|2L2(Ω) + γc2F|f + div p̃|2L2(Ω) + γ−1|∇(u− ũ)|2L2(Ω),

which holds for any γ > 0. By choosing γ = 2 (there is no need to over-estimate by fixing γ, but we do it here
for simplicity), utilizing

|f + div p̃|L2(Ω) = |div(p− p̃)|L2(Ω),(2.14)

and combining (2.12) and (2.13) we obtain

1
2
|∇(u− ũ)|2L2(Ω) + |p− p̃|2L2(Ω) ≤ 2c2F|f + div p̃|2L2(Ω) + |p̃−∇ũ|2L2(Ω).

Thus |∇(u− ũ)|2
L2(Ω)

+ |p− p̃|2
L2(Ω)

≤ 4c2F|f + div p̃|2
L2(Ω)

+ 2|p̃−∇ũ|2
L2(Ω)

and adding (2.14) to both sides shows
the upper bound. The first lower bound follows from (2.5) (with ϕ = ũ and φ = p̃) and adding (2.14) to both
sides. By estimating | · |2

H1(Ω)
≤ (1 + c2F)|∇ · |2

L2(Ω)
in (2.12) we obtain

|p̃−∇ũ|2L2(Ω) ≤ (1 + c2F)|∇(u− ũ)|2L2(Ω) + |p− p̃|2D(Ω),

which gives the second lower bound. �

Note that |∇·|L2(Ω) is equivalent to the full H1(Ω) norm due to (2.2), thus providing appropriate error control.
For deriving estimates for non-conforming approximations, we use the weak formulation of the problem as

the starting point, i.e., we essentially use the integral identity technique exposed in [6]. This is the only part
in this paper where we use this technique. In the forthcoming proof we utilize the L2(Ω)-orthogonal Helmholtz
decomposition

L2(Ω) = ∇H̊1(Ω)⊕ D0(Ω),

where ∇H̊1(Ω) is a closed subspace of L2(Ω) due to the Friedrichs inequality (2.2). We denote by π∇ and π0

the orthogonal (Helmholtz) projectors onto ∇H̊1(Ω) and D0(Ω), respectively.

Theorem 2.13 (upper bounds for non-conforming approximations). Let the pairs (u, p) ∈ H̊1(Ω)× D(Ω) and
(ũ, p̃) ∈ L2(Ω)×L2(Ω) be the exact solution and an arbitrary approximation of problem (2.8), respectively. Then

(i) |u− ũ|L2(Ω) ≤ c2F|f + div φ|L2(Ω) + cF|φ−∇ϕ|L2(Ω) + |ϕ− ũ|L2(Ω),

(ii) |p− p̃|2
L2(Ω)

≤
(
cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)

)2 + |p̃−∇ϕ|2
L2(Ω)

hold for arbitrary (ϕ, φ) ∈ H̊1(Ω)× D(Ω).
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Remark 2.14 (upper bounds for conforming approximations). Let ũ ∈ H̊1(Ω). Choosing p̃ := ∇ũ and ϕ := ũ
in Theorem 2.13 (ii) we obtain for all φ ∈ D(Ω)

|∇(u− ũ)|L2(Ω) ≤ cF|f + div φ|L2(Ω) + |φ−∇ũ|L2(Ω),

which is the well known conforming error estimate for the Poisson problem, see, e.g., [6, Theorem 3.3].

Proof of Theorem 2.13. To prove (ii) we decompose the error

(2.15) |p− p̃|2L2(Ω) = |π∇(p− p̃)|2L2(Ω) + |π0p̃|2L2(Ω) = |∇u− π∇p̃|2L2(Ω) + |π0p̃|2L2(Ω)

using the Helmholtz decomposition. The second part of (2.15) can be estimated using orthogonality, i.e.,

|π0p̃|2L2(Ω) = 〈π0p̃, p̃−∇ϕ〉L2(Ω) ≤ |π0p̃|L2(Ω)|p̃−∇ϕ|L2(Ω)

for all ϕ ∈ H̊1(Ω), which yields the estimate

(2.16) ∀ϕ ∈ H̊1(Ω) |π0p̃|L2(Ω) ≤ |p̃−∇ϕ|L2(Ω).

For estimating the first part of (2.15) we utilize the weak formulation, i.e., u satisfies

∀ψ ∈ H̊1(Ω) 〈∇u,∇ψ〉L2(Ω) = 〈f, ψ〉L2(Ω).

Substracting 〈p̃,∇ψ〉L2(Ω) from both sides, introducing an arbitrary φ ∈ D(Ω), and using (2.1) we obtain

〈∇u− p̃,∇ψ〉L2(Ω) = 〈f, ψ〉L2(Ω) − 〈p̃,∇ψ〉L2(Ω) = 〈f + div φ, ψ〉L2(Ω) + 〈φ− p̃,∇ψ〉L2(Ω)

≤
(
cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)

)
|∇ψ|L2(Ω)

for all ψ ∈ H̊1(Ω), where we have used also (2.2). Hence by orthogonality

〈∇u− π∇p̃,∇ψ〉L2(Ω) = 〈∇u− p̃,∇ψ〉L2(Ω) ≤
(
cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)

)
|∇ψ|L2(Ω)

for all ψ ∈ H̊1(Ω). Especially for ∇ψ := ∇u− π∇p̃ ∈ ∇H̊1(Ω) we get the error esrtimate

∀φ ∈ D(Ω) |∇u− π∇p̃|L2(Ω) ≤ cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)(2.17)

for the first part of the error (2.15). Combining (2.16) and (2.17) with (2.15) results in (ii). The upper bound
in (i) is seen by introducing an arbitrary ϕ ∈ H̊1(Ω) and estimating

|u− ũ|L2(Ω) ≤ |u− ϕ|L2(Ω) + |ϕ− ũ|L2(Ω) ≤ cF|∇(u− ϕ)|L2(Ω) + |ϕ− ũ|L2(Ω),

where we have used (2.2). The proof is complete after estimating the first term on the right hand side by (ii)
with p̃ = ∇ϕ. �

Results for semi-conforming mixed approximations follow from combining the estimates of Theorem 2.13.

Corollary 2.15 (Upper and lower bounds for semi-conforming approximations).

(i) Let (ũ, p̃) ∈ H̊1(Ω)× L2(Ω). Then

1
2
|p̃−∇ũ|2L2(Ω) ≤ |∇(u− ũ)|2L2(Ω) + |p− p̃|2L2(Ω)

≤
(
cF|f + div θ|L2(Ω) + |θ −∇ũ|L2(Ω)

)2
+
(
cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)

)2 + |p̃−∇ϕ|2L2(Ω)

holds for all θ, φ ∈ D(Ω) and all ϕ ∈ H̊1(Ω). Especially one can choose ϕ = ũ.
(ii) Let (ũ, p̃) ∈ L2(Ω)× D(Ω). Then

|u− ũ|2L2(Ω) + |p− p̃|2D(Ω)

≤
(
c2F|f + div θ|L2(Ω) + cF|θ −∇ψ|L2(Ω) + |ψ − ũ|L2(Ω)

)2 +
(
cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)

)2
+ |p̃−∇ϕ|2L2(Ω) + |f + div p̃|2L2(Ω)

holds for all θ, φ ∈ D(Ω) and all ψ,ϕ ∈ H̊1(Ω). Especially, for φ = p̃ it holds

|u− ũ|2L2(Ω) + |p− p̃|2D(Ω)

≤
(
c2F|f + div θ|L2(Ω) + cF|θ −∇ψ|L2(Ω) + |ψ − ũ|L2(Ω)

)2 + (c2F + 1)|f + div p̃|2L2(Ω) + |p̃−∇ϕ|2L2(Ω)

for all θ ∈ D(Ω) and all ψ,ϕ ∈ H̊1(Ω). Especially one can choose θ = p̃.
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Proof. For (ũ, p̃) ∈ H̊1(Ω)× L2(Ω) Theorem 2.13 (ii) (applied twice) shows

|∇(u− ũ)|2L2(Ω) + |p− p̃|2L2(Ω)

≤
(
cF|f + div θ|L2(Ω) + |θ −∇ũ|L2(Ω)

)2 +
(
cF|f + div φ|L2(Ω) + |φ− p̃|L2(Ω)

)2
+ |∇ũ−∇ψ|2L2(Ω) + |p̃−∇ϕ|2L2(Ω)

for all θ, φ ∈ D(Ω) and all ψ,ϕ ∈ H̊1(Ω). Choosing ψ := ũ proves (i). For (ũ, p̃) ∈ L2(Ω)× D(Ω) Theorem 2.13
and (2.14) yield (ii). �

3. Time-Dependent Parabolic Model Problems: Heat-Problems

For time-dependent problems we extend the notation of the previous paragraph to the space-time domain
Ξ := I × Ω, where Ω is as before and I := (0, T ) is a time-interval with T > 0. Its mantle boundary is I × ∂Ω.
We denote by

〈 · , · 〉L2(Ξ) =
∫

I

〈 · , · 〉L2(Ω) dλ1 =
∫

I

∫
Ω

〈 · , · 〉dλd dλ1, | · |2L2(Ξ) = 〈 · , · 〉L2(Ξ)

the inner product and norm for scalar functions or vector fields in L2(Ξ), and define the Sobolev spaces

H0;1(Ξ) := {ϕ ∈ L2(Ξ) | ∇ϕ ∈ L2(Ξ)}, D(Ξ) := {φ ∈ L2(Ξ) | div φ ∈ L2(Ξ)}.

Here∇ and div are as before the spatial gradient and divergence, respectively. These are Hilbert spaces equipped
with the respective graph norms | · |H0;1(Ξ), | · |D(Ξ). We also define the Sobolev spaces

H1;0(Ξ) := {ϕ ∈ L2(Ξ) | ∂◦ϕ ∈ L2(Ξ)}, H1;1(Ξ) := H0;1(Ξ) ∩ H1;0(Ξ) = H1(Ξ),

where ∂◦ denotes the derivative with respect to time, which are Hilbert spaces as well equipped with the
respective graph norms. Note, e.g., | · |2

H1;1(Ξ)
= | · |2

L2(Ξ)
+ |∇ · |2

L2(Ξ)
+ |∂◦ · |2L2(Ξ)

. The corresponding Sobolev
spaces of functions vanishing on the mantle boundary are introduced by

H̊0;1(Ξ) := {ϕ ∈ H0;1(Ξ) | ϕ(t, · ) ∈ H̊1(Ω) a.e. t ∈ I}, H̊1;1(Ξ) := H̊0;1(Ξ) ∩ H1;0(Ξ).

We also define the more regular Sobolev spaces

H1;1,∆(Ξ) := {ϕ ∈ H1;1(Ξ) | ∇ϕ ∈ D(Ξ)}, H̊1;1,∆(Ξ) := {ϕ ∈ H̊1;1(Ξ) | ∇ϕ ∈ D(Ξ)},

which are Hilbert spaces with the graph norm | · |2
H1;1,∆(Ξ)

= | · |2
H1;1(Ξ)

+ |∇ · |2D(Ξ). From (2.1) we directly obtain

(3.1) ∀ϕ ∈ H̊0;1(Ξ) ∀φ ∈ D(Ξ) 〈∇ϕ, φ〉L2(Ξ) = −〈ϕ,div φ〉L2(Ξ),

and from (2.2) we obtain

(3.2) ∀ϕ ∈ H̊0;1(Ξ) |ϕ|L2(Ξ) ≤ cF|∇ϕ|L2(Ξ),

if the spatial domain Ω is bounded at least in one direction. Moreover, for all (functions or vector fields)
ϕ ∈ H1;0(Ξ) it holds

2〈∂◦ϕ,ϕ〉L2(Ξ) =
∫

Ω

∫
I

∂◦|ϕ|2 dλ1 dλd = |ϕ(T, · )|2L2(Ω) − |ϕ(0, · )|2L2(Ω).(3.3)

3.1. Reaction-Diffusion (∂◦ −∆ + 1). In this section we do not need (3.2) to hold, i.e., the spatial domain
Ω may even be unbounded. The time-dependent reaction-diffusion problem consists of finding a scalar function
u ∈ H̊1;1(Ξ) and a flux p ∈ D(Ξ), such that

(3.4)
−∇u+ p = 0 in Ξ,

∂◦u− div p+ u = f in Ξ,
u(0, · ) = u0 in Ω,

where the source f belongs to L2(Ξ) and the initial value u0 belongs to H̊1(Ω). Using classical techniques, e.g.,
those leading to [3, p. 111, (2.15)] and [3, p. 112, Theorem 2.1], and computing |(∂◦−∆+1)ϕ|2

L2(Ξ)
by applying

twice (3.3), shows

|(∂◦ −∆ + 1)ϕ|2L2(Ξ) + |ϕ(0, · )|2H1(Ω) = |ϕ|2H1;1(Ξ) + |∇ϕ|2D(Ξ) + |ϕ(T, · )|2H1(Ω) =: ‖ϕ‖2H1;1,∆(Ξ)(3.5)

for all ϕ ∈ H̊1;1,∆(Ξ). Note that (3.5) holds for smoother functions and thus by approximation also in H̊1;1,∆(Ξ).
The following solution theory holds.
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Lemma 3.1 (isometry). (3.4) is uniquely solvable in H̊1;1,∆(Ξ) and the related solution operator

L : L2(Ξ)× H̊1(Ω)→
(
H̊1;1,∆(Ξ), ‖ · ‖2

H̊1;1,∆(Ξ)

)
; (f, u0) 7→ u

is an isometry, i.e., | L | = 1 and (3.5) holds for u = L(f, u0), that is

‖u‖2H1;1,∆(Ξ) = |u|2H1;1(Ξ) + |∇u|2D(Ξ) + |u(T, · )|2H1(Ω) = |f |2L2(Ξ) + |u0|2H1(Ω).

Theorem 3.2 (error equality for very conforming primal approximations). Let u, ũ ∈ H̊1;1,∆(Ξ) be the exact
solution and an arbitrary approximation of problem (3.4), respectively. Then

|u− ũ|2H1;1(Ξ) + |∇(u− ũ)|2D(Ξ) + |(u− ũ)(T, · )|2H1(Ω) = |f − ∂◦ũ− ũ+ ∆ũ|2L2(Ξ) + |u0 − ũ(0, · )|2H1(Ω).

Proof. The proof is as simple as the proof of Theorem 2.2. �

Theorem 3.3 (error equality for conforming mixed approximations). Let (u, p), (ũ, p̃) ∈ H̊1;1(Ξ)×D(Ξ) be the
exact solution and an arbitrary approximation of problem (3.4), respectively. Then

|u− ũ|2H0;1(Ξ) + |p− p̃|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ) + |(u− ũ)(T, · )|2L2(Ω)

= |f − ∂◦ũ− ũ+ div p̃|2L2(Ξ) + |p̃−∇ũ|2L2(Ξ) + |u0 − ũ(0, · )|2L2(Ω).

Proof. By the second equation of (3.4) and using (3.3) we obtain

|f − ũ+ div p̃− ∂◦ũ|2L2(Ξ) = |u− ũ+ ∂◦(u− ũ) + div(p̃− p)|2L2(Ξ)

= |u− ũ|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ)

+ 2〈u− ũ, ∂◦(u− ũ)〉L2(Ξ) + 2〈u− ũ,div(p̃− p)〉L2(Ξ)

= |u− ũ|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ)

+ |(u− ũ)(T, · )|2L2(Ω) − |(u− ũ)(0, · )|2L2(Ω) + 2〈u− ũ,div(p̃− p)〉L2(Ξ).

(3.6)

On the other hand, by inserting the first equation of (3.4) we obtain

|p̃−∇ũ|2L2(Ξ) = |p̃− p+∇(u− ũ)|2L2(Ξ) = |p̃− p|2L2(Ξ) + |∇(u− ũ)|2L2(Ξ) + 2〈p̃− p,∇(u− ũ)〉L2(Ξ).(3.7)

(3.1) and adding (3.6) and (3.7) finally shows the assertion. �

3.2. Heat Equation (∂◦ −∆). In this section we assume that the Friedrichs inequality (3.2) holds. The heat
equation consists of finding a scalar function u ∈ H̊1;1(Ξ) and a flux p ∈ D(Ξ), such that

(3.8)
−∇u+ p = 0 in Ξ,

∂◦u− div p = f in Ξ,
u(0, · ) = u0 in Ω,

where again the source f belongs to L2(Ξ) and the initial value u0 belongs to H̊1(Ω). By [3, p. 111, (2.15)] we
have

|(∂◦ −∆)ϕ|2L2(Ξ) + |∇ϕ(0, · )|2L2(Ω) = |∂◦ϕ|2L2(Ξ) + |∆ϕ|2L2(Ξ) + |∇ϕ(T, · )|2L2(Ω) =: |||ϕ|||2
H̊1;1,∆(Ξ)

(3.9)

for all ϕ ∈ H̊1;1,∆(Ξ). [3, p. 112, Theorem 2.1] shows that (3.8) is uniquely solvable in H̊1;1,∆(Ξ) and that the
solution satisfies (3.9). Note that ||| · |||H̊1;1,∆(Ξ) is indeed a norm on H̊1;1,∆(Ξ), which follows from (2.9) and the
surrounding caculations.

Lemma 3.4 (isometry). The solution operator

L : L2(Ξ)× H̊1(Ω)→
(
H̊1;1,∆(Ξ), ||| · |||H̊1;1,∆(Ξ)

)
; (f, u0) 7→ u

related to the problem (3.8) is an isometry, i.e., | L | = 1 and (3.9) holds for u = L(f, u0), that is

|||u|||2
H̊1;1,∆(Ξ)

= |∂◦u|2L2(Ξ) + |∆u|2L2(Ξ) + |∇u(T, · )|2L2(Ω) = |f |2L2(Ξ) + |∇u0|2L2(Ω).

Theorem 3.5 (error equality for very conforming primal approximations). Let u, ũ ∈ H̊1;1,∆(Ξ) be the exact
solution and an arbitrary approximation of problem (3.8), respectively. Then

|∂◦(u− ũ)|2L2(Ξ) + |∆(u− ũ)|2L2(Ξ) + |∇(u− ũ)(T, · )|2L2(Ω) = |f + ∆ũ− ∂◦ũ|2L2(Ξ) + |∇(u0 − ũ(0, · ))|2L2(Ω).

Proof. Again, the proof is as simple as the proofs of Theorem 2.2 and Theorem 3.2. �

The latter result is similar to the error equality for the reaction-diffusion equation in Theorem 2.11. Note
that the Friedrichs constant is absent. Next we consider conforming mixed approximations for which a two-sided
error estimate can be derived by using the error equality for the time-dependent reaction-diffusion problem from
Theorem 3.3 (similarly to what was done in Theorem 2.12 for the diffusion problem).
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Theorem 3.6 (error estimate for conforming mixed approximations). Let (u, p), (ũ, p̃) ∈ H̊1;1(Ξ)×D(Ξ) be the
exact solution and an arbitrary approximation of problem (3.8), respectively. Then

max
{
|f + div p̃− ∂◦ũ|2L2(Ξ) +

1
2
|p̃−∇ũ|2L2(Ξ) ;

1
1 + c2F

(
|p̃−∇ũ|2L2(Ξ) + |u0 − ũ(0, · )|2L2(Ω)

)}
≤ |∇(u− ũ)|2L2(Ξ) + |p− p̃|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ) + |(u− ũ)(T, · )|2L2(Ω)

≤
(
1 + 4c2F

)
|f + div p̃− ∂◦ũ|2L2(Ξ) + 2|p̃−∇ũ|2L2(Ξ) + 2|u0 − ũ(0, · )|2L2(Ω).

We note that |∇ · |L2(Ξ) is equivalent to the full H0;1(Ξ) norm on H̊0;1(Ξ) due to (3.2) and thus provides
appropriate error control.

Proof. By writing the second equation of (3.8) as

∂◦u− div p+ u = f + u,

u solves the time-dependent reaction-diffusion problem (3.4) with right hand side f + u. Theorem 3.3 shows

|u− ũ|2H0;1(Ξ) + |p− p̃|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ) + |(u− ũ)(T, · )|2L2(Ω)

= |f + u− ũ+ div p̃− ∂◦ũ|2L2(Ξ) + |p̃−∇ũ|2L2(Ξ) + |u0 − ũ(0, · )|2L2(Ω).
(3.10)

By using (3.2) we estimate the first term on the right hand side as

|f + u− ũ+ div p̃− ∂◦ũ|2L2(Ξ)

= |f + div p̃− ∂◦ũ|2L2(Ξ) + |u− ũ|2L2(Ξ) + 2〈f + div p̃− ∂◦ũ, u− ũ〉L2(Ξ)

≤ |f + div p̃− ∂◦ũ|2L2(Ξ) + |u− ũ|2L2(Ξ) + 2cF|f + div p̃− ∂◦ũ|L2(Ξ)|∇(u− ũ)|L2(Ξ)

≤ |f + div p̃− ∂◦ũ|2L2(Ξ) + |u− ũ|2L2(Ξ) + γc2F|f + div p̃− ∂◦ũ|2L2(Ξ) + γ−1|∇(u− ũ)|2L2(Ξ),

(3.11)

which holds for any γ > 0. By choosing γ = 2 (there is no need to over-estimate by fixing γ, but we do it here
for brevity) and combining (3.10) and (3.11) we obtain

1
2
|∇(u− ũ)|2L2(Ξ) + |p− p̃|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ) + |(u− ũ)(T, · )|2L2(Ω)

≤
(
1 + 2c2F

)
|f + div p̃− ∂◦ũ|2L2(Ξ) + |p̃−∇ũ|2L2(Ξ) + |u0 − ũ(0, · )|2L2(Ω).

Since

|f + div p̃− ∂◦ũ|L2(Ξ) = |∂◦(u− ũ) + div(p̃− p)|L2(Ξ),(3.12)

we have proven the upper bound. To prove the first lower bound we simply insert 0 = ∇u− p in

|p̃−∇ũ|2L2(Ξ) = |p̃− p+∇u−∇ũ|2L2(Ξ) ≤ 2
(
|p̃− p|2L2(Ξ) + |∇(u− ũ)|2L2(Ξ)

)
and use (3.12). By estimating | · |2

H0;1(Ξ)
≤ (1 + c2F)|∇ · |2

L2(Ξ)
in (3.10) we obtain

|p̃−∇ũ|2L2(Ξ) + |u0 − ũ(0, · )|2L2(Ω)

≤ (1 + c2F)|∇(u− ũ)|2L2(Ξ) + |p− p̃|2L2(Ξ) + |∂◦(u− ũ) + div(p̃− p)|2L2(Ξ) + |(u− ũ)(T, · )|2L2(Ω),

which shows the second lower bound. �
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