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A SHORT NOTE ON A WEIGHTED FRIEDRICHS INEQUALITY

IMMANUEL ANJAM AND DIRK PAULY

Abstract. In this short note we derive an upper bound for the constant cα > 0 in the weighted
Friedrichs type inequality

∀ϕ ∈ H̊1(Ω) |ϕ|L2(Ω) ≤ cα
√
〈α∇ϕ,∇ϕ〉L2(Ω),

where Ω ∈ Rd, d ≥ 1 is a bounded domain, and α a bounded, self-adjoint, and uniformly
positive definite matrix valued function. The contents of this note follow in a straightforward
manner from well known results. In particular, for a constant diagonal matrix α we obtain the
bound

cα ≤
(
π

√
α1

l21
+ · · ·+ αd

l2d

)−1

,

where li are the side lengths of a d-interval encompassing Ω, and αi are the diagonal entries of
α. We apply the derived upper bound in a posteriori error estimation for an elliptic problem.

1. Introduction

We denote by x := (x1, . . . , xd) the Euclidean coordinates in Rd, d ≥ 1, and by Ω ⊂ Rd

a bounded domain. The calculations performed in this note are invariant with respect to
translations of the domain, so without loss of generality we assume Ω is contained in the open
d-interval

I :=
d∏
i=1

(0, li), 0 < li <∞.

We denote by 〈 · , · 〉L2(Ω) and | · |L2(Ω) the inner product and norm for scalar- or vector-valued

functions in L2(Ω). We introduce the subindex notation 〈 · , · 〉L2(Ω),ρ := 〈ρ · , · 〉L2(Ω), which
induces | · |L2(Ω),ρ, where ρ belongs to the space of essentially bounded functions L∞(Ω). If
ρ is self-adjoint and uniformly positive definite, they become an inner product and a norm in
L2(Ω), respectively. We define the usual Sobolev spaces

H1(Ω) := {ϕ ∈ L2(Ω) | ∇ϕ ∈ L2(Ω)}, D(Ω) := {φ ∈ L2(Ω) | div φ ∈ L2(Ω)},

which are Hilbert spaces equipped with the graph norms | · |H1(Ω) and | · |D(Ω), respectively.

The space of functions belonging to H1(Ω), and vanishing on ∂Ω, is defined as the H1-closure
of smooth test functions with compact supports in Ω, i.e.,

H̊1(Ω) := C̊∞(Ω)
H1(Ω)

.

For these functions the Friedrichs inequality

∀ϕ ∈ H̊1(Ω) |ϕ|L2(Ω) ≤ c|∇ϕ|L2(Ω)

holds, where c > 0 is called the Friedrichs constant. Note that c is assumed to be the best
possible, i.e., smallest possible constant for which the Friedrichs inequality holds. A commonly
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2 IMMANUEL ANJAM AND DIRK PAULY

utilized upper bound for c is [6]

(1.1) c ≤

(
π

√
1

l21
+ · · ·+ 1

l2d

)−1

.

This short note is dedicated to finding upper bounds for the constant cα > 0 in the weighted
Friedrichs type inequality

(1.2) ∀ϕ ∈ H̊1(Ω) |ϕ|L2(Ω) ≤ cα|∇ϕ|L2(Ω),α

for bounded Ω. Here α ∈ L∞(Ω) is a self-adjoint uniformly positive definite matrix valued
function, i.e., it satisfies

(1.3) ∀ξ ∈ Rd α(x)ξ · ξ ≥ α|ξ|2, α > 0 (f.a.a. x ∈ Ω).

Estimates for cα can be calculated by using estimates for c, since obviously

|ϕ|L2(Ω) ≤ c|∇ϕ|L2(Ω) ≤
c
√
α
|∇ϕ|L2(Ω),α

holds. Note that since the first estimation step is done using the Friedrichs inequality, and
contains the full gradient on the right hand side, it is inevitable that the final estimation step
involves a division with the smallest eigenvalue of α. Estimating further by using (1.1) we
obtain the estimate

(1.4) cα ≤

(
π

√(
1

l21
+ · · ·+ 1

l2d

)
α

)−1

,

which blows up as α approaches zero.
Having computable upper bounds of Friedrichs and Poincaré type constants related to both

weighted and non-weighted variants of corresponding inequalities is important in a posteriori
error estimation. Error upper bounds typically contain these constants, and are especially
important for functional type error estimates, where guaranteed upper bounds of the exact error
are desired. In this short note we omit a literature overview of a posteriori error estimation,
and instead refer the reader to the books [2, 5, 7, 9, 12].

Some references with upper bounds of Friedrichs and Poincaré type constants are the book [6]
and the paper [8] (see also [3]). We also cite the interesting survey article [4]. Some more
recent work on the subject include [11], where a weighted Friedrichs inequality similar to (1.2)
is considered. The author calculates numerically two-sided bounds of a Friedrichs type constant
in weighted norms. This approach allows for mixed boundary conditions. In [10] Friedrichs and
Poincaré inequalities in non-weighted norms with mixed boundary conditions are considered.
This approach involves decomposing the domain into smaller subdomains for which Friedrichs
and Poincaré constants are known. The resulting upper bounds depend on the decomposition.

In this note we show that in the case of full homogeneous Dirichlet boundary conditions,
there is a simple way to obtain an upper bound of cα with better properties than (1.4). The
upper bound, derived in Section 2, follows from well known results. In Section 3 we demonstrate
the benefit of using this upper bound by a numerical example where we perform a posteriori
error estimation of an elliptic problem.

2. Weighted Friedrichs Type Inequality

The calculations of this section are based on the well known one-dimensional inequality

(2.1) ∀ϕ ∈ H̊1((0, l))

∫ l

0

|ϕ(y)|2 dy ≤ l2

π2

∫ l

0

|ϕ′(y)|2 dy,

where 0 < l < ∞. Using this inequality one can proof a Friedrichs type inequality involving
only one partial derivative, and by an additional estimation step obtain an inequality involving
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the full gradient. In the case of bounded domains, this would result in the estimate (1.1).
However, we will need the intermediate result involving only one partial derivative. Note that
since we want to control all partial derivatives separately, we cannot rotate the domain.

Lemma 2.1. Let Ω be bounded, and i ∈ {1, . . . , d}. Then we have the estimate

∀ϕ ∈ H̊1(Ω) |ϕ|L2(Ω) ≤
li
π
|∂iϕ|L2(Ω).

Proof. Consider first the real valued case and i = 1. For any ϕ ∈ C̊∞(Ω) its zero-extension

ϕ̂ : I → R belongs to C̊∞(I). For any x̃ := (x2, . . . , xd) belonging to Ĩ := (0, l2)× · · · × (0, ld),
the function ϕ̂(x1, x̃) is a real valued function of one variable vanishing at the endpoints of the
interval (0, l1), so by (2.1) we have∫ l1

0

|ϕ̂(x1, x̃)|2 dx1 ≤
l21
π2

∫ l1

0

|∂1ϕ̂(x1, x̃)|2 dx1.

By integrating the above with respect to x̃ in Ĩ, we obtain

|ϕ̂|2L2(I) ≤
l21
π2
|∂1ϕ̂|2L2(I) ⇒ |ϕ|2L2(Ω) ≤

l21
π2
|∂1ϕ|2L2(Ω),

since the norms are nonzero only in Ω. By density the above holds for any ϕ ∈ H̊1(Ω). By an
identical procedure the assertion follows for i ∈ {2, . . . , d} for real valued functions. Having
established the assertion for real valued functions, it is clear that it holds for complex valued
functions as well. �

We now consider the constant cα in the inequality (1.2). We assume that α ∈ L∞(Ω) is a
self-adjoint diagonal matrix

(2.2) α :=

α1 0
. . .

0 αd


satisfying uniform positive definiteness (1.3), which in this case is equivalent to

(2.3) ∀i ∈ {1, . . . , d} αi(x) ≥ αi > 0 (f.a.a. x ∈ Ω).

Now α = min{α1, . . . , αd}.

Theorem 2.2. Let Ω be bounded and α ∈ L∞(Ω) be a self-adjoint diagonal matrix defined by
(2.2)–(2.3). Then we have the estimate

cα ≤
(
π

√
α1

l21
+ · · ·+ αd

l2d

)−1

.

Proof. Let ϕ ∈ H̊1(Ω). Since α is diagonal, the weighted norm can be written as

|∇ϕ|2L2(Ω),α = |∂1ϕ|2L2(Ω),α1
+ · · ·+ |∂dϕ|2L2(Ω),αd

.

Lemma 2.1 gives

|ϕ|2L2(Ω) ≤
l2i
π2
|∂iϕ|2L2(Ω) ≤

l2i
π2αi
|∂iϕ|2L2(Ω),αi

for any i ∈ {1, . . . , d}. By multiplying the above by αi/l
2
i and summing up the d inequalities,

we obtain (
α1

l21
+ · · ·+ αd

l2d

)
|ϕ|2L2(Ω) ≤

1

π2
|∇ϕ|2L2(Ω),α,

which implies the assertion. �
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Remark 2.3.

(i) Theorem 2.2 with α = id results in the estimate (1.1).
(ii) It is easy to see that the upper bound of Theorem 2.2 is always smaller or equal to the

upper bound (1.4).
(iii) The above procedure furnishes upper bounds of cα even when the diagonal matrix α is

not uniformly positive definite (see Appendix A).
(iv) An upper bound similar to Theorem 2.2 can be obtained provided that the homogeneous

Dirichlet boundary conditions hold in at least one direction. I.e., for the unit square in
R2, it is enough that one pair of opposing boundaries have the boundary condition; if
this pair is the one parallel to the x2-axis, then the boundary condition is in the direction
of the x1-axis, and we have cα ≤ (π

√
α1/l

2
1)−1. However, since the opposing boundary

parts must have a ”straight line of sight” to each other, the possible domains are quite
limited. More variety in domains is achieved, if one uses (instead of (2.1))∫ l

0

|ϕ(y)|2 dy ≤ l2

2

∫ l

0

|ϕ′(y)|2 dy,

which holds for all functions ϕ ∈ H1((0, l)) vanishing either on the beginning or the
end of the interval. In this way only one of the opposing boundaries need to have the
boundary condition. For this inequality see, e.g., [1, p. 158].

Under certain conditions non-diagonal α can be handled as well. For readability we consider
only the three dimensional case. For any self-adjoint α(x) = {αij(x)}3

i,j=1 from L∞(Ω) we define

(2.4) α̃ :=

α̃1 0 0
0 α̃2 0
0 0 α̃3

 ,
α̃1 := α11 − (|<α12|+ |<α13|),
α̃2 := α22 − (|<α12|+ |<α23|),
α̃3 := α33 − (|<α13|+ |<α23|).

It is easy to verify that α̃ is self-adjoint, and that

(2.5) ∀φ ∈ L2(Ω) |φ|L2(Ω),α̃ ≤ |φ|L2(Ω),α

holds. If α̃ is also uniformly positive definite, i.e., it satisfies

∀i ∈ {1, 2, 3} α̃i(x) ≥ α̃i > 0 (f.a.a. x ∈ Ω),

we can directly use Theorem 2.2 to obtain an estimate of cα.

Theorem 2.4. Let Ω ∈ R3 be bounded and α ∈ L∞(Ω) be a self-adjoint matrix valued function
for which α̃ is uniformly positive definite. Then we have the estimate

cα ≤

(
π

√
α̃1

l21
+
α̃2

l22
+
α̃3

l23

)−1

.

Proof. Let ϕ ∈ H̊1(Ω). Theorem 2.2 gives

|ϕ|L2(Ω) ≤

(
π

√
α̃1

l21
+
α̃2

l22
+
α̃3

l23

)−1

|∇ϕ|L2(Ω),α̃,

and with (2.5) we have the assertion. �

Remark 2.5. For α̃ to be uniformly positive definite would require that the off-diagonal entries
of α be comparatively small compared to its diagonal entries. However, now Remark 2.3 (iii)
holds with respect to α̃. In particular, for an upper bound of cα it is enough that α̃ is positive
semi-definite such that one of the diagonal entries of α̃ is uniformly positive definite.

We demonstrate the derived results in the real valued setting.
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Example 1 (Diagonal matrix α). Let Ω ⊂ (0, 1)2 and α be the uniformly positive definite
constant matrix

α =

(
1 0
0 δ

)
, δ > 0.

The estimate (1.4) gives the upper bound

(2.6) cα ≤
(
π
√

2 min{1, δ}
)−1

,

and Theorem 2.2 gives

(2.7) cα ≤
(
π
√

1 + δ
)−1

.

It is easy to see that the latter does not blow up as δ becomes smaller. Table 1 shows the values
of the bounds with different δ.

Table 1. Example 1: Values of the upper bounds (2.6) and (2.7) with different δ.

δ 10−6 10−4 10−2 1 102 104 106

(2.6) 225.07908 22.50791 2.25079 0.22508 0.22508 0.22508 0.22508
(2.7) 0.31831 0.31829 0.31673 0.22508 0.03167 0.00318 0.00032

Example 2 (Solution theory for a reaction-diffusion problem). Consider the following reaction-

diffusion problem: find u ∈ H̊1(Ω) satisfying

− divα∇u+ ρ u = f,

where f ∈ L2(Ω), ρ ∈ L∞(Ω), and α ∈ L∞(Ω) is a symmetric uniformly positive definite matrix
valued function. The variational formulation of this problem reads as

∀ϕ ∈ H̊1(Ω) 〈∇u,∇ϕ〉L2(Ω),α + 〈u, ϕ〉L2(Ω),ρ = 〈f, ϕ〉L2(Ω).

By setting ϕ = u in the bilinear form on the left hand side, we obtain

〈∇u,∇u〉L2(Ω),α + 〈u, u〉L2(Ω),ρ = (1− ε)|∇u|2L2(Ω),α + ε|∇u|2L2(Ω),α + |u|2L2(Ω),ρ

≥ (1− ε)α|∇u|2L2(Ω) +

(
ε

c2
α

+ ρ

)
|u|2L2(Ω),

where 0 < ε < 1. We observe that this form is coercive provided that(
ε

c2
α

+ ρ

)
> 0

holds, and under this condition a unique solution exists in H̊1(Ω) by the Riez representation
theorem. Let Ω ⊂ (0, 1)2, ρ ∈ R, and

α =

(
1 0
0 100

)
.

Using (1.4) to estimate cα (see Example 1), we see that for existence and uniqueness of a
solution, the necessary condition is ρ > −ε 2π2, but using Theorem 2.2 the necessary condition
becomes ρ > −ε 101π2, allowing for a larger range of admissible ρ.

Example 3 (Non-diagonal matrix α). Let Ω ⊂ (0, 1)3, and

α =

3 1 1
1 300 1
1 1 3

 , α̃ =

1 0 0
0 298 0
0 0 1

 ,
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where α̃ is calculated according to (2.4). Now α = 2, and (1.4) gives the bound cα ≤
(
π
√

6
)−1

.

On the other hand, Theorem 2.4 gives the upper bound cα ≤
(
π
√

300
)−1

, which is sharper.

3. Application to A Posteriori Error Estimation

As stated in the introduction, the motivation for deriving computable upper bounds for the
constant cα is that it is essential in a posteriori error estimation for numerical approximations
of elliptic partial differential equations. As an example we consider the diffusion problem in a
bounded domain Ω with homogeneous Dirichlet boundary conditions on the whole boundary:
find u ∈ H̊1(Ω) satisfying

− divα∇u = f,

where f ∈ L2(Ω) and α ∈ L∞(Ω) is a symmetric uniformly positive definite matrix valued
function. The variational formulation for this problem reads as

(3.1) ∀ϕ ∈ H̊1(Ω) 〈∇u,∇ϕ〉L2(Ω),α = 〈f, ϕ〉L2(Ω).

Since (1.2) is satisfied, a unique solution u ∈ H̊1(Ω) exists by the Riesz representation theorem.
By setting ϕ = u in (3.1) we obtain

|∇u|2L2(Ω),α = 〈f, u〉L2(Ω) ≤ |f |L2(Ω)|u|L2(Ω) ≤ cα|f |L2(Ω)|∇u|L2(Ω),α,

and we see that the solution depends continuously on the given right hand side:

|∇u|L2(Ω),α ≤ cα|f |L2(Ω).

We now present the functional type a posteriori error upper bound, which can be found in,
e.g., the books [5, 7, 9].

Theorem 3.1. Let ũ ∈ H̊1(Ω) be an arbitrary approximation of u, and c̃α be any approximation
of cα from above. Then we have the estimate

∀y ∈ D(Ω) |∇(u− ũ)|L2(Ω),α ≤ c̃α|f + div y|L2(Ω) + |y − α∇ũ|L2(Ω),α−1 := M(c̃α, ũ, y).

Proof. We begin by subtracting the term 〈∇ũ,∇ϕ〉L2(Ω),α from both sides of (3.1) and obtain

〈∇(u− ũ),∇ϕ〉L2(Ω),α = 〈f, ϕ〉L2(Ω) − 〈∇ũ,∇ϕ〉L2(Ω),α

= 〈f + div y, ϕ〉L2(Ω) + 〈y − α∇ũ,∇ϕ〉L2(Ω)

≤ |f + div y|L2(Ω)|ϕ|L2(Ω) + |y − α∇ũ|L2(Ω),α−1|∇ϕ|L2(Ω),α

≤
(
cα|f + div y|L2(Ω) + |y − α∇ũ|L2(Ω),α−1

)
|∇ϕ|L2(Ω),α,

where we have used 〈div y, ϕ〉L2(Ω) + 〈y,∇ϕ〉L2(Ω) = 0. Setting ϕ = u− ũ finishes the proof. �

Remark 3.2. By using the upper bound cα ≤ c/
√
α for the value of c̃α we obtain the most

commonly used form of this functional type a posteriori error upper bound for the diffusion
problem.

Note that the above estimate is sharp, i.e., theoretically there is no gap between the exact
error and the estimate. This is seen by setting y = α∇u ∈ D(Ω). The first term of the
error functional M vanishes, and it becomes apparent that sharpness does not depend on cα.
However, obtaining good error bounds requires not only choosing y close to the exact flux
α∇u, but also having good upper bounds for the unknown constant cα. Especially in the case
when − div y is not close to f , a large over-estimation of the constant cα will lead to a large
over-estimation of the error, as we will now demonstrate.
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Example 4 (Error estimation with Raviart-Thomas averaging). We solve the diffusion problem
(3.1) in in the L-shaped domain Ω = (0, 1)2 \ [(1/2, 1)× (0, 1/2)] with

α =

(
1 0
0 10−4

)
, f = 1.

We use linear nodal finite elements to solve (3.1), and denote the approximation by ũ. The
free function y in the functional M is obtained by averaging α∇ũ to the edges of the mesh
resulting in a function from the linear Raviart-Thomas finite element space, which is a subspace
of D(Ω). We denote this averaging operator by GRT. Using (1.4) to estimate the value of cα
(see Example 1), we have the estimate

(3.2) |∇(u− ũ)|L2(Ω),α ≤M(22.50791, ũ, GRT(α∇ũ))

and by using Theorem 2.2 we obtain the estimate

(3.3) |∇(u− ũ)|L2(Ω),α ≤M(0.31829, ũ, GRT(α∇ũ)).

Since − divGRT(α∇ũ) is only a rough approximation of f , the quality of the latter estimate is
better, as is seen from Table 2.

Table 2. Example 4: Values of the upper bounds (3.2) and (3.3) with different meshes.

#elements 384 1536 6144 24576 98304
(3.2) 18.4444 17.1419 16.1891 14.9832 13.2664
(3.3) 1.5563 0.9166 0.5705 0.3809 0.2695
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Appendix A. Positive semi-definite matrices α

We shortly demonstrate that upper bounds for cα can be obtained even if the self-adjoint
α ∈ L∞(Ω) is only positive semi-definite: Let Ω ⊂ (−1, 1)3 and α be the constant matrix

α =

0 0 0
0 0 0
0 0 1

 .

The smallest eigenvalue is α = 0, so the estimate (1.4) cannot be used. However, as stated in
Remark 2.3 (iii), we can still obtain upper bounds for cα; we can apply Lemma 2.1 with i = 3
to obtain

|ϕ|L2(Ω) ≤
2

π
|∂3ϕ|L2(Ω) =

2

π
|∇ϕ|L2(Ω),α ⇒ cα ≤

2

π
.

The quantity |∇ · |L2(Ω),α is now not a norm, however.
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