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Abstract

The paper introduces a method for constructing 2-resolvable t-designs for
t = 3, 4. The main idea is based on the assumption that there exists a partition
of a t-design into Steiner 2-designs. A remarkable property of the method is
that it enables the construction of 2-resolvable t-designs with a large variety of
block sizes. For t = 4, it is required that the Steiner 2-designs of the partition
are projective planes and this case would also lead to a construction of 3-
resolvable 5-designs. For instance, we show the existence of an infinite series
of 3-resolvable 5-designs having N = 5 resolution classes with parameters 5-
(14+8m, 7, 10(9+8m)(1+m)) for any m ≥ 0 as a byproduct. Moreover, it turns
out that the method is very effective, as it yields infinitely many 2-resolvable
3-designs. However, the question of simplicity of the constructed designs has
not been yet investigated.
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1 Introduction

A t-(v, k, λ) design is called s-resolvable if it can be partitioned into s-(v, k, δ) designs
with s < t. The interesting case is s ≥ 2. Especially, the s-resolvability of the
complete k-(v, k, 1) design is known in the literature as a large set of an s-(v, k, δ)
design. Large sets are an essential element in proving the existence of simple t-designs
for arbitrarily large t which have been intensively studied over three decades, see for
instance [1, 10, 11, 12, 13, 14]. By contrast, very little is known about s-resolvability
of non-trivial t-designs, when s > 1, see [4, 15, 17, 18, 19]. We are interested in
non-trivial t-designs having s-resolutions. By focussing on s = 2 we introduce a
method of constructing 2-resolvable t-designs, for t = 3, 4. In essence, the method is
based on the assumption that there exists a t-design which can be partitioned into
Steiner 2-designs, and for t = 4 it is further required that the Steiner 2-designs must
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be projective planes. Some examples among others satisfying the assumption can
be found in large sets of 2-(v, 3, 1) Steiner triple systems for v ≡ 1, 3 mod 6, v 6= 7,
in partition of certain infinite classes of 3-(v, 4, 1) Steiner quadruple systems into 2-
(v, 4, 1) designs, for v = 22m, m ≥ 2, [4], and v = 2pn + 2 , p ∈ {7, 31, 127} [15], or in
large sets of the projective planes of order 3, i.e. a symmetric 2-(13, 4, 1) design, [6, 8].
It appears that the method is very effective, actually, when starting with examples
above, it will provide a huge number of 2-resolvable 3-designs for a large variety of
block sizes. Moreover, with suitable parameters for t = 4, we can also construct
4-(2k + 1, k,Λ) designs having 2-resolutions and therefore they can be extended to
3-resolvable 5-(2k + 2, k + 1,Λ) designs. For instance, the case corresponding to the
projective plane of order 3 yields a 3-resolvable 5-(14, 7, 90) design, which in turn
leads to the existence of an infinite series of 3-resolvable 5-designs having N = 5
resolution classes with parameters 5-(14 + 8m, 7, 10(9 + 8m)(1 + m)) for any m ≥ 0
as a byproduct.

We recall a few basic definitions. A t-design, denoted by t-(v, k, λ), is a pair (X,B),
where X is a v-set of points and B is a collection of k-subsets of X, called blocks, such
that every t-subset of X is a subset of exactly λ blocks of B. A t-design is called simple
if no two blocks are identical, otherwise, it is called non-simple. A t-(v, k, 1) design is
called a Steiner t-design. It can be shown by simple counting that a t-(v, k, λ) design
is an s-(v, k, λs) design for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
. Since λs is an integer,

necessary conditions for the parameters of a t-design are
(
k−s
t−s

)
|λ
(
v−s
t−s

)
for 0 ≤ s ≤ t.

The smallest positive integer λ for which these necessary conditions are satisfied is
denoted by λmin(t, k, v) or simply λmin. If B is the set of all k-subsets of X, then
(X,B) is a t-(v, k, λmax) design, called the complete design, where λmax =

(
v−t
k−t

)
). If

we take δ copies of the complete design, we obtain a t-(v, k, δ
(
v−t
k−t

)
) design, to which

we refer as a trivial t-design. Again a t-(v, k, λ) design (X,B) is said to be s-resolvable,
for 0 < s < t, if its block set B can be partitioned into N ≥ 2 classes A1, . . . ,AN
such that each (X,Ai) is an s-(v, k, δ) design for i = 1, . . . , N . Each Ai is called an
s-resolution class or simply a resolution class and the set of N classes is called an
s-resolution of (X,B). If the complete k-(v, k, 1) design is t-resolvable, i.e. it can be
partitioned into N disjoint t-(v, k, λ) designs, where k > t, then we say that there
exists a large set of size N of t-designs denoted by LS[N ](t, k, v) or by LSλ(t, k, v) to
emphasize the value λ.

For more information about s-resolvable t-designs with 1 < s < t, see for instance
[16, 17, 18, 19]. It should be remarked that s-resolvable t-designs have been used in
the construction of t-designs [16].

2 Description of the method

The details of the method are described in this section. Here, two elements are
required.

1. Let (X,B) be a 2-resolvable t-(v, k, λ) design, where each class is a 2-(v, k, 1)

design. Thus, there are N = λ
(v−2
t−2)

(k−2
t−2)

resolution classes. Let B1, . . . ,BN denote
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the resolution classes of (X,B), so each (X,Bi) is a 2-(v, k, 1) design. We call
(X,B) the outer design.

2. Let (Y, C) be a t-( v−1
k−1 , `, µ) design. We call (Y, C) the inner design.

Consider a fixed resolution class (X,Bi). Let Y = {1, . . . , v−1
k−1} be the point set of

the inner design. For a point x ∈ X, let Yi,x = {B1
i,x, . . . , B

v−1
k−1

i,x } denote the set of v−1
k−1

blocks through x of Bi, i.e. Bj
i,x ∈ Bi with x ∈ Bj

i,x, 1 ≤ j ≤ |Y |. For a block C ∈ C,
define

DC
i,x =

⋃
j∈C

Bj
i,x,

and
Di,x = {DC

i,x | C ∈ C}.
That is, block DC

i,x is formed by the union of blocks in Yi,x indexed by C, and Di,x is
the set of µ0 such blocks DC

i,x. Further, define

Di =
⋃
x∈X

Di,x,

and

D =
N⋃
i=1

Di.

Similarly, define

D∗Ci,x =
⋃
j∈C

Bj
i,x \ {x}, D∗i,x = {D∗Ci,x | C ∈ C},

D∗i =
⋃
x∈X

D∗i,x,

and

D∗ =
N⋃
i=1

D∗i .

If (X,D) or (X,D∗) forms a t-design, we call it the constructed design.

For t = 3, we show that (X,D) and (X,D∗) are 3-designs. For t = 4, if each
resolution class of the outer design is a symmetric 2-(v, k, 1) design, i.e. a projective
plane of order (k − 1) with v = q2 + q + 1, k = q + 1, we prove that (X,D) and
(X,D∗) will form 4-designs. Further, it is shown that (X,Di) and (X,D∗i ) are 2-
designs. Obviously, the construction method makes clear that the constructed designs
(X,D) and (X,D∗) are 2-resolvable, as they are the union of designs (X,Di) and
(X,D∗i ), respectively. In case t = 4 and for suitable parameters of the outer design,
the constructed design can be extended to a 3-resolvable 5-design, as shown in the
subsequent section. A further investigation shows that if the inner design is also 2-
resolvable with L resolution classes, then the constructed design is 2-resolvable with
NL resolution classes. A major advantage of the method is the fact that it enables us
to construct 2-resolvable t-designs with a large variety of block sizes, because there
is no restriction on the parameters of the inner designs.
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3 2-resolvable 3-designs

In this section we deal with the case t = 3. We prove that (X,D) and (X,Di) are
3-(v, `(k− 1) + 1,Λ) and 2-(v, `(k− 1) + 1, δ) designs, respectively. Similarly, (X,D∗)
and (X,D∗i ) are 3-(v, `(k − 1),Λ∗) and 2-(v, `(k − 1), δ∗) designs. Thus, we need to
determine Λ, δ,Λ∗, δ∗. Recall that we consider the complete 2-(v, 2, 1) design as a
t-(v, 2, 0) design for t ≥ 3.

3.1 (X,D) and (X,Di) designs

We use the notation as described in the construction method. In the first step we
show that (X,Di) is a 2-(v, `(k − 1) + 1, δ) design, and in the next step (X,D) is a
3-(v, `(k − 1) + 1,Λ) design.

Step 1: (X,Di) is a 2-(v, `(k − 1) + 1, δ) design.

Recall that (X,Bi) is a 2-(v, k, 1) design and (Y, C) is a 3-( v−1
k−1 , `, µ) design with

Y = {1, . . . , v−1
k−1}. As usual µ1 (resp. µ2) denote the number of blocks of (Y, C)

containing a point (resp. two points). For a given point x ∈ X, there are |Y | blocks

of Bi, say B1
i,x, . . . , B

|Y |
i,x containing x. Let C = {j1, . . . , j`} ⊆ Y be a block of C.

Then block DC
i,x ∈ Di,x is defined by DC

i,x = Bj1
i,x ∪ · · · ∪ B

j`
i,x. Now let a, b ∈ X,

a 6= b. Let B be the unique block of Bi containing {a, b}. We distinguish two types
of points of X, namely points x ∈ B and points x ∈ X \ B. If x ∈ B, then B is one

of the blocks B1
i,x, . . . , B

|Y |
i,x , thus by forming the blocks of Di,x we see that block B

is contained in µ1 blocks of Di,x, consequently {a, b} appears in µ1 blocks D of Di,x.
Thus k points of B contribute kµ1 blocks D ⊇ {a, b}. If x ∈ X \ B, then {a, x} and

{b, x} determine two distinct blocks {a, x, . . .} and {b, x, . . .} of B1
i,x, . . . , B

|Y |
i,x . All the

blocks D ∈ Di,x containing {a, x, . . .} and {b, x, . . .} will contain {a, b}. So, there are
µ2 blocks D containing {a, x, . . .} and {b, x, . . .}. Thus {a, b} appears in µ2 blocks D
of Di,x. Hence, (v − k) points of x ∈ X \ B contribute (v − k)µ2 blocks D ⊇ {a, b}.
Altogether it gives

δ = kµ1 + (v − k)µ2.

Hence, (X,Di) is a 2-(v, `(k − 1) + 1, δ) design.

Step 2: (X,D) is a 3-(v, `(k − 1) + 1,Λ) design.

Let T = {a, b, c} ⊆ X. Note that among the N resolution classes B1, . . . ,BN of
(X,D) there are λ classes, say, B1, . . . ,Bλ having the property that each has a unique
block containing T .

(i) We first focus on blocks D containing T constructed from classes B1, . . . ,Bλ.
Consider B1. Let B be its unique block containing T . Each point of B gives µ1

blocksD containing T . Whereas, each point ofX\B gives µ blocksD containing
T . Thus class B1 contributes kµ1 + (v − k)µ blocks D ⊇ T . It follows that the
classes B1, . . . ,Bλ together give λ(kµ1 + (v − k)µ) blocks D ⊇ T .
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(ii) The remaining N − λ = λv−k
k−2 classes Bλ+1, . . . ,BN of (X,B) have the property

that |B ∩ T | ≤ 2, for any block B ∈ Bi, i = λ+ 1, . . . , N. Consider Bλ+1. Let
Bab = {a, b, x2, . . . , xk}, Bac = {a, c, y2, . . . , yk}, and Bbc = {b, c, z2, . . . , zk} be
three unique blocks in Bλ+1 containing {a, b}, {a, c}, {b, c}, respectively. Two
types of points of X need to be distinguished

(I) 3(k − 1) points of Bab ∪Bac ∪Bbc,

(II) (v − 3(k − 1)) points of X \Bab ∪Bac ∪Bbc.

Each point of type (I) gives µ2 blocksD ⊇ T . Hence points of type (I) contribute
3(k − 1)µ2 blocks D ⊇ T .

Each point of type (II) gives µ blocks D ⊇ T . Hence points of type (II) con-
tribute (v − 3(k − 1))µ blocks D ⊇ T .

It follows that all N − λ classes Bλ+1, . . . ,BN contribute

(N − λ)(3(k − 1)µ2 + (v − 3(k − 1))µ)

blocks D ⊇ T .

Hence, Cases (i) and (ii) together show that

Λ = λ(kµ1 + (v − k)µ) + (N − λ)(3(k − 1)µ2 + (v − 3(k − 1))µ).

Thus (X,D) is a 3-design.

To compute the values of Λ and δ in terms of v, k, λ, `, µ we have to separate
two cases: ` = 2 and ` = 3.

` = 2 :

In this case the inner design is the 2-( v−1
k−1 , 2, 1) design, which is considered as a

degenerated 3-design with µ = 0, µ2 = 1 and µ1 = v−k
k−1 . Therefore

δ = kµ1 + (v − k)µ2

= k
v − k
k − 1

+ (v − k)

= (v − k)
(2k − 1)

(k − 1)
,

and

Λ = λ(kµ1 + (v − k)µ) + (N − λ)(3(k − 1)µ2 + (v − 3(k − 1))µ)

= λ(k
v − k
k − 1

) + λ
v − k
k − 2

(3(k − 1))

= λ(v − k)
(2k − 1)(2k − 3)

(k − 1)(k − 2)
.

` ≥ 3 :
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The inner design with parameters 3-( v−1
k−1 , `, µ) will give µ2 = µ (v−2k+1)

(k−1)(`−2) and

µ1 = µ (v−k)(v−2k+1)
(k−1)2(`−1)(`−2) . Replacing µ2 and µ1 by their values in the formulas for δ

and Λ and so simplifying we obtain

δ = kµ1 + (v − k)µ2

= kµ
(v − k)(v − 2k + 1)

(k − 1)2(`− 1)(`− 2)
+ (v − k)µ

(v − 2k + 1)

(k − 1)(`− 2)

=
(v − k)(v − 2k + 1)

(k − 1)2(`− 1)(`− 2)
µ(k`− `+ 1),

and

Λ = λ(kµ1 + (v − k)µ) + λ
(v − k)

(k − 2)
(3(k − 1)µ2 + (v − 3(k − 1))µ)

= λ(kµ
(v − k)(v − 2k + 1)

(k − 1)2(`− 1)(`− 2)
+ (v − k)µ) +

λ
(v − k)

(k − 2)
(3(k − 1)µ

(v − 2k + 1)

(k − 1)(`− 2)
+ (v − 3(k − 1))µ)

=
(v − k)(v − 2k + 1)

(k − 1)2(k − 2)(`− 1)(`− 2)
λµ((k − 1)2`2 − 1).

3.1.1 The case with 2-resolvable inner designs

We further study the resolvability of the constructed designs when the inner designs
are 2-resolvable. Suppose that the inner 3-( v−1

k−1 , `, µ) design (Y, C) is 2-resolvable with
L resolution classes. Let C1, . . . , CL be the L classes of (Y, C). Then

(Y, C) = (Y, C1) ∪ · · · ∪ (Y, CL),

where each (Y, Ci) is a 2-( v−1
k−1 , `,

µ2
L

) design, and µ2 = µ v−2k+1
(k−1)(`−2) . It follows that

(X,Di) = (X, E (1)i ) ∪ · · · ∪ (X, E (L)i ).

This is because the 2-(v, `(k − 1) + 1, δ) design (X,Di) constructed from (X,Bi) and

(Y, C) in Step 1 is the union of L disjoint 2-(v, `(k − 1) + 1, δ
L

) designs (X, E (j)i ),

j = 1, . . . , L. Each (X, E (j)i ) is the 2-design constructed from (X,Bi) and (Y, Cj).
As a result, the constructed design (X,D) is 2-resolvable with NL resolution

classes, and each class is a 2-(v, `(k − 1) + 1, δ
L

) design.

3.2 (X,D∗) and (X,D∗i ) designs

To show that (X,D∗) and (X,D∗i ) are designs, a very similar proof as above is to
be employed, therefore it will be omitted. The results show that (X,D∗i ) is a 2-
(v, `(k − 1), δ∗) design with

δ∗ = (k − 2)µ1 + (v − k)µ2,
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and (X,D∗) is a 3-(v, `(k − 1),Λ∗) design with

Λ∗ = λ((k − 3)µ1 + (v − k)µ) + λ
(v − k)

(k − 2)
(3(k − 2)µ2 + (v − 3(k − 1))µ).

Putting the explicit values of µ1, µ2, both δ∗ and Λ∗ are expressed in terms of
v, k, λ, `, µ as shown in the next theorem.

The resolvability of (X,D∗) and (X,D∗i ) is the same as that of (X,D) and (X,Di).
We summarize the results in the following theorem.

Theorem 3.1 Assume that the following designs exist.

(i) A 2-resolvable 3-(v, k, λ) design (X,B) having N = λ v−2
k−2 resolution classes and

each class is a 2-(v, k, 1) design.

(ii) A 3-( v−1
k−1 , `, µ) design (Y, C).

Then there exist 2-resolvable 3-(v, (k−1)`+1,Λ) and 3-(v, (k−1)`,Λ∗) designs (X,D)
and (X,D∗), with N resolution classes, where each class is a 2-(v, (k−1)`+ 1, δ) and
2-(v, (k − 1)`, δ∗) design, respectively.

(i) For ` = 2,

Λ = λ(v − k)
(2k − 1)(2k − 3)

(k − 1)(k − 2)
, δ = (v − k)

(2k − 1)

(k − 1)
,

Λ∗ = 2λ(v − k)
(2k − 3)

(k − 1)
, δ∗ = (v − k)

(2k − 3)

(k − 1)
.

(ii) For ` ≥ 3,

Λ =
(v − k)(v − 2k + 1)

(k − 1)2(k − 2)(`− 1)(`− 2)
λµ((k − 1)2`2 − 1),

δ =
(v − k)(v − 2k + 1)

(k − 1)2(`− 1)(`− 2)
µ(k`− `+ 1),

Λ∗ =
(v − k)(v − 2k + 1)

(k − 1)2(k − 2)(`− 1)(`− 2)
λµ((`(k − 1)− 1)(`(k − 1)− 2)),

δ∗ =
(v − k)(v − 2k + 1)

(k − 1)2(`− 1)(`− 2)
µ(k`− `− 1).

Further, if (Y, C) is 2-resolvable with L resolution classes, then (X,D) and
(X,D∗) are 2-resolvable with NL resolution classes and each class is a 2-
(v, (k − 1)`+ 1, δ

L
) and 2-(v, (k − 1)`, δ

∗

L
) design, respectively.

To illustrate the effectiveness of Theorem 3.1 we show a concrete example. For the
outer design take a 3-(64, 4, 1) design [4] which is partitioned into N = 31 Steiner 2-
(64, 4, 1) designs. The inner design can be chosen from all possible 3-(21, `, µ) designs
with the following parameters.
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1. 2-(21, 2, 1),

2. 3-(21, 3, 1),

3. 3-(21, 4,m6), 1 ≤ m ≤ 3

4. 3-(21, 5,m3), 1 ≤ m ≤ 51

5. 3-(21, 6,m4), 1 ≤ m ≤ 204

6. 3-(21, 7,m15), 1 ≤ m ≤ 204

7. 3-(21, 8,m84), 1 ≤ m ≤ 102

8. 3-(21, 9,m42), 1 ≤ m ≤ 442

9. 3-(21, 10,m72), 1 ≤ m ≤ 442.

The existence of 3-(21, `, µ) designs above for 4 ≤ ` ≤ 10 can be found in [7]. For
each value of m for which a 3-(21, `, µ) design exists, the parameters of 2-resolvable
3-(64, 3` + 1,Λ) and 3-(64, 3`,Λ∗) designs for ` = 2, . . . , 10, and their corresponding
2-designs in the resolution constructed from Theorem 3.1 are as follows.

(i) 3-(64, 7, 70× 5), 2-(64, 7, 70× 2),
3-(64, 6, 20× 10), 2-(64, 6, 20× 5),

(ii) 3-(64, 10, 380× 20), 2-(64, 10, 20× 5),
3-(64, 9, 190× 28), 2-(64, 9, 10× 8),

(iii) 3-(64, 13, 95m× 286), 2-(64, 13, 95m× 52),
3-(64, 12, 380m× 55), 2-(64, 12, 380m× 11), 1 ≤ m ≤ 3,

(iv) 3-(64, 16, 304m× 35), 2-(64, 16, 304m× 5),
3-(64, 15, 133m× 65), 2-(64, 15, 133m× 10), 1 ≤ m ≤ 51,

(v) 3-(64, 19, 38m× 323), 2-(64, 19, 38m× 38),
3-(64, 18, 76m× 136), 2-(64, 18, 76m× 17), 1 ≤ m ≤ 204,

(vi) 3-(64, 22, 380m× 110), 2-(64, 22, 380m× 11),
3-(64, 21, 190m× 190), 2-(64, 21, 190m× 20), 1 ≤ m ≤ 204,

(vii) 3-(64, 25, 95m× 2300), 2-(64, 25, 95m× 200),
3-(64, 24, 760m× 253), 2-(64, 24, 760m× 23), 1 ≤ m ≤ 102,

(viii) 3-(64, 28, 2660m× 39), 2-(64, 28, 2660m× 3),
3-(64, 27, 95m× 975), 2-(64, 27, 95m× 78), 1 ≤ m ≤ 442,

(ix) 3-(64, 31, 1178m× 145), 2-(64, 31, 38m× 310),
3-(64, 30, 76m× 2030), 2-(64, 30, 76m× 145), 1 ≤ m ≤ 442.
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Remarks 3.1

1. Observe that all values of Λ and Λ∗ of the constructed designs above are really
small. For example, by taking a 3-(21, 9, 42) design as the inner design, the
parameters of the 3-(64, 27,Λ∗) constructed design become 3-(64, 27, 95× 975),
compared with its general parameters 3-(64, 27,m∗ × 975), where 1 ≤ m∗ ≤
60961764003119. Even if the complete 3-(21, 9, 442 × 42) design is used, the
corresponding constructed design will be of parameters 3-(64, 27, 41990× 975),
showing that m∗ = 41990� 60961764003119 is still quite small.

2. The constructed 3-(64, 10, 380 × 20) and 3-(64, 9, 190 × 28) designs under (ii)
are 2-resolvable with NL = 31.19 = 589 resolution classes each, this is because
the 3-(21, 3, 1) inner design can be partitioned into L = 19 Steiner 2-(21, 3, 1)
designs.

Other examples are the 3-(64, 13, 95m× 286) and 3-(64, 12, 380m× 55) designs
with m = 3 from (iii). Here, the inner design is the complete 3-(21, 4, 3 × 6)
design, which again can be partitioned into L = 19 disjoint 2-(21, 4, 9) designs.
Thus, both 3-(64, 13, 95 ∗ 3 × 286) and 3-(64, 12, 380 ∗ 3 × 55) designs are 2-
resolvable with NL = 589 resolution classes.

In general, when the inner design is the complete 3-(21, `,
(

18
`−3

)
) design, we may

employ the knowledge of large sets LSL(2, `, 21) to obtain further refinement of
the resolution for the constructed design. For instance, there are LS17(2, `, 21)
for ` = 5, 6, 7, 8, thus the constructed designs under (iv), (v), (vi), (vii) have
NL = 31.17 = 527 resolution classes.

The following corollaries show some applications of Theorem 3.1. It is a well-
known result that there exists an LSνmin

(2, 3, v) for v 6= 7. In particular, if v ≡ 1, 3
(mod 6), then νmin = 1, i.e. the 3-(v, 3, 1) design can be partitioned into N = (v− 2)
disjoint 2-(v, 3, 1) designs. Take the 3-(v, 3, 1) design as the outer design. Take the
2-(v−1

2
, 2, 1) and 3-(v−1

2
, 3, 1) design as the inner design. Again, in the second case

the 3-(v−1
2
, 3, 1) design is 2-resolvable with L = v−5

2νmin
resolution classes, each class is

a 2-(v−1
2
, 3, νmin). Now applying Theorem 3.1 we have the following result.

Corollary 3.2 Let νmin = νmin(2, 3, v−1
2

), where v is an integer such that v ≡ 1, 3
(mod 6), v 6= 7. Let N = (v − 2) and L = v−5

2νmin
. Then

(i) There exists a 2-resolvable 3-(v, 5, 15
2

(v−3)) design having N = (v−2) resolution
classes, each class is a 2-(v, 5, 5

2
(v − 3)) design.

(ii) There exists a 2-resolvable 3-(v, 7, 35
8

(v−3)(v−5)) design having NL resolution
classes, each class is a 2-(v, 7, 7

4
νmin(v − 3)) design.

(iii) There exists a 2-resolvable 3-(v, 6, 5
2
(v− 3)(v− 5)) design having NL resolution

classes, each class is a 2-(v, 6, 5
4
νmin(v − 3)) design.
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For n ≥ 2 there is a 2-resolvable 3-(22n, 4, 1) design with N = 22n−1− 1 resolution
classes and each class is a 2-(22n, 4, 1) design, see [4]. Take this design as the outer
design. Now any 3-(2

2n−1
3
, `, µ) design can be used as the inner design. Thus it

produces innumerable 2-resolvable 3-designs with a large variety of block sizes. As
an example, the next corollary shows the results for the first two cases with ` = 2, 3,
i.e. the inner design is the 2-(2

2n−1
3
, 2, 1) and 3-(2

2n−1
3
, 3, 1) design. Again, note that

the 3-(2
2n−1
3
, 3, 1) design can be partitioned into L = 22n−7

3νmin
classes of 2-(2

2n−1
3
, 3, νmin)

designs.

Corollary 3.3 Let νmin = νmin(2, 3, (2
2n−1)
3

), n ≥ 2. Let N = (22n−1 − 1) and L =
22n−7
3νmin

. Then

(i) There exists a 2-resolvable 3-(22n, 7, 35
6

(22n − 4)) design having N resolution
classes, each class is a 2-(22n, 7, 7

3
(22n − 4)) design.

(ii) There exists a 2-resolvable 3-(22n, 6, 10
3

(22n − 4)) design having N resolution
classes, each class is a 2-(22n, 6, 5

3
(22n − 4)) design.

(iii) There exists a 2-resolvable 3-(22n, 10, 20
9

(22n − 4)(22n − 7)) design having NL
resolution classes, each class is a 2-(22n, 10, 5

3
νmin(22n − 4)) design.

(iv) There exists a 2-resolvable 3-(22n, 9, 14
9

(22n − 4)(22n − 7)) design having NL
resolution classes, each class is a 2-(22n, 9, 4

3
νmin(22n − 4)) design.

4 2-resolvable 4-designs

This section deals with the case, where the designs in the resolution of the outer
design are symmetric 2-(v, k, 1) designs, i.e. each resolution class is a projective plane
of parameters 2-(q2 + q + 1, q + 1, 1). Obviously, (X,Di) and (X,D∗i ) are 2-designs,
as shown in the previous section. We prove that (X,D) and (X,D∗) are 4-designs.

4.1 4-(v, `(k − 1) + 1,Λ) design (X,D)

Again use the notation as described in the construction method. We omit the proof
that (X,Di) is a 2-(v, `(k− 1) + 1, δ) design, as it is the same as that in the previous
section. Here, we focus on the proof in the main step that (X,D) is a 4-(v, `(k− 1) +
1,Λ) design.

Main step: (X,D) is a 4-(v, `(k − 1) + 1,Λ) design.
To simplify the writing we temporarily keep the parameters 2-(v, k, 1) for the

symmetric design of the resolution, and will replace them with 2-(q2 + q+ 1, q+ 1, 1)
at the end of the proof.

Let T = {a, b, c, d} ⊆ X. With respect to T , there are three types of resolution
classes:

(i) Classes having a unique block B containing T ,

10



(ii) Classes having a unique block B with |B ∩ T | = 3,
(iii) Classes having only blocks B with |B ∩ T | ≤ 2.
The number of classes of type (i) is λ, of type (ii) 4(λ v−3

k−3 − λ) = 4λv−k
k−3 . The

remaining N − (4λv−k
k−3 + λ) classes are of type (iii). So, w.l.o.g., we may assume that

B1, . . . ,Bλ are classes of type (i) and Bλ+1, . . . ,Bλ+4λ v−k
k−3

classes of type (ii).

(i) Consider class B1 of type (i). Let B be its unique block containing T . Each
point of B gives µ1 blocks D containing T . Whereas, each point of X \B gives
µ blocks D containing T . Thus class B1 produces kµ1 + (v − k)µ blocks D. It
follows that the classes B1, . . . ,Bλ together give λ(kµ1+(v−k)µ) blocks D ⊇ T .

(ii) Each of Bλ+1, . . . ,Bλ+4λ v−k
k−3

classes of type (ii) has a unique block B with |B ∩
T | = 3. Consider class Bλ+1. There are four 3-subsets of T . So, w.l.o.g.,
we assume that B ∩ T = {a, b, c}. Let B := Babc = {a, b, c, u3, . . . , uk}, Bda =
{d, a, x2, . . . , xk}, Bdb = {d, b, y2, . . . , yk}, and Bdc = {d, c, z2, . . . , zk} be the four
unique blocks in Bλ+1 containing {a, b, c}, {d, a}, {d, b} and {d, c}, respectively.
In Bλ+1, the contribution to blocks D ⊇ T depends on three distinct point types
of X, that are the following.

(I) k points of Babc. These points produce kµ2 blocks D ⊇ T .

(II) 1+3(k−2) = 3k−5 points of Bda, Bdb and Bdc different from a, b, c. These
points give (3k − 5)µ3 blocks D ⊇ T .

(III) (v − 4k + 5) points of X \ Babc ∪ Bda ∪ Bdb ∪ Bdc. These points produce
(v − 4k + 5)µ blocks D ⊇ T .

So, class Bλ+1 gives (kµ2 + (3k− 5)µ3 + (v− 4k+ 5)µ) blocks D ⊇ T . It follows
that for all four 3-subsets {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} of T , the 4λv−k

k−3
classes of type (ii) produce 4λv−k

k−3(kµ2 + (3k − 5)µ3 + (v − 4k + 5)µ) blocks
D ⊇ T in total.

(iii) Consider the remaining N − (4λv−k
k−3 + λ) classes of type (iii). Let Bj be such

a class. Since (X,Bj) is a 2-(v, k, 1) projective plane, and |B ∩ T | ≤ 2 for any
block B ∈ Bj, the 6 pairs of points of T = {a, b, c, d} are on 6 unique blocks.

Bab = {a, b, x3, x4, . . . , xk},
Bcd = {c, d, x3, y4, . . . , yk},
Bad = {a, d, x′3, x′4, . . . , x′k},
Bbc = {b, c, x′3, y′4, . . . , y′k},
Bac = {a, c, x′′3, x′′4, . . . , x′′k},
Bbd = {b, d, x′′3, y′′4 , . . . , y′′k}.

These blocks partition the points of X in 3 types.

(I) (6k − 14) points:

a, b, c, d, x4, . . . , xk, y4, . . . , yk, x
′
4, . . . , x

′
k, y
′
4, . . . , y

′
k, x

′′
4, . . . , x

′′
k, y
′′
4 , . . . , y

′′
k .
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These points give (6k − 14)µ3 blocks D ⊇ T .

(II) 3 points: x3, x
′
3, x
′′
3. These points give 3µ2 blocks D ⊇ T .

(III) (v−6k+11) points of X \ (Bab∪Bcd∪Bad∪Bbc∪Bac∪Bbd). These points
produce (v − 6k + 11)µ blocks D ⊇ T .

Altogether Dj has 3µ2 + (6k− 14)µ3 + (v− 6k+ 11)µ blocks D ⊇ T . Hence the
N − (4λv−k

k−3 + λ) classes of type (iii) produce

(N − (4λ
v − k
k − 3

+ λ))(3µ2 + (6k − 14)µ3 + (v − 6k + 11)µ)

blocks D ⊇ T .

In summary, cases (i), (ii), (iii) together yield

Λ = λ(kµ1 + (v − k)µ) + 4λ
v − k
k − 3

(kµ2 + (3k − 5)µ3 + (v − 4k + 5)µ)

+ (N − (4λ
v − k
k − 3

+ λ))(3µ2 + (6k − 14)µ3 + (v − 6k + 11)µ).

Putting v = q2 + q + 1, k = q + 1, N = λ (q2+q−1)(q2+q−2)
(q−1)(q−2) , µi = µ

(q+1−i
4−i )

(`−i
4−i)

, i = 1, 2, 3, we

find that

(1) for ` = 2,

Λ =
2λq

(q − 2)
(4q2 − 1), δ = q(2q + 1),

(2) for ` = 3,

Λ =
λq

2(q − 2)
(9q2 − 1)(3q − 2), δ =

q(q − 1)

2
(3q + 1),

(3) for ` ≥ 4,

Λ =
λµq

(`− 1)(`− 2)(`− 3)
(q2`2 − 1)(q`− 2), δ =

q(q − 1)(q − 2)(q`+ 1)

(`− 1)(`− 2)(`− 3)
µ.

The 4-design (X,D) is 2-resolvable with N resolutions classes, because it is the union
of 2-designs (X,Di)s. Further, if the inner design (Y, C) is also 2-resolvable with L
resolution classes, then the same argument as above shows that (X,D) is 2-resolvable
with NL resolution classes.
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4.2 4-(v, `(k − 1),Λ∗) design (X,D∗)
Again, this case may be handled in a similar manner as that of (X,D), and therefore
we will omit the proof, despite the fact that several tiresome calculations for Λ∗ have
to be carefully carried out.

We record the results for both cases in the following theorem.

Theorem 4.1 Assume that the following designs exist.

(1) A 4-(q2 + q + 1, q + 1, λ) design (X,B) that can be partitioned into N =

λ (q2+q−1)(q2+q−2)
(q−1)(q−2) symmetric 2-(q2 +q+1, q+1, 1) designs, i.e. projective planes.

(2) A 4-(q + 1, `, µ) design (Y, C).

Then there exist 2-resolvable 4-(q2 + q+ 1, q`+ 1,Λ) and 4-(q2 + q+ 1, q`,Λ∗) designs
(X,D) and (X,D∗) with N resolution classes, where each class is a 2-(q2 + q+1, q`+
1, δ) and a 2-(q2 + q + 1, q`, δ∗) design, respectively,

(i) For ` = 2,

Λ =
2λq

(q − 2)
(4q2 − 1), δ = q(2q + 1),

Λ∗ =
2λq

(q − 2)
(2q − 1)(2q − 3), δ∗ = q(2q − 1).

(ii) For ` = 3,

Λ =
λq

2(q − 2)
(9q2 − 1)(3q − 2), δ =

q(q − 1)

2
(3q + 1),

Λ∗ =
3λq

2(q − 2)
(3q − 1)(3q − 2)(q − 1), δ∗ =

q(q − 1)

2
(3q − 1).

(ii) For ` ≥ 4,

Λ =
λµq

(`− 1)(`− 2)(`− 3)
(q2`2 − 1)(q`− 2),

δ =
q(q − 1)(q − 2)(q`+ 1)

(`− 1)(`− 2)(`− 3)
µ,

Λ∗ =
λµq

(`− 1)(`− 2)(`− 3)
(q`− 1)(q`− 2)(q`− 3),

δ∗ =
q(q − 1)(q − 2)(q`− 1)

(`− 1)(`− 2)(`− 3)
µ.

Further, if (Y, C) is 2-resolvable with L resolution classes, then (X,D) and
(X,D∗) are 2-resolvable with NL resolution classes and each class is a 2-
(q2 + q + 1, q`+ 1, δ

L
) and a 2-(q2 + q + 1, q`, δ

∗

L
) design, respectively.
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We illustrate Theorem 4.1 by showing the following examples. Let q = 2m, m ≥ 5
odd. Consider two infinite classes of 4-designs with parameters 4-(q + 1, 5, 5) and
4-(q + 1, 6, 10). The first one can be found in [2] and the second in [5]. All these

designs are 3-resolvable with L = (q−2)
6

resolution classes. Each resolution class of the
4-(q + 1, 5, 5) designs is a 3-(q + 1, 5, 15) design, which is also a 2-(q + 1, 5, 5(q − 1))
design. Further, each resolution class of the 4-(q+ 1, 6, 10) designs is a 3-(q+ 1, 6, 20)
design, which is also a 2-(q + 1, 6, 5(q − 1)) design. Taking these 4-(q + 1, 5, 5) and
4-(q+ 1, 6, 10) designs as the inner design (Y, C) and applying Theorem 4.1 we obtain
the following result.

Corollary 4.2 Let q = 2m, m ≥ 5 odd and let L = (q−2)
6

. Assume that there exists

a 4-(q2 + q + 1, q + 1, λ) design that can be partitioned into N = λ (q2+q−1)(q2+q−2)
(q−1)(q−2)

projective planes of order q. Then there exist 2-resolvable 4-(q2 + q+ 1, q`+ 1,Λ) and

4-(q2 + q + 1, q`,Λ∗) designs (X,D) and (X,D∗) with NL = λ (q2+q−1)(q+2)
6

resolution
classes, where classes are 2-(q2 + q + 1, q` + 1, δ

L
) and 2-(q2 + q + 1, q`, δ

∗

L
) designs

(X, Ei) and (X, E∗i ), respectively.

(i) (X,D): 4-(q2 + q + 1, 5q + 1,Λ), Λ = 5λq
24

(5q + 1)(5q − 1)(5q − 2),

(X, Ei): 2-(q2 + q + 1, 5q + 1, δ
L

), δ
L

= 5
4
q(q − 1)(5q + 1),

(ii) (X,D∗): 4-(q2 + q + 1, 5q,Λ∗), Λ∗ = 5λq
24

(5q − 1)(5q − 2)(5q − 3),

(X, E∗i ): 2-(q2 + q + 1, 5q, δ
∗

L
), δ∗

L
= 5

4
q(q − 1)(5q − 1),

(iii) (X,D): 4-(q2 + q + 1, 6q + 1,Λ), Λ = λq
6

(6q + 1)(6q − 1)(6q − 2),

(X, Ei): 2-(q2 + q + 1, 6q + 1, δ
L

), δ
L

= q(q − 1)(6q + 1),

(iv) (X,D∗): 4-(q2 + q + 1, 6q,Λ∗), Λ∗ = λq
6

(6q − 1)(6q − 2)(6q − 3),

(X, E∗i ): 2-(q2 + q + 1, 6q, δ
∗

L
), δ∗

L
= q(q − 1)(6q − 1).

Under the condition of Corollary 4.2 we may find more infinite classes of 2-resolvable
4-designs by using the inner design (Y, C) as 3-resolvable 4-(q + 1, k, λ) designs for
k = 8, 9 in [5, 17].

We include a further application of Theorem 4.1. In [12] Teirlinck proves that
an LSνmin

(3, 4, n) exists if n ≡ 0 (mod 3). Let q be a prime power such that q ≡ 2
(mod 3). Take the 4-(q + 1, 4, 1) design as the inner design, which is the union of L
disjoint 3-(q+1, 4, νmin) designs. Thus L = q−2

νmin
. Notice that a 3-(q+1, 4, νmin) design

is also a 2-(q + 1, 4, νmin
q−1
2

) design. Now applying Theorem 4.1 gives the following
result.

Corollary 4.3 Let q be a prime power such that q ≡ 2 (mod 3). Let νmin = νmin(3, 4, q+
1) and let L = q−2

νmin
. Assume that there exists a 4-(q2 + q + 1, q + 1, λ) design that

can be partitioned into N = λ (q2+q−1)(q2+q−2)
(q−1)(q−2) projective planes of order q. Then there

exist 2-resolvable 4-(q2 + q + 1, 4q + 1,Λ) and 4-(q2 + q + 1, 4q,Λ∗) designs (X,D)
and (X,D∗) with NL = λ

νmin
(q2 + q − 1)(q + 2) resolution classes, where classes are

2-(q2+q+1, 4q+1, δ
L

) and 2-(q2+q+1, 4q, δ
∗

L
) designs (X, Ei) and (X, E∗i ), respectively.
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(i) (X,D): 4-(q2 + q + 1, 4q + 1,Λ), Λ = λq
6

(4q − 1)(4q + 1)(4q − 2),

(X, Ei): 2-(q2 + q + 1, 4q + 1, δ
L

), δ
L

= νmin
q(q−1)(4q+1)

6
,

(ii) (X,D∗): 4-(q2 + q + 1, 4q,Λ∗), Λ∗ = λq
6

(4q − 1)(4q − 2)(4q − 3),

(X, E∗i ): 2-(q2 + q + 1, 4q, δ
∗

L
), δ∗

L
= νmin

q(q−1)(4q−1)
6

.

5 5-designs

Let us take a close look at the constructed design (X,D∗) with parameters 4-(q2 +q+
1, q`,Λ∗) in Theorem 4.1, when q is odd. Observe that if the inner design (Y, C) is a

4-(q+1, q+1
2
, µ) design, then the parameters of (X,D∗) become 4-(q2+q+1, q(q+1)

2
,Λ∗).

In this case, (X,D∗) can be extended to a 5-(q2 + q + 2, q(q+1)
2

+ 1,Λ∗) design, by a
theorem of Alltop [2, 3], which is described as follows.

Let (X,B) be a t-(2k + 1, k, λ) design with t even, and let ∞ 6∈ X. Define

B+ = {B ∪ {∞} | B ∈ B},
B− = {X \B | B ∈ B}.

Then (X ∪ {∞},B+ ∪ B−) is a (t+ 1)-(2k + 2, k + 1, λ) design.

We prove the following lemma.

Lemma 5.1 Let (X,B) be a t-(2k+1, k, λ) design with t even. Let (X∪{∞},B+∪B−)
be its (t + 1)-(2k + 2, k + 1, λ) extending design. Assume that (X,B) is s-resolvable
with N resolution classes; each class is an s-(2k + 1, k, δ) design.

(i) If s is even, then the extending design is (s + 1)-resolvable with N resolution
classes, each class is an (s+ 1)-(2k + 2, k + 1, δ) design.

(ii) If s is odd, then the extending design is s-resolvable with N resolution classes,
each class is an s-(2k + 2, k + 1, δ 2k+2−s

k+1−s ) design.

Proof. Let B1, . . . ,BN be the N resolution classes of (X,B), where each (X,Bi) is
an s-(2k + 1, k, δ) design and δ = λs

N
.

(i) s even. Applying the Alltop theorem, we find

B+ = B+
1 ∪ · · · ∪ B+

N ,

B− = B−1 ∪ · · · ∪ B−N .

Hence
B+ ∪ B− = (B+

1 ∪ B−1 ) ∪ · · · ∪ (B+
N ∪ B

−
N).

Each (X ∪{∞},B+
i ∪B−i ) is an (s+1)-(2k+2, k+1, δ) design, for i = 1, . . . , N .

Thus, (X ∪ {∞},B+ ∪ B−) is (s+ 1)-resolvable.
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(ii) s odd. Each class (X,Bi) is an s-(2k + 1, k, δ) design. Thus, (X,Bi) may
be considered as an (s − 1)-(2k + 1, k, δs−1) design with (s − 1) even and

δs−1 = δ 2k+1−(s−1)
k−(s−1) . Again, applying the Alltop theorem shows that the ex-

tending design (X ∪ {∞},B+ ∪ B−) is s-resolvable, and each resolution class is
an s-(2k + 2, k + 1, δ 2k+2−s

k+1−s ) design. 2

Thus, starting with an inner design (Y, C) of parameters 4-(q+ 1, q+1
2
, µ) for q odd

and applying Lemma 5.1 we find that the constructed design (X,D∗) in Theorem 4.1
is extended to a 3-resolvable 5-design (X ∪ {∞},D∗+ ∪ D∗−).

We state the result in the following theorem.

Theorem 5.2 Let q be an odd positive integer. Assume that there is a 2-resolvable

4-(q2 + q + 1, q + 1, λ) design with N = λ (q2+q−1)(q2+q−2)
(q−1)(q−2) resolution classes, each

class is a symmetric 2-(q2 + q + 1, q + 1, 1) design. Assume that there is also a 4-

(q+ 1, q+1
2
, µ) design. Then there is a 3-resolvable 5-(q2 + q+ 2, q(q+1)

2
+ 1,Λ∗) design

with N resolution classes; each class is a 3-(q2 + q + 2, q(q+1)
2

+ 1, δ∗) design, where
Λ∗ and δ∗ are as follows.

(i) For q = 3,

Λ∗ =
2λq

(q − 2)
(2q − 1)(2q − 3) = 90,

δ∗ = q(2q − 1) = 15.

(ii) For q = 5,

Λ∗ =
3λq

2(q − 2)
(3q − 1)(3q − 2)(q − 1) = λ1820,

δ∗ =
q(q − 1)

2
(3q − 1) = 140.

(iii) For q ≥ 7,

Λ∗ =
λµq

(q − 3)(q − 5)
(q + 2)(q2 + q − 4)(q2 + q − 6),

δ∗ =
4q(q − 1)(q2 − 4)

(q − 3)(q − 5)
µ.

Further, if the 4-(q + 1, q+1
2
, µ) design is 2-resolvable with L resolution classes,

then the 5-(q2 + q+ 2, q(q+1)
2

+ 1,Λ∗) design is 3-resolvable with NL resolution classes

and each class is a 3-(q2 + q + 2, q(q+1)
2

+ 1, δ
∗

L
) design.

In 1978, Magliveras conjectured that there will exist a large set of projective planes
of order q for q ≥ 3, provided q is the order of a projective plane. This conjecture is
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still an unsettled problem, except for q = 3, [8]. The main assumption of Theorems
4.1 and 5.2 is the existence of a 2-resolvable 4-(q2 + q+ 1, q+ 1, λ) design as the outer
design, whose resolution classes are projective planes of order q. In particular, if we
take the complete 4-(q2 + q + 1, q + 1,

(
q2+q−3
q−3

)
) design as the outer design, then the

assumption is equivalent to the existence of a large set of projective planes of order
q. To further clarify Theorems 4.1 and 5.2 we focus on this special case.

Consider case (i) with q = 3 of Theorem 5.2. The outer design becomes the 4-
(13, 4, 1) design, which can be partitioned into N = 55 symmetric 2-(13, 4, 1) designs
by [6] and [8]. Applying Theorem 4.1 with the 2-(4, 2, 1) inner design yields a 2-
resolvable 4-(13, 6, 90) design with N = 55 resolution classes, where each class is a
2-(13, 6, 15) design. By Theorem 5.2, this 4-design is extendable to a 3-resolvable
5-(14, 7, 90) design with the same number of resolution classes and each class is a
3-(14, 7, 15) design. Note that both 4-(13, 6, 90) and 5-(14, 7, 90) designs are not
simple, since the complete 4-(13, 6, λmax) and 5-(14, 7, λmax) design will have λmax =
36. However, they are also non-trivial, since 90 is not a multiple of 36. It should be
remarked that the designs in both resolutions are simple. This is an interesting fact
that we want to record in the following corollary.

Corollary 5.3

(i) There is a non-trivial 2-resolvable 4-(13, 6, 90) design with repeated blocks having
N = 55 resolution classes, where each class is a simple 2-(13, 6, 15) design.

(ii) There is a non-trivial 3-resolvable 5-(14, 7, 90) design with repeated blocks having
N = 55 resolution classes, where each class is a simple 3-(14, 7, 15) design.

Case (ii) with q = 5 displays another feature of Theorem 5.2. Assume that
there is a partition of a 4-(31, 6, λ) outer design into projective planes of order 5. If
λ = λmax = 117×3, the constructed design will have parameters 5-(32, 16, 16380×39).
Note that the index of this 5-design is much less than that of its corresponding
complete 5-(32, 16, 334305 × 39) design. By contrast, if λ = λmin = 3, the index
of the corresponding 5-(32, 16,Λ∗) constructed design would be drastically reduced
to Λ∗ = 140 × 39. Further, since the 3-(6, 3, 1) inner design is 2-resolvable with
L = 2 resolution classes, the number of 3-resolution classes of the constructed design
is NL = λ

3
406.

For some small values of q, for example q = 7, 9, 11, we may use the large sets
LS5(2, 4, 8), LS14(2, 5, 10), LS42(2, 6, 12) for the inner designs. Thus, if there would
exist a partition of 4-(q2 + q + 1, q + 1, λ) design into projective planes of order
q = 7, 9, 11, then Theorems 5.2 would yield 3-resolvable 5-designs having parameters
5-(58, 29, λ63 × 325), 5-(92, 46, λ198 × 903), 5-(134, 67, λ

3
2002 × 2016) with NL =

λ495, λ1958, λ
3
23842 resolution classes, respectively.
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6 An infinite series of 3-resolvable 5-designs de-

rived from the 5-(14, 7, 90) design

In this short excursus we will focus on the 3-resolvable 5-(14, 7, 90) design in Corollary
5.3 and explain how to create an infinite series of 3-resolvable 5-designs from this single
design. For the reader’s convenience we include here a result in a recent paper by the
author [19].

Corollary 6.1 (Corollary 3.4 [19]) Suppose that there exists an s-resolvable t-(v, k, λ)
design with N resolution classes such that z = λ

(v−t
k−t)

= Nu
n
, where u, n are positive

integers. If there exists an LS[n](k− 2, k− 1, v− 1), then there exists an s-resolvable
t-(v+m(v−k+1), k, z

(
v−t+m(v−k+1)

k−t

)
) design with N resolution classes for any m ≥ 0.

Observe the main fact of Corollary 6.1: it states that one can construct an infinite
series of s-resolvable t-designs from a single t-design and a single large set. Now
we will apply this recursive construction to the 5-(14, 7, 90) design in Corollary 5.3.
As the design is 3-resolvable with 55 resolution classes, it is especially 3-resolvable
with N = 5 resolution classes. The expression z = λ

(v−t
k−t)

= Nu
n

becomes z = 5
2
,

which implies that n = 2. Further, since an LS[2](5, 6, 13) exists [9], there exists a
3-resolvable 5-(14 + 8m, 7, 10(9 + 8m)(1 +m)) design having N = 5 resolution classes
for any m ≥ 0 by Corollary 6.1. This design is obviously nonsimple, since the 5-
(14 + 8m, 7, λmax) design will have λmax = 4(9 + 8m)(1 +m), however it is nontrivial,
since 10(9+8m)(1+m) is not a multiple of λmax. We record the result in the following
theorem.

Theorem 6.2 There exists a 3-resolvable nonsimple and nontrivial 5-(14+8m, 7, 10(9+
8m)(1 +m)) design having N = 5 resolution classes for any m ≥ 0.

Moreover, it should be noted that there are at least two non-isomorphic series
of 3-resolvable 5-(14 + 8m, 7, 10(9 + 8m)(1 + m)) designs in Theorem 6.2 due to the
existence of two non-isomorphic large sets LS[55](2, 4, 13) as proven by Kolotoğlu and
Magliveras [8].

7 Conclusion

The paper presents a method for constructing 2-resolvable t-designs for t = 3, 4
based on the assumption that there exists a partition of a t-design into Steiner 2-
designs. The case t = 4 corresponds to partitioning a 4-design into projective planes.
Especially, if the order of the projective planes is odd, it also enables to construct 3-
resolvable 5-designs with a largest possible block size. In general, the method appears
to be very effective, as it yields infinitely many 2-resolvable 3-designs with a large
variety of blocks sizes. A study of simplicity of the constructed designs remains a
challenging problem.
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