Shadow and Shade of Designs $4 - (2^f + 1, 6, 10)$

Jürgen Bierbrauer Mathematisches Institut der Universität Im Neuenheimer Feld 288 69 Heidelberg

Tran van Trung
Institut für Experimentelle Mathematik
Universität Essen
Ellernstrasse 29
4300 Essen 12, Germany

1 Introduction

Let $q = 2^f$, f odd. Define blocks to be the 6-subsets of PG(1,q) having stabilizer S_3 in PGL(2,q). It has been shown in [3] that this yields a block design \mathcal{B} with parameters 4 - (q+1,6,10). We shall prove the following:

Theorem 1.1 If (f,6) = 1, then block intersection number 5 does not occur in the block design \mathcal{B} .

As is usual in combinatorics of finite sets (see [2]), we consider the *shadow* $\Delta \mathcal{B}$ and the *shade* $\nabla \mathcal{B}$ of \mathcal{B} . Here $\Delta \mathcal{B}$ is the family of those 5-subsets of PG(1,q) which are contained in some member of \mathcal{B} , $\nabla \mathcal{B}$ consists of the 7-subsets of PG(1,q) which contain some member of \mathcal{B} .

Corollary 1.2 If (f, 6) = 1, then $\Delta \mathcal{B}$ is a block design with parameters 4 - (q + 1, 5, 20), $\nabla \mathcal{B}$ is a block design with parameters 4 - (q + 1, 7, 70(q - 5)/3). The full automorphism group of $\Delta \mathcal{B}$ and of $\nabla \mathcal{B}$ is $\mathsf{PFL}(2, q)$.

Proof of the Corollary. The parameters of $\Delta \mathcal{B}$ follows directly from Theorem 1.1 and the parameters of \mathcal{B} . As for $\nabla \mathcal{B}$, each block of $\nabla \mathcal{B}$ contains exactly one block of \mathcal{B} . We get $\lambda_4(\nabla \mathcal{B}) = 10(\mathfrak{q}-5) + 4(\lambda_3(\mathcal{B})-10)$. As $\lambda_3(\mathcal{B}) = 10(\mathfrak{q}-2)/3$, we can calculate $\lambda_4(\nabla \mathcal{B})$. By construction all of our designs admit $\mathsf{P}\Gamma\mathsf{L}(2,\mathfrak{q})$ as an automorphism group. A short glance at the list of 3-transitive permutation groups shows that the full automorphism group of our designs cannot be larger.

Theorem 1.3 If (f, 6) = 1, then ΔB is disjoint from Alltop's design with parameters 4-(q+1,5,5) as constructed in [1]. Thus the union of these designs has parameters 4-(q+1,5,25) and full automorphism group $P\Gamma L(2,q)$.

2 The proofs

Proof of Theorem 1.1. It has been proved in [3] that blocks of \mathcal{B} are exactly the unions of two orbits of elements of order 3 in $PGL(2, \mathfrak{q})$.

Let $S \subset PG(1, q)$, |S| = 4. Then S is in 10 blocks. Four of these arise from elements of order 3 having one orbit completely in S. These are the *block of type I*, and points $\notin S$ on one of these blocks are *neighbours of type I* of S:

 $N_I(S) = \{P | P \notin S, \text{ there is an element of order 3 such that } S \cup \{P\} \text{ is in the union of two orbits and one of these orbits is contained in } S\}.$

The remaining 6 blocks through S have type II. They yield neighbours of type II of S:

 $N_{II}(S) = \{P | P \notin S, \text{ there is an element of order 3 such that } S \cup \{P\} \text{ is in the union of two orbits and none of these orbits is contained in } S\}.$

Assume now there are blocks B_1 , B_2 of $\mathcal B$ satisfying $|B_1\cap B_2|=5$. Let $B_1=D_1\cup D_1'$, $B_2=D_2\cup D_2'$ be the subdivision of our blocks into orbits of a subgroup $Z_3<\mathsf{PGL}(2,\mathfrak{q})$, say $D_1=\{1,2,3\},\ D_1'=\{4,5,6\}$. Without restriction $B_1\cap B_2=\{1,2,3,4,5\}\supset D_1$. If we choose $S=D_1\cup\{4\}$ or $S=D_1\cup\{5\}$, then B_1 will be of type I with respect to S. We have $B_2=\{1,2,3,4,5,x\}$, and without restriction either $D_2=\{1,2,x\},\ D_2'=\{3,4,5\}$ or $D_2=\{1,2,4\},\ D_2'=\{3,5,x\}$. In both cases the choice $S=\{1,2,3,5\}$ guarantees that B_2 has type II with respect to S.

Choose now $S = \{\infty, 0, 1, a\}$. We have just seen that we can assume B_1 to be of type I and B_2 to be of type II with respect to S. Let us denote the element $(\tau \longmapsto (a\tau + b)/(c\tau + d))$ either $(a\tau + b)/(c\tau + d)$ or by the corresponding matrix. The elements

$$\begin{split} &1/(\tau+1) \ : \ (\infty,0,1)(\alpha,1/(\alpha+1),(\alpha+1)/\alpha), \\ &\alpha^2/(\tau+\alpha) \ : \ (\infty,0,\alpha)(1,\alpha^2/(\alpha+1),\alpha(\alpha+1)), \\ &(\tau+\alpha^2+\alpha+1)/(\tau+\alpha) \ : \ (\infty,1,\alpha)(0,(\alpha^2+\alpha+1)/\alpha,\alpha^2+\alpha+1), \\ &\alpha(\tau+\alpha)/((\alpha^2+\alpha+1)\tau+\alpha^2) \ : \ (0,1,\alpha)(\infty,\alpha/(\alpha^2+\alpha+1),\alpha^2/(\alpha^2+\alpha+1)) \end{split}$$

shows

$$\begin{split} N_{\rm I}(S) = & \{1/(\alpha+1), (\alpha+1)/\alpha, \alpha(\alpha+1), \alpha^2/(\alpha+1), (\alpha^2+\alpha+1)/\alpha, \alpha^2/(\alpha^2+\alpha+1), \\ & \alpha^2+\alpha+1, \alpha/(\alpha^2+\alpha+1) \}. \end{split}$$

This set is invariant under $Stab(S) = \{a/\tau, (\tau + a)/(\tau + 1)\} \cong E_4$.

The neighbours of type II are furnished by elements of order 3 in PGL(2, q) affording one of six possible operations:

- $(1)\infty \mapsto 0, \ 1 \mapsto a,$
- $(2)\infty \mapsto 0, \ a \mapsto 1, \ldots,$
- $(6)\infty \mapsto \mathfrak{a}, \ 1 \mapsto 0$

The existence of such an element depends on a trace-condition in each of the six cases. If the codition is satisfied, there are exactly two elements of order 3 which afford this operation. This defines then a set $N_{II,i}(S)$ of 4 elements, $i=1,2,\ldots,6$. The two elements of order 3 defining II, i can be written in the form $\tau \longmapsto (\alpha \tau + \beta)/(\gamma \tau + d)$, where α, β, γ are determined and d is one of the two solutions of a quadratic equation. In each of these cases we shall list the data just mentioned. We have to prove then $N_{II,i}(S) \cap N_{I}(S) = \emptyset$

(provided the trace condition is satisfied). We still have the group $Stab(S) \cong E_4$ at our disposition. It has the nice property of permuting transitively the elements of $N_{II,i}(S)$ for very i. Thus it suffices to fix one elements $e \in N_{II,i}(S)$ and to check that $e \notin N_I(S)$, for every i = 1, 2, ..., 6. By our assumption (f, 6) = 1, no elements of $\mathbb{F}_q - \{0, 1\}$ can satisfy a polynomial equation of degree smaller than 5. We shall use this fact all the time.

$$\begin{split} &(II,1) \quad \sigma_1: \infty \mapsto 0, \ 1 \mapsto \alpha, \ \ \text{condition} \quad \text{tr}(1/\alpha) = 0, \\ &\sigma_1 = \alpha(1+d)/(\tau+d), \ \text{where} \ d^2 = \alpha(d+1), \quad \varepsilon = d. \\ &d = 1/(\alpha+1) \Rightarrow 1/(\alpha^2+1) = \alpha.\alpha/(\alpha+1) \Rightarrow \alpha^2(\alpha+1) = 1. \\ &d = (\alpha+1)/\alpha \Rightarrow (\alpha^2+1)/\alpha^2 = \alpha.1/\alpha = 1 \Rightarrow 1 = 0. \\ &d = \alpha(\alpha+1) \Rightarrow \alpha^2(\alpha^2+1) = \alpha(\alpha^2+\alpha+1) \Rightarrow \alpha^3+\alpha^2+1 = 0. \\ &d = \alpha^2/(\alpha+1) \Rightarrow \alpha^4/(\alpha^2+1) = \alpha(\alpha^2+\alpha+1)/(\alpha+1) \Rightarrow \alpha = 0. \\ &d = (\alpha^2+\alpha+1)/\alpha \Rightarrow (\alpha^4+\alpha^2+1)/\alpha^2 = \alpha(\alpha^2+1)/(\alpha^2+\alpha+1) \Rightarrow 1 = 0. \\ &d = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow \alpha^4/(\alpha^2+\alpha+1)^2 = \alpha(\alpha+1)/(\alpha^2+\alpha+1) \Rightarrow 1 = 0. \\ &d = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow \alpha^4/(\alpha^2+\alpha+1)^2 = \alpha(\alpha^2+1)/(\alpha^2+\alpha+1) \Rightarrow \alpha^4+\alpha^3+1 = 0. \\ &d = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow \alpha^2/(\alpha^2+\alpha+1)^2 = \alpha(\alpha^2+1)/(\alpha^2+\alpha+1) \Rightarrow \alpha^4+\alpha^3+1 = 0. \\ &(II,2) \quad \sigma_2: \infty \mapsto 0, \ 1 \mapsto \alpha, \ \ \text{condition} \quad \text{tr}(\alpha) = 0, \\ &\sigma_2 = (\alpha+d)/(\tau+d), \ \text{where} \ d^2 = d+\alpha, \quad \varepsilon = (\alpha+d)/d. \\ &e = 1/(\alpha+1) \Rightarrow d = \alpha+1 \Rightarrow \alpha^2+1 = (\alpha+1)+\alpha=1 \Rightarrow \alpha=0. \\ &e = \alpha(\alpha+1)/\alpha \Rightarrow d = \alpha^2+\alpha^2+\alpha = \alpha^2+\alpha. \\ &e = \alpha(\alpha+1) \Rightarrow d = \alpha/(\alpha^2+\alpha+1) \Rightarrow \alpha^2/(\alpha^2+\alpha+1)^2+\alpha/(\alpha^2+\alpha+1)+\alpha=0 \Rightarrow \alpha=0. \\ &e = \alpha^2/(\alpha+1) \Rightarrow d = \alpha(\alpha^2+1)/(\alpha^2+\alpha+1) \Rightarrow \alpha^3+\alpha+1=0. \\ &e = \alpha^2/(\alpha+1) \Rightarrow d = \alpha(\alpha+1)/(\alpha^2+\alpha+1) \Rightarrow \alpha^3+\alpha+1=0. \\ &e = \alpha^2/(\alpha+1) \Rightarrow d = \alpha(\alpha+1)/(\alpha^2+\alpha+1) \Rightarrow \alpha^3+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+1)/(\alpha^2+\alpha+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow d = \alpha(\alpha^2+\alpha+1)/(\alpha^2+1) \Rightarrow \alpha^4+\alpha+1=0. \\ &e = \alpha^2/(\alpha^2+\alpha+1) \Rightarrow \alpha^2/(\alpha^2+$$

$$\begin{split} \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = 1/(\alpha(\alpha + 1)) \Rightarrow \alpha^5 = 1 \Rightarrow f \equiv 0 \pmod{4}, \\ \varepsilon &= \alpha^2 + \alpha + 1 \Rightarrow d = \alpha/(\alpha + 1) \Rightarrow \alpha^2/(\alpha^2 + 1) + \alpha + 1 = 0 \Rightarrow \alpha^3 + \alpha + 1 = 0, \\ \varepsilon &= \alpha/(\alpha^2 + \alpha + 1) \Rightarrow d = (\alpha + 1)/\alpha^2 \Rightarrow (\alpha^2 + 1)/\alpha^4 + (\alpha^2 + 1)/\alpha^2 + 1 = 0 \Rightarrow 1 = 0. \\ (II, 4) \quad & \alpha_4 : \infty \mapsto 1, \ \alpha \mapsto 0, \ \ \text{condition} \quad \text{tr}(\alpha) = 1, \\ & \alpha_4 &= (\tau + \alpha)/(\tau + d), \ \text{where} \quad d^2 + d + \alpha + 1 = 0, \quad \varepsilon = \alpha/d. \\ \varepsilon &= 1/(\alpha + 1) \Rightarrow d = \alpha(\alpha + 1) \Rightarrow \alpha^2(\alpha^2 + 1) + \alpha(\alpha + 1) + \alpha + 1 = 0 \Rightarrow \alpha^4 = 1. \\ \varepsilon &= (\alpha + 1)/\alpha \Rightarrow d = \alpha^2/(\alpha + 1) \Rightarrow \alpha^4 + \alpha + 1 = 0. \\ \varepsilon &= \alpha(\alpha + 1) \Rightarrow d = 1/(\alpha + 1) \Rightarrow \alpha^3 + \alpha^2 + 1 = 0. \\ \varepsilon &= \alpha^2/(\alpha + 1) \Rightarrow d = (\alpha + 1)/\alpha \Rightarrow (\alpha^2 + 1)/\alpha^2 + (\alpha + 1)/\alpha + \alpha + 1 = 0 \Rightarrow \alpha^4 = 1. \\ \varepsilon &= (\alpha^2 + \alpha + 1)/\alpha \Rightarrow d = \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow (\alpha + 1) + (\alpha^4 + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = (\alpha^2 + \alpha + 1)/\alpha \Rightarrow (\alpha + 1)(\alpha^3 + \alpha^2 + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2 + \alpha + 1 \Rightarrow 0 = (\alpha^4 + \alpha^2 + 1) + (\alpha^2 + \alpha + 1) + \alpha + 1 \Rightarrow \alpha^4 = 1. \\ (II, 5) \quad & \alpha_5 : \infty \mapsto \alpha, \ 0 \mapsto 1, \ \text{condition} \quad \text{tr}(1/(\alpha + 1)) = 1, \\ & \alpha_5 &= (\alpha\tau + d)/(\tau + d), \ \text{where} \quad d^2 + (\alpha + 1)/\alpha + \alpha^2 = 0, \quad \varepsilon = (\alpha + d)/(1 + d). \\ \varepsilon &= 1/(\alpha + 1) \Rightarrow d = (\alpha^2 + \alpha + 1)/\alpha \Rightarrow (\alpha + 1)(\alpha^3 + \alpha^2 + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow (\alpha^2 + 1)(\alpha^3 + \alpha^2 + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow (\alpha^2 + 1)(\alpha^3 + \alpha^2 + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow \alpha^3 (\alpha + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow \alpha^3 (\alpha + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha/(\alpha^2 + \alpha + 1) \Rightarrow \alpha^3 (\alpha^2 + 1) + \alpha^2 \Rightarrow \alpha^3 (\alpha + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha/(\alpha^2 + \alpha + 1) \Rightarrow \alpha^2 (\alpha^2 + 1) + \alpha^2 \Rightarrow \alpha^3 (\alpha + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha/(\alpha^2 + 1) \Rightarrow 0 = \alpha^2/(\alpha^2 + 1) + \alpha^2 \Rightarrow \alpha^3 (\alpha + 1) = 0. \\ \varepsilon &= \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2/(\alpha^2 + \alpha + 1) \Rightarrow 0 = \alpha^2/(\alpha^2 + 1) + \alpha^2 \Rightarrow \alpha^3 = 0. \\ (\text{III.} 6) \quad & \alpha_6 : \infty \mapsto \alpha, \ 1 \mapsto 0, \ \text{condition} \quad \text{tr}(1/\alpha) = 1, \\ \alpha_6 &= \alpha(\tau + 1)/\alpha \Rightarrow d = \alpha^2/(\alpha + 1) \Rightarrow 0 = \alpha^2/(\alpha^2 + 1) + \alpha^2 \Rightarrow \alpha = 0. \\ (\text{III.} 6) \quad & \alpha_6 : \infty \mapsto \alpha, \ 1 \mapsto 0, \ \text{condition} \quad \text{tr}(1/\alpha) = 1, \\ \alpha_6 &= \alpha(\tau + 1)/\alpha \Rightarrow d = \alpha^2/(\alpha^2$$

$$\begin{split} e &= \alpha^2 + \alpha + 1 \Rightarrow d = \alpha/(\alpha^2 + \alpha + 1) \Rightarrow \alpha = 1. \\ e &= \alpha/(\alpha^2 + \alpha + 1) \Rightarrow d = \alpha^2 + \alpha + 1 \Rightarrow (\alpha^4 + \alpha^2 + 1) + (\alpha^3 + \alpha^2 + \alpha) + \alpha^2 + \alpha = 0 \Rightarrow \alpha = 1. \end{split}$$
 We get a contradiction in each case. Theorem 1.1 is proved.

Proof of Theorem 1.3. Let X be a block of Alltop's design, i.e. |X|=5 and $Stab(X)\cap PGL(2,q)\cong E_4$. We can choose without restriction $X=\{\infty,0,1,\alpha,\alpha+1\}$ for some $\alpha\in |GF_q-\{0,1\}$. Assume $X\in\Delta\mathcal{B}$. This means there is an element ρ of order 3 in PGL(2,q) having X in the union of two orbits. By using Stab(X) we can assume that one of the following holds:

(i)
$$< \rho > = <(\infty, 0, 1) >$$
, (ii) $< \rho > = <(\infty, 0, \alpha) >$,

(iii)
$$<\rho>=<(\infty,0,a+1)>$$
, (iv) $<\rho>=<(0,1,a)>$.

Assume (i) holds. Then $\rho = (\tau \mapsto 1/(\tau+1))$. The orbit of α under ρ contains $1/(\alpha+1)$ and $(\alpha+1)/\alpha$. Thus $\alpha+1$ is not in this orbit, contradiction. Similar considerations lead to contradictions in the remaining cases. The statement concerning automorphism group follows as in the proof of the Corollary.

References

- [1] W. O. Alltop, An infinite class of 4-designs, Journal of Comb. Theory 6 (1969), 320–322..
- [2] IAN ANDERSON, Combinatorics of finite sets, Clarendon Press, Oxford 1987.
- [3] J. BIERBRAUER, A new family of 4-designs, to appear in Journal of Comb. Theory A.