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1 Introduction

Let q = 2f, f odd. Define blocks to be the 6-subsets of PG(1, q) having stabilizer Ss in
PGL(2,q). It has been shown in [3] that this yields a block design B with parameters
4—(gq+1,6,10). We shall prove the following;:

Theorem 1.1 If (f,6) = 1, then block intersection number 5 does not occur in the block
design B.

As is usual in combinatorics of finite sets (see [2]), we consider the shadow AB and the
shade VB of B. Here AB is the family of those 5-subsets of PG(1, q) which are contained in
some member of B, VB consists of the 7-subsets of PG(1, q) which contain some member
of B.

Corollary 1.2 If (f,6) = 1, then AB is a block design with parameters 4 — (q + 1,5, 20),
V3B is a block design with parameters 4 — (q + 1,7,70(q — 5)/3). The full automorphism
group of AB and of VB is PTL(2,q).

Proof of the Corollary. The parameters of AB follows directly from Theorem 1.1 and the
parameters of B. As for VB , each block of VB contains exactly one block of B. We get
AM(VB) =10(qg—5)+4(A3(B)—10). As A3(B) = 10(q—2)/3, we can calculate A4(VB). By
construction all of our designs admit PT'L(2, q) as an automorphism group. A short glance
at the list of 3-transitive permutation groups shows that the full automorphism group of
our designs cannot be larger. O

Theorem 1.3 If (f,6) = 1, then AB is disjoint from Alltop’s design with parameters 4—(q+
1,5,5) as constructed in [1]. Thus the union of these designs has parameters 4—(q+1,5,25)
and full automorphism group PTL(2,q).



2 The proofs

Proof of Theorem 1.1. It has been proved in [3] that blocks of B are exactly the unions of
two orbits of elements of order 3 in PGL(2, q).

Let S € PG(1,q), |S| = 4. Then S is in 10 blocks. Four of these arise from elements of
order 3 having one orbit completely in S. These are the block of type I, and points € S on
one of these blocks are neighbours of type I of S:

N1(S) ={PIP &€ S, there is an element of order 3 such that S U{P} is in the union of two
orbits and one of these orbits is contained in S}.

The remaining 6 blocks through S have type II. They yield neighbours of type II of S:

N11(S) ={P|P &€ S, there is an element of order 3 such that S U{P} is in the union of two
orbits and none of these orbits is contained in S}.

Assume now there are blocks By, By of B satisfying |By N Bg| = 5. Let By = Dy U D,
B2 = Dy U D/ be the subdivision of our blocks into orbits of a subgroup Zs < PGL(2, q),
say D1 ={1,2,3}, D] = {4,5,6}. Without restriction By N By = {1,2,3,4,5} D Dy. If we
choose S = D; U{4} or S = D; U {5}, then B; will be of type I with respect to S. We
have By = {1,2,3,4,5,x}, and without restriction either Do = {1,2,x}, D} = {3,4,5} or
Dy ={1,2,4}, D} ={3,5,x}. In both cases the choice S ={1,2, 3,5} guarantees that By has
type II with respect to S.

Choose now S ={00,0, 1, a}. We have just seen that we can assume B to be of type I and
By to be of type II with respect to S. Let us denote the element (T (at+b)/(ct+ d))
either (at+ b)/(ct+ d) or by the corresponding matrix. The elements

1/(t+1) : (00,0,1)(a,1/(a+1),(a+1)/a),

a’?/(t+a) : (00,0,a)(1,a?/(a+1),ala+1)),

(t+a’+a+1)/(t+a) : (00,1,a)(0,(a®?+a+1)/a,a®+a+1),

a(t+a)/((a®>+a+ 1)1+ a?) : (0,1,a)(c0,a/(a®+a+1),a%/(a® + a+1))
shows

Ni(S)={1/(a+1),(a+1)/a,a(a+1),a®/(a+1),(a®> +a+1)/a,a®/(a®+a+1),
a?+a+1,a/(a®+a+1).

This set is invariant under Stab(S) ={a/7, (T+ a)/(T+ 1)} = E4.

The neighbours of type II are furnished by elements of order 3 in PGL(2, q) affording one
of six possible operations:

(1)oo — 0, 1 — a,

(2)o0— 0, a—1,...,

(6)cc—a, 1—0

The existence of such an element depends on a trace-condition in each of the six cases.
If the codition is satisfied, there are exactly two elements of order 3 which afford this
operation. This defines then a set Ny i(S) of 4 elements, i =1,2,...,6. The two elements
of order 3 defining II,1 can be written in the form T+ (at+ p)/(yTt+ d), where «, B,y

are determined and d is one of the two solutions of a quadratic equation. In each of these
cases we shall list the data just mentioned. We have to prove then Ny i(S) N N(S) =0



(provided the trace condition is satisfied). We still have the group Stab(S) = E4 at our
disposition. It has the nice property of permuting transitively the elements of Ny ;(S) for
very i. Thus it suffices to fix one elements e € Ny ;(S) and to check that e ¢ Ny(S), for
every i=1,2,...,6. By our assumption (f,6) = 1, no elements of Fq — {0, 1} can satisfy a
polynomial equation of degree smaller than 5. We shall use this fact all the time.

(II,1) o07: c0o+—0, 1~ a, condition tr(1l/a)=0,

or=a(l+d)/(t+d), where d> =a(d+1), e=d.

d=1/(a+1)=1/(a’+1)=aa/(a+1)= a?(a+1)=1.

d=(a+1)/a= (a®>+1)/a®>=a.l/a=1=1=0.
d=ala+1)=a?(a®?+1)=a(a®>+a+1)=a’+a®+1=0.
d=a?/(a+1)=a*/(a®>+1)=a(a®’+a+1)/(a+1)=a=0.
d=(a’?+a+1)/a= (a*+a’+1)/a®>=a(a®+1)/a=a’+1=1=0.
d=a?/(a®>+a+1)=a*/(a®?>+a+1)?=ala+1)/(a®?+a+1)=1=0.
d=a’4a+l=a*+a’?+1=a(a®?+a)=a*+a®>+1=0.
d=a/(a®?+a+1)=ad?/(a®?+a+1)2=a(a®*+1)/(a®?+a+1)=a*+a’*+1=0.

(I1,2) o02: c0o— 0, 1 — a, condition tr(a)=0,

oy =(a+d)/(t+d), where d>=d+a, e=(a+d)/d.

e=1/(a+l)=d=a+1=a’+1=(a+1)+a=1=a=0.
e=(a+1l)/a=d=a’>=a*=a’+a.
e=ala+1l)=d=a/(a®>+a+1) = da?/(a®>+a+1)?+a/(a?+a+1)+a=0=a=0.

e=ad’/(a+1)=d=ala+1)/(a®>+a+1)=at+a+1=0.

e=(a’+a+1)/a=d=a?/(a’+1) = a*/(a’*+1)+a?/(a®’+1)+a=0= a*+a+1=0.
e=a?/(a?>+a+1)=d=a(a®+a+1)/(a+1)=a*+a+1=0.
e=ad’+a+l=>d=1/(a+1)=1/(a®>+1)+1/(a+1)+a=0=a=0.
e=a/(a’+a+1)=d=a(a’?+a+1)/(a®>+1)=a=0.

(II,3) o03: co+—1, 0— a, condition tr(1/(a+1)) =0,

o3 =(t+ad)/(t+d), where d> + (a+1)d+1=0, e=(ad+1)/(d+1).

e=1/(a+1)=d=a/(®>+a+1)=a?/(a®>+a+ 1)+ (a+1a/(ac®*+a+1)+1=
0=a=1.

e=(a+1l)/a=d=1/(a®’+a+1)=0=a*+a*+a®>+1=(a+1)(a®+a+1).

e=ala+1l)=d=(a®?+a+1)/a®2=a®=1=f=0 (mod 4).

e=ad?/(la+1)=d=(a’+a+1)/a=a=1.

e=(a’4+a+1)/a=d=(a+1)= (®>+1)+(a+D(a+1)+1=0=1=0.



e=ad?/(a>4+a+1)=d=1/(ala+1))=a’=1=f=0 (mod 4).
e=ad’+a+l=>d=a/(a+1)=a?/(a®>+1)+a+1=0=>a®+a+1=0.
e=a/(a’+a+1l)=d=(a+1)/a®>= (a®>+1)/a*+ (a®>+1)/a®+1=0=1=0.

(I1,4) o04: co+—1, a+— 0, condition tr(a) =1,

o= (t+a)/(t+d), where d>+d+a+1=0, e=a/d.

e=1/(a+1)=d=ala+1)=a?(a®+1)+ala+1)+a+1=0=a*=1.
e=(a+1)/a=d=d*/(a+1)=a*+a+1=0.
e=ala+1l)=d=1/(a+1)=a?+a?+1=0.
e=a’/(a+1)=d=(a+1)/a=(a®+1)/a’+(a+1)/a+a+1=0=a*=1.
e=(a’+a+1)/Ja=d=a?/(a’>+a+1)=(a+1)+(a*+1)=0.
e=a?’/(a®>+a+1l)=d=(a’?+a+1)/a= (a+1)(a®+a’+1)=0.
e=a’+a+l=d=a/(a®?+a+1)= (a+1)(a*+a+1)=0.
e=a/(a®*+a+l)=d=a’+a+1=0=(a*+a?+1)+(a®+a+1)+a+1=a*=1.

(II,5) o5: cor— a, 0— 1, condition tr(1/(a-+1)) =1,
o5 = (at+d)/(t+d), where d®> + (a+1)d+a®> =0, e=(a+d)/(1+4d).

e=1/(a+1)=d=(a?+a+1)/a= (a+1)(a®+a®+1)=0.
e=(a+1)/a=d=a’+a+1=0=a*+a?+1+(®+1)+a?= a®(a+1)=0.
e=ala+1l)=d=a*/(a®>+a+1)=(a+1)(a*+a®+1)=0.
e=a?/(la+1)=d=a/(a®?+a+1)=a’=1=f=0 (mod 4).
e=(a’4+a+1)/a=d=1/(a+1)=0=1/(a®>+1)+1+a®>=a=0.
e=d’/(a’4+a+1)=d=ala+1)=0=a?®+1)+aa®+1)+a®=a*+a’+a

e=ad’+a+l=d=(a+1)/a=0=(a®>+1)/a’+ (a’+1)/a+a’=d"=1=f=0
(mod 4).

e=a/(a’+a+1l)=d=a?/(a+1)=0=a*/(a®>+1)+a?+a’>=a=0.

(II,6) o0g: co+—a, 1+—0, condition tr(l/a)=1,

o =a(t+1)/(t+d), where d>+ad+a(a+1)=0, e=a/d.

e=1/(a+1)=d=ala+1)=ala+1)(a®+1)=0.
e=(a+1)/a=d=d*’/(a+1)=a®+a+1=0.
e=ala+l)=d=1/(a+1)=a*+a®+1=0.
e=ad?/(a+1)=d=(a+1)/a=a®=1.
e=(a®+a+1l)/a=d=ad’/(a®>+a+1)=(a+D(a*+a®+1)=0.
e=a?/(i®4a+1)=d=(a® +a+1)/a=a%=1.



e=ad’+a+l=>d=a/(a®>+a+1)=a=1.
e=a/(a®>+a+1l)=d=a’+a+1= (a*+a’+1)+(a*+a®+a)+a’+a=0=a=1.

We get a contradiction in each case. Theorem 1.1 is proved. O

Proof of Theorem 1.3. Let X be a block of Alltop’s design, i.e. |X| = 5 and Stab(X) N
PGL(2,q) = E4. We can choose without restriction X = {c0,0,1,a,a + 1} for some a €
|IGFq —{0,1}. Assume X € AB. This means there is an element p of order 3 in PGL(2, q)
having X in the union of two orbits. By using Stab(X) we can assume that one of the
following holds:

i) <p>=<(00,0,1)>, (i) <p>=<(00,0,a) >,

(i) <p>=<(00,0,a+1)>, (iv)] <p>=<(0,1,a)>.

Assume (i) holds. Then p = (T +— 1/(t+ 1)). The orbit of a under p contains 1/(a + 1)
and (a+ 1)/a. Thus a + 1 is not in this orbit, contradiction. Similar considerations lead

to contradictions in the remaining cases. The statement concerning automorphism group
follows as in the proof of the Corollary.
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