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Abstract

Frameproof codes were introduced by Boneh and Shaw as a method of “digital
fingerprinting” which prevents a coalition of a specified size ¢ from framing a user not
in the coalition. Stinson and Wei then gave a combinatorial formulation of the problem
in terms of certain types of extremal set systems.

In this paper, we study frameproof codes that provide a certain (weak) form of trace-
ability. We extend our combinatorial formulation to address this stronger requirement,
and show that the problem is solved by using (i, j)-separating systems, as defined by
Friedman, Graham and Ullman. Using constructions based on perfect hash families,
we give the first efficient explicit constructions for these objects for general values of ¢
and j. We also review nonconstructive existence results that are based on probabilistic
arguments.

Then we look at two other, related concepts, namely key distribution patterns and
non-adaptive group testing algorithms. We again approach these problems from the
point of view of extremal set systems, and we describe a natural common setting in
which these two problems are complementary special cases. This approach also demon-
strates a close relationship between these two problems and frameproof codes. Explicit
constructions are given, and some non-constructive existence results are reviewed. In
the case of key distribution patterns, our explicit constructions are the most efficient
ones known.



1 Introduction

In order to protect a product (such as digital data, computer software, etc.), a distributor
marks each copy with some codeword and then ships each user his data “marked” with
that codeword. This marking (a “digital fingerprint”) allows the distributor to detect any
unauthorized copy and trace it back to the user who created it. This will deter users from
releasing an unauthorized copy. However, a coalition of users may detect some of the marks,
namely the ones where their copies differ. They can then change these marks arbitrarily.
To prevent a group of users from “framing” another user, Boneh and Shaw [6] defined the
concept of e-frameproof codes. A c-frameproof code has the property that no coalition of
at most ¢ users can frame a user not in the coalition. In [38], combinatorial methods are
used to further investigate frameproof codes. Several constructions of e-frameproof codes
are given in [6, 38, 8].

Frameproof codes prevent a coalition from framing a user not in the coalition. However,
the coalition may be able to change some of the marks they have detected so that the
distributor cannot trace an illegal copy. To protect against this situation, we might try
to construct a code such that, given an illegal copy, at least one user in the coalition that
created it can be found. Unfortunately, such a code cannot exist, as pointed out in [6]. In
this article, we consider a slightly weaker property, where we require that it is impossible
that an illegal copy could be created by two disjoint coalitions. In a sense, our definition is
the strongest that can be realized.

We present a combinatorial formulation of this problem that turns out to be equivalent
to the (i,j)-separating systems defined almost 30 years ago by Friedman, Graham and
Ullman [18]. Using constructions based on perfect hash families, we give the first efficient
explicit constructions for these objects for general values of ¢ and j (our constructions
produce systems in which the number of blocks is a polynomial in log v for fixed i and j).
We also review nonconstructive existence results that are based on probabilistic arguments,
presenting a unified treatment of several bounds that can be found in the literature. These
bounds improve on the explicit constructions, showing the existence of systems in which
the number of blocks is O(logv) for fixed ¢ and j.

In the second part of the paper we look at two other, related concepts, namely key
distribution patterns and non-adaptive group testing algorithms. We again approach these
problems from the point of view of extremal set systems, and we describe a natural common
setting which shows a close relationship between these two problems and frameproof codes.
We accomplish this by generalizing the definitions of two (equivalent) types of set systems,
namely cover-free families and disjunct systems, and show that the two problems are in fact
complementary special cases of these set systems. Our explicit constructions based on hash
families can be applied here as well, yielding key distribution patterns in which the number
of keys is a polynomial in the logarithm of the number of participants, as well as group
testing algorithms in which the number of tests is a polynomial in the logarithm number of
samples. In the case of key distribution patterns, our explicit constructions are the most
efficient ones known. We also review a simple probabilistic method that can be used to
obtain good bounds.

Remark 1.1 We will be defining several types of set systems in this paper. To improve
readability, we have listed all the abbreviations we use in the Appendix.



2 Definitions and basic results on frameproof codes

In this section, we give definitions of frameproof codes and secure frameproof codes, and
prove some basic results and properties of them.

2.1 Frameproof codes

Let v and b be positive integers (b denotes the number of users in the scheme). A set
= {wM w®, . w® C{0,1}is called a (v, b)-code and each w is called a codeword.
(For 1 < i < b, the codeword w(?) is held by user i.) A binary v-tuple z € {0,1}*\T"is called
an unregistered word. Given a code I', the incidence matriz M (I') will be the b x v matrix
in which the rows are the b codewords in T'.

Let ' be a (v, b)-code. Suppose C' = {w) @) ()} C T Forie {1,2,...,0},
we say that bit position 7 is undetectable for C' if
(u2) _ (ua)

w, VN =w Y = = w;
Let U(C) be the set of undetectable bit positions for C'. Then
F(C) ={z € {0,1}" : 2[p(cy = w(“")|U(0) for all w(*) e '}

is called the feasible set of C'. The feasible set F'(C') represents the set of all possible v-tuples
that could be produced by the coalition C' by comparing the d codewords they jointly hold.
Observe that C' C F(C') for all C, and F(C) = Cif |C] = 1.

Now, if there is a codeword w() € F(C)\C, then user j could be “framed” if the
coalition C' produces the v-tuple w?). The following definition from [6] is motivated by the
desire for this situation not to occur.

Definition 2.1 A (v,b)-code I' is called a c-frameproof code if, for every C' C T" such that
|C] < ¢, we have FI(C)NT' = C. We will say that I' is a ¢-FPC(v, b) for short.

Thus, in a c-frameproof code, the only codewords in the feasible set of a coalition of at
most ¢ users are the codewords of the members of the coalition. Hence, no coalition of at
most ¢ users can frame a user who is not in the coalition.

Example 2.1 ([6]) For any integer b, there exists a b-FPC(b,b), I'. The incidence matrix
M(T) is a b x b identity matrix. 0

In general, we are interested in constructing ¢-FPC(v,b) with b as large as possible
as a function of ¢ and v. Using the above example and error correcting codes with large
minimal distance, Boneh and Shaw [6] gave a construction of frameproof codes. Stinson
and Wei [38] investigated the combinatorial properties of frameproof codes and gave some
explicit constructions of frameproof codes by using combinatorial designs, such as ¢t-designs,
packing designs and perfect hash families. Further existence results, both constructive and
nonconstructive, can be found in Chee [8]. Related questions, including generalizations of
frameproof codes to the setting of public-key cryptography, have been studied in [3, 9, 28,
29, 30, 31].



2.2 Traceability of frameproof codes
Suppose that I"is a ¢-FPC(v,b). For any = € {0, 1}, define

F Y 2)={CCT:|C|<cand z € F(C)}.

Evidently, F'~!(z) consists of all the coalitions of size at most ¢ that could have produced
x.

Suppose that € {0,1}"\I" (i.e.,  is an unregistered word). If it happened that
|F~Y(z)] = 1, say F~1(x) = {C}, then we could conclude that C' was the coalition that
constructed x (assuming, of course, that all coalitions have size at most ¢). More generally,
if F='(x) # 0 and there exists a codeword w() such that w) € C for all C' € F~'(z), then
we would at least be able to identify user j as being guilty. Unfortunately, as shown in [6],
this is hoping for too much. The following theorem is a straightforward generalization of
[6, Theorem 11], which concerned the case ¢ = 2.

Theorem 2.1 Suppose ' is a c-FPC(v,b) with b > 2¢ — 1. Suppose D C I', where |D| =
2¢ — 1. Then there exists an unregistered word maj(D) € {0,1}" such that maj(D) € F(C')
for any C' C D with |C| = c.

Proof. Let D = {w(®) w(®) (=)} For 1 < i < v, define

Lt (el = 1) > ¢
0 if [{j:w!™ =0} > e

k3

maj(D); = {

It is easy to see that maj(D) € F(C) for any C' C D with |C| = ¢. It remains to show
that maj(D) is an unregistered word. Suppose not; then maj(D) = w(*) for some u. Let
C C D\{w™} with [C| = ¢. Then w(™ € F(C)NT, which contradicts the fact that T is
c-frameproof. 0

The above theorem says that we cannot be guaranteed of identifying a guilty user in a
c-FPC(v,b). For, if 2 = maj(D) for some D where |D| = 2¢ — 1, then

N c¢=0
)

CeF—1(z

Thus we are forced to consider a weaker condition, as follows.

Definition 2.2 Suppose that I' is a (v,b)-code. T' is said to be a c-secure frameproof
code if for any C1,Cy C T such that [C] < ¢, |Cy] < ¢ and Oy N Cy = 0, we have that
F(Cy) N F(C3) = 0. We will say that T' is a ¢-SFPC(v, b) for short.

Example 2.2 Let M(I') denote the following incidence matrix for a (3,4)-code:

_— o O =
o = O
_ = o O



= {100,010, 110,000},
{100,001, 101,000},
{100, 111,101,110},
{010,001, 000,011},
{010,111,011,110}  and
= {001,111,011,101}.

From this, it can easily be checked that
P, o)) 0 F({n®®, 09}) =
P, @) 0 F({n®, 09})
P, o) 0 F({n®, 09}) =

and

Il
= s =

The following result is easy.
Theorem 2.2 A ¢-SFPC(v,b) is a c-FPC(v,b).

Proof. Let T be a ¢-SFPC(v,b). Suppose that I' is not a ¢-FPC(v,b). Then there exists
a set C' C T' and a codeword w/) such that |C| < ¢ and wl) € F(C)\C. Suppose we
define C; = C and Cy = {w)}. Then, we have |Cy]| < ¢, |Cy] < ¢, C1NCy = § and
F(Cy)N F(Cy) = {wD} # . This contradicts the fact that T'is a e-SFPC(v, b). 0

A ¢-SFPC(v, b) does not permit traceability, but it does afford some security, as follows:

e It is impossible for a coalition Cy of size at most ¢ to implicate a disjoint coalition Cy
of size at most ¢ by constructing an unregistered word z € F'(Cy).

e If x is an unregistered word that has been constructed by a coalition of size at most
¢, then any C' € F~1(2) contains at least one guilty user.

We now consider 2-SFPC(v, b) in more detail. Suppose that I"is a 2-SFPC(v, b), suppose
that z is an unregistered word, and suppose that C' € F~!(z). Since 2 is an unregistered
word, |C| # 1. Since T" is a 2-SFPC(v,b), |C] < 2. Therefore, |C] = 2.

Since F~!(z) consists of a collection of 2-subsets of T, we can view it as the set of edges
of a graph on vertex set I'. Since I' is a 2-SFPC, it must be the case that any two distinct
edges in F'~1(2) are incident. From this it is easily seen that one of two possibilities must
oceur:

1. F71(2) is a star graph (i.e., there exists a vertex that is incident with every edge of
F=l(x)).
2. F~!(z) is isomorphic to K3 (the complete graph on three vertices).

As a consequence of this characterization of F~!(z) in the case ¢ = 2, we obtain the following
result.



Theorem 2.3 Suppose that T is a 2-SFPC(v,b), and suppose that x is an unregistered
word that is produced by a coalition of size at most two. Then one of the following two
possibilities must occur:

1. at least one guilty user can be identified; or

2. a set of three participants can be identified, two of which must be guilty.

3 Combinatorial descriptions of secure frameproof codes

In this section, we give two combinatorial descriptions of ¢-SFPC(v,b). The first equiva-
lence involves set systems, satisfying certain union and intersection properties, that we call
“sandwich-free families”. The second concerns separating systems, as defined in [18].

3.1 Sandwich-free families

We first define some terminology concerning set systems. A set system is a pair (X, B) where
X is a set of elements called points, and B is a set of subsets of X, the members of which
are called blocks. A set system can be described by an incidence matrix. Let (X, B) be a
set system where X = {2y, 29,...,2,} and B = {By, By, ..., By}. The incidence matriz of
(X, B) is the b x v matrix A = (a;;), where

0 — 1 ifz; € B
Y0 ife; ¢ B

Conversely, given an incidence matrix, we can define an associated set system in an obvious
way.

Now, if I' is a (v, b)-code, then the matrix M (T') is a 0-1 matrix, which can therefore be
thought of as the incidence matrix of a set system. For any codeword w € T', we will use
B,, to denote the associated block in the corresponding set system.

Lemma 3.1 Let C' = {wM w® ... w® C {0,1}" and let 2 € {0,1}". Then z € F(C)

if and only if
d

d
(Buw €B: C|JB,w-
Proof. Note that NB, ) C B, if and only if 2; = 1 when all the codewords in C' have jth
bit equal to 1. Similarly, B, C UB, ) if and only if ; = 0 when all the codewords in '
have jth bit equal to 0. The conclusion follows. 0

Lemma 3.1 can be used to prove the following combinatorial description of frameproof
codes that was given in [38].

Theorem 3.2 [38] There exists a c-FPC(v,b) if and only if there exists a set system (X, B)
such that | X| = v,|B| = b and for any subset of d < ¢ blocks By, By, ..., By € B, there does
not exist a block B € B\{By, Bz, ..., B4} such that

d d
(B cBC|JB:
=1 =1



We will present a similar description of secure frameproof codes. First, we need to define
a certain type of set system.

Definition 3.1 A set system (X, B) is an (¢, j)-sandwich-free family provided that, for any
two disjoint subsets Cy, Cy of B, where |C] < ¢ and |Cy| < j, the following property holds:

NslULN B2 UBIN{UB
BeC, BeC, BeC BeCy

An (i, j)-sandwich-free family, (X, B), will be denoted as an (¢, j)-SFF(v,b) if | X| = v and
|B| = b.

Theorem 3.3 A ¢-SFPC(v,b) exists if and only if there exists a (¢, c)-SFF(v,b).

Proof. Suppose that (X, B) is a set system. It is easy to see that (X, B) is not a (c,c)-
sandwich-free family if and only if there is a set W C X such that

(1 Bcwc |JB

BeC BeC
and
(N1 Bcwc | B,
Bel, Bel,
where |Cy] = |C3| = ¢. Now, viewing €' and C3 as sets of codewords in the associated

(v, b)-code, the two conditions above are equivalent to
F(C1) N F(Cy) # 10,

by Lemma 3.1. 0

Example 3.1 The following (2,2)-SFF(3,4) is equivalent to the 2-SFPC(3,4) presented in
Example 2.2:

X = {1,2,3}
B = {{1}7{2}7{3}7{17273}}'

We also have the following result concerning frameproof codes, which follows immedi-
ately from Theorem 3.2.

Theorem 3.4 A c-FPC(v,b) exists if and only if there exists a (1,¢)-SFF(v,b).



3.2 Separating systems

Friedman, Graham and Ullman [18] defined separating systems as follows.

Definition 3.2 A set system (X, B) is an (¢, j)-separating system provide that, for any
P,Q C X such that |P| < ¢, |Q| < jand PN @ = 0, there exists a B € B such that either
PCBand @QNB=0;0or Q@ C Band PN B =0. An (¢, j)-separating system, (X, B), will
be denoted as an (i, 7)-SS(v,b) if | X| = v and |B| = b.

Sandwich-free families and separating systems are closely related; they are in fact “dual”
incidence structures. This is made precise in the proof of the following theorem.

Theorem 3.5 There exists an (i,7)-SFF(v,b) if and only if there exists an (i, j)-SS(b,v).

Proof. Suppose (X, B) is an (7, j)-SFF(v,b). Let Cy,Cy be two subsets of B, |C4| = 1,
|Cy] = j and C; N Cy = 0. Then there exists a point 2 € X such that

S mBU mB and 2z ¢ UBm UB

B601 BEOQ B€C1 B€O2

It follows that either

S m B and z¢ U B,
BeC Bel,
or
S m B and z¢ U B.
Bel, BeC

From this, it is easily seen that if A is the incidence matrix of (X, B), then the transpose,
AT is the incidence matrix of an (i, )-SS(b, v).

Conversely, if A is the vx b incidence matrix of an (7, 7)-SS(b, v), then A7 is the incidence
matrix of an (¢, 7)-SFF(v,b). 0

We have the following corollary of Theorems 3.5, 3.3 and 3.4.

Corollary 3.6 A c-FPC(v,b) exists if and only if there exists a (1,¢)-SS(b,v), and a c-
SFPC(v,b) exists if and only if there exists a (¢, c)-95(b,v).

Example 3.2 The following (2,2)-SS(4, 3) is equivalent to the 2-SFPC(3,4) presented in
Example 2.2 and the 2-SFF(3,4) presented in Example 3.1:

X = {1,2,3,4}
B = {{1,4},{2,4},{3,4}}.

4 Constructions of secure frameproof codes

In this section we present some explicit constructions, both direct and recursive, for secure
frameproof codes.



4.1 Two direct constructions

We begin with two direct constructions of secure codes.
Theorem 4.1 For any integer ¢ > 2, there is a c- SFPC((ZC 1) 20)

Proof. We define the incidence matrix M (I'). The rows of M (I") are indexed by the elements
in the set {1,...,2¢}, and the columns are indexed by the c-subsets S C {1,...,2¢} such
that 1 € S. Denote these subsets as Sy,...,.5,, where v = <2CC_—11>‘ Now, the entry in row ¢
and column j of M(T') is defined to be

o 1 ifies;
TET 0 ifi g s,

We show that T' = {w®, ..., w(?)} is a c- SFPC((QC 1) 20). It suffices to verify that

Definition 2.2 is satisfied for all Cl,CQ C T such that |C| = |Cy| = ¢ and Cy; N Cy = 0.
Since b = 2¢, it follows that C'y = T'\C';. Without loss of generality, suppose that w) e ¢y,

Now, there is a unique bit position 4 such that wl(»]) = 1 for all wl) € ¢y and w( D=
for all wl) e Cy. 1If follows that z; = 1if z € F(Cy) and 2; = 0if @ € F(C3). Hence,
F(C1) N F(Cq) =0, as desired. 0

Remark 4.1 The ¢-SFPC constructed in Theorem 4.1 has v as small as possible, given
that b = 2e¢.

Example 4.1 The 2-SFPC(3,4) given in Example 2.2 is constructed by the method of
Theorem 4.1. 0

Example 4.2 We present a 3-SFPC(10, 6) constructed using the method described in The-
orem 4.1. The incidence matrix M(I") is as follows:

1111111111
1111000000
10001 11000
0100 1O0O01T1PO0
001 0010101
0001 0O0T1O0T11

The following result can be proved in a similar way.

Theorem 4.2 For any integer ¢ > 2, there is a c- SFPC( (2C 1) 2c + 1)

Proof. Let the 2¢ x (*7') matrix M(T') be defined as in Theorem 4.1. Then construct a

(2c+ 1) x 2(*7") matrix M as follows:
_ (M@ | M(T)
M= ( 0o --.- o1

It is not hard to show that M is the incidence matrix of a c- SFPC( (2C 1) 2¢+ 1) 0




4.2 A construction using perfect hash families

Perfect hash families have been extensively studied by computer scientists for over 15 years.
Results on perfect hash families can be found in numerous textbooks and papers; Mehlhorn
[26] is a good textbook source. Recently, several applications in cryptography have been
found, including broadcast encryption [17], threshold signature schemes [5, 4] and frame-
proof codes [38]. We will modify our construction given in [38, Theorem 3.12] so that it can
be used for secure frameproof codes.

First, we need to define perfect hash families.

Definition 4.1 An (n, m,w)-perfect hash family is a set of functions F, such that |Y| = n,
| X|=m, f:Y — X foreach f € F, and for any C' C {1,2,...,n} such that |C| = w, there
exists at least one f € F such that f|c is one-to-one. When |F| = N, an (n, m, w)-perfect
hash family will be denoted by PHEF(N;n, m, w).

Remark 4.2 A PHF(N;n,m,w) can be depicted as an N x n matrix with entries from
{1,2,...,m}, having the property that in any w columns there exists at least one row such
that the w entries in the given w columns are distinct.

Given a “small” ¢-SFPC, we can recursively construct a “large” ¢-SFPC by using perfect
hash families. We present our construction, using the more general language of sandwich-
free families, in the following theorem.

Theorem 4.3 If there exists an (i,7)-SFF(v,m) and a PHF(N;n,m,i+ j), then there
exists an (i,7)-SFF(vN,n).

Proof. Let (X,B) be an (i, j)-SFF(v,m), and let F be a PHF(N;n,m, i+ j), where f :
Y — X for any f € F.
Define W = X x F, and for every y € Y, define
Ay ={(By). f): f€ T}

Let A={A4,:y € Y}. We will show that the set system (W, .A) is an (i, j)-SFF(vN, n).
Suppose that (W, .A) is not an (¢, j)-SFF(vN, n). Then there exist two disjoint subsets
C1,Cy CY such that |Cy]| =1, |Cy] = j and

AajuinayelUajniua

yeCy y€els yel y€eCs

Then, for every f € F, it must be the case that

N Biw |Ul N Bw ]| UBw N U Brw |- (1)

yeCy y€els yel y€els

Now, since F is a perfect hash family, there is an f € F such that f|c,uc, is one-to-one.
For this particular f, f(Cy) and f(C3) are two disjoint subsets of X, and therefore (1)
contradicts the fact that (X, B) is an (¢, j)-SFF (v, m). 0

10



The following recursive construction is useful in obtaining explicit constructions for
infinite classes of perfect hash families.

Lemma 4.4 [2, Theorem 4.4] Suppose there exists a PHF(Ng; ng, m, w), where ged (no, (7“2”) !) =
1. Then there exists a PHF(((IQU) + 1)] No:no?' ,m, w) for any integer j > 0.

We give an example to show how Lemma 4.4 and Theorem 4.3 can be applied to obtain
an infinite family of 2-SFPC that can be constructed efficiently.

Example 4.3 There exists a PHF(7;7,4,4) as follows:

12 3 4 1 2 3
1 2 3 4 2 1 4
1 2 3 4 3 41
1 2 3 4 4 3 2
23 2 311 4
2 41 2 3 4 3
112 2 3 4 3

Theorem 4.5 There exists a 2-SFPC(3- 7741 72"} for all j > 0.

Proof. From Lemma 4.4 and Example 4.3, we have a PHF(7/1';7% 4,4) for all j > 0.
Since a 2-SFPC(3,4) exists by Example 2.2, the conclusion follows from Theorem 4.3. [J

4.3 A construction using separating hash families

If we look closely at the proof of Theorem 4.3, we see that the existence of a hash function f,
that is one-to-one on the set C'y UC of size 1+ 7, is stronger than what we require. In fact, it
is sufficient that, for any two disjoint subsets C'; and Cy of sizes ¢ and j, respectively, there
exists a hash function f such that {f(y) :y € C1} N{f(y) : y € Cy} = @. This motivates
the following definition.

Definition 4.2 An (n, m, {wy, wa})-separating hash family is a set of functions F, such
that Y| =n, |X|=m, f:Y — X for each f € F, and for any C',Cy C {1,2,...,n} such
that |C1| = wy, |Cy] = wy and C4 N Cy = 0, there exists at least one f € F such that

{fly) :yeCiyn{fly) 1y e Cy} =0.

The notation SHF(N;n, m, {wy, wz}) will be used to denote an (n, m,{wy, w,})-separating
hash family with |F| = N.

Remark 4.3 An SHF(N;n, m,{w, wy}) can be depicted as an N x n matrix with entries
from {1,2,...,m}, such that in any two disjoint sets €y and C5 of w; and wy columns
(respectively), there exists at least one row such that the entries in the columns Cy are
distinct from the entries in the columns Cf.

11



It is easy to see that any PHF(N; n, m, w) is also an SHF(N; n, m, {wy, we}) if wy+wy =
w. Also, an SHF(N;n,m,{1,1}) is equivalent to a PHF(N;n,m,2). The following result
is also very easy; we record it as a lemma for future reference.

Lemma 4.6 An SHF(N;n,2,{wy,ws}) is equivalent to a (wy,ws)-S5(n, N).
The following theorem is proved in essentially the same way as Theorem 4.3.

Theorem 4.7 If there exists an (i, 7)-SFF(v,m) and an SHF(N;n,m,{i,j}), then there
exists an (i,7)-SFF(vN,n).

We state a recursive construction for separating hash families that is similar to Lemma
4.4.

Theorem 4.8 Suppose there exists an SHF(No; ng, m, {w1, wa}), where ged(ng, (wiwsy)!) =
1. Then there exists an SHF((w1w2 + 1)j No;no? ,m, {wy, wg}) for any integer j > 0.

Proof. The proof is essentially the same as the proof of [2, Theorem 4.4]. 0

We illustrate the application of the above results by constructing an infinite family of
2-SFPC. The following separating hash family is easily constructed by hand.

Example 4.4 There exists an SHF(3;7,4,{2,2}) as follows:

112 2 3 3 4
211 2 4 3 3
1 21 2 3 4 3

Theorem 4.9 There exists a 2-SFPC(9-57,7%) for all j > 0.

Proof. From Theorem 4.8 and Example 4.4, we have an SHF(3 - 57;7%,4,{2,2}) for all
Jj > 0. Since a 2-SFPC(3,4) exists by Example 2.2, the conclusion follows from Theorem
4.7. 0

Theorem 4.9 produces an infinite family of 2-SFPC(v,b) in which v is O ((logb)'°82?).
This represents a significant improvement over Theorem 4.5, in which v is O ((log b)los2 7).
The following general result can be proved in a similar fashion.

Theorem 4.10 Let ¢ > 2. Then there exists a C-SFPC(Q(Qdd__ll) (4 1), (2d 4 1)) for
all j > 0, where d > ¢ such that ged(2d + 1, (¢*)!) = 1.

Proof. Theorem 4.2 shows that a d-SFPC (2 (2dd_—11) ,2d + 1) exists. By Corollary 3.6, this is

equivalent to a (d, d)-SS (Qd + 1, Q(Qdd__ll)). Applying Lemma 4.6, this is in turn equivalent to

an SHF (2 (2dd_—11) ,2d+1,2,{d, d}) Note that d > ¢, so it is an SHF (2 (2dd_—11) ,2d+ 1,2, {c, c})
Since ged(2d + 1,(c*)!) = 1, we can apply Theorem 4.8 to construct an SHF
(2<2dd_—11)(02_|_ D7, (2d+ 1)%,2, {c, c}) for all § > 0. By Lemma 4.6 and Corollary 3.6,
the resulting SHF are equivalent to the desired -SFPC. 0

12



The following result is an immediate corollary of Theorem 4.10.

Corollary 4.11 For any ¢ > 2, there exists an explicit construction for an infinite class of

c-SFPC(v,b) in which v is O ((log b)1°g2(02+1)).

In view of Theorem 3.5, constructions for ¢-SFPC(v,b) can equivalently be viewed as
constructions for (¢, ¢)-SS(b, v). As far as we know, Theorem 4.10 provides the first efficient
explicit constructions for (¢, ¢)-SS(b, v) for general ¢. (A construction, similar in flavour to
Theorem 4.9, was already given in [18] for the case ¢ = 2.)

5 Nonconstructive bounds

Nonconstructive existence results can often be obtained by probabilistic methods. For some
of the structures under discussion in this paper, bounds of this type have been derived. In
this section, we present a unified treatment of several of these bounds, most of which are
proved in a similar fashion. To illustrate the technique used, we begin with a bound for
perfect hash families. This is essentially the bound first proved in [25] (see also [26]).

Given a graph G = (V| F), let P(G,m) be the chromatic polynomial of G, which is
defined as follows: For a positive integer m, P(G,m) denotes the number of m-colourings
of G (i.e., the number of ways to colour the vertices of G using a specified set of m colours,
such that no two vertices vy, vy € V having the same colour are joined by an edge e € F).
It is well-known that P(G,m) is a polynomial in m of degree |V|. If the vertices of GG are
coloured independently at random using m colours, then the probability that the result is
an m-colouring is P(G,m)/ml"1.

Now, let A be an N x n matrix whose entries are elements of a fixed set S of size m
and whose columns are labeled 1,...,n. For a set C' of w columns of A, define X4(C) =0
if there exists a row of A such that the entries in the columns in C' are distinct, and define
X4(C) =1, otherwise. Let X (C) denote the random variable defined by letting A be a
random N X n matrix (i.e., the entries of A are chosen independently at random from 9).
Clearly, the expected value of X (C) is

P(K.,, m))N

mw

EIX(C)] = Q_
= (1_m(m—1)---(m_w+1))N‘

mw

If we define the random variable
X = > X(C),
{CC{1,...,n}:|C|=w}
then we have the following formula:

Ewpoﬁ(Lfﬂm—D~«m—w+m)f

w mw

It is clear that there exists a PHF(N;n,m,w) if F[X] < 1. Thus we have proved the
following bound of Mehlhorn:
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Theorem 5.1 [25] There exists a PHF(N;n, m,w) if

log (;,)

N> log (m*) — log (m™ — w!(7"))

We can use a similar approach to prove bounds for separating hash families. Suppose
that |C| = wy, |C3] = wy and C1 N Cy = 0. Denote w = wy + wq. Given an N X n array A,
define X 4(Cy,C3) = 0 if there exists a row of A such that the entries in the columns in C
are distinct from the entries in the columns in Cy, and define X 4(Cy,C3) = 1, otherwise.
Then we have

E[X(Ch, Cy)] = (1 - M)N.

mw

For convenience, denote

Then we have ~ N
- { ()Y it £,
L) i =
As was the case with perfect hash families, there will exist an SHF(N;n, m, {wq, wz})
if E[X] < 1. A slightly improved bound can be obtained, however, by observing that
if E[X] < n/2, then an SHF(N;n/2, m,{w, wy}) exists. (This is a standard method in

probabilistic combinatorics, and this observation also could have been used in deriving a
bound for perfect hash families.) This discussion gives rise to the following two bounds.

Theorem 5.2 Suppose that n, m, wy and wy are positive integers and p is defined as above.

Then the following hold:

1. 1If

(w1 + we) logn
—logp

then there exists an SHF(N;n,m, {wy, ws}).

N >

9

2 1f

(w1 + wq — 1) log(2n)
— logp

then there exists an SHF(N;n,m, {wy, ws}).

N >

9

5.1 Discussion and applications

We illustrate the application of Theorem 5.2 by deriving some known bounds as corollaries.
We will set m = 2 since this case corresponds to separating systems and secure frameproof
codes. It is easy to see that

P(Ky, u,,2) =2,

and hence



when m = 2.
Here are some applications of Theorem 5.2:

e Suppose that wy =1 and wy = 2. Then p = 3/4, and

wl—l—w2—1_ 2

= ~ 4.819.
—log, p 2 —log,3

Hence, a (1,2)-SS(n,~ 4.819log, n) exists by part 2. of Theorem 5.2. This result
was shown independently in Alon and Spencer [1, Theorem 1.1, p. 200], Kérner [24,
Theorem 1] and Chee [8, Theorem 9.3.1].

e Suppose that wy = wy = 2. Then p=7/8 and

wl—l—w2—1_ 3
—logyp  2—log, 7

~ 15.573.

Hence, a (2,2)-SS(n,~ 15.573log, n) exists by part 2. of Theorem 5.2. This result
was shown in Koérner and Simonyi [23, Theorem 2]. Earlier, it had been shown by
Friedman, Graham and Ullman [18, Theorem 5] that a (2,2)-SS(n,~ 20.764 log, n)
exists. This is in fact the result that would be obtained from part 1. of Theorem 5.2.

e Friedman, Graham and Ullman [18, p. 546] showed the existence of a (wy,ws)-
SS(n,vlogy n) where 7 is the value given in part 1. of Theorem 5.2. Of course this
can be improved slightly by instead using part 2. of the same theorem.

6 Related topics

In this section, we study two topics: key distribution patterns (which are of interest in
cryptography) and non-adaptive group testing algorithms. We begin defining the types of
set systems that we will use in studying these topics.

6.1 Cover-free families and disjunct systems

Definition 6.1 A set system (X, B) is an (1, j)-cover-free family provided that, for any two
disjoint subsets C'y, Cy of B, where |C1] < ¢ and |Cy| < j, it holds that

Bz U B
BelC, Bels

An (i, 7)-cover-free family, (X, B), will be denoted as an (¢, 7)-CFF(v,b) if |X| = v and
|B| = b.

Remark 6.1 Our definition is a generalization of term “cover-free family” as it is commonly

used in the combinatorial literature (see, e.g., [15]). The standard definition corresponds to
the case i = 1. Another equivalent concept is “superimposed distance codes”; see [22, 12].
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Definition 6.2 A set system (X, B) is an (¢, j)-disjunct system provide that, for any P, Q C
X such that |P| <4, |Q| < jand PNQ = 0, there exists a B € B such that P C B and
QNB=10. An (i, j)-disjunct system, (X, B), will be denoted as an (i, 7)-DS(v, b) if | X| = v
and |B| = b.

Remark 6.2 Our definition is a generalization of term “disjunct” as it is defined in [11, p.
62]. The definition in [11] corresponds to the case i = 1. When ¢ = 1, this property is also
known as j-complete; see [7].

Cover-free families and disjunct systems are dual incidence structures. The following is
proved in the same way as Theorem 3.5.

Theorem 6.1 There exists an (i,7)-CFF(v,b) if and only if there exists an (i, j)-DS(b,v).
The following two lemmas follow immediately from the definitions.

Lemma 6.2 Any (7, j)-disjunct system is an (1, j)-separating system.

Lemma 6.3 Any (7, j)-cover-free family is an (i, j)-sandwich-free family.
We now give a combinatorial interpretation of the incidence matrix of a disjunct system.

Lemma 6.4 An (i,j)-DS(n, N) is equivalent to an N x n. 0 — 1 matriz, such that in any
two disjoint sets Cy and Cy of i and j columns (respectively), there exists at least one row
such that the entries in the columns Cy are all “17s and the entries in the columns Cy are
are all “07s.

We noted above that disjunct systems are separating systems and cover-free families
are sandwich-free families. A simple construction allows us to reverse this process at the
expense of doubling the number of blocks and points, respectively.

Theorem 6.5 If there exists an (1, 7)-SS(v,b), then there exists an (i, j)-DS(v,2b).
Proof. Let (X, B) be an (¢, 7)-SS(v, b). Define
C=BU{X\B:B¢€B}

It is easy to check that (X,C) is an (¢, 7)-DS(v, b). 0

A equivalent version of Theorem 6.5 is stated in the following corollary.
Corollary 6.6 If there exists an (i,j)-SFF(v,b), then there exists an (i, j)-CFF(2v,b).

Proof. Apply Theorems 6.5, 6.1 and 3.5. 0
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6.2 Key distribution patterns

The elegant idea of a key distribution pattern is due to Mitchell and Piper [27]. Here is an
informal definition.

Definition 6.3 Let v and b be positive integers. An (i, j)-key distribution pattern is a
method of distributing a set of v keys to a set of b users, such that any subset of ¢ users can
form a conference keys by combining the keys that they hold in common. Any conference
key thus formed should be secure against a (disjoint) coalition of size at most j. The key
distribution pattern will be denoted as an (7, j)-KDP(b,v).

We now describe how key distribution patterns are constructed from cover-free families.
Suppose that (X, B) is an (7, j)-CFF(v,b), where ¢ > 2. For each z € X, let k, be a
key, chosen at random from a specified abelian group, say G. Suppose we have a set of b
participants, denoted ug (B € B), and each participant up is given the keys k, (z € B).
Let C' be a subset of ¢ participants. Then, for any coalition D of size at most j that is
disjoint from C', there exists a key that is held by every member of C' and by no member of
D. Now, suppose the conference key k¢ is defined to be

ko = Z k.

{z:xeB for all BeC'}

Then every member of C' can compute the conference key kc, but the value of k- cannot
be computed by any coalition D of size at most j.

Key distribution patterns have been an active area of study in the last ten years. For
more information, the reader can consult [13, 20, 27, 32, 33, 34, 35, 36, 37].

6.3 Group testing algorithms

We informally define non-adaptive group testing algorithms.

Definition 6.4 Suppose that X is a set of v samples that are to be tested positive or
negative. Suppose that B is a set of subsets of X, where each B € B represents a subset of
samples (called a group) that are to be combined and tested together. The testing procedure
has the property that if a group contains at least one positive sample, then the test result
for that group is positive. Suppose that the testing procedure allows the identification of
the positive samples if the number positive samples is at most d. Then the resulting scheme
is called a non-adaptive group testing algorithm and is denoted by d-NAGTA(v,b). (The
term “non-adaptive” means that the tests performed are fixed ahead of time, and do not
depend on the outcome of earlier tests. This is useful in practice due to simplicity, as well
as the fact that a non-adaptive algorithm can be parallelized to any desired degree.)

Disjunct systems can be used to construct group testing algorithms. Suppose that
(X, B)is a (1,d)-DS(v,b), where X is the set of v samples and B is the set of b groups. It
is clear that the samples that occur in no group that tests positive are in fact the negative
samples. Thus, the positive samples are identified by this testing procedure, and we have a

d-NAGTA (v, b).
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There is an extensive literature on group testing algorithms. The interested reader
should consult the book by Du and Hwang [11], in which many references are given. Two
important papers on the topic are [7] and [21].

7 Constructions

The constructions we have discussed in Sections 4 and 5 can be modified in a straightforward
fashion to produce cover-free families or (equivalently) disjunct systems. When i = 1, we
obtain non-adaptive group testing algorithms, and when 2 > 2, we obtain key distribution
patterns. (In view of Lemma 6.2, these constructions also yield (i, j)-separating systems.)
The constructions for key distribution patterns are the most efficient explicit constructions
that are known.

7.1 New explicit constructions
The following recursive construction is essentially the same as Theorem 4.8.

Theorem 7.1 Suppose there exists an (i,j)-DS(ng, No), where ged (no, (i7)!) = 1. Then
there exists an (i,j)-DS(nozk7 (ij + 1)k No) for any integer k > 0.

In order to apply Theorem 7.1, we start with a “small” disjunct system which we
construct by direct methods.

Lemma 7.2 Suppose that i and j are positive integers and n > i+ j. Then there exists an

(¢,7)-DS(n, N) where N = min {(7?), (n)}

? J

Proof. Let X be an n-set. The set of all i-subsets of X is an (i, j)-disjunct system, as is
the set of all (n — j)-subsets of X. 0

Now we can easily obtain the following general result, which provides an explicitly
constructed class of (4, j)-disjunct systems for any ¢ and j.

Theorem 7.3 Suppose that v and j are positive integers. Let
no = min{n > ¢+ j : ged(n, (1j)!) =1}

and let Ng = min { ("), (no)} Then there exists an (i,j)-DS(nozk7 (ij + 1)k No) for any

j
integer k > 0.

Proof. Apply Theorem 7.1 and Lemma 7.2. 0

The following corollary, which is similar to Corollary 4.11, is an immediate consequence
of Theorem 7.3.

Corollary 7.4 For any positive integers 1 and j, there exists an explicit construction for

an infinite class of (i, j)-DS(v,b) in which b is O ((logv)'es7+1)),
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7.2 Review of nonconstructive bounds

Non-constructive bounds for non-adaptive group testing algorithms and key distribution
patterns have been previously discussed in the mathematical literature. In Section 5.1 we
derived some nonconstructive bounds for (¢, 7)-SS(v, b) in which b &~ v log, v for a specified
constant 4. In view of Theorem 6.5, we immediately obtain a bound for disjunct systems:
an (¢, 7)-DS(v,b) exists in which b & 2vlog, v. However, a more direct approach is used in
[13] (in the case ¢ > 2) and in [11, Theorem 4.3.9] (in the case ¢ = 1; see also [12, Corollary
2]). This approach, which is a simple modification of the one we described in Section 5,
yields smaller constants. In this section, we briefly review the nonconstructive bounds that
can be obtained in this way.

We will actually construct an N X n matrix which satisfies the conditions of Lemma
6.4. Let A be an N xn 0 — 1 matrix whose columns are labeled 1,...,n. Suppose that
C,Cy CA{l,...,n}, |C1] =1, |Ce] = j and C; N Cy = 0. Define X4(Cy,Cy) = 0 if there
exists a row of A such that the entries in the columns in €7 are all “1”s and the entries in
the columns in Cy are all “0”s, and define X 4(C,C3) = 1, otherwise.

Let X (C4,Cy) denote the random variable obtained when A is an N x n matrix in which
each entry is defined to be a “1” with probability p. (The optimal value of p will be chosen
a bit later.) Then, the expected value of X (C,C5) is

BIX(C1, )] = (1= p'(1 = p))"

Since we want to minimize F[X(Cy,C3)], elementary calculus shows that we should take
p=1/(i+ 7). Now, if we define the random variable

X = > X (Ch,Cy),
{Cl,CQE{L...,n}:|Ol |:i,|02|:j701 OOQZQ)}

then it is easy to see that

ex) = (D" ) 0-sa- )
n\ {n—1 itqd N
- ()00 wm) -

We obtain the following theorem which is analogous to Theorem 5.2.

Theorem 7.5 Suppose that n,i and j are positive integers. Define

I
P T
Then the following hold:
1. If o
N s litj)logn
— logp

then there exists an (i, j)-DS(n, N).
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2. If

(i4J = 1) log(2n)

N >
—logp

9

then there exists an (i, j)-DS(n, N).

7.2.1 An example

We illustrate the application of the above bounds in a particular case, namely + = 1 and
Jj = 2. Part 2. of Theorem 7.5 shows the existence of a (1,2)-DS(n,~ 8.646log, n). This
compares with (1,2)-DS(n,~ 9.638log, n) that would be obtained by applying Theorem
5.2 and Theorem 6.5. In [13], it is shown that there is a (1,2)-DS(n,~ 12.97log, n); this
corresponds to part 1. of Theorem 7.5. In fact the best known result in this particular case
is the existence of a (1,2)-DS(n,~ 5.481 log, n), which is shown in [14, 12] by a more refined
argument.
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A Abbreviations used in this paper

FPC frameproof code Definition 2.1
SFPC secure frameproof code Definition 2.2
SFF sandwich-free family Definition 3.1
SS separating system Definition 3.2
PHF perfect hash family Definition 4.1
SHF separating hash family Definition 4.2
CFF cover-free family Definition 6.1
DS disjunct system Definition 6.2
KDP key distribution pattern Definition 6.3
NAGTA | non-adaptive group testing algorithm | Definition 6.4
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