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ANALYSIS OF A VISCOUS TWO-FIELD GRADIENT DAMAGE
MODEL

PART II: PENALIZATION LIMIT

C. MEYER§ AND L.M. SUSU§

Abstract. A viscous partial damage model is considered which features two damage variables
coupled through a penalty term in the stored energy functional. While the well-posedness of the
model was shown in a companion paper, this work analyses the behaviour of the model as the
penalization parameter tends to infinity. It turns out that in the limit both damage variables coincide
and satisfy a classical viscous damage model.
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1. Introduction. This paper is concerned with a viscous gradient damage model
involving two damage variables which are connected through a penalty term in the
stored energy functional. While the well-posedness of the model was investigated in
a companion paper, cf. [21], this work addresses the limit analysis as the penalization
parameter tends to infinity. The damage model under consideration reads

(u(t), ϕ(t)) ∈ arg min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)),

−∂dE(t,u(t), ϕ(t), d(t)) ∈ ∂Rδ(ḋ(t)), d(0) = d0 a.e. in Ω

 (P)

for almost all t ∈ (0, T ). Herein, d and ϕ denote the local and non-local damage
variable, respectively, and u stands for the displacement of the body occupying the
domain Ω ⊂ RN , N = 2, 3. Moreover, the stored energy E : [0, T ] × V × H1(Ω) ×
L2(Ω)→ R is given by

E(t,u, ϕ, d) :=
1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22,

(1.1)
where V := W 1,2

D (Ω), ε = 1/2(∇+∇>) is the linearized strain, C the elasticity tensor,
and ` the load applied to the body. The function g describes the influence of damage
on the elastic behavior of the body. Furthermore, α > 0 is a weighting parameter
for the gradient regularization and β > 0 stands for the penalization parameter. The
viscous dissipation functional Rδ : L2(Ω)→ [0,∞] appearing in (P) is defined as

Rδ(η) :=

{
r
∫

Ω
η dx+ δ

2‖η‖
2
2, if η ≥ 0 a.e. in Ω,

∞, otherwise,
(1.2)

where r > 0 stands for the threshold value which triggers the damage evolution and
δ > 0 is the viscosity parameter. For a more detailed description of the model as well
as its motivation, we refer to [21, Section 2] and [5,6]. Throughout the paper, we will
refer to (P) as “two-field model” or “penalized damage model”.

Damage models containing two different damage variables coupled through a penal-
ization of the energy functional are frequently used for numerical simulations, cf.
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e.g. [5, 6, 20, 25, 26, 28, 31]. With this work and the companion paper [21], we show
that this approach is mathematically justified for two reasons. First of all, the two-
field model (P) admits a unique solution in terms of the two damage variables and
the displacement field, and all three quantities depend Lipschitz continuously on the
data, i.e., the applied loads, so that the problem is well-posed. These issues are ad-
dressed in the companion paper [21]. Secondly, as we will show in this paper, in
the limit β → ∞, both damage variables become equal and the resulting single-field
damage model falls into the category of classical viscous, partial damage models, as
for instance introduced in [10].
Let us put our work into perspective. Numerous damage models have been addressed
by many authors under different aspects, among these viscous, i.e., rate-dependent
models, see e.g. [1–3, 9], but also rate-independent damage models, cf. for instance
[7,15,17–19,24]. Especially in the discussion of the latter, the so-called energy balance
plays a crucial role and various notions of solutions are based on it, such as for
example global energetic and semi-stable solutions, see [23] for an overview. The
energy balance (sometimes appearing in a weaker form as an energy inequality) is
also an essential tool for the limit analysis for vanishing viscosity as performed in
[17]. This passage to the limit leads to another notion of solutions, the so-called
parametrized solutions, see [17, Section 5] and [22]. The energy balance also turns
out to be very useful for our limit analysis, when β → ∞. To be more precise, we
reformulate (P) as an equivalent energy identity. This allows for a passage to the
limit via lower semicontinuity arguments. The resulting inequality leads in turn to
an energy-dissipation balance for the limit problem, by employing a well-known chain
rule argument. This energy balance ultimately yields the single-field damage model
mentioned above.
The paper is organized as follows. Section 2 collects the notations and standing
assumptions, as well as known results from the companion paper [21], which are
needed in the present paper. In Section 3 we derive the energy inequality mentioned
above. Section 4 is devoted to the passage to the limit β →∞ in the energy inequality.
In Section 5, we will reformulate the latter as a PDE system involving only one single
damage variable. By means of a time-discretization we then show in Section 6 that
the damage variables associated with the penalized model (P) are essentially bounded
in time and space by a constant independent of the penalty parameter β so that this
bound carries over to the damage variable in the limit. Based on this result, we
transform the single-damage model from Section 5 into an equivalent PDE system
that coincides with the viscous model in [17] and constitutes a classical, viscous partial
damage model.

2. Notation, Standing Assumptions, and Known Results. Throughout
the paper, C denotes a generic positive constant. If X and Y are two linear normed
spaces, the space of linear and bounded operators from X to Y is denoted by L(X,Y ).
The dual of a linear normed space X will be denoted by X∗. For the dual pairing
between X and X∗ we write 〈., .〉X and, if it is clear from the context, which dual
pairing is meant, we just write 〈., .〉. By ‖·‖p we denote the Lp(Ω)−norm for p ∈ [1,∞]
and by (·, ·)2 the L2(Ω)−scalar product. If X is compactly embedded in Y , we write
X ↪→↪→ Y . In the rest of the paper N ∈ {2, 3} denotes the spatial dimension. By
bold-face case letters we denote vector valued variables and vector valued spaces.
Definition 2.1. For p ∈ [1,∞] we define the following subspace of W 1,p(Ω):

W 1,p
D (Ω) := {v ∈W 1,p(Ω) : v|ΓD = 0},
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where ΓD is a part of the boundary of the domain Ω, see Assumption 2.2 below. The
dual space of W 1,p′

D (Ω) is denoted by W−1,p
D (Ω), where p′ is the conjugate exponent

of p. If p = 2, we abbreviate V := W 1,2
D (Ω).

Before we turn to our assumptions on the data, we summarize the symbols often used
throughout the paper in Table 2.1 for convenience of the reader.

Table 2.1
Functionals, operators and variables

Symbol Meaning Definition
I Reduced energy functional Definition 3.1
Rδ Viscous dissipation functional (1.2)
u Displacement
ϕ Nonlocal damage
d Local damage
Ẽ Energy functional without penalty Definition 4.10
Ĩ Reduced energy functional without penalty (4.16)
R̃1 Dissipation functional in the limit (5.10)
R̃δ Viscous dissipation functional in the limit Definition 4.13

Let us now state our standing assumptions. We emphasize that these are tacitly
assumed in all what follows without mentioning them every time. We begin with the
smoothness of the computational domain.

Assumption 2.2. The domain Ω ⊂ RN , N ∈ {2, 3}, is bounded with Lipschitz
boundary Γ. The boundary consists of two disjoint measurable parts ΓN and ΓD such
that Γ = ΓN ∪ ΓD. While ΓN is a relatively open subset, ΓD is a relatively closed
subset of Γ with positive measure.

In addition, the set Ω ∪ ΓN is regular in the sense of Gröger, cf. [11]. That is, for
every point x ∈ Γ, there exists an open neighborhood Ux ⊂ RN of x and a bi-Lipschitz
map (a Lipschitz continuous and bijective map with Lipschitz continuous inverse)
Ψx : Ux → RN such that Ψx(x) = 0 ∈ RN and Ψx

(
Ux ∩ (Ω ∪ ΓN )

)
equals one of the

following sets:

E1 :=
{
y ∈ RN : |y| < 1, yN < 0

}
,

E2 :=
{
y ∈ RN : |y| < 1, yN ≤ 0

}
,

E3 := {y ∈ E2 : yN < 0 or y1 > 0} .

A detailed characterization of Gröger-regular sets in two and three spatial dimensions
is given in [12].

Assumption 2.3. The function g : R→ [ε, 1] satisfies g ∈ C2(R) and g′, g′′ ∈ L∞(R)
with some ε > 0. With a little abuse of notation the Nemystkii-operators associated
with g and g′, considered with different domains and ranges, will be denoted by the
same symbol.

Assumption 2.4. The fourth-order tensor C ∈ L∞(Ω;L(RN×Nsym )) is symmetric and
uniformly coercive, i.e., there is a constant γC > 0 such that

C(x)σ : σ ≥ γC|σ|2 ∀σ ∈ RN×Nsym and f.a.a. x ∈ Ω, (2.1)
3



where | · | denotes the Frobenius norm on RN×N and the symbol “ : ”stands for the
scalar product inducing this norm.

Assumption 2.5. For the applied volume and boundary load we require

` ∈ C1([0, T ];W−1,p
D (Ω)),

where p > N is specified below, see Assumption 2.7.1 and Assumption 5.4.

Moreover, the initial damage is supposed to satisfy d0 ∈ L2(Ω).

Our last assumption concerns the balance of momentum associated with the energy
functional in (1.1). For its precise statement we need the following

Definition 2.6. For given ϕ ∈ L1(Ω) we define the linear form Aϕ : V → V ∗ as

〈Aϕu, v〉V :=

∫
Ω

g(ϕ)Cε(u) : ε(v) dx.

The operator Aϕ, considered with different domains and ranges, will be denoted by the
same symbol for the sake of convenience.

Assumption 2.7. For the rest of the paper we require the following:

1. There exists p > N such that, for all p ∈ [2, p] and all ϕ ∈ L1(Ω), the operator
Aϕ : W 1,p

D (Ω)→W−1,p
D (Ω) is continuously invertible. Moreover, there exists

a constant c > 0, independent of ϕ and p, such that

‖A−1
ϕ ‖L(W−1,p

D (Ω),W 1,p
D (Ω)) ≤ c

holds for all p ∈ [2, p] and all ϕ ∈ L1(Ω).
2. The penalization parameter β is sufficiently large, depending only on the given

data, see [21, Eq. (3.33)].

Remark 2.8. (i) The critical assumption is Assumption 2.7.1. If N = 2, then
this condition is automatically fulfilled, see [21, Lemma 3.3]. The situation changes
however, if one turns to N = 3. In this case this assumption can be guaranteed by
imposing additional and rather restrictive conditions on the data, in particular on the
ellipticity and boundedness constants associated with C and g, see [21, Remark 3.11]
for more details. However, as explained in [21, Remark 3.12], one could alternatively
modify the energy functional in (1.1) by replacing ‖∇ϕ‖22 with its H3/2-seminorm.
This would allow us to drop Assumption 2.7.1 in the three dimensional case, too.
However, we have chosen not to work with the H3/2-seminorm, as the associated
bilinear form is difficult to realize in numerical computations.

(ii) For convenience of the reader, we mention here that in [21, Eq. (3.33)] one requires
β > α+ C Ck, where the constant C > 0 depends on the supremum norm of ` and ˙̀,
the Lipschitz constants of g and g′, ‖C‖L∞(Ω;L(RN×Nsym )) and embedding constants, while
the fixed value of Ck > 0 depends on k and p, see the proof of [21, Lemma 3.18].

As an immediate consequence of Assumption 2.7.1 and the regularity of ` in Assump-
tion 2.5 one can introduce the following

Definition 2.9. We define the operator U : [0, T ]×H1(Ω)→W 1,p
D (Ω) by U(t, ϕ) :=

A−1
ϕ `(t). We will frequently consider U with different ranges and domains, but denote

it by the same symbol.
4



Thanks to Assumptions 2.5 and 2.7.1 there exists a constant c > 0, independent of t
and ϕ, such that

‖U(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω), (2.2)

which will be frequently used in the sequel.

In the rest of this section we recall some known results and definitions from the
companion paper [21] that will be used in the upcoming analysis.

Lemma 2.10 (Global Lipschitz continuity of U , [21, Proposition 3.8]). Let p > 2
and r ∈

[
2p/(p− 2),∞

]
be given. Then there exists L > 0 such that for all ϕ1, ϕ2 ∈

H1(Ω) ∩ Lr(Ω) and all t1, t2 ∈ [0, T ] it holds

‖U(t1, ϕ1)− U(t2, ϕ2)‖W 1,π
D (Ω) ≤ L(|t1 − t2|+ ‖ϕ1 − ϕ2‖r), (2.3)

where 1/π = 1/p+ 1/r.

Lemma 2.11 (Fréchet differentiability of U , [21, Proposition 5.6]). It holds U ∈
C1([0, T ]×H1(Ω);V ) and at all t ∈ [0, T ] and ϕ, δϕ ∈ H1(Ω) we have

∂tU(t, ϕ) = A−1
ϕ

˙̀(t) ∈W 1,p
D (Ω), (2.4a)

Aϕ
(
∂ϕU(t, ϕ)(δϕ)

)
= div

(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
in V ∗, (2.4b)

where div : L2(Ω;Rn×nsym )→ V ∗ denotes the distributional divergence. Moreover, there
exists a constant c > 0, independent of t and ϕ, such that

‖∂tU(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω). (2.5)

In order to state the Euler-Lagrange equations associated with the energy mini-
mization in (P), let us further define the mappings B : H1(Ω) → H1(Ω)∗ and
F : [0, T ]×H1(Ω)→ H1(Ω)∗ by

〈Bϕ,ψ〉H1(Ω) :=

∫
Ω

α∇ϕ · ∇ψ + βϕψ dx, ϕ, ψ ∈ H1(Ω), (2.6)

〈F (t, ϕ), ψ〉H1(Ω) :=
1

2

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))ψ dx, ϕ, ψ ∈ H1(Ω). (2.7)

Note that F is well defined because of the Sobolev embedding H1(Ω) ↪→ Ls(Ω) with
s = 6 for N = 3 and s <∞ for N = 2, in combination with Assumption 2.7.1.

Lemma 2.12. The mapping F possesses the following properties:

• [21, Lemma 3.17] It is Lipschitzian in the following sense: Let r ≥ 2p/(p−2)
and 1/s + 2/p + 1/r = 1. Then, for all t1, t2 ∈ [0, T ], all ϕ1, ϕ2 ∈ H1(Ω) ∩
Lr(Ω) and all ψ ∈ Ls(Ω), there holds

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉H1(Ω)| ≤ C
(
‖ϕ1 − ϕ2‖r + |t1 − t2|

)
‖ψ‖s, (2.8)

with a constant C > 0 independent of (ti, ϕi)i=1,2.
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• [21, Lemma 5.9] It is continuously Fréchet differentiable from [0, T ]×H1(Ω)
to H1(Ω)∗, and for all (t, ϕ) ∈ [0, T ] ×H1(Ω) and all (δt, δϕ) ∈ R ×H1(Ω)
we have

〈F ′(t, ϕ)(δt, δϕ), z〉H1(Ω) =
1

2

∫
Ω

g′′(ϕ)(δϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))z dx

+

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε
(
U ′(t, ϕ)(δt, δϕ)

)
z dx

(2.9)
for all z ∈ H1(Ω).

• [21, Lemmas 3.17, 3.18] For its partial derivative w.r.t. ϕ there holds

|〈∂ϕF (t, ϕ)z, z〉H1(Ω)| ≤ k‖z‖22 + c̃(k)‖z‖2H1(Ω) (2.10)

for all z ∈ H1(Ω), all k > 0, and all (t, ϕ) ∈ [0, T ]×H1(Ω), where c̃ : R+ →
R+ is a monotonically decreasing function, which tends to 0 as k →∞.

With the mappings B and F at hand we can characterize the solution to the energy
minimization in (P) as follows:

Lemma 2.13 (Energy minimizer, [21, Prop. 3.14, Thm. 3.20]). For every (t, d) ∈
[0, T ]× L2(Ω), the optimization problem

min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d)

admits a unique minimizer (u, ϕ) ∈ W 1,p
D (Ω) ×H1(Ω) characterized by u = U(t, ϕ)

and ϕ = Φ(t, d), where Φ : [0, T ] × L2(Ω) → H1(Ω) is defined by Φ(t, d) := (B +
F (t, ·))−1(βd).

Lemma 2.14 (Global Lipschitz continuity of Φ, [21, Eq. (3.35)]). There exists a
constant K > 0 such that

‖Φ(t1, d1)−Φ(t2, d2)‖H1(Ω) ≤ K
(
|t1−t2|+‖d1−d2‖2

)
∀ t1, t2 ∈ [0, T ], d1, d2 ∈ L2(Ω).

Lemma 2.15 (Fréchet differentiability of Φ, [21, Prop. 5.12]). The solution operator
Φ is continuously Fréchet differentiable from (0, T )×L2(Ω) to H1(Ω). Moreover, for
all (t, d) ∈ [0, T ]×L2(Ω) and all (δt, δd) ∈ R×L2(Ω) its derivative solves the following
linearized equation

BΦ′(t, d)(δt, δd) + F ′(t, ϕ)
(
δt,Φ′(t, d)(δt, δd)

)
= βδd, (2.11)

where we use the abbreviation ϕ := Φ(t, d).

Finally we turn our attention to the differential inclusion in (P). First note that the
functional E is partially Fréchet differentiable w.r.t. d on [0, T ]×V ×H1(Ω)×L2(Ω),
and its partial derivative is given by

∂dE(t,u, ϕ, d) = β(d− ϕ). (2.12)

Therefore, in view Lemma 2.13, (P) reduces to the following evolutionary equation

− β
(
d(t)− Φ(t, d(t))

)
∈ ∂Rδ(ḋ(t)) f.a.a. t ∈ (0, T ), d(0) = d0. (2.13)
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As shown in [21, Lemma 3.22], this equation is equivalent to the following non-smooth
operator differential equation:

ḋ(t) =
1

δ
max{−β

(
d(t)− Φ(t, d(t))

)
− r, 0} f.a.a. t ∈ (0, T ), d(0) = d0. (2.14)

This handy reformulation of (P) and (2.13), respectively, is a main advantage of
the penalty-type regularization of partial damage models and could provide a useful
starting point for a numerical solution of (P). We end this section by recalling the
main result of the companion paper:

Theorem 2.16 (Existence and uniqueness for the penalized damage model, [21,
Thm. 5.13]). There exists a unique solution (u, ϕ, d) of the problem (P), satisfying
u ∈ C1([0, T ];V ), ϕ ∈ C1([0, T ];H1(Ω)), d ∈ C1,1([0, T ];L2(Ω)), which is uniquely
characterized by the following system of differential equations:

−div g(ϕ(t))Cε(u(t)) = `(t) in W−1,p
D (Ω) (2.15a)

−α∆ϕ(t) + β ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) = βd(t) in H1(Ω)∗ (2.15b)

ḋ(t)− 1

δ
max{−β(d(t)− ϕ(t))− r, 0} = 0, d(0) = d0. (2.15c)

for every t ∈ [0, T ].

Note that, thanks to the definition of B and F , the equations in (2.15a) and (2.15b)
are just equivalent to u(t) = U(t, ϕ(t)) and ϕ(t) = Φ(t, d(t)), respectively.

3. Energy Balance. As seen in Theorem 2.16, for a given β > 0 sufficiently
large, there exists a unique solution to (2.14), which we denote by dβ to indicate its
dependency on the parameter β. The other components are uniquely determined by
dβ through ϕβ = Φ(·, dβ(·)) and uβ = U(·, ϕβ(·)). The purpose of this section is to
derive a characterization of the local damage dβ , which allows us to find an estimate
of the form ‖dβ‖X ≤ C for all β > 0, where X is a suitable reflexive Banach space
and C > 0 is a constant independent of the penalty parameter β. Such an estimate
will then enable us to pass to the limit in the penalized damage model as β → ∞,
see Section 4 below. As seen in (2.13) and (2.14) above, there are various ways to
describe the evolution of the local damage. However, all these descriptions have the
disadvantage of containing the term β(dβ − ϕβ), which is not necessarily uniformly
bounded w.r.t. β in suitable spaces that allow for a passage to the limit. Our aim is
therefore to find an alternative description of the evolution of the local damage, which
only contains expressions that are bounded w.r.t. β. Such a description is given by
the energy-dissipation balance in Proposition 3.5 below.

For the rest of this section we drop the index β to shorten the notation. As already
indicated above, the displacement u and the nonlocal damage ϕ are uniquely deter-
mined by the local damage variable d so that it is reasonable to reduce the whole
system to the variable d only. For this purpose we define the following:

Definition 3.1. The reduced energy functional I : [0, T ]× L2(Ω)→ R is given by

I(t, d) := E(t,U(t,Φ(t, d)),Φ(t, d), d).

7



The reduced energy functional will be a key ingredient for deriving the energy balance.
On account of (1.1) and Definitions 2.6 and 2.9 it can be rewritten as

I(t, d) =
1

2
〈AΦ(t,d)

(
U(t,Φ(t, d))

)
,U(t,Φ(t, d))〉V − 〈`(t),U(t,Φ(t, d))〉V

+
α

2
‖∇Φ(t, d)‖22 +

β

2
‖Φ(t, d)− d‖22

= −1

2
〈`(t),U(t,Φ(t, d))〉V +

α

2
‖∇Φ(t, d)‖22 +

β

2
‖Φ(t, d)− d‖22. (3.1)

This reformulation of the reduced energy allows us to show the following

Lemma 3.2 (Fréchet differentiability of I). It holds I ∈ C1([0, T ] × L2(Ω)) and, at
all (t, d) ∈ [0, T ]× L2(Ω), we have

∂tI(t, d) = −〈 ˙̀(t),U(t,Φ(t, d))〉V , ∂dI(t, d) = β(d− Φ(t, d)). (3.2)

Proof. First note that the mapping

f : [0, T ]× L2(Ω)→ R, f(t, d) := 〈`(t),U(t,Φ(t, d))〉V

can be seen as product of the functions ` and [0, T ]×L2(Ω) 3 (t, d) 7→ U(t,Φ(t, d)) ∈
V . The latter one is continuously Fréchet differentiable, thanks to Lemmas 2.11 and
2.15. Together with Assumption 2.5 the product rule yields f ∈ C1([0, T ] × L2(Ω)).
Thus, thanks to Lemma 2.15, we deduce from (3.1) that I ∈ C1([0, T ]× L2(Ω)) and,
for given (t, d) ∈ [0, T ]× L2(Ω) and (δt, δd) ∈ R× L2(Ω), it holds

I ′(t, d)(δt, δd) = −1

2
〈 ˙̀(t)δt,U(t,Φ(t, d))〉V −

1

2
〈`(t),U ′(t,Φ(t, d))(δt, δϕ)〉V

+ α(∇Φ(t, d),∇δϕ)2 + β(Φ(t, d)− d, δϕ− δd)2,
(3.3)

where we abbreviate δϕ = Φ′(t, d)(δt, δd). To derive the formulas for the partial
derivatives, first observe that (2.4a) tested with U(t, ϕ), Definitions 2.6 and 2.9, and
the symmetry of C imply

〈 ˙̀(t),U(t,Φ(t, d))〉V = 〈AΦ(t,d)∂tU(t,Φ(t, d)),U(t,Φ(t, d))〉V
= 〈`(t), ∂tU(t,Φ(t, d))〉V .

(3.4)

If one tests (2.4b) with U(t,Φ(t, d)) ∈ V , one further obtains

− 1

2
〈`(t), ∂ϕU(t,Φ(t, d))δϕ〉V + α(∇Φ(t, d),∇δϕ)2 + β(Φ(t, d)− d, δϕ− δd)2

= −1

2
〈div

(
g′(Φ(t, d))(δϕ)Cε(U(t,Φ(t, d))

)
,U(t,Φ(t, d))〉V

+ α(∇Φ(t, d),∇δϕ)2 + β(Φ(t, d)− d, δϕ− δd)2

= 〈F
(
t,Φ(t, d)

)
+BΦ(t, d), δϕ〉H1(Ω) − β(d, δϕ)2 + β(d− Φ(t, d), δd)2

= β(d− Φ(t, d), δd)2 ∀ δd ∈ L2(Ω),

(3.5)

where div : L2(Ω;RN×Nsym ) → V ∗ denotes the distributional divergence. Note that
the last two equalities follow from (2.6), (2.7), and the definition of Φ, respectively.
Inserting (3.4) and (3.5) in (3.3) leads to (3.2).
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As an immediate consequence of Lemma 3.2 and the chain rule, one obtains the
following

Corollary 3.3 (Total derivative of I(·, d(·))). Let d ∈ C1([0, T ], L2(Ω)) be given.
Then the map [0, T ] 3 t 7→ I(t, d(t)) is continuously differentiable with

d

dt
I(t, d(t)) = ∂tI(t, d(t)) + (∂dI(t, d(t)), ḋ(t))2 ∀ t ∈ [0, T ].

With the help of the reduced energy I we will deduce the energy balance from the
evolutionary equation in (2.13). To this end note first that, due to the second equation
in (3.2), the evolutionary equation (2.13) or equivalently (2.14) can also be written as

0 ∈ ∂Rδ(ḋ(t)) + ∂dI(t, d(t)) ∀ t ∈ [0, T ], d(0) = d0. (3.6)

Since Rδ is proper and convex, this is in turn equivalent to

Rδ(ḋ(t))+R∗δ
(
−∂dI(t, d(t))

)
= (−∂dI(t, d(t)), ḋ(t))2 ∀ t ∈ [0, T ], d(0) = d0, (3.7)

which will be the starting point for proving the energy balance in Proposition 3.5
below. To summarize, we obtained the following four alternative, but yet equivalent
formulations:

• the subdifferential formulations in (2.13) and (3.6), respectively,
• the nonsmooth operator differential equation in (2.14),
• the Fenchel-Young equality in (3.7).

In all what follows, we refer to these equivalent formulations simply as penalized dam-
age evolution. Note that, since (2.13) and (2.14), respectively, are uniquely solvable
by Theorem 2.16, the same holds for (3.6) and (3.7).

Lemma 3.4. If d satisfies the penalized damage evolution, then, for every t ∈ [0, T ],
there holds R∗δ

(
− ∂dI(t, d(t))

)
= δ

2‖ḋ(t)‖22.
Proof. Let d satisfy the penalized damage evolution. Then it follows from (3.6) that
∂Rδ(ḋ(t)) 6= ∅ so that ḋ ≥ 0. Hence, inserting (1.2) and (3.2) in (3.7) leads to

R∗δ
(
−∂dI(t, d(t))

)
= (−β(d(t)−ϕ(t)), ḋ(t))2−r‖ḋ(t)‖1−

δ

2
‖ḋ(t)‖22 ∀ t ∈ [0, T ], (3.8)

where we again abbreviated ϕ = Φ(·, d(·)). From the equivalent formulation (2.14)
multiplied with ḋ(t) and integrated over Ω, we deduce that δ‖ḋ(t)‖22 = (−β(d(t) −
ϕ(t)), ḋ(t))2 − r‖ḋ(t)‖1. Inserting this into (3.8) gives the assertion.

Proposition 3.5 (Energy-dissipation balance). The unique solution d ∈ C1([0, T ];L2(Ω))
of the penalized damage evolution fulfills for all 0 ≤ s ≤ t ≤ T the energy identity∫ t

s

Rδ(ḋ(τ))dτ +

∫ t

s

R∗δ
(
− ∂dI(τ, d(τ))

)
dτ + I(t, d(t))

= I(s, d(s)) +

∫ t

s

∂tI(τ, d(τ))dτ.
(3.9)

Proof. Corollary 3.3 combined with (3.7) yields at all τ ∈ [0, T ] the identity

Rδ(ḋ(τ)) +R∗δ
(
− ∂dI(τ, d(τ))

)
= ∂tI(τ, d(τ))− d

dt
I(τ, d(τ)). (3.10)
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Recall that ḋ ≥ 0 as a result of (2.14). This implies in view of (1.2) and ḋ ∈
C([0, T ], L2(Ω)) that the map [0, T ] 3 τ 7→ Rδ(ḋ(τ)) ∈ R is continuous. From Lemma
3.4 and Corollary 3.3 we deduce the continuity w.r.t. time of all terms in (3.10) and
therefore, the integrability thereof. Integrating (3.10) w.r.t. time then yields (3.9).
Remark 3.6. One can show that the reverse statement of Proposition 3.5 is also true.
Therefore, the energy balance is just another equivalent formulation of the penalized
damage evolution. To do so, one combines (3.9) with Corollary 3.3 and Young’s
inequality and in this way obtains (3.7), which was one of the equivalent formulations
of the penalized damage evolution. However, for the upcoming analysis we only need
the implication stated in Proposition 3.5 so that we do not go into more details.

4. Limit Analysis. This section proves the viability of the penalty approach,
in the sense that one can pass to the limit β →∞ and in this way obtain a single-field
damage model as stated in Section 5. In Section 7 below, we will then see that the
limit system is equivalent to a classical viscous partial damage model.
In the first part of this section we focus on finding bounds independent of β in suitable
spaces for the local and nonlocal damage, respectively. Note that, for the displace-
ment, such a bound is already given in (2.2). This allows us to find weakly convergent
subsequences. The limiting behaviour thereof, as β → ∞, is studied in the second
and third part of this section.

4.1. Uniform Boundedness. For the rest of this subsection, we fix β > 0
arbitrary so that Assumption 2.7.2 is fulfilled and denote the solution of (2.15) by
(u, ϕ, d). We aim to derive bounds independent of β for (u, ϕ, d). The starting point
for doing so is the energy-dissipation balance in Proposition 3.5. For this purpose
we require the following additional assumption, which is rather self-evident in many
practical applications:
Assumption 4.1. From now on we assume that at the beginning of the process the
body is completely sound, i.e. d0 ≡ 0, and that there is no load acting upon the body
at initial time, i.e. `(0) ≡ 0.
As a first consequence of Assumption 4.1, we obtain in view of (2.15) that

u(0) = ϕ(0) = ḋ(0) ≡ 0. (4.1)

Lemma 4.2 (Boundedness of the local damage). Let Assumption 4.1 hold. Then
there exists a constant C > 0, independent of β, such that ‖d‖H1(0,T ;L2(Ω)) ≤ C.
Proof. The result follows mainly from the energy identity in Proposition 3.5. In order
to see this, set s := 0 and t = T in (3.9) and use (1.2), Lemma 3.4, (3.1), and (3.2),
as well as Assumption 4.1, and (4.1) to obtain

δ

∫ T

0

‖ḋ(τ)‖22 dτ =
1

2
〈`(T ),u(T )〉V +

∫ T

0

〈− ˙̀(τ),u(τ)〉V dτ

−
(
r

∫ T

0

‖ḋ(τ)‖1 dτ +
α

2
‖∇ϕ(T )‖22 +

β

2
‖ϕ(T )− d(T )‖22

)
≤
∫ T

0

‖ ˙̀(τ)‖V ∗‖u(τ)‖V dτ +
1

2
‖`(T )‖V ∗‖u(T )‖V ≤ C

with C > 0 independent of β. The assertion then follows from d0 = 0 and Poincaré-
Friedrich’s inequality.
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Next let us turn to the uniform boundedness of ϕ. We will establish the existence of
a constant C independent of β such that ‖ϕ‖H1(0,T ;H1(Ω)) ≤ C. In view of (4.1) and
Poincaré-Friedrich’s inequality, we only need to show that there is C > 0 independent
of β such that

‖ϕ̇‖2L2(0,T ;H1(Ω)) =

∫ T

0

‖ϕ̇(τ)‖22 dτ +

∫ T

0

‖∇ϕ̇(τ)‖22 dτ ≤ C. (4.2)

The starting point therefor is the equation characterizing the time derivative of the
nonlocal damage. In view of Lemmata 2.12 and 2.15 this equation is given by

Bϕ̇(t) + ∂tF (t, ϕ(t)) + ∂ϕF (t, ϕ(t))ϕ̇(t) = βḋ(t) in H1(Ω)∗. (4.3)

Testing (4.3) with ϕ̇(t), integrating over [0, T ], and using (2.6) lead to

∫ T

0

α‖∇ϕ̇(τ)‖22 dτ = β

=: I1︷ ︸︸ ︷∫ T

0

(ḋ(τ)− ϕ̇(τ), ϕ̇(τ))2 dτ

−
∫ T

0

〈∂tF (t, ϕ(t)) + ∂ϕF (t, ϕ(t))ϕ̇(t), ϕ̇(t)〉 dτ︸ ︷︷ ︸
=: I2

.

(4.4)

Lemma 4.3. Under Assumption 4.1 it holds I1 ≤ 0.
Proof. We follow the ideas of [16, Proposition 4.3]. From Theorem 2.16 we recall
that ḋ and ϕ are Lipschitz continuous, and therefore ḋ ∈ W 1,∞(0, T ;L2(Ω)). Hence,
by [30, Theorem 3.1.40], the mapping f : [0, T ]→ L2(Ω) defined through

f(t) := δḋ(t) + β(d(t)− ϕ(t)) + r (4.5)

is almost everywhere differentiable. Let now t ∈ (0, T ) be arbitrary, but fixed and
h > 0 sufficiently small such that t+h ∈ (0, T ). From (2.14) it follows that ḋ(τ, x) ≥ 0,
f(τ, x) ≥ 0, and f(τ, x) ḋ(τ, x) = 0 for all τ ∈ [0, T ] and almost all x ∈ Ω. Thus, we
arrive at (f(t± h)− f(t)

h
, ḋ(t)

)
2
≥ 0.

Passing to the limit h ↘ 0 and keeping in mind the fact that f is almost every-
where differentiable implies (ḟ(t), ḋ(t))2 = 0 f.a.a. t ∈ (0, T ). Thanks to (4.5) this is
equivalent to δ(d̈(t), ḋ(t))2 + (β(ḋ(t)− ϕ̇(t)), ḋ(t))2 = 0, which can be continued as

δ

2

d

dt
‖ḋ(t)‖22 + β‖ḋ(t)− ϕ̇(t))‖22 + β(ḋ(t)− ϕ̇(t), ϕ̇(t))2 = 0 (4.6)

for almost all t ∈ (0, T ). Due to Theorem 2.16, ϕ̇ and ḋ are both continuous with
values in L2(Ω) so that we can integrate (4.6) over [0, T ]. This finally yields

δ

2
‖ḋ(T )‖22 −

δ

2
‖ḋ(0)‖22 + β

∫ T

0

‖ḋ(τ)− ϕ̇(τ))‖22 dτ + β

∫ T

0

(ḋ(τ)− ϕ̇(τ), ϕ̇(τ))2 dτ = 0,

which on account of (4.1) gives the assertion.
Lemma 4.4. For all k > 0 it holds

|I2| ≤ ĉ(k)

∫ T

0

‖ϕ̇(τ)‖2H1(Ω) dτ + k

∫ T

0

‖ϕ̇(τ)‖22 dτ + C k,
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where ĉ : R+ → R+ is a monotonically decreasing function, independent of β, which
tends to 0 as k →∞ and C > 0 is a constant independent of β.
Proof. Let t ∈ [0, T ] be arbitrary, but fixed. From (2.9) we deduce

〈∂tF (t, ϕ(t)), ϕ̇(t)〉 = −〈div
(
g′(ϕ(t))ϕ̇(t)Cε(u(t))

)
, ∂tU(t, ϕ(t))〉V .

Due to p > N we have H1(Ω) ↪→ L
2p
p−2 (Ω) and thus, Hölder’s inequality with (p −

2)/2p+ 1/p+ 1/2 = 1 in combination with (2.2) and (2.5) yields∣∣〈∂tF (t, ϕ(t)), ϕ̇(t)〉H1(Ω)

∣∣ ≤ ‖g′(ϕ(t))‖∞‖ϕ̇(t)‖ 2p
p−2
‖u(t)‖W 1,p

D (Ω)‖∂tU(t, ϕ(t))‖V

≤ C‖ϕ̇(t)‖H1(Ω),

with C > 0 independent of β. On account of the generalized Young inequality, this
can be continued as follows∣∣〈∂tF (t, ϕ(t)), ϕ̇(t)〉H1(Ω)

∣∣ ≤ 1

4k
‖ϕ̇(t)‖2H1(Ω) + Ck ∀ k > 0. (4.7)

Together with (2.10) and the definition of I2 in (4.4), this gives the assertion with
ĉ(k) = 1

4k + c̃(k) so that ĉ is indeed independent of β, monotonically decreasing and
tends to 0 as k →∞.
Lemma 4.5. Let Assumption 4.1 hold. Then there exist constants C1, C2 > 0, inde-
pendent of β, such that∫ T

0

‖∇ϕ̇(τ)‖22 dτ ≤ C1

∫ T

0

‖ϕ̇(τ)‖22 dτ + C2.

Proof. Applying Lemmata 4.3 and 4.4 to the right-hand side in (4.4) yields

(α− ĉ(k))

∫ T

0

‖∇ϕ̇(τ)‖22 dτ ≤ (ĉ(k) + k)

∫ T

0

‖ϕ̇(τ)‖22 dτ + C k

for all k > 0. Since ĉ tends to zero as k → ∞, there is a K > 0 such that ĉ(K) < α
holds. Choosing k = K thus yields the assertion. Note that K does not depend on
β, since ĉ is independent of β.
Lemma 4.6. Let Assumption 4.1 hold. Then, for β > 0 sufficiently large, there holds
‖ϕ̇‖L2(0,T ;L2(Ω)) ≤ C with a constant C > 0 independent of β.
Proof. From (4.4) we deduce∫ T

0

‖ϕ̇(τ)‖22 dτ ≤
∫ T

0

(ḋ(τ), ϕ̇(τ))2 dτ −
1

β
I2. (4.8)

Young inequality implies for the first term on the right-hand side in (4.8) that∫ T

0

(ḋ(τ), ϕ̇(τ))2 dτ ≤
1

2

∫ T

0

‖ḋ(τ)‖22 dτ +
1

2

∫ T

0

‖ϕ̇(τ)‖22 dτ. (4.9)

In order to estimate the second term on the right-hand side in (4.8), we apply Lemma
4.4 for some fixed k > 0, which thanks to Lemma 4.5 gives

1

β
|I2| ≤

C1

β

∫ T

0

‖ϕ̇(τ)‖22 dτ +
C2

β
(4.10)
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with constants C1 and C2 independent of β on account of Lemmata 4.4 and 4.5.
Inserting (4.9) and (4.10) in (4.8) then implies∫ T

0

‖ϕ̇(τ)‖22 dτ ≤
1

2

∫ T

0

‖ḋ(τ)‖22 dτ +
(1

2
+
C1

β

)∫ T

0

‖ϕ̇(τ)‖22 dτ +
C2

β
. (4.11)

Now, for β sufficiently large such that C1/β < 1/2, the assertion follows from Lemma
4.2.

As a consequence of Lemmata 4.5 and 4.6 and Poincaré-Friedrich’s inequality together
with (4.1) we can now state the main result of this section:

Corollary 4.7 (Boundedness of the nonlocal damage). Under Assumption 4.1 there
exists a β0 > 0 and a constant C > 0 such that ‖ϕ‖H1(0,T ;H1(Ω)) ≤ C for all β ≥ β0.

4.2. Passing to the Limit in the Elliptic System. We start our limit analysis
with the elliptic system (2.15a)–(2.15b). In order to emphasize the dependency on the
penalty parameter, we no longer suppress the index β and denote the unique solution
of (P) and (2.15a)–(2.15c), respectively, by (uβ , ϕβ , dβ).

Proposition 4.8 (Passing to the limit in (2.15a)). Let Assumption 4.1 hold. Then,
for every sequence βn →∞, there exist a (not relabeled) subsequence {ϕβn}n∈N such
that

ϕβn ⇀ ϕ in H1(0, T ;H1(Ω)), (4.12)
uβn = U(·, ϕβn(·))→ U(·, ϕ(·)) =: u in C([0, T ];V ) (4.13)

as n→∞.

Proof. Since H1(0, T ;H1(Ω)) is a reflexive Banach space, Corollary 4.7 implies the
existence of a (not relabeled) subsequence of {ϕβn}n∈N such that (4.12) holds.

To prove the second assertion, we apply Lemma 2.10 with π = 2. Then r = 2p/(p−
2) and (2.3) implies that the mapping Uc : C([0, T ];Lr(Ω)) 3 ϕ 7→ U(·, ϕ(·)) ∈
C([0, T ];V ) is Lipschitz continuous with constant L > 0. Note that L is independent
of β, since β does not appear in the elliptic equation (2.15a) associated with U . Now,
since p > 2 by Assumption 2.7.1, the embedding H1(Ω) ↪→↪→ Lr(Ω) is compact,
which implies that H1(0, T ;H1(Ω)) ↪→↪→ C([0, T ];Lr(Ω)) is a compact as well, cf. [30,
Corollary 3.1.42]. Consequently (4.12) leads to ϕβn → ϕ in C([0, T ];Lr(Ω)) and the
Lipschitz continuity of Uc then gives (4.13).

For the rest of this section we denote by {βn}n∈N a fixed sequence such that {ϕβn}
converges weakly in H1(0, T ;H1(Ω)) and by ϕ the limit of this particular sequence.
Proposition 4.8 guarantees the existence of such a sequence. Notice however that
(at this point) ϕ depends on the chosen subsequence. Nevertheless, as we will see in
Proposition 5.6 below, under a (rather restrictive) regularity condition on the elliptic
operator Aϕ, the weak limit is unique so that the whole sequence converges weakly.

Proposition 4.9 (Passing to the limit in (2.15b)). Let Assumption 4.1 hold and
let {βn}n∈N be the subsequence from Proposition 4.8 and ϕ the corresponding limit.
Then there holds

dβn ⇀ ϕ in H1(0, T ;L2(Ω)) as n→∞,

which implies in particular that both damage variables coincide in the limit.
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Proof. First of all, Lemma 4.2 yields the existence of a subsequence {βnk}k∈N so that

dβnk ⇀ d in H1(0, T ;L2(Ω)) as k →∞. (4.14)

Now, let t ∈ [0, T ] and ψ ∈ H1(Ω) be arbitrary, but fixed. Testing (2.15b) with ψ
gives the following estimate, where we use Corollary 4.7, the boundedness of g′ from
Assumption 2.3, and (2.2):∫

Ω

(
dβn(t)− ϕβn(t)

)
ψ dx

≤ 1

βn

(
α‖∇ϕβn(t)‖2 + ‖g′(ϕβn(t))‖∞‖Cε(uβn(t)) : ε(uβn(t))‖ p

2

)
‖ψ‖H1(Ω)

≤ C

βn
‖ψ‖H1(Ω) → 0 as n→∞.

(4.15)

Note that H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)), which yields the boundedness of
‖∇ϕβn(t)‖2 uniformly in t. Of course the above estimate also holds for the sub-
sequence {βnk}k∈N and hence, (4.14) and the convergence of {ϕβn} by assumption
imply ∫

Ω

(d(t)− ϕ(t))ψ dx ≤ 0,

and, since t and ψ were arbitrary, this gives in turn d(t) = ϕ(t) for all t ∈ [0, T ].
Hence, we obtain dβnk ⇀ ϕ in H1(0, T ;L2(Ω)) as k → ∞. Thus, the weak limit is
unique and a well known argument implies the convergence of the whole sequence
{dβn} (with {βn}n from Proposition 4.8) to ϕ.

4.3. Passing to the Limit in the Energy Balance. We now turn our at-
tention to the passage to the limit in (2.15c). However, as already indicated at the
beginning of Section 3, the term β(d− ϕ) involved in (2.15c) is not bounded in suit-
able spaces that allow for a passage to the limit. Instead we will pass to the limit in
(3.9), which will result in an energy inequality, that turns out to be equivalent to an
evolutionary equation as shown in Section 5.
We begin by introducing the energy and dissipation functionals that will arise after
passing to the limit. The energy without penalty term reads as follows
Definition 4.10 (Energy functionals without penalty). We define the energy func-
tional without penalty term by

Ẽ : [0, T ]× V ×H1(Ω)→ R,

Ẽ(t,u, ϕ) :=
1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22.

The reduced energy functional without penalty is given by

Ĩ : [0, T ]×H1(Ω)→ R, Ĩ(t, ϕ) := Ẽ(t,U(t, ϕ), ϕ).

Remark 4.11. Since the expressions in Ẽ involving the displacement are not affected
by the penalty term, it follows that, for a given pair (t, ϕ) ∈ [0, T ]×H1(Ω), u solves

min
u∈V
Ẽ(t,u, ϕ),
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iff u = U(t, ϕ) with U as defined in Definition 2.9. As a consequence we obtain
Ĩ(t, ϕ) = minu∈V Ẽ(t,u, ϕ).

In complete analogy to (3.1), the definitions of Ẽ and U allow us to rewrite the reduced
energy functional without penalty as

Ĩ(t, ϕ) = −1

2
〈`(t),U(t, ϕ)〉V +

α

2
‖∇ϕ‖22. (4.16)

Lemma 4.12 (Fréchet differentiability of Ĩ). It holds Ĩ ∈ C1([0, T ]×H1(Ω)) and its
partial derivatives read

∂tĨ(t, ϕ) = −〈 ˙̀(t),U(t, ϕ)〉V , ∂ϕĨ(t, ϕ) = −α4ϕ+ F (t, ϕ), (4.17)

where 4 : H1(Ω)→ H1(Ω)∗ denotes the distributional Laplace operator.

Proof. The proof is completely along the lines of the proof of Lemma 3.2 so that we
shorten the exposition. By applying the product rule to (4.16), one obtains that Ĩ is
indeed continuously Fréchet-differentiable with

Ĩ ′(t, ϕ)(δt, δϕ) = −1

2
〈 ˙̀(t)δt,U(t, ϕ)〉V −

1

2
〈`(t),U ′(t, ϕ)(δt, δϕ)〉V + α(∇ϕ,∇δϕ)2.

Similarly to (3.4) and (3.5), the first to addends can be rewritten by using (2.4a), the
symmetry of C, (2.4b), and the definition of F to obtain

1

2
〈 ˙̀(t)δt,U(t, ϕ)〉V +

1

2
〈`(t),U ′(t, ϕ)(δt, δϕ)〉V = 〈 ˙̀(t)δt,U(t, ϕ)〉V −〈F (t, ϕ), δϕ〉H1(Ω),

which completes the proof.

Next we introduce the viscous dissipation functional corresponding to the situation
without penalty:

Definition 4.13 (Viscous dissipation functional without penalty). We define the
functional R̃δ by

R̃δ : H1(Ω)→ [0,∞], R̃δ(η) :=

{
r
∫

Ω
η dx+ δ

2‖η‖
2
2 if η ≥ 0 a.e. in Ω,

∞ otherwise.

Note that R̃δ coincides with Rδ from (1.2) apart from its domain which is now H1(Ω)
instead of L2(Ω). This is in accordance with the spatial regularity of the damage
variable in the limit, as seen in Proposition 4.8.

In order to pass to the limit in (3.9) we consider a sequence βn →∞ such that

ϕβn ⇀ ϕ in H1(0, T ;H1(Ω)), (4.18)

dβn ⇀ ϕ in H1(0, T ;L2(Ω)), (4.19)
uβn → U(·, ϕ(·)) in C([0, T ];V ). (4.20)

Recall that such a sequence exists according to Propositions 4.8 and 4.9.

Lemma 4.14. Under Assumption 4.1 it holds for all t ∈ [0, T ] that∫ t

0

R̃δ(ϕ̇(τ)) dτ ≤ lim inf
n→∞

∫ t

0

Rδ(ḋβn(τ)) dτ.
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Proof. Let t ∈ (0, T ) be arbitrary, but fixed. From (4.19) it follows that

ḋβn ⇀ ϕ̇ in L2(0, t;L2(Ω)) (4.21)

so that ḋβn ≥ 0 a.e. in Ω × (0, t), see (2.15c), implies ϕ̇ ≥ 0 a.e. in Ω × (0, t) by
the weak closedness of the set of non-negative functions in L2(0, t;L2(Ω)). Thus, the
definition of R̃δ implies∫ t

0

R̃δ(ϕ̇(τ)) dτ = r ‖ϕ̇‖L1(0,t;L1(Ω)) +
δ

2
‖ϕ̇‖2L2(0,t;L2(Ω))

and the same obviously holds for Rδ(ḋβn(τ)), cf. (1.2). The result then follows from
the weak lower semicontinuity of (squared) norms.

Lemma 4.15. Let Assumption 4.1 hold. Then for all t ∈ [0, T ] we have

∂dI(t, dβn(t)) ⇀ ∂ϕĨ(t, ϕ(t)) in H1(Ω)∗ as n→∞.

Proof. Let t ∈ [0, T ] be arbitrary, but fixed and set again r = 2p/(p − 2). As
explained at the end of the proof of Proposition 4.8, Assumption 2.7.1 implies the
compact embedding H1(0, T ;H1(Ω)) ↪→↪→ C([0, T ];Lr(Ω)) so that (4.18) results in

ϕβn(t)→ ϕ(t) in Lr(Ω) for n→∞, ∀ t ∈ [0, T ]. (4.22)

Furthermore, since H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)), (4.18) implies

∇ϕβn(t) ⇀ ∇ϕ(t) in L2(Ω) for n→∞, ∀ t ∈ [0, T ]. (4.23)

From (3.2) and (2.15b) we moreover deduce

∂dI(t, dβn(t)) = βn(dβn(t)− ϕβn(t)) = −α4ϕβn(t) + F (t, ϕβn(t)).

Together with (4.17) and (2.8) this yields for every v ∈ H1(Ω) that

|〈∂dI(t, dβn(t))− ∂ϕĨ(t, ϕ(t)), v〉H1(Ω)|
≤ α|(∇ϕβn(t)−∇ϕ(t),∇v)2|+ |〈F (t, ϕβn(t))− F (t, ϕ(t)), v〉|
≤ α|(∇ϕβn(t)−∇ϕ(t),∇v)2|+ C ‖ϕβn(t)− ϕ(t)‖r‖v‖r.

The result then follows from (4.22), (4.23), and H1(Ω) ↪→ Lr(Ω) by Assumption 2.7.1.

Next we turn to the conjugate functional of R̃δ. According to Definition 4.13, R̃∗δ is
defined on H1(Ω)∗, which is essential as ∂ϕĨ(τ, ϕ(τ)) is only an element of H1(Ω)∗,
cf. Lemma 4.15.

Lemma 4.16. Under Assumption 4.1 it holds for all t ∈ [0, T ]∫ t

0

R̃∗δ
(
− ∂ϕĨ(τ, ϕ(τ))

)
dτ ≤ lim inf

n→∞

∫ t

0

R∗δ(−∂dI(τ, dβn(τ))) dτ.
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Proof. Again, let t ∈ [0, T ] by arbitrary, but fixed. By definition of the Fenchel-
conjugate, it holds for any ξ ∈ L2(Ω) that

R̃∗δ(ξ) = sup
v∈H1(Ω)

(
(ξ, v)2 − R̃δ(v)

)
≤ sup
v∈L2(Ω)

(
(ξ, v)2 −Rδ(v)

)
= R∗δ(ξ). (4.24)

Notice that we used in the above estimate that Rδ and R̃δ are defined with different
domains, see (1.2) and Definition 4.13. Further, R̃∗δ : H1(Ω)∗ → (−∞,∞] is convex
and lower semicontinuous and thus weakly lower semicontinuous, which thanks to
Lemma 4.15 leads to

R̃∗δ
(
− ∂ϕĨ(τ, ϕ(τ))

)
≤ lim inf

n→∞
R̃∗δ
(
− ∂dI(τ, dβn(τ))

)
∀ τ ∈ [0, t].

By setting ξ := −∂dI(τ, dβn(τ)) ∈ L2(Ω), see (3.2), in (4.24), the above estimate can
be continued as

R̃∗δ
(
− ∂ϕĨ(τ, ϕ(τ))

)
≤ lim inf

n→∞
R∗δ
(
− ∂dI(τ, dβn(τ))

)
= lim inf

n→∞

δ

2
‖ḋβn(τ)‖22 (4.25)

for all τ ∈ [0, t], where the last equality follows from Lemma 3.4. Applying Fatou’s
lemma to the right-hand side gives∫ t

0

lim inf
n→∞

R∗δ
(
− ∂dI(τ, dβn(τ))

)
dτ ≤ lim inf

n→∞

∫ t

0

R∗δ
(
− ∂dI(τ, dβn(τ))

)
dτ. (4.26)

Furthermore, arguing analogously to the derivation of (4.23), one sees that (4.19)
implies dβn(τ) ⇀ ϕ(τ) in L2(Ω) for every τ ∈ [0, T ]. Thus, (4.25) shows that R̃∗δ

(
−

∂ϕĨ(τ, ϕ(τ))
)
is finite for every τ . In addition, due to (4.17) and H1(0, T ;H1(Ω)) ↪→

C([0, T ];H1(Ω)), the map [0, t] 3 τ 7→ ∂ϕĨ(τ, ϕ(τ)) ∈ H1(Ω)∗ is continuous. Since
R̃∗δ is lower semicontinuous, it thus follows that the mapping

[0, t] 3 τ 7→ R̃∗δ(−∂ϕĨ(τ, ϕ(τ))) ∈ R

is lower semicontinuous as well and therefore, measurable. Now we can integrate
(4.25) over (0, t), which combined with (4.26) finally gives the assertion.

Proposition 4.17 (Energy inequality without penalty). Let Assumption 4.1 hold.
Then the limit function ϕ ∈ H1(0, T ;H1(Ω)) fulfills for all t ∈ [0, T ] the estimate∫ t

0

R̃δ(ϕ̇(τ)) dτ +

∫ t

0

R̃∗δ
(
− ∂ϕĨ(τ, ϕ(τ))

)
dτ + Ĩ(t, ϕ(t))

≤ Ĩ(0, ϕ(0)) +

∫ t

0

∂tĨ(τ, ϕ(τ)) dτ.
(4.27)

Proof. Let t ∈ [0, T ] be arbitrary, but fixed. Setting s := 0 in (3.9) yields∫ t

0

Rδ(ḋβn(τ)) dτ +

∫ t

0

R∗δ
(
− ∂dI(τ, dβn(τ))

)
dτ + I(t, dβn(t))

= I(0, dβn(0)) +

∫ t

0

∂tI
(
τ, dβn(τ))

)
dτ ∀n ∈ N.

(4.28)
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In view of Lemmas 4.14 and 4.16 we only need to discuss the last three terms in the
above equation. To this end, we combine (3.1) and (4.16) with (4.20), (4.23), and the
weakly lower semicontinuity of ‖ · ‖22, which gives

Ĩ(t, ϕ(t)) = −1

2
〈`(t),U(t, ϕ(t))〉V +

α

2
‖∇ϕ(t)‖22

≤ lim inf
n→∞

(
− 1

2
〈`(t),uβn(t)〉V +

α

2
‖∇ϕβn(t)‖22 +

βn
2
‖ϕβn(t)− dβn(t)‖22︸ ︷︷ ︸

≥0

)
= lim inf

n→∞
I(t, dβn(t)),

i.e., the desired convergence of the last term on the left-hand side of (4.28). It remains
to discuss the right-hand side in (4.28). Thanks to Assumption 4.1 and (4.1) the initial
value just vanishes, i.e.,

I(0, dβn(0)) = 0 ∀n ∈ N, (4.29)

and, in light of (4.16), `(0) = 0 by Assumption 4.1, and the pointwise convergence in
(4.23), which gives ∇ϕ(0) = 0, we obtain the same for the limit, i.e., Ĩ(0, ϕ(0)) = 0.
Therefore, the formulas for the partial derivatives of I and Ĩ in (3.2) and (4.17)
together with the regularity of ` and the convergence of the displacement in (4.20)
finally imply

I(0, dβn(0)) +

∫ t

0

∂tI(τ, dβn(τ))) dτ

=

∫ t

0

〈− ˙̀(τ),uβn(τ)〉 dτ →
∫ t

0

〈− ˙̀(τ),U(τ, ϕ(τ))〉 dτ

= Ĩ(0, ϕ(0)) +

∫ t

0

∂tĨ(τ, ϕ(τ)) dτ

which completes the proof.

In the next sections we use the energy inequality in (4.27) to show that the limit in
(4.18)–(4.20) satisfies a system of equations which is equivalent to a classical viscous
partial damage model containing only one single damage variable. As secondary result
we will also see that the inequality (4.27) is in fact equivalent to an energy identity,
see Remark 5.2 below.

5. A Single-Field Gradient Damage Model. In this section we show that
every solution of the energy inequality (4.27) satisfies an evolutionary equation and
vice versa. The proof mainly follows the arguments of [17, Proposition 3.1].

Proposition 5.1 (Viscous differential inclusion without penalty). Every function
ϕ ∈ H1(0, T ;H1(Ω)) which fulfills for all t ∈ [0, T ] the energy inequality (4.27) also
satisfies the following evolutionary equation

0 ∈ ∂R̃δ(ϕ̇(t)) + ∂ϕĨ(t, ϕ(t)) in H1(Ω)?, f.a.a. t ∈ (0, T ). (5.1)

The reverse assertion is true as well.

Proof. We start the proof with two auxiliary results needed for both implications
stated in the proposition. To this end let ϕ ∈ H1(0, T ;H1(Ω)) first be arbitrary, but
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fixed. Since R̃δ is convex and proper, a classical result from convex analysis leads to

R̃δ(ϕ̇(t)) + R̃∗δ(−∂ϕĨ(t, ϕ(t))) = −〈∂ϕĨ(t, ϕ(t)), ϕ̇(t)〉H1(Ω) (5.2)
⇐⇒

−∂ϕĨ(t, ϕ(t)) ∈ ∂R̃δ(ϕ̇(t)) (5.3)

f.a.a. t ∈ (0, T ). Further note that (4.17), combined with (2.7), (2.2), and the bound-
edness assumption on g′, implies

‖∂ϕĨ(t, v)‖H1(Ω)∗ ≤ C ‖v‖H1(Ω) + c ∀ (t, v) ∈ [0, T ]×H1(Ω), (5.4)

where C, c > 0 are independent of (t, v). By using the density of C1([0, T ];H1(Ω)) in
H1(0, T ;H1(Ω)), see e.g. [27, Lemma 7.2], and the continuous Fréchet differentiability
of Ĩ by Lemma 4.12, as well as (5.4), one shows that the function [0, T ] 3 t 7→
Ĩ(t, ϕ(t)) ∈ R belongs to H1(0, T ) with weak derivative

d

dt
Ĩ(., ϕ(.)) = ∂tĨ(., ϕ(.)) + 〈∂ϕĨ(., ϕ(.)), ϕ̇(.)〉H1(Ω) ∈ L2(0, T ). (5.5)

Note that ϕ ∈ H1(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)) and (5.4) imply ∂ϕĨ(., ϕ(.)) ∈
L∞(0, T ;H1(Ω)∗), which in turn renders the L2-regularity of d

dt Ĩ(., ϕ(.)).

Let us now assume that ϕ fulfills (4.27) for all t ∈ [0, T ]. Due to Ĩ(·, ϕ(·)) ∈ H1(0, T )
the energy inequality implies by setting t = T that∫ T

0

R̃δ(ϕ̇(τ)) dτ +

∫ T

0

R̃∗δ(−∂ϕĨ(τ, ϕ(τ))) dτ

≤ −
∫ T

0

( d
dt
Ĩ(τ, ϕ(τ))− ∂tĨ(τ, ϕ(τ))

)
dτ = −

∫ T

0

〈∂ϕĨ(τ, ϕ(τ)), ϕ̇(τ)〉H1(Ω) dτ,

where we used (5.5) for the last equality. Combining this with Young’s inequality,
i.e.,

R̃δ(ϕ̇(t)) + R̃∗δ(−∂ϕĨ(t, ϕ(t))) ≥ −〈∂ϕĨ(t, ϕ(t)), ϕ̇(t)〉H1(Ω) f.a.a. t ∈ (0, T ),

leads to (5.2) and consequently (5.3), which shows the first implication.
The reverse assertion can be concluded by following the lines of the proof of Propo-
sition 3.5. To see this, assume that ϕ ∈ H1(0, T ;H1(Ω)) satisfies (5.1). From the
equivalence (5.3)⇐⇒ (5.2) and (5.5) we then obtain

R̃δ(ϕ̇(t))+R̃∗δ(−∂ϕĨ(t, ϕ(t))) = − d

dt
Ĩ(t, ϕ(t))+∂tĨ(t, ϕ(t)) f.a.a. t ∈ (0, T ). (5.6)

Note that any ϕ, which fulfills (5.1), automatically satisfies ϕ̇ ≥ 0 in view of Definition
4.13. The latter one then also ensures the L1-integrability of R̃δ(ϕ̇(·)). For the right-
hand side in (5.6) we have due to Lemma 4.12 and (5.5) that ∂tĨ(·, ϕ(·)) ∈ C[0, T ]

and d
dt Ĩ(·, ϕ(·)) ∈ L2(0, T ), respectively. Thus, we are allowed to integrate (5.6) in

time, which implies∫ t

0

R̃δ(ϕ̇(τ)) dτ +

∫ t

0

R̃∗δ(−∂ϕĨ(τ, ϕ(τ))) dτ

= Ĩ(0, ϕ(0))− Ĩ(t, ϕ(t)) +

∫ t

0

∂tĨ(τ, ϕ(τ)) dτ
(5.7)
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for all t ∈ [0, T ]. This completes the proof.
Remark 5.2. An inspection of the proof of Proposition 5.1 shows that, in order to
prove (5.1), it suffices that (4.27) holds only at t = T . Moreover, the proof shows
that (4.27) implies (5.1) which in turn gives (5.7). In this way we have shown that
(4.27) is indeed an energy identity (in form of an energy balance). Furthermore,
integrating (5.6) over an arbitrary interval [s, t] ⊂ [0, T ] (instead of [0, t]) leads to
an energy identity, completely analogous to (3.9) so that the passage to the limit
β →∞ indeed preserves the structure of the energy-dissipation balance. We also refer
to [17, Proposition 3.1].

We summarize our results so far in the following
Theorem 5.3 (Single-field damage model). Let Assumption 4.1 hold and {βn}n∈N
be a sequence with βn → ∞ as n → ∞. Then there is a subsequence (denoted by the
same symbol) and a function ϕ ∈ H1(0, T ;H1(Ω)) such that

ϕβn ⇀ ϕ in H1(0, T ;H1(Ω)), dβn ⇀ ϕ in H1(0, T ;L2(Ω)),

uβn → u := U(·, ϕ(·)) in C([0, T ];V ).
(5.8)

Moreover, every limit (ϕ,u) ∈ H1(0, T ;H1(Ω)) × C([0, T ];V ) of such a sequence
satisfies f.a.a. t ∈ (0, T ) the following PDE system:

−div g(ϕ(t))Cε(u(t)) = `(t) in V ∗, (5.9a)

δ ϕ̇(t)− α4ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) + ∂R̃1(ϕ̇(t)) ∈ 0, ϕ(0) = 0, (5.9b)

with the (non-viscous) dissipation potential R̃1 defined by

R̃1 : H1(Ω)→ [0,∞], R̃1(η) :=

{
r
∫

Ω
η dx, if η ≥ 0 a.e. in Ω,

∞, otherwise.
(5.10)

Proof. The existence of the subsequence has already been established in Propositions
4.8 and 4.9. Furthermore, (5.9a) is just equivalent to u := U(·, ϕ(·)). It remains to
verify (5.9b), which follows from (5.1). To see this, just apply (4.17) and the definition
of F to the left-hand side of (5.1) and use the sum rule for convex subdifferentials for
the right-hand side.
The above theorem shows that (5.9) admits at least one solution. Of course, it would
be desirable to have the uniqueness of the solution, too, in particular, since this
guarantees the uniqueness of the limit in (5.8) and thus the (weak) convergence of
the whole sequence. Unfortunately, for this purpose, we have to require the following
rather restrictive assumption. We underline that this assumption is only needed to
show uniqueness, while the rest of the analysis remains unaffected, if it is not fulfilled.
Assumption 5.4. To ensure uniqueness of the solution of (5.9), we require that there
exists some p > 4 in the two-dimensional case and p ≥ 6 in the three-dimensional case
such that the operator Aϕ : W 1,p

D (Ω)→W−1,p
D (Ω) is continuously invertible for every

ϕ ∈ H1(Ω) and the norm of its inverse is bounded uniformly w.r.t. ϕ.

Remark 5.5. Assumption 5.4 is fulfilled, provided that no mixed boundary conditions
are present, the domain is smooth enough, and the difference between the boundedness
and ellipticity constants of the stress strain relation is sufficiently small, cf. [21, Re-
mark 3.11] and [11, 13]. Adapted to our situation this means that the values ε γC
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and ‖C‖∞ have to be sufficiently close to each other, which is clearly rather restric-
tive (beside the smoothness assumption on the domain), cf. also Remark 2.8. These
assumptions on the data can be weakened, if one uses Hs(Ω) with s > N/2 instead
H1(Ω) as function space for the nonlocal damage in the penalized model (P). We
refer to [17, Sections 2.4 and 3.2] for details. Since the bilinear form associated with
Hs(Ω) is harder to realize in numerical practice, we do not follow this approach.

Proposition 5.6 (Uniqueness under additional assumptions). Under Assumptions
5.4, system (5.9) admits a unique solution (ϕ,u) ∈ H1(0, T ;H1(Ω))× C([0, T ];V ).

Proof. Let (ϕi,ui) ∈ H1(0, T ;H1(Ω))×C([0, T ];V ), i = 1, 2 be two solutions of (5.9).
First note that, from the definition of F in (2.7) and ui(·) = U(·, ϕi(·)) we have that
ϕi satisfies

δϕ̇i(t)− α4ϕi(t) + F (t, ϕi(t)) ∈ −∂R̃1(ϕ̇i(t)), i = 1, 2, (5.11)

f.a.a. t ∈ (0, T ). Therefore, ∂R̃1(ϕ̇i(t)) 6= ∅, which gives ϕ̇1, ϕ̇2 ≥ 0 f.a.a. t ∈ (0, T ).
By testing (5.11) for i = 1 with ϕ̇2 − ϕ̇1 and vice versa and adding the arising
inequalities, we arrive at

δ‖ϕ̇1(t)− ϕ̇2(t)‖22 + α(∇ϕ1(t)−∇ϕ2(t),∇ϕ̇1(t)−∇ϕ̇2(t))2

≤ 〈F (t, ϕ2(t))− F (t, ϕ1(t)), ϕ̇1(t)− ϕ̇2(t)〉H1(Ω) f.a.a. t ∈ (0, T ).

Then, adding α(ϕ1(t) − ϕ2(t), ϕ̇1(t) − ϕ̇2(t))2 on both sides of this estimate and
applying (2.8) with r = 2p/(p− 4) (such that s = 2) lead to

δ‖ϕ̇1(t)− ϕ̇2(t)‖22 + α(ϕ1(t)− ϕ2(t), ϕ̇1(t)− ϕ̇2(t))H1(Ω)

≤ C‖ϕ1(t)− ϕ2(t)‖H1(Ω)‖ϕ̇1(t)− ϕ̇2(t)‖2

≤ C

4ε
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) + Cε ‖ϕ̇1(t)− ϕ̇2(t)‖22 ∀ ε > 0,

where the last estimate follows from the generalized Young inequality. Moreover,
we used H1(Ω) ↪→ L2p/(p−4)(Ω) by Assumption 5.4. By choosing ε := δ/(2C) we
conclude

α(ϕ1(t)− ϕ2(t), ϕ̇1(t)− ϕ̇2(t))H1(Ω) ≤
C2

2δ
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) (5.12)

f.a.a. t ∈ (0, T ). Chain rule combined with the fact that ϕ1−ϕ2 is almost everywhere
differentiable (see [4]) yields∫ t

0

(ϕ1(τ)− ϕ2(τ), ϕ̇1(τ)− ϕ̇2(τ))H1(Ω) dτ

=
1

2
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) −

1

2
‖ϕ1(0)− ϕ2(0)‖2H1(Ω) ∀ t ∈ [0, T ].

Due to ϕ1(0) = ϕ2(0), we obtain after integrating (5.12) that

α

2
‖ϕ1(t)− ϕ2(t)‖2H1(Ω) ≤

C2

2δ

∫ t

0

‖ϕ1(τ)− ϕ2(τ)‖2H1(Ω) dτ ∀ t ∈ [0, T ],

which by means of Gronwall’s lemma leads to

‖ϕ1(t)− ϕ2(t)‖2H1(Ω) ≤ 0 ∀ t ∈ [0, T ], (5.13)
21



and thus, completes the proof.

As an immediate consequence of the uniqueness result we obtain the following

Corollary 5.7. If Assumption 5.4 is fulfilled, then the convergence in (5.8) is not
only valid for a subsequence, but for the whole sequence {(dβn , ϕβn ,uβn)}.

6. Uniform Pointwise Bounds for the Damage Variable. This section is
devoted to deriving L∞-bounds for the damage variables dβ and ϕβ that are inde-
pendent of the penalty parameter β. In view of (4.18) and (4.19), respectively, this
boundedness result carries over to the limit damage variable ϕ. These estimates are
crucial for the transformation of our damage model in (5.9) into another one that can
be seen as a classical viscous damage model, which will be performed in the upcoming
Section 7. We emphasize that the Lipschitz continuity result in [21, Theorem 4.6]
together with Sobolev embeddings already implies that the nonlocal damage ϕβ is
pointwisely bounded in space and time, at least in two-dimensions, but these bounds
may depend on β. To show the desired boundedness independent of β, we mostly
follow the ideas of [17], where the authors derive a similar result in two dimensions
via time discretization, see [17, Proposition 4.2].

In the sequel, let β > 0 be fixed, but arbitrary so that Assumption 2.7 is fulfilled. We
start with the operator differential equation for the local damage variable in (2.14),
which serves as the basis for the time discretization:

ḋ(t) =
1

δ
max

{
− β

(
d(t)− Φ(t, d(t))

)
− r, 0

}
∀ t ∈ [0, T ], d(0) = d0, (6.1)

Here we suppressed again the dependency of d on β and simply write d instead of
dβ . To introduce a time-discrete incremental problem, let a number of time-steps
n ∈ N+ be given, set τ := T/n, and denote by {tτk = kτ}k=0,...,n the corresponding
partition of the time interval [0, T ]. Further we define, beginning with dτ0 := d0, the
approximation of the local damage at time point tτk+1, k ∈ {0, ..., n−1}, as the unique
solution of the fixed-point equation

dτk+1 = dτk +
τ

δ
max

{
− β(dτk+1 − Φ(tτk+1, d

τ
k+1))− r, 0

}
. (Pβk)

Note that the unique solvability of (Pβk) is ensured for τ > 0 sufficiently small, as a
result of the Lipschitz continuity of max and Φ, cf. Lemma 2.14, see also [8, Thm.
7.5.3]. In the following, we always tacitly assume that τ > 0 is chosen sufficiently
small so that (Pβk) is uniquely solvable. We introduce the notations

t̄τ (t) := tτk+1 for t ∈ (tτk, t
τ
k+1], k ∈ {0, ..., n− 1}, t̄τ (0) := 0,

and we define the piecewise constant interpolating functions d̄τ : [0, T ]→ L2(Ω) by

d̄τ (t) := dτk+1 for t ∈ (tτk, t
τ
k+1], k ∈ {0, ..., n− 1}, d̄τ (0) := d0.

The piecewise linear interpolation dτ : [0, T ]→ L2(Ω) is given by

dτ (t) := dτk +
t− tτk
τ

(dτk+1 − dτk) for t ∈ [tτk, t
τ
k+1], k ∈ {0, ..., n− 1}.
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Notice that dτ is differentiable on [0, T ] \ {t0, t1, ..., tn} with ḋτ (t) =
dτk+1−d

τ
k

τ for t ∈
(tτk, t

τ
k+1), k ∈ {0, ..., n− 1}, so that (Pβk) implies for t ∈ [0, T ] \ {t0, t1, ..., tn} that

ḋτ (t) =
1

δ
max{−β

(
d̄τ (t)− Φ(t̄τ (t), d̄τ (t))

)
− r, 0

}
. (6.2)

Proposition 6.1 (Convergence of the time-discretization). There holds

d̄τ → d in L∞(0, T ;L2(Ω)),

ϕ̄τ := Φ(t̄τ (·), d̄τ (·)
)
→ ϕ := Φ(·, d(·)

)
in L∞(0, T ;H1(Ω)),

dτ → d in W 1,∞(0, T ;L2(Ω)),

as τ ↘ 0, where d ∈ C1,1([0, T ];L2(Ω)) is the solution to (6.1).

Proof. The first convergence is a result of [8, Thm. 7.5.3]. To see this, we recall
that the mapping [0, T ]× L2(Ω) 3 (t, η) 7→ 1

δ max
{
− β

(
η − Φ(t, η)

)
− r, 0

}
∈ L2(Ω)

is Lipschitz continuous, by the Lipschitz continuity of max and Φ, cf. Lemma 2.14.
Moreover, we note that d ∈ W 2,∞(0, T ;L2(Ω)). Thus, by [8, Thm. 7.5.3] and the
Lipschitz continuity of d, we have d̄τ → d in L∞(0, T ;L2(Ω)). By employing again
the Lipschitz continuity of Φ, we deduce

‖Φ
(
t̄τ (t), d̄τ (t)

)
− Φ

(
t, d(t)

)
‖H1(Ω) ≤ K

(
τ + ‖d̄τ − d‖L∞(0,T ;L2(Ω))

)
∀ t ∈ [0, T ],

whence ϕ̄τ → ϕ in L∞(0, T ;H1(Ω)) as τ ↘ 0 follows. This allows us to conclude that
dτ → d in W 1,∞(0, T ;L2(Ω)), in view of (6.1) and (6.2). The proof is now complete.

Next, we show that the piecewise constant interpolation function d̄τ is bounded a.e.
in (0, T ) × Ω by a constant independent of β and τ . Because of Proposition 6.1 and
Theorem 5.3, this bound carries over to the limit function ϕ in (5.9), which is the
ultimate goal of this section. With a little abuse of notation, we again suppress the
subscript β for the solution of (6.1), i.e., the problem with penalty, in order to shorten
the notation. When it comes to the pointwise boundedness of the “penalty limit” ϕ,
i.e., the solution of (5.9), we will introduce the index β again, see Proposition 6.8
below.

To prove the result, we follow the ideas of the proof of [17, Proposition 4.2], that is,
we show the pointwise boundedness of dτk+1 by induction on the index k, see proof
of Lemma 6.6 below. Therefor we first rewrite (Pβk) as an equivalent minimization
problem:

Lemma 6.2. The solution dτk+1 of (Pβk) is the unique minimizer of

min
v∈Ck

fk(v) := I(tτk+1, v) + r

∫
Ω

v − dτk dx+
δ

2

‖v − dτk‖22
τ

(6.3)

with Ck := {v ∈ L2(Ω) : v ≥ dτk a.e. in Ω}.
Proof. We aim to show that the necessary optimality conditions for (6.3) are equivalent
to (Pβk). However, due to the nonlinear structure of U and Φ, the objective fk is in
general not convex so that it is a priori not clear that its necessary conditions are
also sufficient. It does therefore not suffice to prove the equivalence of (Pβk) to the
necessary conditions of (6.3) in order to establish the claim of the lemma. Instead
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one first has to verify the existence of solutions for (6.3). To this end, first observe
that, in view of (3.1),

fk(v) = −1

2
〈`(tτk+1),U(tτk+1,Φ(tτk+1, v))〉V +

α

2
‖∇Φ(tτk+1, v)‖22

+
β

2
‖Φ(tτk+1, v)− v‖22 + r

∫
Ω

v − dτk dx+
δ

2

‖v − dτk‖22
τ

.
(6.4)

The existence of solutions for (6.3) follows from the classical direct method of vari-
ational calculus. First, Ck is convex and closed, thus, weakly closed. Moreover,
in the light of (6.4) and (2.2), f is radially unbounded. It remains to show that
it is also weakly lower semicontinuous. To see this, we first prove that L2(Ω) 3
v 7→ Φ(tτk+1, v) ∈ H1(Ω) is weakly continuous. To this end, consider a sequence
{vj} ⊂ L2(Ω) such that vj ⇀ v in L2(Ω) as j →∞ and abbreviate ϕj := Φ(tτk+1, vj)
for the sake of convenience. The boundedness of {vj} and the global Lipschitz continu-
ity of Φ by Lemma 2.14 imply the existence of a subsequence, for simplicity denoted by
the same symbol, such that ϕj ⇀ ϕ̃ in H1(Ω) as j →∞. Since p > N by Assumption
2.7.1, H1(Ω) is compactly embedded in L2p/(p−2)(Ω) so that (2.8) implies

‖F (tτk+1, ϕj)− F (tτk+1, ϕ̃)‖H1(Ω)∗ ≤ C‖ϕj − ϕ̃‖2p/(p−2) → 0 as j →∞.

Together with the linearity of B, see (2.6), and the definition of Φ in Lemma 2.13,
this yields

0 = β vj −Bϕj − F (tτk+1, ϕj) ⇀ β v −Bϕ̃− F (tτk+1, ϕ̃) in H1(Ω)∗ as j →∞

so that ϕ̃ = Φ(tτk+1, v). Thus, the weak limit is unique, which in turn gives the
weak convergence of the whole sequence ϕj and, since {vj} was an arbitrary weakly
converging sequence, we thus obtain the desired weak continuity of Φ(tτk+1, ·). To-
gether with the weak lower semicontinuity of squared norms this gives the weak lower
semicontinuity of all terms on the right-hand side of (6.4), except the first addend.
However, since the mapping L2p/(p−2)(Ω) 3 ϕ 7→ U(tτk+1, ϕ) ∈ V is continuous by
Lemma 2.10, the compactness of H1(Ω) ↪→ L2p/(p−2)(Ω) guarantees the convergence
of this term, too. Therefore, fk : L2(Ω) → R is weakly lower semicontinuous and
consequently, (6.3) admits solutions.
Next we derive first-order necessary optimality conditions for (6.3). To this end, let
z be an arbitrary, but fixed, solution thereof. Thanks to Lemma 3.2, fk is Fréchet-
differentiable so that, due to convexity of Ck, the necessary optimality conditions for
(6.3) are given by

f ′k(z)(v − z) ≥ 0 ∀ v ∈ Ck,

which, in view of (3.2), reads(
β(z − Φ(tτk+1, z)) + r + δ τ−1(z − dτk) , v − δ τ−1(z − dτk)

)
2
≥ 0

for all v ∈ L2(Ω) with v ≥ 0 a.e. in Ω. (6.5)

As a variational inequality in L2(Ω) subject to pointwise inequality constraints, (6.5)
can equivalently be reformulated as a pointwise complementarity relation (cf. e.g. [29,
Section 2.8.2]), which reads

0 ≤ δ

τ
(z − dτk) ⊥ β(z − Φ(tτk+1, z)) + r +

δ

τ
(z − dτk) ≥ 0 a.e. in Ω.
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Since the max-function is a well-known complementarity function, we infer that z
solves (Pβk) and, since the latter is uniquely solvable, this gives the uniqueness of the
minimizer of (6.3) as well as the equivalence of (6.3) and (Pβk).

In order to obtain the desired boundedness result, we impose the following

Assumption 6.3. There exists a constant M > 0 such that g(x) ≥ g(M) for all
x ≥M .

Remark 6.4. Recall that the function g : R → [ε, 1] measures the material rigidity
of the body, where, according to Assumption 2.3, ε > 0 (which turns the model into
a partial damage model). Thus, there is always a minimum rigidity remaining, and
Assumption 6.3 is for instance fulfilled, if g(x) ≡ ε for all x ≥ M , which means that
this minimum rigidity is already achieved with finite values of the (nonlocal) damage
variable.

Next, let us introduce the Nemytskii operator associated with min{·,M} : R → R,
denoted by L2(Ω) 3 z 7→ min(z,M) ∈ L2(Ω). Clearly, this operator is Lipschitz
continuous with constant one. We will also consider this operator with domain and
range in H1(Ω), for simplicity denoted by the same symbol. It is well known that
min(·,M) maps H1(Ω) to H1(Ω) with

∇min(v,M) = χ{v<M}∇v ∀ v ∈ H1(Ω), (6.6)

where χ{v<m} ∈ L∞(Ω; {0, 1}) denotes the characteristic function of {x ∈ Ω : v(x) <
M} (defined up to sets of measure zero), see e.g. [14, Theorem II.A.1].

Lemma 6.5. Under Assumption 6.3, we have

I(t,min(z,M)) ≤ I(t, z) ∀ (t, z) ∈ [0, T ]× L2(Ω).

Moreover, if z ∈ L2(Ω) satisfies min(z,M) = z, then min(Φ(t, z),M) = Φ(t, z) for
every t ∈ [0, T ].

Proof. Let (t, z) ∈ [0, T ] × L2(Ω) be arbitrary, but fixed and let us for simplicity
abbreviate ϕ̄ := Φ(t, z) in what follows. From Lemma 2.13, Definition 3.1, and (1.1),
it follows that

I(t,min(z,M))

≤ E(t,U(t, ϕ̄),min(ϕ̄,M),min(z,M))

=
1

2

∫
Ω

g(min(ϕ̄,M))Cε(U(t, ϕ̄)) : ε(U(t, ϕ̄)) dx− 〈`(t),U(t, ϕ̄)〉V

+
α

2
‖∇min(ϕ̄,M)‖22 +

β

2
‖min(ϕ̄,M)−min(z,M)‖22,

(6.7)

By Assumption 6.3, we further have g(min(ϕ̄,M)) ≤ g(ϕ̄) a.e. in Ω. Together with
(2.1), (6.6), and the Lipschitz continuity of min(·,M) : L2(Ω) → L2(Ω), this implies
for (6.7)

I(t,min(z,M)) ≤ 1

2

∫
Ω

g(ϕ̄)Cε(U(t, ϕ̄)) : ε(U(t, ϕ̄)) dx

− 〈`(t),U(t, ϕ̄)〉V +
α

2
‖∇ϕ̄‖22 +

β

2
‖ϕ̄− z‖22 = I(t, z),

(6.8)

where we again employed Definition 3.1. This proves the first assertion.
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Now, if z satisfies min(z,M) = z, then (6.8) holds with equality and thus, the in-
equality in (6.7) is an equality, too. However, since the minimization problem in
(P) is uniquely solvable, cf. Lemma 2.13, equality in (6.7) implies min(ϕ̄,M) =
Φ(t,min(z,M)) = Φ(t, z), which completes the proof.

Lemma 6.6 (Uniform estimates for the discrete local and nonlocal damage). Suppose
that Assumption 6.3 hold true and that d0 ∈ L∞(Ω) with ‖d0‖L∞(Ω) ≤ M . Then for
all t ∈ [0, T ] there holds

d̄τ (t, x) ≤M, ϕ̄τ (t, x) ≤M a.e. in Ω,

where ϕ̄τ again stands for Φ(t̄τ (·), d̄τ (·)
)
.

Proof. We follow the lines of the proof of [17, Proposition 4.2] and show that dτk ≤M
for all k ∈ {0, ..., n} by induction on the index k. Note that the assertion is fulfilled
for k = 0, since d0(x) ≤ M a.e. in Ω by assumption. Now let k ∈ {0, ..., n − 1} be
fixed, but arbitrary and assume that

dτk(x) ≤M a.e. in Ω. (6.9)

The idea of the proof is to show that (dτk+1)− := min(dτk+1,M) solves the problem
(6.3) so that Lemma 6.2 implies dτk+1 = min(dτk+1,M). From (Pβk) it is clear that
dτk+1 ≥ dτk and, as a result of (6.9), thus

(dτk+1)− ≥ dτk a.e. in Ω ⇐⇒ (dτk+1)− ∈ Ck

so that (dτk+1)− is feasible for (6.3). For the objective of (6.3) we obtain by Lemma
6.5 that

fk((dτk+1)−) = I(tτk+1, (d
τ
k+1)−) + r

∫
Ω

(dτk+1)− − dτk dx+
δ

2

‖(dτk+1)− − dτk‖22
τ

≤ I(tτk+1, d
τ
k+1) + r

∫
Ω

dτk+1 − dτk dx+
δ

2

‖dτk+1 − dτk‖22
τ

= fk(dτk+1)

where we also used that 0 ≤ (dτk+1)− − dτk ≤ dτk+1 − dτk. On the other hand, Lemma
6.2 tells us that dτk+1 is the unique solution of (6.3) and, since (dτk+1)− is feasible as
seen above, we conclude that (dτk+1)− = dτk+1. Hence, dτk+1 ≤ M , which ends the
induction step. Therefore, the piecewise constant interpolant satisfies d̄τ (t, x) ≤ M
for all t ∈ [0, T ] and almost all x ∈ Ω. This, together with the second assertion of
Lemma 6.5, implies ϕ̄τ (t, x) = Φ(t̄τ (t), d̄τ (t)

)
(x) ≤M for all t ∈ [0, T ] and almost all

x ∈ Ω, which completes the proof.

Remark 6.7. Let us point out that we are able to prove L∞-bounds for the discretized
damage variables in both dimensions, while in [17, Proposition 4.2] the assertion is
restricted to the two-dimensional case. This is due to the fact that we consider the
H1-seminorm of the (nonlocal) damage in the energy functional (1.1) if N ∈ {2, 3}.
In [17], this is the case only in two dimensions, while in three dimensions the authors
work with the H3/2-seminorm, see [17, Section 2.1]. In the latter case, there is no
analogue to the Stampacchia-lemma for H1-functions, which was essential for the
proof of Lemma 6.5, see also [17, Eq. (4.30)]. We underline however that we are
only able to work with the H1-seminorm in the energy in both dimensions, because we
impose Assumption 2.7.1, see also Remark 2.8.
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From the above results it easily follows that the local and the nonlocal damage associ-
ated with the penalized problem (2.15), as well as their limit as β →∞, are bounded
a.e. in space and time by the constant M from Assumption 6.3. To distinguish be-
tween the solutions of the penalized problem and the single-field model in (5.9), we
no longer suppress the index β.
Proposition 6.8 (Uniform L∞-bound for the penalized damage variable). Let As-
sumptions 4.1 and 6.3 be fulfilled. Then, the local and nonlocal damage associated
with the penalized model (2.15) fulfill 0 ≤ dβ(t, x) ≤ M and ϕβ(t, x) ≤ M a.e. in
(0, T )× Ω.

Proof. The lower bound for dβ is a direct consequence of (2.15c) and Assumption 4.1,
i.e., d0 ≡ 0. The upper bounds immediately follow from Lemma 6.6, Proposition 6.1,
and the closedness of {v ∈ L2((0, T )× Ω) : v ≤M a.e. in (0, T )× Ω)}.
By analogous arguments, we finally obtain the following
Theorem 6.9 (L∞-bound for the limit damage variable). Suppose that Assumptions
4.1 and 6.3 are fulfilled. Let βn →∞ be a sequence so that dβn ⇀ ϕ in H1(0, T ;L2(Ω))
(whose existence is guaranteed by Theorem 5.3). Then there holds 0 ≤ ϕ ≤M a.e. in
(0, T )× Ω, where M > 0 is the constant from Assumption 6.3.

7. Comparison to a Classical Partial Damage Model. The aim of this
section is to transfer the single-field damage model (5.9) (which describes the damage
evolution in terms of a variable ϕ ∈ [0,∞)) to a system in terms of a damage variable
z ∈ [0, 1]. This will allow for a comparison with the damage model in [17], which falls
into the category of classical partial damage models, see e.g. [10]. Throughout this
section, we suppose that, beside our standing assumptions in Section 2, Assumptions
4.1 and 6.3 are fulfilled, too. Let us pick a fixed, but arbitrary solution (ϕ,u) ∈
H1(0, T ;H1(Ω)) × C([0, T ];V ) of (5.9), which arises as a penalty limit for β → ∞.
Recall again that the existence of such a solution is guaranteed by Theorem 5.3.
Moreover, we know from Theorem 6.9 that ϕ ∈ L∞((0, T )× Ω) with

0 ≤ ϕ(t, x) ≤M a.e. in (0, T )× Ω. (7.1)

The transformation of the single-field model (5.9) is based on the introduction of a
new damage variable, defined by

z := 1− ϕ

M
∈ H1(0, T ;H1(Ω)). (7.2)

Because of (7.1) and (7.2), it holds

z(t, x) ∈ [0, 1], z(t, x) = 1 ⇐⇒ ϕ(t, x) = 0, z(t, x) = 0 ⇐⇒ ϕ(t, x) = M

a.e. in (0, T )×Ω. Physically interpreted, this means that the body is completely sound,
if z = 1, whereas the maximum damage is reached, if z = 0, cf. also Remark 6.4.
We now transform the system (5.9) into a set of equations in the variables (z,u),
i.e., the displacement remains the same. For this purpose, we define the following
transformation of the elasticity coefficient function

g : R 3 x 7→ g(M(1− x)) ∈ R, (7.3)

as well as the following modified model parameters

ᾱ := αM2, δ̄ := δM2, κ := rM. (7.4)
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Given these definitions, (5.9) is equivalent to

−div g(z(t))Cε(u(t)) = `(t) in V ∗, (7.5a)

δ̄ ż(t)− ᾱ4z(t) +
1

2
g′(z(t))C ε(u(t)) : ε(u(t)) ∈ −∂R1(ż(t)), z(0) = 1 (7.5b)

with the dissipation functional

R1 : H1(Ω)→ [0,∞], R1(η) :=

{
κ
∫

Ω
(−η) dx, if η ≤ 0 a.e. in Ω,

∞, otherwise.
(7.6)

Here we used that ∂R1(ż(t)) = −M∂R̃1(ϕ̇(t)) f.a.a. t ∈ (0, T ). The energy functional
associated with (7.5) reads

E(t,u, z) :=
1

2

∫
Ω

g(z)Cε(u) : ε(u) dx− 〈`(t),u〉V +
ᾱ

2
‖∇z‖22. (7.7)

Remark 7.1. The energy in (7.7) and the dissipation functional in (7.6) in principle
coincide with those in [17, Eq. (1.1) and (1.3)]. The major differences between E and
the energy in [17, Eq. (1.1)] concern the H1

0 -semi-norm in (7.7) and an additional
nonlinearity in [17, Eq. (1.1)]. This nonlinearity is just a smooth Nemytskii-operator
acting on z and can easily be incorporated into our analysis. We however decided
not to consider this nonlinearity and to rely on the energy from [5] instead, as this
reference serves as a basis for our two-field damage model.

In the two-dimensional case, the energy in [17] also contains the H1
0 -semi-norm, while,

in three spatial dimensions, the H1
0 -semi-norm is replaced by a bilinear form inducing

the H3/2-semi-norm in order to avoid Assumption 2.7.1, cf. Remark 2.8 and [17,
Section 2.1].

Similarly to Lemma 2.13 one shows that, for given (t, z) ∈ [0, T ] × H1(Ω), the en-
ergy E(t, ·, z) is minimized by the unique solution of (7.5a), see also [17, Lemma 2.1].
Analogously to Definitions 2.9 and 3.1 we introduce the solution operator U : [0, T ]×
H1(Ω) 3 (t, z) 7→ u ∈W 1,p(Ω) associated with (7.5a) and the reduced energy func-
tional I(t, z) := E(t,U(t, z), z). Following the lines of the Lemmata 3.2 and 4.12,
one shows that I is Fréchet-differentiable, cf. also [17, Corollary 2.1]. If we moreover
introduce a viscous dissipation functional analogously to Definition 4.13 by

Rδ̄ : H1(Ω) 3 η 7→ R1 +
δ̄

2
‖η‖22 ∈ R ∪ {∞},

then (7.5) is equivalent to

∂Rδ̄(ż(t)) + ∂zI(t, z(t)) 3 0 in H1(Ω)?, f.a.a. t ∈ (0, T ). (7.8)

This is exactly the viscous model of [17], see [17, Eq. (3.1)], except for the differences
in the energy functional mentioned in Remark 7.1. This shows that the limit system
(5.9) indeed coincides with the “classical” viscous partial damage model from [17],
which may be seen as an ultimate argument showing that the penalization procedure
makes sense from a mathematical point of view.

A crucial result in [17] concerns the vanishing viscosity analysis for δ̄ ↘ 0. It turns
out that the vanishing viscosity limit satisfies the following re-parametrized system
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w.r.t. an artificial time s ∈ [0, S]

∂R1(ẑ′(s)) + λ(s) ẑ′(s) + ∂zI(t̂(s), ẑ(s)) 3 0 f.a.a. s ∈ (0, S)

t̂(S) = T, t̂′(s) ≥ 0, t̂′(s)λ(s) = 0, t̂′(s) + |ẑ′(s)| ≤ 1 a.e. in (0, S).

For details, we refer to [17, Section 5]. It is open question what happens to the
penalized model (P) and (2.15), respectively, when the viscosity vanishes, i.e., δ ↘ 0
for fixed β > 0. This is of particular interest, since the non-viscous two-field model is
frequently considered in computational mechanics, see [5, 6]. The vanishing viscosity
limit analysis for (P) however would go beyond the scope of this paper and gives rise
to future research.
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