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We consider a class of (ill-posed) optimal control problems in which a distributed
vector-valued control is enforced to pointwise take values in a finite set M c R™.
After convex relaxation, one obtains a well-posed optimization problem, which
still promotes control values in M. We state the corresponding well-posedness and
stability analysis and exemplify the results for two specific cases of quite general
interest, optimal control of the Bloch equation and optimal control of an elastic
deformation. We finally formulate a semismooth Newton method to numerically
solve aregularized version of the optimal control problem and illustrate the behavior
of the approach for our example cases.

1 Introduction

We consider the optimization problem

(11 min 3 150 =215 + [ gtut) dx.

where Q c R” is an open bounded domain, U is assumed to be some Banach space of functions
u: Q — R™, Y is a Hilbert space, z € Y, S: U — Y is a compact and Fréchet differentiable
(possibly nonlinear) operator, and the pointwise vector multibang penalty g: R™ — RU {0} has
a convex polyhedral epigraph and superlinear growth at infinity. This extends the class of scalar
problems considered in [12, 13] to the vector-valued case. The problem may be viewed either as
an optimal control problem, in which we try to choose the control u such that the state y = S(u)
comes close to a prescribed desired value z, or as an inverse problem, in which a measurement
z has been obtained via a forward operator S from a physical configuration u, which we try
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to recover. To make the problem well-posed, a regularization typically has to be incorporated,
which encodes some a priori knowledge or requirement of u. With the term fQ g(u(x)) dx we
make a very particular regularization choice, and our main interest in this article is the behavior
and influence of this choice on the solution, which we will study exemplarily for two different
operators S (the solution operator of the Bloch equation and of linearized elasticity) and specific
costs g (whose graph is given by a polyhedral cone and a square frustum). The basic underlying
intuition is that this regularization gives preference to the values of u at the vertices of the
graph of g, much like the well-known mechanism by which the L!-norm prefers sparsity.

Motivation Our regularization choice is motivated by scenarios in which u is required to
take values only in a prescribed finite set M c R™. Examples include topology optimization,
where the spatial material composition of a (mechanical) structure is optimized and in which M
comprises the material parameters of the available material components, or inverse problems in
which the spatial distribution of a few known materials (or, in medical imaging, tissues with
known properties) has to be identified. This leads to the minimization of an energy

0 ifueM,

oo else.

SM(u) = %HS(u) - z||§ + / I m(u(x)) dx with § p(u) = {
Q

Unfortunately, unless the inverse operator S™! were compact into L'(Q), the energy &M is
not lower semi-continuous in u and thus the problem is ill-posed: generically there are no
minimizers, and controls u with small energy &M (u) will rapidly oscillate between different
values in M. There are two possible ways out.

(i) The first approach adds a penalty of variations of u, for instance the total variation
seminorm ||u|lry = fQ d|Vu| or a Mumford-Shah-type regularization functional, which
has the effect of preventing oscillations and penalizing the interfaces between regions of
different values of u. A disadvantage of this approach is that it quite explicitly regularizes
the geometry of the material distribution, which is the sought quantity. For instance, such
a regularization will lead to rounded-off interfaces that cannot have corners.

(ii) The second approach considers instead the relaxation (the lower semi-continuous enve-
lope) of &M, thereby admitting also mixed states u(x) ¢ M that represent mixtures of
values in M. This is an obvious disadvantage; however, it might be alleviated by adding a
convex (to ensure weak lower-semicontinuity) cost fQ c(u(x)) dx that may for instance
encode a known preference for a certain material. If this is done before relaxation, then
mixed states will no longer have equal costs to pure states so that the relaxation may
again lead to pure states u(x) € M. This has for instance been observed in [12].

The additional cost regularization of the latter approach acts on the material amounts rather
than the geometry of their distribution and therefore is worthwhile studying as an alternative
to the standard regularization via penalization of interfaces. Considering the most natural
case U = L(Q) for some p > 1, the relaxation of /Q Ipm(u(x))dx + fQ c(u(x)) dx is given by

fQ g(u(x)) dx with

g=9s for geo := ¢ + S,



where the double asterisk denotes the biconjugate or convex envelope. Those functions g are
precisely the ones with convex polyhedral epigraph, which motivates our problem choice (1.1).
Note that for simplicity and without loss of generality we will consider

a2
c(w) = —|u
= % Jul

for some a > 0.

In the case of a scalar (m = 1) function u, this optimization problem reduces to the one
considered in [12]; the difference in the vector-valued case is that now several values in M
can be assigned the same regularization cost and therefore there are multiple equally preferred
discrete values.

Model problems As two specific examples we will examine two different operators S and
admissible sets M (the analysis in Section 2 will be independent of these models, though).

The first example follows [16], where the authors try to drive a collection of spin systems using
external electromagnetic fields to a desired spin state in the context of NMR spectroscopy or
tomography. The hardware here only allows a discrete set of control values (the radiofrequency
pulse phases and amplitudes). The underlying model is given by the Bloch equation in a rotating
reference frame without relaxation (see [18] for an introduction), which relates the magnetization
vector M : [0, T] — R? and the applied magnetic field B : [0, T] — R? via the bilinear differential
equation

%M(t) - M()xB(t),  M(0) = M.

The goal is to shift the magnetization vector from the initial state My (e.g., aligned to a strong
external field) to a desired state My (e.g., orthogonal to the external field) at time T. The control
u € L2((0, T); R?) enters the equation as B(t) = (uy(t), u(t), w), where o is a fixed resonance
frequency (which coincides with the rotation frequency of the domain), and thus the (nonlinear)
operator S maps the control u onto the magnetization vector M(T) at time T. For details, see
Section 3.1.

The second example deals with linearized elasticity as the most basic model of coupled PDEs
as state equations, i.e., we consider S to be the solution operator of the elliptic problem

—2udive(y) —Agraddivy = uin Q,
y=0onT,
(2ue(y) + Adivy)n =00n dQ\ T

with distributed control u, see Section 3.2 for details.

Regarding the admissible set M, we consider for the case of the Bloch equation — again
following [16] - radially distributed states together with the origin, i.e.,

_ 0 wq cos 0 wq cos Opp
M= {(0)’(wgsinel)""’(wosinOM)}



for a fixed amplitude wy > 0 and M > 2 equi-distributed phases
0<b<...<0y<2r.

For the case of linearized elasticity, we consider in addition an admissible set containing states
of different magnitude, but not the origin. For the sake of an example, we make the concrete

choice L { (1) | ( _11) | (—11) , (j) , (3) : (_22) : (_22) ’ (:3)} '

This model can be seen as the first step towards topology optimization with composites, cf. [13].

Related work Convex relaxation of problems lacking weak lower-semicontinuity has a long
history; here we only mention the monograph [17]. In the context of optimal control of partial
differential equations, convex relaxation of discrete control constraints was discussed in [12, 13];
a similar approach was applied to switching control in [11]. Special cases were treated much
earlier for scalar controls. In particular, if M contains only two points, problem (1.1) coincides
with a (regularized) bang-bang control problem; see, e.g., [6, 34, 35]. For M = {0}, the relaxation
reduces to the well-known L! norm used to promote sparse controls; see, e.g., [33, 9, 23].

There is a vast literature concerning pulse design in magnetic resonance imaging and spec-
troscopy via optimal control of the Bloch equation, e.g., [14, 32, 29, 24, 38, 19, 20, 31]. A mathemat-
ical treatment of this problem can be found in, e.g., [7]. Numerical methods for the computation
of optimal pulses are based on conjugated gradient methods (see, e.g., [25]), Krotov methods
[37], quasi-Newton and Newton methods with approximated second derivatives [3] and Newton
methods using exact second derivatives computed via the adjoint approach [1] (which was also
the basis of the winning approaches in the 2015 ISMRM RF Pulse Design Challenge [21]). The
latter is the basis for the numerical treatment in this work.

To the best of our knowledge, there is so far only a very limited number of works dealing
with the design of discrete-valued pulses, which is of interest since the hardware often allows
only a finite set M of pulses [15, 28]. In [16], this problem is treated via an extension of the
approach from [24] as well as a quantization of a continuous control field obtained via standard
optimization methods.

Organization Section 2 provides the abstract convex analysis framework, including existence
of solutions of the optimal control problem, necessary optimality conditions, as well as an
appropriate regularization for numerical purposes. Sections 3 and 4 analyze the specific examples
of the state operator and the multibang penalty in more detail. Section 5 then exploits properties
of the state operator and the multibang control to derive stability results. Section 6 discusses
the numerical solution using a semismooth Newton method. Finally, Section 7 presents and
discusses illustrative numerical examples for both model problems.

2 Convex analysis framework

To obtain existence of minimizers and numerically feasible optimality conditions, we follow the
general framework of [13] (stated there for the scalar case), which we briefly summarize in this



section and adapt to the vector-valued case. We assume that U = L?(Q; R™) for some bounded
open domain Q C R" and m > 2, Y is a Hilbert space, and

F:U—>RU{e}, w35 -zl
G:U — RU {0}, quQg(u(x))dx,

for g : R™ — R U {oo} proper, convex, lower semi-continuous with dom g = co M (the convex
hull of M) for some finite set M c R™. For the operator S we will require

(m1) weak-to-weak continuity,ie, u; ~uinU = S(u;) — S(u)in',
(u2) Fréchet differentiability, i.e., S’(u): U — Y is a bounded linear operator for all u € U.

In the following, G* : U* — R U {oo} denotes the Legendre—Fenchel conjugate of G, and
S’(u)* : Y — U denotes the (Hilbert-space) adjoint of the Fréchet derivative of S : U — Y.
We now consider the problem

(2.1) mellr]l Ew) forEWwW):=Fw)+Gu).

The following statements are analogous to [13, Prop. 2.1, Prop. 2.2] for the vector-valued case.

Proposition 2.1 (Existence of minimizers). Let S satisfy (H1). Then there exists a solution i € U
to (2.1).

Proof. Consider a minimizing sequence {u; };en. Since g is infinite outside of co M, we know
that [|u;||z~(q) is uniformly bounded so that we may extract a subsequence, again denoted by
{u;}ien, weakly converging in U to some # € U. Now /Q g(u(x)) dx is sequentially weakly
lower semi-continuous by the convexity of g, while property (a1) implies weak convergence
S(u;) — S(u) so that

2150 =218 + [ gtate) dx < iming Z16) 215 + [ gtuito)d.

Hence % must be a minimizer. O

Proposition 2.2 (Optimality conditions). Let S satisfy (12) and let i € U be a local minimizer
of (2.1). Then there exists ap € U satisfying

{—p = F'(a) = S'(@)"(S(@) - 2),
(2.2) B B
u € oG (p).

Proof. Abbreviate u; = i + t(u — ) for t € R and an arbitrary u € U. Due to the optimality of &
we have

0 <[Fu)+Gu)] - [F@+G@].
Dividing by t and rearranging, we arrive at

0 < Tur) t— F@ . Q(ut)t—Q(ﬁ) < Fluw) t— F@ (1-H6@) +:Q(u) - Q(ﬁ)’




where in the second inequality we used the convexity of G. Taking the limit t — 0 and setting
p = —F'(a), we arrive at

0<(pu-—u)+Gw) -G@@).

As this holds for all u € U, we obtain p € dG(#), which is equivalent to @ € dG*(p). O
Note that
(2.3) 0G"(p) = {u € U : u(x) € dg"(p(x)) for a.e. x € Q}.

It is readily seen that g is piecewise affine and thus dg” is single-valued in each affine region,
the values being precisely the elements of M (see Section 4). More precisely, for each u € M
there is an open convex polyhedron Q(u) € R™ such that R™ = J,em M and dg*(q) = {u}
for all g € Q(u). This property suggests that solutions to (2.2) generically satisfy u € M almost
everywhere, and it will be exploited in Section 5 to derive corresponding stability properties of
optimal controls.

In order to apply a semismooth Newton method in function spaces, we need to apply a
Moreau-Yosida regularization. We therefore consider for y > 0 the regularized problem

(2.4) min &/ (u) for ' (u) = F(u) + G(u) + gnung.

By the same arguments as in the proof of Proposition 2.1, we obtain the existence of a minimizer
u, € U. The following statement is a slight generalization of [13, Prop. 4.1].

Proposition 2.3 (Limit for vanishing regularization). LetS satisfy (11). Then it holdsT-lim, o &
& with respect to weak convergence in U. As a consequence, any sequence uy, of global minimizers
to (2.4) for y, — 0 contains a subsequence converging weakly in U to a global minimizer of (2.1).
Moreover, this convergence is strong.

Proof. For the I'-limit, we first have to show that for any sequence y, — 0 and any weakly
converging sequence u, — u we have liminf,, & (uy,) > &E(u), which is an immediate
consequence of the sequential weak lower semi-continuity of & (shown in the proof of Proposi-
tion 2.1) and of || - ||y. Second, the required recovery sequence is just the constant sequence,
up = u. Furthermore, minimizers of & are uniformly bounded in U, since g is infinite outside
the convex hull co M, which together with the I'-convergence is well-known to imply the weak
convergence in U of minimizers of & to minimizers of &. Finally, for such a weakly converging
sequence uy, — u of minimizers of &' we have

Vi Y
Euy,) + luy, Iy < &) < Ewy,) + 2 ull?

which implies ||ully > [|lu,, |lu so that the convergence u,, — u is actually strong. |

Note that G(u) + %llu”%, = ((G")y)"(u) for the Moreau-Yosida regularization

) = min 15— ol + G5
(6")y(p) = min o5~ plf; + 6"



This means that we are essentially regularizing dG" in (2.2). Indeed, similarly as for (2.1), we
obtain the abstract first-order necessary optimality conditions

Py = T,(uy)’
Uy = a(g*)y(Py)’

where 0(G"), coincides with the Moreau-Yosida regularization (0G"), of the maximally mono-
tone operator dG*, which is defined as

(25)

. 1
06" ®) = - (p = prox, 5-(9)
for the proximal mapping

. 1. ..
prox, g-(p) = (Id+ydG)"™ (p) = argmin —[Ip = plly; + G*(p).
peu &Y

As we will show below, H, := (0G"), is Newton-differentiable, thereby allowing the use of
semi-smooth Newton methods. The advantage of replacing G with ((G*),)* (which yields (2.4))
over a replacement with G, (which would also lead to semismooth optimality conditions) is
that the objective functional is not smoothed so that a preference for control values u € M is
retained.

3 State equation

In this section, we verify that the assumptions (H1)-(Hz2) are satisfied for our model problems
and show further regularity properties needed in the following.
3.1 Bloch equation

As our motivating model problem, we consider the Bloch equation in a rotating reference frame
without relaxation

d
aM<w>(t) =M@ xB@1),  M“(0)=(0,0,1)7,

which describes the temporally evolving magnetization M) € R3 of an ensemble of spins
rotating at the same resonance offset frequency w (called isochromat), starting from a given
equilibrium magnetization. The time-varying effective magnetic field B()(t) is of the form

B)(t) = (wx(t), 0y (1), )T,

where u(t) = (wx(t), wy(t)) € R? can be controlled. The aim is to achieve a magnetization
M@)X(T) = M within the time interval Q = [0, T for a list of offset frequencies wy, . . ., w 7. In
terms of our previous notation we thus set

(3.1) S:LA(RY) = (RYY  uw |[M@YD), ... . M@)(T)| .

In the following, a subscript to M(®) and B() shall always refer to the chosen control .



Proposition 3.1. The operator S as defined in (3.1) is well-defined and satisfies (H1) and (H2).
Proof. Introducing the skew-symmetric matrix

P )
Bet)=| - o @y |,
w(®)y ~(u(®) 0

the homogeneous linear Bloch equation %Mgf‘))(t) = BY (t)MSf‘))(t) for a control u(t) € R? has a

solution Mgf)) (t) by Carathéodory’s existence theorem. Furthermore,
|M<“><t>|2 = 2M;”(0) - M“‘”(t) = 0,
and thus [M'“)(t)|, = 1 for all £. Now let u; — u weakly in L2(Q; R?). Then,

S0 - M) = B o) (ME0 - MO0) + (B0 - BEOME 0, te0.T)
MEf?(O) = M;”(0).

Upon abbreviating AM; = M(w) Mg,”) and AB; = (B}, — By )Mff’) and integrating from 0 to t,
we arrive at

t t
IAM; ()], =| / B (5)AM(s) ds + / ABy(s) ds |2
0[ ° t
< [ IBnobiavds+| [ ani)ds],
0 0

Gronwall’s inequality now implies that

/ ABi(s) ds| 1B, ()l exp ( / 1B (5)]; ds) dr.

0

(3-2) |AM;(t)], < |-/0t AB,-(s)dS|2 " _/Ot

The first term converges to zero due to AB; — 0 in L*(Q;R?) (since M(w) € L¥(Q;RY)).
Additionally, the exponential is bounded by exp (\/_ 1B, 220 R3><3)) < C € R independent of i.
Thus, the right-hand side converges to zero if

fi = 0in L*(Q; R) for fi: Q- R, r|—>/ AB;(s)ds .
0
This is indeed the case since

iy = | ABi(s:) - ABi(52) ds
{S E(O, T)3251 S2 <S3}

and s — AB;(sy) - AB;(sy) converges weakly to zero in L?((0, T)*; R). Thus Mgffj ) (T) converges
for all j, and therefore S(u;) — S(u). This argument also implies uniqueness of the solution.



Moreover, S is Fréchet-differentiable, and its derivative at u € L?(Q; R?) is given by
S'W):U—Y, ¢ 8M,(T) = (GMYU(T),..., M7 (T))

with 5ME;‘)) solving the linearized state equation (note 9,(B )(¢) = B?o)

» { 4 sMU(t) = BE(SMW(1) + BLUOME(1), 1€ [0,T),

(o) _ T
(SM(,, (0) =(0,0,0)" .

Indeed, M, (T) is obviously linear in ¢, and the unique solvability follows just like for Mgf)).
Furthermore, for any @ € U with ||& — u|ly < 1and ¢ = & — u we have

4 M - M - sM) = B2 ML - ML - MY + (BE — B2)SM

with zero initial condition. Gronwall estimates analogous to (3.2) (now for 5M5pw) and Mf;‘)) -
Mgf‘)) - SMS;J), exploiting that |BZ (r)|, exp ( fr ! |BL (5)]2 ds) is bounded by a constant only de-
pending on ||u||y) imply that

|5M20w)(t)|2 < é”Bg) - BZ)”LZ(Q;RSXS) < ZéHﬁ — u”U
for a constant C > 0 and all t € Q as well as

t
IMG(T) = M (T) = M (T)lz < Csup | / (By(5) = By ()0My”(s) ds |
€

< CIIBY = By oo 16My” =0

< Clla - ullf;
where C denotes a positive constant (not necessarily the same in all inequalities). We thus have
|S(@) — S(u) ~ S'(w)(@ — u)lz < Clla ~ ull;
as required. O
We will also require some regularity results for the adjoint operator S’(u)*.

Proposition 3.2. ForS from (3.1) and u € U we have

’ ® 10\ J 0 MLmj)(t) - Msiwj)(t)
S@ Y U, S@0= 2| en ( : ! ((wa%»))z
u 3 u 1

Jj=1

‘I’u,](t) b
where W, ; solves the adjoint equation

d ) .
SO = Wy (O X B0, Wy D=y J=1e



Proof. From Theorem 3.1 we have S’(u)¢p = (5M(wl)(T) M(w])(T)) for any u, ¢ € U with
5M£pm) solving (3.3). Thus we obtain for y € (R3)/ that

/(”ww”wmtO“WW—ZH%WWm—Zﬁwm%me
j=1 =
J rd o () d T exe@y)

J
-y / u](t)T[ SME (1) — SM(1) x B (1) dt

j=1
:iémﬁﬁh%medn
j=1

from which the result follows. m]

Proposition 3.3. For anyu € U, we haveranS’(u)* — L*(Q;R?). Moreover, u — S’(u)* is
continuous in L*(Q; R?) under weak convergence of u in U.

Proof. By the formula for S’(u)* from Proposition 3.2, it is enough to show that Mgfj ) and L

converge in L*(Q;R?) as u; — u in U. It suffices to consider MSZ,JJ ), since the adjoint variable
¥, ;j satisfies the same differential equation. Thus, we only have to show that the right-hand
side in (3.2) converges to zero uniformly in f. Note that the second integral is bounded above by
the one for t = T which has already been shown to converge to zero. Hence it suffices to show
fot AB;(s)ds — 0 uniformly in t as i — oo. Since AB; — 0 in L*(Q;R?), we also have weak
convergence in L}(Q; R®), so that by the Dunford—Pettis criterion the AB; are equi-integrable
Now let t; € [0,T] be such that |/0ti AB;(s)ds |2 > SUp,¢[o,7] |f0t AB;(s)ds |2 and assume

that for a subsequence (still indexed by i) we have |f0ti AB;(s)ds |2 >C>0 for all i. Upon

taking another subsequence, we can further assume that t; — # € [0, T]. Due to the equi-
i+At

mtegrablhty, there is a At > 0 such that f |AB;(s)|2 ds < C/2; thus for i large enough we
have |f0 AB;(s) ds|2 >

that indeed fot AB;(s)ds — 0 uniformly in t as i — oo. O

C/2. However, this contradlcts the weak convergence of AB; to 0 so

3.2 Linear elasticity

In this case, Q C R? represents an elastic body fixed at ' ¢ dQ (with positive Hausdorff measure
HI(T) > 0), where we assume I and dQ \ T to be smooth or Q to be a convex polygon with T
being the union of some faces. The elastic body is subject to a controlled body force u : Q — RZ.
The resulting displacement y : Q — R? is governed by the equations of linearized elasticity

10



with Lamé parameters p and A,

—2pdive(y) — Agraddivy = u in Q,
(3.4) y=0onT,
(2ue(y)+ Adivy)n =00n 9Q\ T,

where n denotes the unit outward normal, Dy = [Vy;|Vy,]"

e(y) = DY+DVT

is the displacement gradient, and

is the symmetrized gradient. Defining

H%(Q) = {v e H(Q;R*) :v =0o0n F} ,
we may take
(3.5) S:HNQ)" — H{(Q),  u > y solving (3.4).

The solution operator S of the linear elasticity problem is well-known to be a bounded linear
operator from U = L*(Q; R?) into HA(Q) < L*(Q;R?) =: Y, see, e.g., [8]. This immediately
implies weak-to-weak continuity and Fréchet differentiability with S’(u) = S for allu € U.
Similarly, S’(u)* = S* for all u € U, and it is readily checked that actually S is self-adjoint so
that S* = S. As a consequence we have ran S’(u)* = ranS — L%(Q;R?). Indeed, in case of
polygonal domains Q this follows from ran S ¢ H*?(Q; R?) by [27, Thm. 2.3], and in the case of
piecewise smooth domains with smooth traction boundary it follows from ran S ¢ H?(Q; R?)
by [26, Thm. 8].

4 Vector-valued multibang penalty

To implement the general framework of Section 2, we need explicit characterizations of the
Fenchel conjugate and its subdifferential as well as its Moreau—Yosida regularization. Recall
that the multibang penalty G is defined as an integral functional for the normal integrand

(04 kk -
g=(31-E+on) =5
We can therefore proceed by pointwise computation, where we need to differentiate based on
the specific choice of admissible set M.

We first summarize the general procedure. Since g* = (¢9)" = (95,)"" = g%, the Legendre-
Fenchel conjugate of g is given by

(4.1) 9'(@) = g(@) = sup (v.q) — goo(v) = max (v,q) ~ 2v|Z.

veR™

Hence, g* is the maximum of a finite number of convex and continuous functions, and we can
thus compute the subdifferential using the maximum rule; see, e.g., [30, Prop. 4.5.2, Rem. 4.5.3].
Setting

95(q) = (v, q) — %[0l3,

11



we have

(42) 9g9*(q) = 00( g agii(q)) =co{ve M:g'(q) = g,(9}

veM:g*(q)=95(q)

with co denoting the convex hull. Finally, for the proximal mapping

1 . .
Prox; - () := argmin o 7w - ql3 + g*(w) = (d +ydg") (9,

weR™

we will make use of the equivalence
(4.3) w=(d+ydg")(q) e g€ d+ydg)(w) = {w}+ydg"(w)

and follow the case distinction in the maximum rule (4.2). The Moreau-Yosida regularization of
dg” is then given by

. 1
(4.4) @9")y(9) = - (¢ - prox,,- (@)
For details, we refer to, e.g., [4].

4.1 Radially distributed states

Here, we take as set M C R? of admissible control states the vector 0 together with vectors of
fixed amplitude wy > 0 and M > 2 equidistributed phases

0<b<...<0y<2rm
(where we shall assume ;.1 — 0; < rfori=1,...,M —1and 6; — (6p — 27) < x), that is,
M = (0) @y cos 0 wocos Opr \ | _. (o, & i}
- 0>\ wosin@ | °° " 2\ wosinOy - 0, U1, ...UMy -

In the following it will be helpful to identify an angle 6 € [0, 27) with the corresponding
point 6 = (cos 0, sin 0) on the unit circle S'. Let ¢; denote the midpoint between 6; and 0;,
(identifying 0pr41 = 6; for simplicity), that is, ¢; = (5,- + §i+1) / |§i + §i+1|2, and introduce the
circular sectors

C,‘ = {6056 Rz :0 € ((pi,(pi+1), w = 0} .

Here, 6 € (¢;, ¢i+1) is to be understood 2-periodically, that is, ¢p41 shall be identified with ¢;,
and (@;, ¢;+1) With @;41 < @; shall be interpreted as (¢;, @;+1 + 271).

12



Fenchel conjugate Using the equivalence of angles and sectors introduced above, it is
straightforward to see

(g, ;) > {(q,u) forallqe Ci,j#0.
Thus, inserting the concrete choice of M into (4.1), we obtain
“(q) = if (g, u;) < %} forall1 <i < M,
= (q.u;) — S} ifqe C; and (g, @;) > Lwj.

Let us therefore introduce the sets (cf. Figure 1a)

Qo :={qeR?: {q.u;) < $wjforalll1 < i< M},

Qi={qeCi:(qu)> %}, 1<i<M,

Q.= [ @\ |J O» 0 <in....ix <M.

i€{i,....ix} ig{i, ... ik}

With this notation we obtain

9°(q) = ’ ifq € Q.
(q.u;) - S0y fqeQ;, 1<i<M.

Subdifferential From the maximum rule (4.2), we directly obtain

i if g € O;, 0<i<M,
CO{L_lil,...,l_lik} iquQi1~~~ik’ 0<iy,...,Ik < M.

39" (q) = {

Proximal mapping Here, we proceed as follows: For each Q;, .

= (Id+y0g*) Q.1 );

> We

1. compute the set Ql{_“ik
2. solve for w € Q;._;, the relation g € {w} + ydg*(w) for arbitrary q € QZ.--ik'
By (4.3), we then have w = prox, .. (q)- The details are provided in Table 1, while the sets anlik
are visualized in Figure 1b.

To explain the case Qy ;, note that for g € Qg’ ; we must have by definition of the set Q())/’ ; that

(Id+ydg*) (q) = g — A; € Qo C {v e R?: (v,i;) = %w(z)}
for an appropriate choice of A € [0, y]. Thus,

(q— s, a;) = S0 and so = <q;:;i> -
0

N R
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Figure 1: Subdomains for radially distributed M

Likewise, for g € QZI. +; we must have
(Id+yd8g*)7(q) = ¢ — M — (y — Didis1 € Qi i1 € (@i — Bia)™
for some A € [0, y]. Thus,
0=(q—Atu; — (y — Diip1, @i — Uir1) = {q, Ui — Uj+1) + (% — Mt — b §
and so

LU — U
A:X+<q_l_l+;>.
2 | —ui+1|2

Table 1: Computation of proximal map for radially distributed states (i + 1 is to be understood

modulo M)
Qir...i (d+ydg*)(w) g (Id +ydg*)"(q)
1 k

Qo w Qo q
Qi w + )/l_li Qi + }/ﬂi q- )/L_li
Qo,i w +y co{0,;} Qo,i + [0, y]a; q- @’—L;i)—z i;

g 2
Qiiv1  wHyco{ds, div1} Qi i+1 +y co{di, @1} q- Y(ui;uiH} - <q’ui|_alii_+;>i(jf§_um)

2
Qo,i.iv1  w+yco{0,u;,di41} Qo i+1 +y co{0,ds, Uiy} ( |ai+a1)10i+1|2) (@i + i)
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Finally, note that Qg ; j+1 = {a( o +“:_t°_+1|2 )2(ii; + i;41)} only contains a single element, which

must therefore be equal to (Id +ydg*)™'(q) for all q € Q())/, it

Moreau-Yosida regularization Inserting the above into definition (4.4) of the Moreau-
Yosida regularization yields

0 if g € Qg
u; ifqeQ!,
« (gai) _ a) . . Y
(45) (097)y(q) = ( yod ?y)_”l_ P ifq € Qs
Ui+iiy QGuUi—Ui Ui~ Ui+ . Y
2 t Y|ﬂi—1ﬂi+1|§ 1 lfq € QUH’
2
% -5 (lufToﬂlz) (@ + i) ifqeQp,

Finally, in a numerical implementation it will be necessary to identify efficiently for a given
qe R2 the set Q{_“ i in which it is contained. To this end, determine iy, jq. kg € {1,..., M} via

—_— _ — (@.4i,) «a) —
quiq, q—yuiqech, q—( wzq —E)uiqeckq,
0
and set
pq = (g, Ui, ), oq:=(q~— %(ﬁiq +d45,), iy, + @) -

Now it is straightforward to identify the correct subdomain via
Q; = {g € R®: pg < S} ,
QF ={qeR?: pg > (% +y)w}, ig =i, jg =i} ,
0, ={aeR?: §0) < pg < (§ +1)0f ig =i, kg =i} |
Qi =g e R : {i,i+1} = {ig,jg}, 0g > i} ,
Quiyin = 19 € R? : {i,i + 1} = {ig. iq + sign(d;, X @)}, kg # ig, 0q < awg} .

Newton derivative Since proximal mappings are Lipschitz continuous and we are in a
finite-dimensional setting, a Newton derivative of h, := (dg"), is given by any choice

Dihy(q) € dchy () = co{ lim Vhy (g},

where Jc denotes Clarke’s generalized gradient which admits an explicit characterization by
Rademacher’s theorem; see, e.g., [10]. We can further use that h, is continuous and piecewise
continuously differentiable and take

0 if g € 0},
1o a7 i v
—Ul;l; lfq S QO i
(4.6) Dnhy(q)=1"" | Y ¢
m(ui — ij41)(8; — Aiz1) ifg e Qi 141>
1 i ¢
?Id ifq€Qq;in

15
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Figure 2: Subdomains for concentric corners, where 1 is written for —1 to simplify notation (the
line dimensions are provided in Fig. 3)

4.2 Concentric corners

We now address the case of admissible states of different magnitudes, where we consider for
the sake of an example the concrete set

s {0 ()16 () C)-C)

_ 1 -1 1 -1 2 2 2 2
= {ul,l’ U _pU U U U1 U115 u—1,—1} .

Fenchel conjugate Again inserting M into (4.1), we see that the maximum is either attained
by v = (q1/|q1l, q2/19z]) or by v = 2(q1/|q1l, q2/19z2|), where in the case g; = 0 we may define
qi/lqi| € {—1,1} arbitrarily. Hence we obtain after some algebraic manipulations

. |q|1 - if |q|1 < 3a,
= max —a,2|qh —4a} =
g (q) {lqh gl } {2|CI|1 —4a if gl > 3a.

Subdifferential From (4.2), we directly obtain

9:(q@) = lqli — «,

89"(q) = co( U 59?(‘])) for {gz*(fI) = 2|q|, - 4a.

ie{1,2}:9*(q)=g;(q)
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Figure 3: Dimensions for Fig. 2

In the above we have

sign(qz) sign(qz)

where sign denotes the set-valued sign of convex analysis, i.e., sign(0) = [—1, 1]. Therefore we

obtain

g = (o). agiio =2 (JE0).

dg;(q) if |ql; < 3« ) 1 if |g|; < 3a,
90 (a) = 4 5o £ _ [sien(q)) "
9°(q) = 095(q) iflgh > 30 0 =1 Gongy 12 lah >3
co{dg;(q9),0g;(q)} if gl = 3a [1,2] if|qli = 3a.

For an economic notation, let us introduce for i, j, k € {—1, 0,1} the sets
(=00,0) ifk=-1
I = k(0,00) = 4{0} ifk=0 and Q;jx ={q€R*:q1€L;, qz € I}, |qls — 3 € I}
(0,00) ifk=1

A visualization is given in Figure 2a. Note that the index 0 always indicates a lower-dimensional
structure, in particular we have

Qojk € Q-1j,k NOrjk> Qiok € Qi—1k N Qivk>  Qijo € Qi j—1NQij1-
Using this notation, we can write the subdifferential as
94°(q) = g if g € Qijr i)k € {11},
TV co a2 croste (~L1), =il |s—jl. 1t —k| <1} ifg € Qu. 0 € {ij.k}.

rs

17



which provides more insight into its structure. In particular, on each lower-dimensional Q; ;i the
subdifferential is the convex hull of the subdifferentials on the adjacent two-dimensional sets.

Proximal mapping To obtain the Moreau-Yosida regularization of dg* for y > 0, we proceed
as above by first noting that w = (Id +ydg*)™(q) € Q;j holds if and only if

q € 1d+ydg")(Qiji) =: Q.

A visualization of these sets is provided in Figure 2b; we postpone the discussion of these sets
to the end of the section and first calculate the specific value of the proximal mapping based on
(4-3) together with the case distinction in the subdifferential.

Let w € Q;jx and correspondingly g € Qg/jk for some i, j,k € {-1,0,1}.

_(k+3)/2

i) If i, j, k € {-1,1} we have (Id +ydg*)(w) = w + Yl so that

(1d+ydg")(q) = g - yay, " forqe Q) withi,jk € {-1,1}.

ii) If two of i, j, k are zero, (Id +ydg*)~'(q) must be the single unique element of Q;;, thus

0 ifg e Q&O’_l,

Id +ydg™) ' (q) =
(Id+ydg™) () {30{(i,j) iquQZj,O withi=0orj=0.

iii) If i = 0 and j, k # 0, then for w € Qy;x we have

k+3
(Id+ydg™)(w) = w +y co {ﬁ(_'ff)/z, aﬁ,kj”)/z} = wy——([-11L.)).

Thus for g € Q())/jk we have (Id +ydg*) ' (q) = q - y%(/l,j), where A € [-1,1] is such that
q- y%(/l,j) € Qojk C {0} x R. Therefore A = ﬁql, and
([d+ydg")'(q) = (0,q2 - y&2j)  forqe Qg With j k € {~1,1}.

Analogously,
(Id +ydg*) (q) = (q1 — y%i, 0) forq e Qg/ok with i,k € {-1,1}.
iv) If k = 0 and i, j # 0, then for w € Q;jo we have

(Id+ydg*)(w)=w+y CO{l_l%j, ﬁ‘?j} =w+ y[1, 2](i, j).

Thus for g € Q:'/jo we have (Id +ydg*)"(q) = q — yA(i, j), where A € [1,2] is such that
q— yMi, j) € Qijo € {w € R?: |w|; = 3a}. Therefore A = Iqlé%’ and
+ - =q-215—(,j orqge Q! withi,je {-1,1}.
1d+ydg") (q) = q— M22(1.j)  for g € Q¥ with
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It remains to discuss the sets Qg/j .- Rather than list all sets explicitly, we instead provide a
procedure for determining for a given ¢ € R? the corresponding subdomain, which is what
is actually required for the numerical implementation. For that purpose, let us introduce the
function (compare the illustration in Figure 3)

Y ifx <3a+y,
nx)=4x-3a if3a+y <x <3a+2y,
2y ifx > 3a +2y.

With this function we have g € Qz./j . for i, j, k given by

o iflal < a0,
sign(q;) else,

- ]o if |g2| < n(lq:l),
sign(q,) else,

-1 if|qle < 3a +y and |q]; < 3a + 2y,
k=141 if|glew > 3a + 2y or |ql; > 3a + 4y,

0 else.

Moreau-Yosida regularization Inserting this into the definition (4.4) of the Moreau-Yosida
regularization yields

g if g € Q) withi,j,k #0,
+(q=3a(i,)) if g e Q) with[i| +[j| +[k| =1,
(4.7) 09")y(@) = Ga, 55%)  ifq e Qp, withjk #0,

(%i, %qZ) ifqg e Qz/ok with i,k # 0,

'q';%(i,j) if g € QY with i,j # 0.

Newton derivative Finally, we can again take as a Newton derivative any element of the
Clarke gradient; here, we choose

0 ifqulek with i, j, k # 0,

%Id ifqufjk with |i| + |j| + |k| = 1,
SG.DTG0)  ifge Q) with il +|j| =1Lk #0,
s )T))  ifq e Q) withi,j# 0.

(4-8) Dnhy(q) =

5 Stability properties of multibang controls

We now discuss stability properties of the controls by exploiting the special structure of the
optimality conditions for the multibang control problem. In particular we consider when exact

19



controls (which achieve the target state) can be retrieved by the optimization; in what sense
the controls converge as the target state converges; and what can be said about controls with
values in M.

5.1 Retrieval of exact controls

A peculiar feature of the multibang control is that for attainable targets — i.e., there exists a
2 € U such that z = S(u) - the generating control @ can only be recovered as a minimizer @ of
the optimization problem (2.1) if |&i(x)|2 = minge ¢ |v]2 almost everywhere. This demonstrates
the desirability to allow multiple admissible control states of equal magnitude. To keep the
notation concise, we set

& (w) = 51150 = =15 + | gtuto) dx.

Proposition 5.1 (Achievement of target). If'S satisfies (H2) and the minimizer i of &% satisfies
S(@t) = z, then g(i(x)) = ming, e p g(v) almost everywhere. In particular, if in addition 4(x) € M
almost everywhere, then |i(x)|; = min, e |0]2.

Proof. If S(71) = z, the first relation in the optimality condition (2.2) together with linearity of
S’(@) implies p = 0. Hence, the second relation yields # € dG*(0) and therefore 0 € dG(i1). By
(2.3), this implies 0 € dg(i(x)) for almost all x € Q and therefore

_ _ . . . a2 i
9(a(x)) = min g(v) = inf go(v) = Jé% 5 vl min g(v)
since min f** = inf f by the properties of the convex hull, see, e.g., [4, Prop. 12.9 (iii)]. O

However, with decreasing multibang regularization, the best-approximation is achieved in
the limit, that is, the optimal control will have the minimum possible tracking term 7. In the
following, we denote by u, the minimizer of &% (which depends on « via g) for given a > 0.

Proposition 5.2 (I'-convergence for vanishing regularization). For given z € Y, let M :=
infyey ||S(w) — z|ly and O == {u € U : ||S(u) — z||ly = M}. IfS satisfies (H1), then with respect to
weak convergence in U we have

2
F-liml(SZ—MT)Z&)"'gl

a—0 o

where
@@=Lﬁ%@ﬂxﬁvgwhaM+mwy

Proof. The limsup inequality is trivial using the constant sequence; for the liminf inequality we
only have to consider a sequence u, — u ¢ O. In that case,

limint ||S(ue) - 2lly 2 [IS(w) = zlly > M
a—

so that

1 1 IV
- rlflellr}EHS(u)—zH%+/Qg(u(x))dx_7)_)00‘ .
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Corollary 5.3 (Approximation of target). Under the conditions of the previous proposition, if
O # 0, then any family {uq }o>0 of minimizers of &% contains a subsequence converging weakly
to a minimizer i € O of Gi.

Proof. This follows from the equi-mild coerciveness of the energies and the I'-convergence. O

5.2 Stability with respect to target perturbations

Here, we examine how perturbations of the target z influence the minimizer of (2.1). We will see
that as z, converges to z in Y, also the corresponding minimizers converge in U in the weak
sense. Strong convergence cannot be expected in general due to worst case scenarios in which
the limit minimizer @ has a nonempty “singular arc”

S ={xeQlualx) ¢ M},

i.e., the region in which @ does not attain any of the distinguished values M. However, away
from that singular arc one obtains strong convergence and, as a consequence, controls in M
even for perturbed targets. In this section we use the following additional hypotheses on S,
which in Section 3 have already been shown to hold for our model forward operators (3.1) and

(35)-
(a3) S:U — Y is compact.

(a4) For some Banach space V «— U with V* < L®(Q;R™), we have

lim [|[S"(@) - S W)]"yllv- =0 forallyeY.

u—uinU

Proposition 5.4 (I'-convergence of objective functional). Letz, — z inY and S satisfy ().
Then with respect to weak convergence in U, we have

I'- lim & = &*.

n—oo

Proof. For the liminf inequality, let u, — u weakly in U, then by property (a1) and the weak
lower semi-continuity of || - ||y and the convexity of g, we have

1

lim inf &**(u,) = lim inf 5||S(un) —zn|l3 + / g(un(x))dx
1

> 150 =21+ [ glut) dx = 8w,

For the limsup inequality, choose u,, = u € U to obtain

1
lim sup &*"(u,,) = lim sup E||S(u) — 2zl + /Qg(u(x)) dx = E*(u). O

n—oo n—oo

This proposition now implies a weak stability of the control.
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Corollary 5.5 (Stability of control and state). Under the conditions of Proposition 5.4 and (H3),
any sequence {un }nen of minimizers of &*» contains a subsequence converging weakly inU to a
minimizer @ of &%. The corresponding states y, = S(u,) converge strongly inY to y = S(@).

Proof. Since g is infinite outside co M we know that ||u||;~(q.r~) is uniformly bounded among
all u € U with finite energy &% (u), where the bound is independent of n. Thus, the E*» are
equi-mildly coercive, so that the convergence of minimizers u, follows from the I'-convergence
of the functionals. The convergence of states y, = S(u,) — y = S(@) along the subsequence
follows from u,, — @ together with property (11) (weak-to-weak continuity) and property (13)
(compactness) of S. O

Under additional assumptions, we also obtain convergence of the dual variable.

Corollary 5.6 (Stability of dual). Under the conditions of Proposition 5.4 and (H1)—(H4), consider
the sequence of minimization problems min,cy E*7(u). The corresponding optimal controls uy,,
states yp, and dual variables p, satisfy up to a subsequence

Uy, —ainU, y,—>yinY, and p,—>pinV",
where @i is a minimizer of &%, y = S(@1), and p satisfies (2.2).
Proof. We already know u, — # and y, — j. By the Banach-Steinhaus theorem and (u4),
[S'(un) — S’(@)]* is uniformly bounded in L(Y; V*) and thus also S’(u,)*. Now
lipn = pllve = IS"(un)*(zn = yn) = S'@)"(z = P)llv-
< NS"(un)"(zn = yn) = S'(un)"(z = P)llv+ + 18" (un)"(z = ) = S'(@)"(z = )llv~
<NS"@n) llerivllzn = yn = (2 = Py + IS"(wn)* = S'@)° 1z = )y = 0. O

The final result shows strong convergence of controls on a set Qo which can (almost) be
thought of as the complement of the singular arc.

Proposition 5.7 (Locally strong convergence of control). Let the conditions of Proposition 5.4
and (H1)—(14) hold. Furthermore, let Q be the set on which 0g* is single-valued, and abbreviate
Qp = {x € Q: p(x) € P} for given P C R™. Then we have

(i) forany P ccC Q compact and n large enough, u,(x) = @(x) € M for a.e. x € Qp;
(ii) unlo, — #la, strongly in L*(Qgo; R™) and a(x) € M for a.e. x € Qg.

Proof. By Corollary 5.6, we have p, — p in L*(Q; R™). In particular, for n large enough, for all
x € Qp the value p,(x) lies in the same connected component of Q as p(x). Hence, u,(x) = @(x)
due to u,(x) € dg*(pn(x)) = dg*(p(x)) and @(x) € dg*(p(x)). Since this holds for any compact
subset P of Q, we actually have pointwise convergence u,(x) — #(x) for almost all x € Qg. The
uniform boundedness of u,, (since otherwise g(u,(x)) = oo) then implies strong convergence by
the dominated convergence theorem. O
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5.3 Controls in M

Here, we examine more closely controls taking values only in M. In the following, we refer to
minimizers # € U of & with @(x) € M for a.e. x € Q as multibang controls. First, we note that
such controls allow to achieve an energy arbitrarily close to the optimum.

Remark 5.8 (Near-optimality). Under hypotheses (11) and (13), we have

min&*(u) =  inf  E*(u).
uelU uelU
u(x)eM a.e.

Indeed, let i € U minimize &*. By the definition of g, there exists a sequence {un}nen C U with
un(x) € Mae,u, = ainU, and fQ g(up(x))dx — fQ g(@(x)) dx. Furthermore, S(u,) — S(@)
inY so that &*(u,) — &E*().

In the following, we shall restrict ourselves to the case that
(u5) S:U — Y is linear,

which of course only applies to the elasticity example from (3.5), but not to the Bloch setting
from (3.1). The intuition is that the case with multibang controls is generic (or even that targets
with non-multibang controls, i.e., u(x) ¢ M on a non-negligible set, are nowhere dense in
Y). This is consistent with Proposition 5.7, since targets with a singular arc of zero measure
(or rather with Qg = Q) can be perturbed without producing a singular arc. Below we will
at least see that targets leading to multibang controls are dense in Y, and that the mapping
z — argmin,, ;; &*(u) is not continuous in any target z for which the singular arc has positive
measure.

Proposition 5.9 (Approximation via multibang control). Let S satisfy (11)—(a5). Then for any
z € Y and corresponding minimizeru € U of E7, there exists a sequence {z, }nen C Y Withz, — z
such that the corresponding minimizers u, € U of E* satisfy u,(x) € M ae,u, — 4, and
E*(uy) = E*(a).

Sketch of proof. By (2.2), we have p = 5*(z — Siz) and @(x) € dg*(p(x)) for almost all x € Q. The
piecewise affine structure of g* : R™ — R implies that 7(x) is a convex combination of (at most)
m + 1 values @1; € M N dg*(p(x)). Thus one can find u, — @ with u,(x) € M N dg*(p(x)) for
almost all x € Q. Choosing z,, = Su,, + (z — Sii), we have z,, — z as well as p = S*(z,, — Sup,)
and u,(x) € dg*(p(x)) for almost all x € Q. Hence by the convexity of the energy £, u, is a
minimizer of &#7. Furthermore, one can even choose u, such that fQ g(up(x))dx = /Q g(ua(x)) dx,
so that &% (u,,) = E*(@2) as claimed. O

Corollary 5.10 (Strong convergence of control). Let the conditions of Proposition 5.9 hold. Then:
(i) The targets z admitting a multibang control i minimizing &* are dense in'Y.

(ii) IfS is injective and the minimizer ti to &* has a singular arc of positive measure, then one
cannot have strong convergence of minimizers u, of &*» for all z, — z.
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Proof. The first statement is a direct consequence of Proposition 5.9. The second statement
follows from the strict convexity of &% and thus the uniqueness of its minimizers, together
with the fact that strong convergence in U implies pointwise convergence: Indeed, let # have
a singular arc S; of positive measure and choose z, — z such that the unique minimizers
up of & are multibang controls (which is possible by the first statement). If we had strong
convergence u, — # in U, then (up to a subsequence) also u, — % pointwise almost everywhere,
in particular on S;. This contradicts u,(x) € M almost everywhere. O

6 Numerical solution

We now discuss the numerical solution of the regularized system (2.5) via a semismooth Newton
method.
6.1 Bloch equation

As is usual for time-dependent state equations, we avoid a full space-time discretization by
following a reduced approach, i.e., we consider in place of (2.5) the equation

(6.1) u, — Hy(=F"(uy)) = 0.
Recall that Hy is a superposition operator defined via

[H, (p)](x) = hy(p(x)) forae. x € Q,

with h, = (dg"), given by (4.5). By Proposition 3.3, we have —F"(u,) = S"(uy)*(z — S(u,)) €
L®(Q;R?), and hence we can consider Hy : L"(Q;R?) — L*(Q;R?) for any r > 2. Since h,
is Lipschitz continuous and piecewise differentiable, semismoothness of H, follows from [36,
Thm. 3.49] with Newton derivative given by

[DnHy (p)h](x) = Dnhy (p(x))h(x) forae . x € Q

and Dyh, defined in (4.6).

Further, note that S is twice continuously differentiable. Indeed, this follows by an analogous
argument as for Fréchet differentiability in the proof of Theorem 3.1: Using the same notation,
the second derivative applied to test directions ¢,y € L2(Q; R?) will be given by S”(u)(¢, /) =
W(T) = (WXT),...,W/(T)) with

{ LWI(1) = By ()W (2) + BY()SM,” (1) + BY (D5M,,” (1), t € [0,T],
W/(0) =0,

where S’(u)(p) = (5Mg,wl)(T), .. .,5M5pw])(T)) with 5M§;” satisfying (3.3). This equation has
exactly the same structure as (3.3), and thus the argument for showing

|S"(@)(g) = S"(u)(@) = S (W)@t — u, @) = llgllz(@mz)OUlE — ullf2 o.p2)

24



works analogously. Since S is twice continuously differentiable, we can apply the chain rule,
e.g., from [36, Thm. 3.69] to obtain

Dn(Hy o (=F")w)p = =DnHy (=F" ()T (u)p

for any ¢ € L*(Q; R?). A semismooth Newton step is thus given by u**' = u* + Su, where Su is
the solution to

(6.2) (Id +DNHY(—7"'(uk))T"(uk)) Su = —u* + Hy(-F' (")),

which can be obtained, e.g., using a matrix-free Krylov method such as GMRES.
Recall that following Proposition 3.2 and [1], p = —F’(u) can be evaluated by solving the
adjoint equations

(6.3) {_%ow)(t)=Bf;(t)P<“f>(t>, telo,T],
3

P(T) = M”(T) - (My);,

forj=1,...,] and setting

! ((Mi,“’f)(t))gp(;’”(t)—(M;“’ﬂ(t))ng“’”(t)) 3 (ML”")(t)TBlP“’f)(t))

t) = 4 - - )= .
P( ) ; (Mgf)j)(t))gpi ])(t) _ (ML J)(t))lpg ])(t) = M; ])(t)TBzP(wj)(t)

for t € [0, T], where for the sake of brevity, we have set

00 0 0 0 -1
Bi:=|0 0 -1, By:=[0 0 0
01 0 10 0

Similarly, the application of F"(u)p for given u, ¢ € L*(Q; R?) is given by

J (5M§ij)(t)TB1P(wf)(t) + Mij)(t)TBlap(w)(t)

7:// u — " o ,
(e ; ML ()T B, P (1) + MU (1) B,6P@ (1)

where 5ME,,“)) (the directional derivative of M(*”) with respect to u) is given by the solution of
the linearized state equation (3.3) and 5P (the directional derivative of P() with respect to u)
is given by the solution of the linearized adjoint equation

—&5P)() = BY (1)5P)(t) + By (H)P)(1), t 0,7,
SP@(T) = SMW(T).

This characterization can be derived using formal Lagrangian calculus and rigorously justified
using the implicit function theorem; see, e.g., [22, Chapter 1.6].

Since the forward operator S is nonlinear, the problem (2.4) is nonconvex. Hence, convergence
of the semismooth Newton method (6.2) to a minimizer u, requires a second-order sufficient
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(local quadratic growth) condition at uy, for y > 0 small, which is difficult to verify. Furthermore,
we need to deal with the fact that Newton methods converge only locally, with the convergence
region shrinking with y. For this reason, we perform a continuation in y, i.e., we solve (2.5)
for a sequence y; > y, > ... of regularization parameters, each time using the result for y, as
initialization for the iteration with y,.4. In addition, we include in each step of the semismooth
Newton method a line search for du based on the residual norm of the reduced optimality
condition (6.1).

We finally address the discretization of (6.2). The Bloch equation is discretized using a Crank-
Nicolson method, where the states M(®”) are discretized as continuous piecewise linear functions
with values M(,Z’) = M(“)(tm) for discrete time points t, . . ., tn,, and the control u is treated as
a piecewise constant function, i.e., u = Zf;"zl Um X(t s, 1] (1), Where x4 p) is the characteristic
function of the half-open interval (g, b]. To obtain a consistent scheme, where discretization
and optimization commute, the adjoint state P() in (6.3) is discretized as piecewise constant
using an appropriate time-stepping scheme [5], and the linearized state SM® and the linearized
adjoint state 5P“) are discretized in the same way as the state and adjoint state, respectively;
see [1].

6.2 Linearized elasticity

For the case of linearized elasticity, we can proceed exactly as in [11, 12]. First, note that due to
the embedding H.(Q) < LP(Q; R?) for p > 2, the superposition operator H, (for h, := (dg*),
now given by (4.7)) is again semismooth with Newton derivative Dy H, (for Dxh, now given
by (4.8)).

To obtain a symmetric Newton system, we reduce (2.5) to the state y, = S(u, ) and the dual
variable p, . Since S is a bounded linear operator, we have S’(u) = S and therefore by definition
of S obtain

A'py =z-yy,
Ayy = Hy@y),

where A denotes the elliptic linear differential operator arising from the system (3.4) of linearized
elasticity. Consequently, we consider

_[y—z+Ap\ (O
6.9 ror =y ) = o)

where F : Y X U* — Y X U. Since the regularized optimal state y, and the adjoint state p, are
in HL(Q), we may consider F : H.(Q) X H.(Q) — Hx(Q)* X HL(Q)*. For a semismooth Newton
step, we obtain (Jy, §p) by solving

6 Id A* oy\ _ z—yk — A*pF
(65) A —DyH, M) \op) = \ayk + H, ()

for given (y*, p¥), and we set y**! = y* + 6y and p**! = pk + §p.
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Due to the linearity of the state equation (and hence convexity of the problem), the conver-
gence of the semismooth Newton method for every y > 0 to a minimizer of (2.4) can be shown
exactly as in [11, 12]. As in the case of the Bloch equation, we include a continuation in y as well
as a line search based on the residual norm in (6.4).

For the discretization, we consider (6.4) in its weak form

(6.6) (f 2pe(p) : e(p) + Adiv(p) dive + (y — 2)¢p dx)
: o 21e(y) 1 e(y) + Adivy divy — by (p)y dx

We now discretize the state y, the adjoint state p, and the test functions ¢y, ¥, using piecewise
linear finite element functions yy, pp, ¢n, ¥ € Vp, where Vi, C H}(Q) denotes the space of
piecewise linear, R?-valued functions on a uniform triangulation of Q. Analogously to [11, 12],
we employ exact quadrature for all terms except for fQ h, (pn)¥n dx, which we approximate

= (g) for all ¢, € HA(Q).

by /Q In(hy (pr))Yn dx for the piecewise linear nodal interpolation operator I;. Thus, letting
@1, - - ., ¢N,, denote a nodal basis of V}, and introducing the mass and stiffness matrices

Mh:(/¢i'¢jdx) , LhZ(/E(GDi)ié(‘Pj)dx) ) Kh:(/divq’i'div‘pfdx) ’
Q ij Q ij Q ij

T
as well as A, = 2uLy + AK}, and the vector Z;, = (/Q z-¢rdx,.. fQ Z - @nN, dx) , the discrete

version of (6.6) reads

(A}l"p + My — Zh) _ (o)
ARy — Myh,(p) 0/’

and (6.5) becomes

(a0 —sn o) 5] = (-2 )

Ay —MpDnhy,(pF)) \8p) ~ \-Any* + Myh, (p*)

where y = (y;); and p = (p;); are the nodal values of y, and py, and where h, (p) = (hy (p;));
and DNhy(p) = (DNhy(p,-)S,-j),-j.

7 Numerical examples

We illustrate the proposed approach for the two model problems described in Section 3 and the
two specific multibang penalties described in Section 4. The Matlab code used to generate these
examples can be downloaded from http://github.com/clason/vectormultibang.

7.1 Bloch equation

The first example is based on the optimal excitation of isochromats in nuclear magnetic resonance
imaging [16], where the aim is to shift the magnetization vector M at time T from initial alignment
with a strong external magnetic field, i.e., M(0) = (0, 0, 1T, to the saturated state My = (1,0, 0)”
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using a radiofrequency pulse u(t) = (uy(t), u(t))T. To follow the physical setup, we scale the
controls as u(t) = yBiiu(t), where y =~ 267.51 is the gyromagnetic ratio (in MHz per Tesla) and
B; = 107% is the strength of the modulated magnetic field (in milli-Tesla); the figures always show
the unscaled control @. The control cost parameter (which in this setting can be interpreted as a
penalty on the specific absorption rate of the radio energy) is set to @ = 107!, In all examples, the
Bloch equation is discretized with N, = 1000 time intervals; the implementation of the discrete
(linearized) Bloch and adjoint equations is taken from [2]. The semismooth Newton iteration is
then applied and terminated if the relative or absolute norm of the residual in the optimality
condition drops below 1077 or if 500 iterations are exceeded. The Newton step is solved via
GMRES without restarts, which is terminated if the relative residual drops below 10719 or if 1000
iterations are exceeded. The continuation in the Moreau-Yosida regularization is started with
Yo = 102 and reduced by a factor of 1/2 until y;, = 1071 is reached or the semismooth Newton
iteration fails to convergence.

We begin with a single isochromat with @ = 107%j. Figure 4 shows the resulting optimal
control % and magnetization evolution M(“)(t) for M = 3 equally spaced radially distributed
desired control states with magnitude wy = 1 and phase 8 € {-x,—-x/3,7/3}. The control
is zero (which is also a desired control state) intermitted at a few short time intervals with
rotating non-zero control values from M. The final magnetization M(®)(T) shows a very close
attainment of the target M. The situation is very similar for M = 6 with vy = 1and 8 €
{-m,—2m/3,-71/3,0,7/3,27/3}, see Figure 5. In both cases, all nonzero desired control states
are made use of equally.

We now consider the simultaneous control of J = 4 isochromats with w = 10_2)‘/ -(1,2,3,4).
Figure 6 shows the result if the same target My = (1,0,0) is specified for all isochromats.
Again, we have very close attainment of the target. Furthermore, the optimal control essentially
uses two control values only, except for a small number of time points where control values
outside M are adopted. (Note, though, that these values still show desired angles, but smaller
magnitudes than desired.) This may be due to the fact that in this example, the Newton method
failed to converge for y < 2 - 107%. In the more realistic case where only a single isochromat —
in this case j = 3 - is supposed to be excited (i.e., Mg = (1,0,0)” for M(“*) and My = (0, 0,1)"
else), we again obtain a pure multibang control.

7.2 Linearized elasticity

We now address the behavior in the context of optimal control of elliptic partial differential
equations for the model equations of two-dimensional linearized elasticity. Here, we choose
Q =[0,1] x[0,2] and T = [0,1] X {0}, which models an elastic beam clamped at the bottom.
The Lamé parameters are set to y = ﬁ and A = (Hviﬁ for the elastic modulus E = 20
and the Poisson ratio v = 0.3. We use a uniform structured mesh with 129 vertices in each
direction. Since the state equation is linear, we use a direct solver for the Newton step. The
Newton iteration is terminated if the active sets (i.e., the case distinctions in the definition of
the Moreau-Yosida regularization) for each node coincide for two consecutive iterations, or if
50 iterations are exceeded. The continuation in the regularization parameter y is performed as
for the Bloch equation.

Figure 8 shows the results for six different choices of target, multibang penalty, and control
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Uz

Uz

(a) control #(t) (b) state Maw) (t)

Figure 4: Control and state for the Bloch model problem: M = 3

-0.5

M, I -1

(a) control u(t) (b) state Mgfj)(t)

Figure 5: Control and state for the Bloch model problem: M = 6
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(a) control #(t) (b) state Mff)j )(t)

Figure 6: Control and state for the Bloch model problem: M =6, ] = 4

(a) control #(t) (b) state Mff)j )(t)

Figure 7: Control and state for the Bloch model problem: M =6, J = 4, Mg = (0,0,1) for j = 3,
M, else
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T T

(a) radial, d = 3, (b)radial,d =5, (c) concentric, (d) concentric, (e) concentric, (f) concentric,
a=10"° a=10"° a=10"° a=10"° a=10"° a=10"°

Figure 8: Control (top rows: phase and magnitude color coded as shown in color wheel with
values in M indicated, additionally indicated by arrows) and state (bottom row: target
deformation in gray, achieved deformation in red) for the elasticity model problem

cost parameter. In examples 8a to 8d, the target displacement z(x) = R(x—(%, 1)7)—x corresponds
to a rotation R € SO(2) of the solid around its center. Examples 8a and 8b use the penalty from
Section 4.1 for & = 103, while examples 8c and 8d use the penalty from Section 4.2 for @ = 1073
and a = 1073, respectively. In all cases, the obtained control makes use of all control values in
M and aligns them with the rotation. Furthermore, the center of the force vortex always lies
slightly to the top right of the rotation center of the target state; this allows a stronger overall
rightward force in the lower part of the solid to compensate for the clamping at the bottom.
Note that unlike the case of (additional) gradient regularization of the control, small patches or
sharp corners of the domains with homogeneous force are allowed.

Example 8e shows that the control is not guaranteed to take values in M; here, the target
displacement z is the displacement induced by a deadload to the left applied at the top domain
boundary. Since the target was induced by a forcing with zero load throughout the bulk material,
the optimal control mainly takes the non-preferred value of zero. However, a slight random
perturbation of z again leads to a pure multibang control, as shown in example 8f.
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8 Conclusion

A preference for a small number of predefined discrete control values can be achieved by a
piecewise affine pointwise regularization term whose corners lie at the preferred values. In
contrast to the case of scalar controls treated in [12, 13], the case of vector-valued controls allows
giving multiple control values an equal preference, and numerical experiments show that this
feature is indeed exploited by the optimal control. Furthermore, the optimal control problems
leading to admissible controls turn out to be dense among a family of control problems. A more
precise characterization of control problems with admissible solutions would be desirable and
should be further investigated. For instance, for certain control problems such as the elasticity-
based example, one might conjecture that targets leading to non-multibang controls are nowhere
dense.
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