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e Point-wise enforcement of constraints due to elasto-plasticity in contrast to the
element-wise treatment proposed by Simo et al. [1989]

Abstract

In this contribution we propose a mixed variational formulation of the Prange-Hellinger-Reissner
type for elasto-plasticity at small strains. Here, the displacements and the stresses are interpo-
lated independently, which are balanced within the variational functional by the relation of the
elastic strains and the partial derivative of the complementary stored energy with respect to
the stresses. For the elasto-plastic material behavior a von Mises yield criterion is considered,
where we restrict ourselves w.l.o.g. to linear isotropic hardening. In the proposed formulation
we enforce the constraints arising from plasticity point-wise in contrast to the element-wise
realization of the plastic return mapping algorithm suggested in Simo et al. [1989]. The perfor-
mance of the new formulation is demonstrated by the analysis of several benchmark problems.
Here, we compare the point-wise treatment of elasto-plasticity with the original element-wise
formulation of Simo et al. [1989]. Furthermore, we derive an algorithmic consistent treatment
for plane stress as well as for plane strain condition.

Keywords: mixed FEM, elasto-plasticity, Prange-Hellinger-Reissner type functional, al-
gorithmic consistent treatment, plane stress and plane strain

1. Introduction

An important field in finite element design is the improvement of the element performance,
which is influenced by the reliability, stability and solution quality. In the past decades,
an enormous effort was addressed to the development on finite element methods based on
the variational approach going back to Galerkin [1915], which are in general considering
the approximation of one field, e.g. the displacements. Further developments also consider
additional fields in the variational setup for example in Reissner [1950] (compare also the
early works of Hellinger [1914] and Prange [1916]), an independent stress approximation is
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applied in addition to the displacements. We refer this type of formulation, which is based
on a complementary stored energy function, as Prange-Hellinger-Reissner formulation. A
few years later, Hu [1955] and Washizu [1955] proposed independently a variational prin-
ciple related to displacements, stresses and strains, based on the so-called Hu-Washizu
functional. In the work of Fraeijs de Veubeke [1951], five variational principles are derived
starting from a four-field approach, in which surface tractions are independently varied,
in addition to the aforementioned fields.

In Galerkin and Hu-Washizu type variational formulations, an often used approach for
isotropic elasto-plastic problems is the application of a radial return algorithm, which
consist of an elastic predictor and a plastic corrector step, see e.g. Wilkins [1964], Simo
[1998] and Simo and Hughes [1998]. Therein, the flow rule has to be enforced point-wise
at each quadrature point. Using the Prange-Hellinger-Reissner variational principle, Simo
et al. [1989] postulate that the flow rule must be enforced in a weak sense on element
level. Furthermore, it is also possible (not necessary) to enforce the hardening law and
consistency conditions in weak sense on element level.

Mixed formulations often result into saddle-point problems and therefore a major con-
straint of these approaches is the restriction to the so-called LBB-conditions, see La-
dyzhenskaya [1969], Babuska [1973], Brezzi [1974], Boffi et al. [2013] and Auricchio et al.
[2004]. Mathematical aspects concerning the mixed finite element formulation for elas-
ticity based on the Prange-Hellinger-Reissner (PHR) principle are given in Arnold and
Winther [2003], Auricchio et al. [2004], Lonsing and Verfiirth [2004], Arnold et al. [2007],
Boffi et al. [2009] and Cockburn et al. [2010]. Often a discontinuous stress approximation
using a 5-parameter ansatz proposed by Pian and Sumihara [1984] is used. The advan-
tages of this approach are characterized by a remarkable insensitivity to mesh distortion,
locking free behavior for plane strain quasi-incompressible elasticity and superconvergent
results for bending dominated problems, see e.g. Simo et al. [1989], Pian and Sumihara
[1984], Chun et al. [2008] and Wriggers and Korelc [1996]. An investigation of an extended
dual PHR formulation with additional fields for Lagrangian multiplier and infinitesimal
rotation field by Klaas et al. [1995] have shown optimal convergence for displacements
and stresses using the BDM element, see Brezzi et al. [1985]. Furthermore, an extension
to small strain elasto-plasticity is derived by Schrioder et al. [1997]. Analysis of the well-
posedness and convergence of finite element approximations of the elasto-plastic problems
are treated in detail in Han and Reddy [1995] and Reddy [1992].

In the presented work, we propose a Prange-Hellinger-Reissner variational functional for
isotropic elasto-plasticity for plane strain and plane stress conditions. Our focus is on the
variational formulation, corresponding discrete formulation and associated algorithm for
treating elasto-plasticity. The interpolation of the displacements is done by standard lin-
ear Lagrangian ansatz functions and the discontinuous stresses are approximated by the
5-parameter ansatz of Pian and Sumihara [1984]. Here, we apply a point-wise enforcement
of the flow rule, the hardening law and the consistency conditions. This is in contrast to
the statement given in Simo et al. [1989], which postulates that the flow rule can no
longer be evaluated independently at each Gauss point. The resulting mixed finite ele-
ment formulation under plane stress conditions is compared with the same boundary value
problems presented in Simo et al. [1989]. Here, the plane stress conditions follows directly
from the formulation by the restriction to two dimensions. Furthermore, we demonstrate
the performance of the plane strain algorithm analyzing a plate with circular inclusion.
Therein, the plane strain condition is enforced by an incremental algorithmic treatment.
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2 Formulation of PHR principle for elasto-plasticity

In the following we introduce the Prange-Hellinger-Reissner principle for elasto-plasticity
at small strains. Let B be the body of interest parameterized in & with the boundary 0,
satisfying

OB =0B,U0B;, and 0B,NoB, =0, (1)

where 0B, denotes the displacement boundary and 9B; the stress boundary. The linear
strain tensor € is defined by the symmetric displacement gradient as

€= Viu = %(Vu + (V). @)

For the framework of elasto-plasticity at small strains, we make use of the additive split
of the total strains into an elastic € and plastic P part, i.e.

e =¢e°+ e’ orequivalently e®=¢e —€”. (3)

We first consider the potential energy functional, which is given by

¢ (u) = / (6°(e — &) + 4P () AV + T (u) 4)

B

depending on the elastic free energy function ¢ formulated in terms of the elastic strains
(3)2, ie.

1
V(e —eP) = E(e—sp) :C:(e—€P). (5)
where C denotes the fourth-order elasticity tensor. The plastic part of the energy 7" is

formulated in terms of the internal variable «, the external potential T1°**(u) is given by

Hm(u):—/f-udv—/t-udA (6)

OB

with the body forces f and traction vector t. Applying a Legendre transformation for
the free energy function allows the introduction of the stress tensor o as an additional
independent variable

Ve—e’)=0o:(e—¢€") —x(o). (7)

In the case of linear elasticity, we simply obtain

x(o) = %a C o (8)

where y(o) denotes the complementary stored energy and the compliance tensor C™1 is

defined as the inverse of the fourth-order elasticity tensor. In isotropic linear elasticity the
compliance tensor is given as

1 A
=0 -——11
¢ 2,u]I 2u(2p + 3A) ol )
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with the second-order identity tensor 1, the dyadic product defined by (1 ® 1)k = 0i;0k1,
the fourth-order identity tensor II;;,; = %((Méjk + 9;10;1) and the Lamé constants A and p.
Substituting (7) into (4) yields the Prange-Hellinger-Reissner functional

%0 w) = [ (0 (e = &) = x(0) + w7(@) AV + I (u). (10)
B
depending on the stress and displacement fields. In order to find the stationary point of

the functional, we have to calculate the roots of the first variations with respect to the
unknown fields w and o. In detail, we obtain

Gy =0, Il = /6s:adV—/5u-de—/5'u,-tdA,

B B 0B (11)
Gy =011 = /(50 c(e—¢eP)—d0:0,x(o))dV,
B

with the virtual displacements dw, the virtual stress field do. Furthermore, the virtual
strains are defined by

1
de .= Viou = §(V(5u + (Véu)T) . (12)

The associated Euler-Lagrange equations, extracted from G, = 0 and G, = 0, follow
directly from a straight-forward reformulation of the weak forms

G, = —/(5u~(diva+f)dv — dive+ f=0,
g (13)

G, = /5az(s—ep—8ax(0'))dv — e—€eP=0,x(0o).

B

Obviously, the term 0,x(o) characterizes the elastic strains €°. In order to guarantee
the thermodynamical admissibility of the constitutive relations, we use the second law of
thermodynamics by means of the Clausius-Duhem inequality. Inserting the material time
derivative of the free energy function ¢ = ¢)¢ + ¢ into D = o : &€ — ¢ > 0 yields

D = ocg:e—{o:(e—€P)+0:(6—€P)—0yx:0+WPa} > 0. (14)

This holds for linear as well as for nonlinear hardening laws if d,¢ > 0 (h > 0). For rea-
sons of simplicity we restrict ourselves to linear isotropic hardening. Thus, the hardening
potential P («) is given by

1
PP (a) = yoa + ihaz : (15)
Inserting the abbreviation § = —0,9?, the Clausius-Duhem inequality reads

D = 0:6°P406:(0,x—(e—¢€P))+Pa > 0 (16)
= 0:P+06:(0,x —€°) + fa > 0.

Substituting the Euler-Lagrange equation (13)s, we obtain the reduced dissipation in-
equality
D™ =0 : eV + Ba > 0. (17)
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For the framework of elasto-plasticity, we determine the internal variables by means of the
principle of maximum plastic dissipation, i.e. we identify from all possible states, which
satisfy the yield criterion, the one that maximizes plastic dissipation. This implies an
associated flow rule, the loading /unloading conditions in Kuhn-Tucker form and convexity
of the elastic range, compare e.g. Simo [1988a;b] and Simo and Hughes [1998]. With this
in hand, we construct a Lagrangian functional £

L(o,3,\) = =D + \0(a,3) (18)

with the von Mises yield criterion

(I)(U,B):||deva'||~|—\/gﬁ§0 (19)

and the plastic multiplier A > 0. The principle of maximum plastic dissipation postulates
an extreme value for the Lagrangian functional, i.e. L(o, #, ) — stat., in addition with
the loading/unloading conditions

A>0, <0 and AP =0. (20)

Enforcing stationarity of the functional by building the first derivative with respect to all
unknowns yields the evolution of the internal variables and the consistency condition, i.e.

OeL = —EP+A\0,®(0,8) =0,
L = —a+A\pP(a,B) =0, (21)
HhL = ®(o, ) =0.

The rate equation for the plastic strains and the internal variable then yields

devo
p = 2\,B(0.0) = A\ = n,
€ (@, 8) [ dev o] " (22)
2

Applying a backward Euler integration scheme on the time interval [t,, t,+1], the discrete
internal variables at time ¢, are

2
€fz+1 = Ez =+ Y Mpt1 and Opt1 = Oy + 57 (23)
—— \é_/
p
A€t Apon i1

where we have used the abbreviation v := XA At with At = ¢,,1 — t,,. In order to avoid
confusion in the forthcoming linearization procedure, we denote the increment of the
plastic strains with Al and A;o,41 for the internal variable. For applying the Newton
method, we need the linearization of the discrete counterpart of (11) at time ¢, 1. For the
computation of the plastic multiplier, we have to enforce

2 !
(I)(a-n—i-la Bn—i-l) - || dev an+1|| + \/;5714-1 ; 0 ) (24)
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and define based on 3, = B a trial state of the yield function ®"! as

‘ 2
Ppirial . O(o41, 0n) = ||devona]] + \/;Bn (25)

with 5, = —(yo + ha,). The state of plasticity within the formulation is distinguished
into in an elastic/neutral and a plastic loading, which is determined by means of the
yield function. Taking into account the trial state of the yield function (25), we obtain for

elastic/neutral loading if ‘
(I)tmal S 0’ (26)

and plastic loading if '
Pfrial > . (27)

Taking into account condition (24) and (23) as well as 8,11 = B, —hAiap1 = 5n—h\/§7
we compute the discrete plastic multiplier

Sq)trial
V= (28)

Substituting this quantity into (23) yields the plastic strains and hardening parameter at
time ¢,,1, see e.g. Simo and Hughes [1998]. The associated first variations appear as

GZ+1 = /58:O'n+1dv—/(5U'fn+1dV—/§U'tn+1dA,

B B 0B (29)
GZ+1 = /(50’ : (€n+1 - 5Z+1 - ao'X(o-nJrl)) dV7
B

with Oy x(0pt1) =: €54 1(0nt1) = C1 i 0 y1. The linearization yields

AGMHL = [ e Aoy dV,

(30)

AG = [ b0 (Aepn — Mel 1} = 05x(0nn) : Aoyir) dV

B T

with 92, x(0n41) : Aoy = C1 i Aoy = Ael,(0,41). The term A{e? ;} denotes
the linearization of the plastic strains €}, with respect to the stresses, i.e.

Afel b =A{el + Al 1} = Ay Ny + 7 Anggg (31)

Determining the linearization of the plastic strains by applying the chain rule, we obtain
for the linear increment of the plastic multiplier

B 3 A(I)trial 3

A -2
" oh oh

(SIRIEVAY. S (32)

The linearization of the outward normal on the deviatoric stress plane yields

1

- (n, w1 — P): Ao, 33
HdeVO'n+1H(n +1®n+1 ) Ontl ( )

AInnJrl =
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where the fourth-order deviatoric projection tensor is given by IP =1 — %1 ® 1. Thus, we
receive with

3
A{€i+1} = (( +> N1 @ N1 + %ﬂ)) t ATy, (34)

2k |[devonil| |dev o, ]|

[114

n+1

see e.g. Schroder et al. [1997], the expression for the linearization of (30), as

AGIM = /50 A1 — Bny1 Ao — 02 x(0011) : Aoy AV, (35)

B
and finally
AGIT! = /(50’ {Agp — DY s Aoy PV, (36)
B
where
DP = Fp1 + OogX(0ns1) = Enpr + CF (37)

denotes the algorithmic consistent fourth-order inverse material tangent for elasto-
plasticity.

2.1 Discretization

In this subsection, we consider the discretized problem by inserting the interpolation of
the stresses, displacements and related fields (see also Appendix A). In the following
underlined values (o) denotes the matrix notation of the value (e); i.e.

O,11 = ﬁﬁn—‘rl ) U,1 = ﬂdn—&-l ) Eny1 = Edn—&-l
00,41 = S0Bny1, U,y = Nidnyi, Og,,, = Bodyy - (38)
Agn+1 EA’BTH'I ’ Aﬁn+1 = ﬂAdn-l-l ) Aén—i—l = BAdn-l-l

For convenience the index n + 1 for the obvious terms is omitted in the following. The
discretized weak forms G = > G¢ and G =" _G¢ for a typical element B® appear as

Ge = 6dT/§ngV—5dT/ﬂdeV—6dT/ﬂTtdA,
Be Be

OBg (39)
Gy = 55T/§T(§—§p—3ax(g))dv.
Be

The linearization of the weak forms, LinGj, , = G7, ,(d, 8) + AG;, ,(Ad, AB), yields the
increments
AGE = od" / B"SdVAB,
Be

(40)
AG; = op" / STBdVAd— 53" / STD? SAVARB.

Be Be
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For the last reformulation of the system, we introduce for convenience the element matrices
G° = /§T§dv and H¢:= /§T@ep§dv. (41)
Be Be
The right hand side vector for a typical element regarding the displacements is
re ::/QTadV—/ﬂdeV—/ﬂTtdA, (42)
Be Be oBe
and for the term related to the stresses we obtain
v = [ 8'e—e— dn(@)av. (43)
Be

Inserting G° and H® yields the system of equations as

LinG¢ = &d”(r"+ GTAB),

(44)
LinGe = 687(r¢ + G°Ad — HAB).

The discontinuous stress approximation allows (if the inverse of H® exists) a static con-
densation of the stresses. We obtain, by solving LinG¢ = 0,

AB=H"'r + H'G°Ad =7, + k,Ad. (45)

Substituting the expression for the stress degree of freedom into (44); yields the condensed
system depending only on the incremental displacements

LinG;, = 6d"(r;+ G"H  'r; + G"H*'G° Ad).

~- (46)
Ee

Hm<

Assembling over the number of finite elements (nume.) leads to the global system of
equations

NUMele

Add" (r° + k°Ad) = iD(R+ KAD) = 0 (47)

and therefore the nodal (:iilsplacement are computed via
AD=-K'R. (48)

The related algorithmic treatment for the implementation of the derived formulation for
elasto-plasticity at small strains under plane stress conditions are summarized in Table 1.

2.2 Enforcement of plane strain condition

Additionally, for considering the framework of plane strain elasto-plasticity within the
mixed Prange-Hellinger-Reissner element formulation, we deduce a local plane strain al-
gorithm in analogy to the publications of De Borst [1991] and Klinkel and Govindjee
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Variables without any indices are given at iteration k+1 and time ¢,,11
(1) Update of the displacements (Newton iteration k+1)

Read from history €2, oss,,, vy, ,Bék),igk) and Efk)

d=d +Adand 8 =B + AB with AB = 7" + kY Ad
GAUSS LOOP (2) - (4)
(2) Compute stresses at each Gauss Point with ¢ = S8

(3) Ir plane stress condition THEN
Pptrial _ || dev 0'n+1|| _ \/gﬁn
Ir ®'el < () THEN
el =¢eP and a = o,
ELSE 1F &l > () :
v =32 eP = b 4 yn and a = a, + \/gv

ELSE I1F plane strain condition THEN GO TO Table 2

END 1F
(4) Determine element matrices and vectors
B~ [ S'p7sav and @ = [ "BV
Be Be

T = /§T(§—§”—§“’)dv

o

Be

(5) Calculate vector and matrix for local stress computation
7, = H"'r¢ and k, := H*'G*
(6) Determine right hand side vector and element stiffness matrix
o= GT(B+7,) and k' = G,
(7) Write in history P, a, 033, 3,7, and k,
(8) Assembling, see equation (47), and solving the system of equations (48)

Table 1: Algorithmic treatment for the elasto-plastic mixed formulation

[2002]. The requirement of plane strain conditions are given by 13 = €93 = £33 = 0 re-
sulting, in general, in a non-zero o33. For enforcing the zero-strain condition, we regard a
vector representation of the incremental elasto-plastic constitutive equation, which reads

Ae,, Dee - Dep. Ao,
Ae =DPAc = = , (49)
Ae, D, DZ Ao
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where D2 € R¥3 D? € R¥*! and D%, € R"3 matrix. Further, D is given as a scalar
value. Additionally, €,, and e, are defined as

E€m = (8117522,2812)T and ¢, = (533) =0, (50)

and o, and o, as
O, = (0'11, 0929, 0'12)T and O, = (0’33) . (51)

For the development of a local plane strain algorithm, we start from the vector repre-
sentation (49). Regarding the plane strain condition we postulate that €, has to be zero
enforced by the corresponding stress o,. The strain et = g0 4 Ae, can be expressed,

using (49), as . . \
8(z—i—l) _ Egz) + ]D?;A% =0. (52)

z

The update scheme for the stresses in the next local iteration step is given by
Ao, =-DZe, = o) =501 A0, . (53)

In order to achieve quadratic convergence a modification of the elasto-plastic tangent
modulus for the Newton iteration is necessary. Regarding the reduction of the strain and
stress tensor to €,, and o, the material tangent is still depending on the full stress state
o. Therefore, the overall material tangent has to be condensed due to the plane strain
condition. A reformulation of (49),, exploiting Ae, = D?® Ao, + D?Ac, with Ae, =0
yields

Ao, = D% 'D? Aa,, . (54)

Substituting the latter expression into (49); with Ae,, = D? Ao, + DP Ao, leads to
the modified overall elasto-plastic material tangent ID” , for plane strain condition,

Ae,, =D? Ao, with D?  =[D? —D?DP'D?]. (55)

mod mod
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(1) Read from history o33 = 033,
Initialize tol = 107®

(2) Compute elastic and plastic strains

o1 o2 0O

o = 021 092 0 with 091 = 012
0 0 033
e=Clo

IF ®'el < () THEN
el =€l and a = o,

ELSE 1F ®' >~ () THEN

trial
v=3"" e’ =€l +n anda:an%—\/gv
END IF

€33 = €53 + €53
(3) Algorithmic consistent tangent

D? =C !+ 0,e? =C ! + (% — m)nn_u @ Nypiq + mﬂ)
(4) Check for plane strain condition:

IF |es3| < tol THEN GO TO (5)

053 = 033 + A0y3 With Aoy, = £45/D5%.. THEN GO TO (2)
(5) Plane strain modification for material tangent D

D?,, = D, — D2,D% "D,

Write in history o33 and continue with Table 1

Table 2: Algorithm for the local enforcement of plane strain condition
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3. Numerical simulations

In the following different types of boundary value problems are presented. Therefore, we
first compare the standard displacement formulation, the proposed element formulation
with a point-wise enforcement of the flow rule and the formulation presented in Simo et al.
[1989] with an element-wise enforcement of the flow rule. The calculations are performed
based on the assumption of plane stress conditions. The numerical examples considered
here with the Cook’s membrane problem and the extension of a perforated plate are
given in Simo et al. [1989] where we choose for both examples a thickness of 1 {length}.
Additionally, the results for the proposed formulation are compared with the one obtained
by Simo et al. [1989] due to performance and accuracy. In this academic examples the
units are defined in {force} and {length}, see Simo et al. [1989]. The examples should
present the possibility and comparability to enforce the flow rule point-wise instead of an
element-wise enforcement.

A second aspect which is the performance of the proposed element formulation under
the assumption of plane strain conditions is shown on the example of an elongation of
a plate with circular inclusion. For a better overview different fields e.g. stresses and
plastic strains are shown in comparison with other well-known methods. Here, given as
the standard displacement element (Q1) and the mixed Q1P0 element with an additional
constant pressure field over the element domain.

3.1. Bending of Cook’s membrane problem

The following example, Cook’s membrane problem, see Cook [1974], is taken from Simo
et al. [1989]. Here, the material and geometrical setup is depicted in Figure 1. The force F'
is applied on the right edge of the Cook’s membrane acting in x,-direction. Furthermore,
we assume plane stress conditions. We compare the proposed mixed Prange-Hellinger-
Reissner formulation with a Galerkin displacement formulation (Q1, bilinear quadrilateral
element) and a mixed Galerkin formulation given by the Q1P0 element (Q1 element with
an additional constant pressure field). A convergence study for the uy displacement of
the top, right corner node (48,60) is shown in Figure 2. The PHR formulation with an
element-wise enforcement of the flow rule, taken from Simo et al. [1989], is also depicted.

Setup of BVP

T
F 16
Left edge up =ug =0 |
\
Right edge F = 1.8 {force} \
\
Young’s modulus E = 70 {force}/{length}? § 44
Poisson’s ratio v =0.3333 §
NED)
Yield stress yo = 0.243 {force}/{length}?
\ 1
Hardening modulus  h = 0.2 {force} /{length}? s |
' 48 " {length}

Figure 1: Geometrical and material setup for Cook’s membrane problem

Regarding the computed results, all three formulations show a satisfactory convergence
behavior. The solution for the mixed PHR formulation for a 64 element mesh is almost
the same as for the mixed method with 256 Q1P0 elements or the displacement method
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é 20 /- /:F ———
: “ /.//)//
ks A
a 15
a v /
S 10 //
=
[
3
o 5 disp. method —m— |
e v QI1PO0 element —w—
= mixed PHR method —e—

0 / . mixed PHR method Simo et al. —a—

0 5 10 15 20 25 30 35

Elements per Side n

Figure 2: Convergence study for us displacement of the top, right corner node (48,60)
for Q1, Q1P0, mixed PHR formulation with point-wise and mixed PHR formulation with
element-wise enforcement of the flow rule taken from Simo et al. [1989]

with 1024 Q1 elements. Thus, the mixed PHR element shows a much better efficiency
and accuracy. The main goal of this contribution is to show the possibility of a point-
wise enforcement of the flow rule which is shown within the convergence of the element
formulation. A possible explanation for the better performance of the element formulation
by Simo et al. [1989] could be given due to the additional iteration of the plastic multiplier
over the element domain for performing a weak enforcement. Figure 3 shows the good
agreement of the equivalent plastic strains for the different element formulations Q1, Q1P0
and PHR.

(b) (c)
[ [ 1 [ [

alpha: 002 0.04 0.06 0.08 0.1 012014016018 02 022024026028 03 032

(a)

Figure 3: Distribution of equivalent plastic strains « for (a) the Q1, (b) the Q1P0 and
(¢) the presented PHR element formulation on the undeformed n = 64 element mesh under
plane stress conditions for F' = 1.8

The authors point out that the global effort for all three depicted element formulations
are similar. In the proposed PHR formulation, we locally have a small increase in the
effort due to the computation of the inverse matrix, which is however insignificant.

We can not confirm the statement by Simo et al. [1989] in Remark 2.1(2). Remark 2.1(2)
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claims that a point-wise enforcement of the flow rule, hardening law and consistency con-
dition recovers the displacement model. In the work of Simo et al. [1989] the hardening
law and consistency condition are enforced point-wise whereas the flow rule is fulfilled in
a weak sense over the element domain.

However, in the proposed formulation we enforce the flow rule, hardening law and consis-
tency condition point-wise. As shown for example in Figure 2 the results of the proposed
formulation do not coincide with the displacement model. Therefore, we can not confirm
the statement of Simo et al. [1989] in Remark 2.1(2) in general. This is based on the fact
that we still have a two field formulation with independent interpolations of the stresses
and displacements and therefore do not recover the pure displacement formulation.

3.2. Extension of a perforated plate

As a second example, a perforated plate problem is investigated under plane stress as-
sumptions, see Simo et al. [1989]. Due to the symmetry properties, we can reduce the
problem to one quarter of the plate with corresponding boundary conditions. Displace-
ment controlled boundary conditions are imposed on the upper edge of the plate, see
Figure 4.

Setup of BVP ‘ 1 u
Left edge u; =0 \
Lower edge uy =0 |
Upper edge u = (0,6.15)7 {length} ‘ 8
Young’s modulus E = 70 {force} /{length}?
Poisson’s ratio v=02 |
Z2

Yield stress yo = 0.243 {force}/{length}?

> "]:‘17 ~ 2
Hardening modulus  h = 0.2 {force}/{length}? I > {length}

Figure 4: Geometrical and material setup for perforated plate problem

A load-displacement curve, where the corresponding load is calculated from the nodal
reactions at the upper edge, is depicted in Figure 5. Here, we compare a standard dis-
placement element, the mixed PHR formulation of Simo et al. [1989] and the proposed
mixed PHR formulation each for a 72 and 722 element mesh. As depicted in the load-
displacement curve, the results for the point- and element-wise enforcement of the return
mapping algorithm for the PHR formulations and for the standard displacement formu-
lation with the 722 element mesh show almost the same curve. Only the computation
for the standard displacement formulation with the 72 element mesh results in a slightly
different result. Additionally, the distribution of the equivalent plastic strains are given in
Figure 8 for a Q1-, Q1P0- and the presented PHR element formulation, which are almost
identical.

As a second aspect, we discuss the evolution of the plastic zone within the plate and the
convergence rate of the energy norm for the global Newton iteration. We define the plastic
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2.4
22 }/‘;;;j./%
1.8 5//.5/

Load in {force}

1.6
disp. method 72 elem —m—
14 | disp. method 722 elem 4
mixed PHR method 72 elem —a—
19 mixed PHR method 722 elem —v— |
‘ mixed PHR method Simo et al. 72 elem
] mixed I?HR methlod Simo elt al. 722 falem —e—
0 1 2 3 4 5 6

Displacement uy in {length}

Figure 5: Load-displacement curves for perforated plate with 72 and 722 element meshes for
displacement formulation, (element-wise enforcement of the flow rule) and proposed mixed
PHR formulations (point-wise enforcement of the flow rule), see Simo et al. [1989]

zone for linear isotropic hardening as

b= ||deva||/\/gy0. (56)

The plots determine three areas: a totally elastic region (<;~5 < 0.9), an elasto-plastic tran-
sition zone (0.9 < ¢ < 1.0), where plasticity will occur in the case of continuous loading,
and a completely plastic region (¢ > 1.0). Figure 6 and 7 illustrate the distribution of
the plastic zone, which is given as an indicator for the plastic strains. The initial and
maximum plastic strains occur at the stress concentration of the perforated plate, which
is located at the right corner of the circular arc, (5,0).

The distribution of the plastic zone for both meshes is in a good agreement to the results
given in Simo et al. [1989]. In addition, the rate of convergence for the Newton iteration
for each formulation is given for both meshes. The chosen load steps are related to the one
given in Simo et al. [1989]. For comparison of the convergence of the different approaches
we introduce additionally the convergence rates for the mixed formulation taken from
Simo et al. [1989], see Table 5 for the 72 element mesh and Table 6 for the 722 element
mesh. The rates of convergence shown in Table 3 - 6 are satisfying due to the fact that
quadratic convergence is attained only for energy norms below 107% caused by the radius
of convergence. A second aspect is the slight degradation of the rate of convergence for
more refined meshes. This degradation is shown for the mixed formulation in Table 4,
e.g. for load step 10 the Newton method needs 11 iterations. The same effect is shown
in Table 6 for the formulation of Simo et al. [1989], where load step 10 needs 10 Newton
iterations.



A Prange-Hellinger-Reissner type formulation for small strain elasto-plasticity

(a)
(d) (e)
Figure 6: Distribution of d~> for the proposed PHR formulation with point-wise enforcement

of the flow rule on the undeformed 72 element mesh for a us displacement of (a) 0.15, (b)
1.65, (c) 3.15, (d) 4.65 and (e) 6.15

Load step
1 ) 10 17

Iteration (ug = 0.03) (us = 0.15) (ug = 2.65) (us = 6.15)

1 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

2 4.3560e-03 6.7304e-03 1.2833e-03 6.0352e-04

3 2.1955e-02 1.4551e-02 5.8301e-03 1.2810e-03

4 2.6966e-02 2.0175e-03 4.4649e-04 6.9739e-04

) 1.2170e-03 5.1973e-06 8.5537e-04 2.0760e-05

6 1.2706e-03 8.4837e-10 6.4444e-06 5.0264e-08

7 9.5159e-06 3.2705e-15 1.8075e-09 9.6836e-13

8 8.7670e-09 - 2.1193e-15 -

9 1.2305e-15 - - -

Table 3: Global Newton iteration relative residual norm convergence rate for the presented

point-wise PHR formulation considering a 72 element mesh
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(a)
$ < 0.9
0.9<¢<1.0
<¢
(d)

Figure 7: Distribution of QNS for the proposed PHR formulation with point-wise enforcement
of the flow rule on the undeformed 722 element mesh for a uy displacement of (a) 0.15, (b)
1.65, (c) 3.15, (d) 4.65 and (e) 6.15

Load step
1 5 10 17
Iteration (ug = 0.03) (ug = 0.15) (ug = 2.65) (ug = 6.15)
1 1.0000e+-00 1.0000e+-00 1.0000e+-00 1.0000e+-00
2 1.1914e-03 2.4627e-03 1.0090e-03 2.3216e-04
3 4.5942e-02 1.1869e-02 4.0853e-03 9.3445e-04
4 1.6117e-03 6.8015e-04 1.2712e-03 6.9568¢-04
5 3.1768e-04 1.0278e-03 9.0929e-04 1.8675e-04
6 2.5042e-06 1.6548e-05 1.3427e-04 3.9894e-05
7 2.4724e-08 9.5113e-08 9.4389e-05 6.9197e-06
8 1.8996e-14 9.7087e-14 5.6719e-06 1.1346e-05
9 - - 6.7623e-06 7.6111e-09
10 - - 3.3072e-09 2.4700e-13
11 - - 8.0553e-15 -

Table 4: Global Newton iteration relative residual norm convergence rate for the presented

point-wise PHR formulation considering a 722 element mesh
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Load step
1 5 10 17
[teration (ug = 0.03) (ug = 0.15) (ug = 2.65) (ug = 6.15)
1 0.264e+-00 0.288e+-00 0.800e+02 0.779e+02
2 0.222e-04 0.164e-04 0.970e-03 0.196e-03
3 0.260e-04 0.165e-06 0.797e-04 0.139e-05
4 0.332e-08 0.645e-11 0.755e-06 0.278e-09
5 0.228e-14 0.956e-20 0.222e-09 0.210e-16
6 0.172e-26 0.116e-29 0.320e-16 0.564e-27

Table 5: Global Newton iteration energy norm convergence rate for the mixed formulation
with element-wise enforcement of the flow rule taken from Simo et al. [1989] with 72 element
mesh

Load step
1 5 10 17
[teration (ug = 0.03) (ug = 0.15) (ug = 2.65) (ug = 6.15)

1 0.897e+00 0.921e+00 0.256e+03 0.245e+03
2 0.220e-04 0.217e-04 0.831e-03 0.185e-03
3 0.175e-05 0.196e-05 0.683e-02 0.156e-04
4 0.449e-07 0.883e-07 0.753e-04 0.189e-05
> 0.320e-13 0.719e-10 0.871e-05 0.951e-07
6 0.559e-23 0.125e-15 0.275e-06 0.375e-11
7 - 0.483e-27 0.176e-07 0.210e-18
8 - - 0.192e-11 0.164e-25
9 - - 0.578e-19 -

10 - - 0.255e-26 -

Table 6: Global Newton iteration energy norm convergence rate for the mixed formulation
with element-wise enforcement of the flow rule taken from Simo et al. [1989] with 722 element
mesh

alpha: 0 02040608 1 12141618 2

Figure 8: Distribution of equivalent plastic strains « for (a) the Q1, (b) the Q1P0 and (c)
the presented PHR element formulation on the undeformed 722 element mesh under plane
stress conditions for a uy displacement of 6.15
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3.3. Elongation of a plate with circular inclusion - plane strain condition

A plate problem with an elastic circular inclusion is considered in order to demonstrate the
performance of the plane strain algorithm within the presented PHR element formulation.
Due to symmetry properties, only one quarter of the plate is investigated. The material
setup and the geometry of the BVP is depicted in Figure 9. Here, the specimen is loaded
by a displacement controlled boundary condition to a maximum of uy = 0.1mm.

Setup of BVP | i v

Left edge up =0

Lower edge uy =0 |[>

Upper edge u = (0,0.1)T mm X E1, 90,

Young’s modulus E, =206 GPa 10
Ey =412 GPa [

Poisson’s ratio v=203 | [>Ax2 B> 0n

Yield stress Yo, = 1.0 GPa
Yoy —> OO L1 1

Hardening modulus & = 0.01 GPa mr 5 %

>
Y
P>
P
D

Figure 9: Geometrical and material setup for plate problem with circular inclusion

The load-displacement curve, where the corresponding load is calculated from the nodal
reactions at the upper edge, in Figure 10 shows the comparison between the Q1, Q1P0
and the mixed PHR element for a 252 element mesh. Both mixed methods Q1P0 and
PHR yield almost the same result, where the Q1 element shows an insignificant increase
of load above a displacement of us = 0.7mm.

14

12

10
8 /
4 /
/ Q1 252 elem —m—
Q1P0 252 elem
0 PHR 252 elem —a—
0 0.02 0.04 0.06 0.08 0.1
Displacement us in mm

Load in kN
(@)

Figure 10: Load-displacement curves for the plate with inclusion under plane strain condi-
tion for a discretization with 252 elements for the Q1, Q1P0 and the proposed PHR element
formulation

The distribution of the equivalent plastic strains at a top displacement of uy = 0.05mm,
is depicted in Figure 11. The material response of the circular inclusion is purely elastic
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and the plastic strains are concentrated above the purely elastic inclusion. The maximum
amount of plastic strains occur above the top of the circular inclusion (0,5), which is given
as the intersection of the elastic and elasto-plastic material. All element formulations yield
a similar distribution of a where both mixed formulations Q1P0 and mixed PHR show a
better agreement in the results for the region of maximum plastic strains compared to the
standard Galerkin element formulation. Additionally, the distribution of the stresses

o T T |
0.0002 0.0006 0.001 0.0014 00018 0.0022 00026 0.003 0.0034

Figure 11: Plane strain condition. Distribution of equivalent plastic strains « for Q1 (a),
(d), Q1PO (b), (e) and PHR (c), (f) element for a top displacement of 0.05 mm (upper row,
discretization with 252 elements; lower row, discretization with 1008 elements)

011, 033 and the plastic strains €5, for the standard Galerkin Q1, the mixed Q1P0 and
the mixed PHR element formulation are depicted in Figure 12 - 14. The results for all
formulations yield similar behavior due to loading and are in good agreement.

o

| (b) \ i () il

o | EEEET T ToF [ [ [ [
016 -013 01 007 004 001 002 005 008 011 014

Figure 12: Plane strain condition. Distribution of o1; for Q1 (a), Q1P0 (b) and PHR (c)
formulation on the undeformed 1008 element mesh for a top displacement of us = 0.05 mm
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T
T
T
T

T

(a) | i (b) (c)
0y [EELCIOE T [ [
005 01 015 02 025 03 035 04 045 05

Figure 13: Plane strain condition. Distribution of o33 for Q1 (a), Q1P0 (b) and PHR (c)
formulation on the undeformed 1008 element mesh for a top displacement of us = 0.05 mm

P, L [ | Bl |
33 000055 -0.00045 -000035 -0.00025 -0.00015 -5E05

Figure 14: Plane strain condition. Distribution of e, for Q1 (a), Q1P0 (b) and PHR (c)
formulation on the undeformed 1008 element mesh for a top displacement of us = 0.05 mm

Additionally, Table 7 shows the convergence of the relative residual norm of the plane
strain algorithm.

Load step
20 20
Iteration (ug = 0.1) (ug = 0.1)
1 1.000e+00 1.000e+00
2 1.097e-04 1.097e-04
3 3.386e-05 3.386e-05
4 1.284e-06 1.284e-06
5 3.004e-09 3.004e-09
6 1.206e-11 1.710e-10
7 - 1.451e-11

Table 7: Global Newton iteration relative residual norm convergence rate for the mixed
formulation with point-wise enforcement of the flow rule with 252 (left) and 1008 (right)
element mesh under plane strain condition
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4. Concluding remarks

We proposed a mixed finite element formulation based on the Prange-Hellinger-Reissner
principle for small strain elasto-plasticity including linear isotropic hardening. An inde-
pendent stress interpolation is realized with the discontinuous 5-parameter approach by
Pian and Sumihara [1984]. In order to increase efficiency, a static condensation of the
stress field with respect to the displacements is performed.

Comparing the presented simulations of Cook’s membrane problem and the perforated
plate, we conclude that the proposed PHR formulation based on a point-wise enforcement
of the flow rule are in good agreement with the approach of Simo et al. [1989], with an
element-wise enforcement of the flow rule. This is also depicted in the convergence study
for Cook’s membrane where the proposed mixed PHR formulation is in the range of the
convergence rate of the mixed PHR formulation from Simo et al. [1989].
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A Appendix

The definitions for the approximation matrices for displacements IN and B as well as the
interpolation matrices related to the stresses S are

NI 0 1 00 a?n a3
I 7 I NT 0 J
B =| 0 NL|, N = and S"=10 10 b3
2 0 N 1 3
Né N,Il 0 0 1 CL1b177 a3b3§

(57)

where a; and b; with ¢« = 1,2, 3 are given from the Jacobian matrix for the undeformed
quadrilateral reference element given in Pian and Sumihara [1984] as

J— J11 J12 . g—z g—g . aq —+ asn b1 + bQT] (58)
Jo1 Ja g—z g—f] az + az§ bz + b§
a; = %(—$1+ZE2+$3—ZE4)
a9 = %(1‘1 — X9+ T3 — $4)
1
ay = Z(—;Ul — T + I3 —+ 5174) (59)
by = =y +y2+ys— )
by = (U1 —v2+ys—va)
by = i(—yl — Y2 + Y3 + Ya)

Regarding the reference quadrilateral element with the coordinates (-1,-1), (1,-1), (1,1)
and (-1,1), the interpolation matrix S reduces to

1 00mno0

S = 10100 ¢ (60)
00100

The fourth-order compliance tensor C~! for determining the overall material tangent

D = C~' + 0,e? and the elastic strain tensor in matrix notation e = C™' : o is defined
for linear elasticity in Stein and Barthold [1996] as

€11 1 it 2t 4 0 0 0 011

€99 -v 1 —v 0 0 0 099

€33 _ | oy 1 0 0 0 033 (61)
2e19 E 0 0 0 2(1+v) 0 0 012 '

2€93 0 0 0 0 2(1+v) 0 093

2e13 0 0 0 0 0 2(1+v) 013



