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Abstract  First-order primal-dual algorithms are the backbone for mathematical image
processing and more general inverse problems that can be formulated as convex opti-
mization problems. Recent advances have extended their applicability to areas previously
dominated by second-order algorithms, such as nonconvex problems arising in optimal
control. Nonetheless, the application of first-order primal-dual algorithms to noncon-
vex large-scale optimization still requires further investigation. In this paper, we analyze
an extension of the primal-dual hybrid gradient method (PDHGM, also known as the
Chambolle-Pock method) designed to solve problems with a nonlinear operator in the
saddle term. Based on the idea of testing, we derive new step length parameter conditions
for the convergence in infinite-dimensional Hilbert spaces and provide acceleration rules
for suitably locally monotone problems. Importantly, we demonstrate linear convergence
rates and prove global convergence in certain cases. We demonstrate the efficacy of these
new step length rules on PDE-constrained optimization problems.

1 INTRODUCTION

Many optimization problems can be represented as minimizing a sum of two terms of the form
(P) min G(x) + F(K(x)).
X

For instance, in inverse problems, G will typically be a fidelity term, measuring fit to data, and
F oK aregularization term introduced to avoid ill-posedness and promote desired features in the
solution. In imaging problems in particular, quite often total variation type regularization is used,
in which case K is composed from differential operators [2, 5, 8]. In optimal control, K frequently
denotes the solution operator to partial or ordinary differential equations as a function of the
control input. In this case G and F stand for control- and state-dependent contributions to the
cost function, respectively; the latter might also account for state constraints [12].

Since the applications mentioned above usually involve high and possibly infinite-dimensional
spaces, if K can be computed efficiently, first-order numerical methods can provide the best
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trade-off between precision and computation time. Moreover, as both G and F are often convex,
introducing a dual variable and the convex conjugate F* of F, we can rewrite (P) as

(S) min max G(x) + (K(x),y) — F*(y).
x oy

This approach proves to be particularly successful for nonsmooth G and F*. Non-smooth first-
order methods roughly divide into two classes: ones based on explicit subgradients, and ones
based on proximal mappings. The former can exhibit very slow convergence, while taking a step
in the latter is often tantamount to solving the original problem. In (S), if we can decouple the
primal and dual variables and efficiently compute the proximal maps (I+70G)™* and (I+cdF*)7,
methods based on proximal maps can become highly efficient. Based on this fact, Chambolle
and Pock [7] suggested such a decoupling algorithm for the case that K is linear and proved its
convergence to a saddle point with rate O(1/N) in terms of an ergodic primal-dual gap in finite
dimensions. They also provided an acceleration scheme with O(1/N?) rates if the primal or
dual objective is strongly convex. In [16], the method was classified as the Primal-Dual Hybrid
Gradient method, Modified (PDHGM).

However, frequently in applications, K is not linear. An extension of the PDHGM to nonlinear
K was suggested in [12, 21], for which the authors proved a local convergence without a rate
under a metric regularity assumption. The method, called the NL-PDHGM for “nonlinear”, and
its ADMM-form variants, have successfully been applied to problems in magnetic resonance
imaging and PDE-constrained optimization [4, 12, 21, 26]. We state NL-PDHGM in Algorithm 1.1
incorporating references to the step length rules of the present work.

Algorithm 1.1 (Exact NL-PDHGM). Pick a starting point (xy, yo). Select step length parameters
Ti, 0i, @; > 0 according to suitable rules from Theorems 4.5, 4.7, 4.10, 4.14, 4.16 and 4.18
and Corollaries 4.22 to 4.24. Iterate:

K= I+ TiaG)_l(xi = Ti[VK(xi)]*yi)v
fi+1 = xi+1 + wi(xi+1 _ xi)’

yi+1 = (I arF O','+1(9F*)_1(yi ar O'j+1K(3?i+l)).

In [12], based on small modifications to our original analysis in [21], we showed that the
O(1/N?) acceleration scheme from [7] for strongly convex problems can also be used with
Algorithm 1.1 if we stop the acceleration at some iteration. At that point, we were unable to
provide any convergence rates. In this paper, we provide such rates and show that the acceleration
does not have to be stopped. We also present new step length bounds that guarantee convergence,
sometimes even globally, and provide criteria for linear convergence.

Our new analysis of the NL-PDHGM is based on the “testing” framework introduced in [24,
25] for preconditioned proximal point methods and summarized in Section 2. In particular,
we relax the metric regularity required in [21] to mere monotonicity at a solution. We state
our main results in Section 3. Since block-coordinate methods have been receiving more and
more attention lately — including in the primal-dual algorithm designed in [22] based on the
same testing framework — the main technical derivations of Section 3.2 are implemented in a
generalized operator form.



Once those generic estimates are obtained, we devote Section 4 to scalar step length parameters
and formulate our main convergence results. These amount to basically standard step length
rules for the PDHGM combined with bounds on the initial step lengths. We prove weak and
strong convergence to a critical point as well as O(1/N?) convergence with an acceleration
rule if G or [VK(x)]*y is strongly monotone at a primal critical point x. If 9F* is also strongly
monotone at a dual critical point y, we present step length rules that lead to linear convergence.
We then refine the results to the case when x — (K(x),y) has a hypomonotone gradient, e.g.,
is convex. This connects our work to the classical forward-backward splitting method as well
as to the PDHGM with a forward step [9].

Finally, in Section 5, we illustrate our theoretical results with numerical evidence. We study
parameter identification with L' fitting and optimal control with state constraints, where the
nonlinear operator K involves the mapping from a potential term in an elliptic partial differential
equation to the corresponding solution.

2 PROBLEM FORMULATION

Throughout this paper, we write £L(X;Y) for the space of bounded linear operators between
Hilbert spaces X and Y; I is the identity operator; (x, x”) is the inner product in the corresponding
space; and B(x, r) is the closed unit ball of the radius r at x. We set (x,x")r := (Tx,x’), and
||t := V/{x,x)7. For T, S € L(X;Y), the inequality T > S means T — S is positive semidefinite.
Finally, [x;, x2]|% := (1 — a)x; + ax,, consequently, x'*! := [x*1, x']|"“ in Algorithm 1.1.

We generally assume G : X — R and F* — R to be convex, proper, and lower semicontinuous,
so that their subgradients G and 0F* would be well-defined maximally monotone operators
[3, Theorem 20.25]. We may, therefore, define the set-valued operator H : X X Y = X X Y for

u=(x,y)as

(2.1) H(u) := IF* () - K(x)

Then 0 € H(u) encodes the critical point conditions for (P) and (S). These will also become the
first-order necessary optimality conditions under a constraint qualification, e.g., when G is C!
and either the null space of [VK(x)]" is trivial or dom F = X [20, Example 10.8].

To formulate Algorithm 1.1 in terms suitable for the testing framework of [24], we define the
step length and testing operators

Ti 0 (I)i 0
Wit = ( ), and Zjy = ( ),

_ [9G(x) +[VK (x)]*y)

0 iy (U

where T;, ®; € L(X;X) and %41, ¥;41 € L(Y;Y) are the primal and dual step length and testing
operators, respectively.
We also define the nonlinear preconditioner Vi 1(u) := V/,,(u) + M (u — u') by

A [VK(x") — VK(x)]*y

(2.2) Vi+1(u) = Win (K(x) _ K([x,xi]]_wi) _ VK(xi)(x - [[x, xi]]—wi)) , and
I ~T;[VK(x)]*

(2.3) My = (—wiZHIVK(xi) I ‘



As we recall, [x, x']7“ = x + w(x — x'). Since V!, (u) vanishes for linear K, we will also make
use of the subspace of Y, possibly empty, in which K acts linearly. In other words, Pn, will
denote the orthogonal projection to Yy, where

Yy := {y € Y | the map x — (y,K(x)) is linear} and Yyr := ¥{".

See [21] for how such subspaces come about. We also write BnL(Y,7) :={y € Y | |ly=Yllpy. < 1}
for a closed cylinder in Y of the radius r with axis orthogonal to Yr.
Now the “exact” NL-PDHGM of [21] can be written as

(PP) 0 € Wit HW'™) + Vi (@'™) = Hia (™) + My (™' = o).

For the “linearized” NL-PDHGM of [21], we would replace [[x, x']~® in (2.2) by x".

In line with [24], the step length operator W in (PP) acts on H rather than on the step
u'™! — 4’ 50 as to eventually allow zero-length steps on sub-blocks of variables; cf. [22]. The
testing operator Z;,; does not yet appear in (PP): it does not feature in the algorithm. We will
shortly see that when we apply it to (PP), the product Z;1M;; will form a metric that encodes
convergence rates (in the differential-geometric sense of the word “metric”).

Accordingly, our goal in the rest of the paper is to analyze the convergence of (PP) for the
choices (2.1)-(2.3). We will base this analysis on the following abstract result, which is relatively

trivial to prove based on telescoping and Pythagoras’ (three-point) formula:

Theorem 2.1 ([24, Theorem 2.1]). Suppose (PP) is solvable, and denote the iterates by {u}ien. If
Z;i+1M;4q is self-adjoint, and with H;., as in (PP) we have

i+

1 i+1 i2 1 =12 T i+1 i+1
(CD EH”H - ulHZHlMM + 5”” u||ZMMM_Zl.Jrle.+2 + (Hipn@'™), '™ = Uz, > A

foralli < N —1and someu € U, then

1

N-1
1 N =~12 0 =12
(DI) Sl =T, e, < I =T, + D Avea,
i=0

Clearly, if A;41 < 0, the rate of convergence is defined by Zn11Mp+1 since if Zy i My41 = pnI
and yn — oo, then ||[uN —4]|?> — 0 at the rate O(1/un). If Zn41Mn+1 does not grow quickly, we
can still obtain weak convergence as follows:

Proposition 2.2 (Weak convergence). Suppose the iterates of (PP) satisfy (CI) for someu € H'(0)
with Ay < —%Hu’”r1 - ui”%mMm for some § > 0. If the following conditions hold, then u’ — u*
weakly in U for some u* € H™1(0):

(i) €I < Z;11M;14 for some e > 0.

(ii) For some nonsingular W € L(U;U) holds

ZiaMin (™ —u') - 0, u* =y = 0e WH(u").



(iii) There exists a constant C such that || Z;M;|| < C? for all i, and for any subsequence u™ — u
there exists Ao € L(U;U) such that Z;,_.1M;, yu — Acou strongly in U forallu € U.

Proof. This is an improvement of [24, Proposition 2.5] that permits nonconstant Z;;M;.; and
a nonconvex solution set. The proof is based on the corresponding improvement of Opial’s
_i2 :
u'llz. a,,,» (DI) applied
is nonincreasing. This verifies
Lemma A.2(i). Further use of (DI) shows Y72, g u"||éMMi+1 < 0. Thus Z; ;1M1 (u'™t —
u') — 0. By (PP) and (ii), any weak limit point u* of the {u'};cy therefore satisfies u* € H™1(0).
This verifies Lemma A.2(ii) with X = H™'(0). The remaining assumptions of Lemma A.2 are

verified by conditions (i) and (iii) of the present proposition. Thus, the lemma shows that
u' — u* € HY0). |

lemma (Lemma A.2) together with Theorem 2.1. Using A;41 < —g [lui+!

with N = 1and u’ in place of u° shows that i — |ju’ — ZZH%_HMAH

”ui+1 _

3 ABSTRACT ANALYSIS OF THE NL-PDHGM

We will apply Theorem 2.1 to Algorithm 1.1, for which we have to verify (CI). Obviously, this
inequality holds for some A;., but we want to make A;1; as small as possible. Indeed, we aim for
Aj+1 < 0. To obtain fast convergence rates, our second goal is to make the metric Z;11M;4; grow
as quickly as possible. Since this rate is constrained by the term %Hu’”r1 - i?||%l_+1 Moo ZisMies
in (CI), we deal with this constraint in the present section. The actual convergence rates are,
however, only derived in Section 4 for scalar step lengths.

After stating our fundamental assumptions in Section 3.1, we first derive in Section 3.2 explicit
— albeit somewhat technical — bounds on the step length operators to ensure (CI). These require
that the iterates {u'};cy stay in a neighborhood of the critical point #. Therefore, in Section 3.3,
we provide sufficient conditions for this requirement to hold in the form of additional step
length bounds. These conditions will further be used in Section 4.

3.1 FUNDAMENTAL ASSUMPTIONS

In what follows, we will need to assume that K is Fréchet differentiable and its gradient VK is
Lipschitz in some neighborhood Xk of the primal optimal point X. Moreover, we assume a form
of hypomonotonicity of x — VK(x)*y, which we will first need later on, in Lemma 3.5.

Assumption 3.1. For some L > 0, ® € £(X;X), and a neighborhood Xk of x:

(3.12) IVK(x) — VK(x')|| < L||x — x’|| (x,x" € Xg), and
(3.1b) ((VK(x) = VK(X))(x = %), 3) = llx - %Il (x € Xk).

Remark 3.1. Using Assumption 3.1 and the equality
1
K(x") = K(x) + VK(x)(x" — x) + / (VK(x + s(x" = x)) — VK(x))(x" — x)ds,
0

we obtain the following useful inequality for any x,x’ € Xg andy € dom F* :

(3-2) (K(x") = K(x) = VK(0)(x" = %), y) < (L/2)llx = X IP[lyllpy. -



The norm in the dual space consists of only the Y1, component because by the definition of its
complement Y1, the function x +— (K(x), y) is linear in x for y € Y.. Consequently, for such y, the
left-hand side of (3.2) is zero.

We will also assume a form of monotonicity from dG and dF* which we will likewise first
need in Lemma 3.5.

Definition 3.2. Let U be a Hilbert space, and I' € L(U;U), T > 0. We say that the set-valued
map H : U = U is T-strongly monotone at u for w € H(u) if there exists a neighborhood U > u
such that for any u € U and w € H(u),

(3-3) (w=w,u—u) > |lu-ul}.
If T = 0, we say that H is monotone at u for w.

Assumption 3.3. For any w = (v, £) € H(2), the set-valued map dG is (T-strongly) monotone
at x for v — [VK(x)]"y in the neighborhood X, and the set-valued map 9F" is (Ir--strongly)
monotone at y for £ + K(x) in the neighborhood Y-.

In view of the assumed convexity of G and F*, Assumption 3.3 is always satisfied with
Ic = Ip« = 0. Also note that the monotonicity of the set-valued map H is closely related to
its subregularity [23]: in fact, the former provides an alternative pathway compared to the
metric regularity (Aubin property of H™!) employed in [13, 21]. While the discussion of these
relationships is beyond the scope of this paper, interested readers are referred to [18, 20] as well
as the works discussing strong metric subregularity [1, 10, 15], directional subregularity [17],
and partial strong submonotonicity [23].

Combining Assumptions 3.1 and 3.3, throughout the rest of the paper, we assume the neigh-
borhood U(px, py) of u to be nonempty and defined for some py, py, > 0 as

(3.4) U(px, py) == (B(X, px) N Xg N Xk) X (BNL(, py) N Yp-).

3.2 GENERAL ESTIMATES

We verify the conditions of Theorem 2.1 in several steps. First, we ensure that the operator
Zi+1M;41 giving rise to the local metric is self-adjoint. Then we show that Z;;,M;, and the
update Z;1(M;41 + =;41) performed by the algorithm give the same norms (metrics). Here E;4
represents some off-diagonal components from the algorithm, as well as any strong monotonicity
available for acceleration. Finally, we estimate V/, (1) and H(u) to derive A;,.

We require the following relationships for some x € [0,1), n; > 0, fG e L(X;X), and

I € L(Y;Y):

(3-52) ®; = Ni/Nis1, V2 =i,

(3.5b) @;T; = nil, (- 1) ¥ = nfVK(x"® [VK(x)],
(3.5¢) ®; =P >0, Y=Y, >0,

(3-5d) D4y = O;(1+ 2T,TG), Wivy = Pipg(1+ 254 Tp).

In Section 4 we will verify these relationships for specific rules for scalar step lengths.



Lemma 3.2. Fixi € N and suppose (3.5) holds. Then Z;1M;; is self-adjoint and Z; 1M;1 >
8D; 0
( 0 (k=8)(1-8)"1%;4 ) foranyé € [0,x].

Proof. From (2.3) and (3.5), we have ®;T; = ;I and ¥;113;110; = 1;1, so that

@, —m[vr«x"n*) |

(3.6) ZiaMin = (—ry,-VK(xi) ¥,

Therefore, Z;1M;41 is self-adjoint. By Cauchy’s inequality, also

0
2 . .
ZLVK(x)OT VK (x)]*

oD,
(3-7) ZiviMip >
Wi —

Now (3.5) ensures the remaining part of the statement. O

Our next step is to simplify Z;1M;11 — Zi+2M; 4, in (CI) while keeping the option to accelerate
the method when some of the constituents of H exhibit strong monotonicity.

Lemma 3.3. Fixi € N, and suppose (3.5) holds. Then %H . ||;~+1(M-+1+E~+1(fc Tl Zoeo Moy 0 for

2Tl 2Ti[VK(xi)]*)

(o Tr) o= - 5
i+1TG, Tr+) (_zziHVK(xH'l) 231

Proof. Let Djip := Zip1(Ms1 + E,—H(fg,fp*)) — ZiroM; 5. We can write

Divs = 0 [7:41 VK (x™*Y) + n; VK (x)]*
2T i VK () — 5 VK (x) 0
using (3.5) and (3.6). This quickly yields the claim. O

Lemma 3.4. Suppose Assumption 3.1 and (3.5) hold. For a fixedi € N, let x'*! € Xg and PxsPy 20
be such that u',u™' € U(px, py). Then for any {, fi > 0 and oy € [0, 1] we have the estimate

1 . .
o - i+1 _ i %
i+1Zin1(lG,Tpe) — 2 I u ||Qi+l

+ [|u

. 4 1 .
(38) (Vi@ u™ —u),, - EHMZH - ull;
i+1 _ 2 o
u”QiH(errF*),

where

o _ l'~ _ iv i+1\]*
0rs T To) = ni(Te + 1) ni[VK(x")] ) nd

N VK™ —nin [fF* + %prPNL]

Qi1 = (_%L (L”PN?_W + (i +2)[2py, (@i + z)wiﬁlpx]]al) I 0) .

0 0



Proof. From (2.2) and (3.5), we have

(39) D= (V/ (™), u"™ @)z, - %HMPrl = llz,. 2000
= ni{[VK(x") - VK(x")](x"" - %),y"")
+ iR () = KE) = VK () = 74,y - 5)
+ (s VK(x™) = ; VK (x))(x1 = %),y = ).

Rearranging the terms, we obtain

D = :([VK(x') - VK™ )]™! - %), 5)
+ ’7i+1<K(xi+1) _ K(}?H—l) _ VK(xi+1)(xi+l _ )?Hl),y“'l _ 5}\>
+ 77i+1<(VK(xi+l) _ VK(xi))(xi+l _ fi+1)’ yi+1 _ 5}\)
+ (’7i+1 _ m)(VK(le)(xiH _ f)’yi+1 _ y>

Using (3.5) and the Lipschitz property of Assumption 3.1, we further estimate

D > ni{[VK(x") = VK(x" )] (" = %), 7) = nisa(L/2) ™! = 21y = Iy,
= iaLllx™ =[x = Iy - g,

+ (741 = n)(VK (™ (™ = %), ™1 =~ 7).

i+1 i1 _

Since ¥ — x*1 = w;(x x'), using (3.5) we obtain

(3.10) D 2 ni{[VK(x) - VK(x"](x"™ - %), 5)

= niL(1+ @i /2)ly"™ = Pllpg 1™ = x|I?

+ (is1 = n)(VK (" (" = %),y = ).
To later allow balancing between further assumptions on the primal and dual, we pick any
a1 € [0,1], and multiply the middle term by 1 = & + (1 — ;7). We then apply Cauchy’s inequality

on the part weighted by «y, as well as Assumption 3.1 and Cauchy’s inequality on the first term
of (3.10), to obtain for any ¢, f; > 0 the estimate

P

D > 4év xiH2 + (771'+1 - 771)<VK(xi+1)(xi+l _ )?),yiﬂ _ y>
— I = X% = (1 = o)L+ @i /2) ||y = Pllpg 16+ - %2
. . 1 . - (60 + 2)2w'ﬁ1 ' .
i+1 i i+1 2 1 L i+1 in2
— nioqL|[x"™ = x*| (_2’510)1_ lly _YHPNL + T“x — x|,
Using ||x"*! = x|| < 2p, and [ly"™*! = Jllpy, < py, we finally get D > (1/2)[[u™! ~ ui”é”l N

||ttt — 7I||2Q_+1(O o) in which the right-hand side differs from that of (3.8) by having Q;41(0, 0) in

place of Qi+1(fG,fF*). Recalling how D is defined in (3.9), we may add back the difference to
obtain the claim. ]

We now proceed to the final steps necessary for the A;;; estimate.



Lemma 3.5. Suppose w = (v, 2) € H(u), and that Assumptions 3.1 and 3.3 hold. Let px, p,, > 0, as
well as f, > 0 and o € [0,1]. Define

ni [T +© — 5 [8py, fopx] 1] ni[ VK (x)]* )

Ty in(u) =
fi —1i+1VK(x) Ni+1 [FF* - %LPxPNL]

Then for allu € U(px, py) holds
(3.1) (H(w) = w,u =Wz, wi 2 lu =2l -

Proof. Since w € H(u), we have dG(x) 3 zg := v — [VK(X)]*y, and F*(y) 3 zp+ := g?+ K(x).
Using (3.5), we therefore expand

<H(u) - W’u - E>Zi+l‘/vi+1 = ’71<aG(x) —2G,X — 55> + ’7:+1<6F*(J/) —ZpY 5;>
+ni{[VK()]"y = [VKG)I'Y, x = X) + 111 (K(x) — K(x), y = ¥).
Using the local (strong) monotonicity of G and F* and rearranging terms, we obtain
(312) (H@)—w,u -z, ,w, = nillx - 55”& +ninlly - y“i*

+ 1 {((VK(x) = VK(X))(x = X), ¥) + (1 = 0:21)(VK(x)(x = X),y = )
+ 1i+1(K(X) — K(x) + VK(x)(x = X),y — V).

Using both the Lipschitz property and hypomonotonicity of Assumption 3.1 we obtain
(HW)=w, u =)z, wiy = 0illx = Fllf 40 + niilly = VIE,.
= i(L/2)llx = ZPlly = Vllpg, + (i = 7::)(VK@)(x = %),y = 7).

Similarly to the proof of Lemma 3.4, to allow balancing between primal and dual assumptions
in the future, we multiply the middle term by 1 = a; +(1— ). We then apply Cauchy’s inequality
to the part multiplied by a; to obtain for our choice of §, > 0 the estimate

(3.13) (HW) = w,u = W)z,,wy 2 0illx = Xl 10 + ninlly = VIIE,.
= i1 = a2)(L/2)]|x = X[y = Ve,
~ 1 - ~
~ninankllr =31 5l =71, + L2l -7
+ (i = nis)(VK(x)(x = X),y = ).
Rearranging terms gives (3.11). O

We now have all the necessary tools to formulate the main estimate. Combining the results
of the previous lemmas, we arrive at the following conclusion:



Theorem 3.6. Fixi € N, and suppose (3.5) and Assumptions 3.1 and 3.3 hold. Also suppose x'*! € X,
and that py, py > 0 are such that ul,uttl e U(px, py)- Then (CI) is satisfied (for this i) if

l”ui+1 _
2

i2 i+1 =12
W+t - > A,

where for some 0 < 8 < x < 1;, By, B2 > 0; and ay, ay € [0, 1] we define

. Si2
s 5<I>i—”;—L(Mﬂwzmzpw(wi+z>w,»ﬁ1px1|“1)1 0
i+l +— 2 ) ) ’
0 Wi~k VK (x )@ [VK(x )]
N _ ni [Fg—f6+®—(g+ﬁ|{8/)ysﬁ2px]]a2)I] 0
Si+1 - 0 iy _T, _(ﬂ X2 \Lp. P ’
Nisillp*=lp* =\ B +ﬁ2 pxPril

We may in particular take A;41 = 0 in (CI) provided

;L (L||Paeyll?
(3.14a) D; > ’72’—5 (M + (w;i +2)[2py, (w;i + Z)wiﬂlpx]]al) I,

n? . .
(3-14b) Fi1 2 _'KVK(X’)CI)Zl[VK(X’)]*,

~ L
(3-14¢) I+ >TIc+ (gv + oo [[8py,ﬁsz]]a2)1, and
(3.14d) Tp > Tp- + (ﬂ + %) Lp,Pnr.
b P

Proof. Applying Lemma 3.3 to the left-hand side of (CI), we obtain

1 . in2 1, . 2 ~ . .
A= EHuH—l B ul||Zi+1Mi+1 + Ellulﬂ a ullZi+1Mi+1_Zi+2Mi+2 + <Hi+1(ul+1)’ul+1 a mz”l

1 i+1 112 i+1 i+1 1 i+1 “~12
- E”uH— - ul”ZiHMHl + <Vi,+1(ul+ )’ ™ - mzi“ B E”uH— B u||Zi+1Ei+1(fG Tp+)
+ (H(u”l), uz+1 _ E>Zi+l'

Applying Lemma 3.4 and Lemma 3.5, further

2

1 . ,
A> = i+1 _ iy2 o o
2 ”u “ ”Z Qir1(TG, T+ )+T, i1 (uith)

it~
1M+ Q0in + ”u u”

After applying Lemma 3.2 and rearranging terms, we obtain the claim. O

Discussion While (3.14a) and (3.14b) appear to bound ®; and ¥;,4, they, in fact, bound the step
lengths. Recall from (3.5) that ;I = ®;T; = ¥;3;. Therefore, ®; and ¥;,; can be made to vanish,
as we will do in Section 4 for scalar step lengths.

The parameter { was introduced to estimate (3.10). In Section 4.5, we eliminate { when the
gradient of x — (K(x),y) is hypomonotone. Otherwise, the best bound for T or ® in (3.14a) is
obtained by choosing the maximal { satisfying (3.14c).
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If K is linear, as in [7], (3.14a) reduces to ®; > 0 via [|[Px1Y|| = py = 0. Then we can set x = 0,
so that (3.14b) turns into an operator analogue of the step length bound 7;0;||K||? < 1 of [7]; see
also [22]. We can also set { = 0 for linear K.

The inequalities (3.14) also imply I's + ® > 0. This was not required in the main result of
[21], but the verification of metric regularity for specific problems in [21, Proposition 4.2] would
introduce a similar condition. In general, we do not require ® > 0 as long as any negativity is
compensated for by the strong convexity of G.

Another difference from [21] is (3.14d): I's+ is allowed to be zero, so we do not require strong
convexity from F*; see also [12]. Indeed, a; and a; allow balancing between small p,, but no
strong convexity of F*, similar to [13], and less restrictions on p,, but strong convexity of F*
and a small p,. Thus, the above two alternatives, which we analyze in further detail in Section 4,
resemble those in [12, §2.1 and §2.2].

3.3 LOCAL STEP LENGTH BOUNDS

One final technical result needed for convergence estimates is to ensure that u’*! € U(px, py)
once u' € U(py, py), as required by Lemma 3.4, Lemma 3.5, and, consequently, Theorem 3.6.
The following lemma provides the basis from which we further work in Section 4.2.

Lemma 3.7. Fixi € N. Suppose Assumption 3.1 holds and u**! solves (PP). For simplicity, assume
w; < 1. For somery i, ry i > 0, and 65,8, € (0,1), let B(x,ry ;) C Xk, x! € B(X, 8¢ry.1), and

y' € B(y,8yry.:). Then x"*,x"*! € B(X, ry,;) and y'*' € B(y,ry,;) provided

(1 - 5x)rx,i
2|VK(x)ry,; + 2L|[PNLY |,

e 20=8)n.
i1+ = = .
(Lrs,i + 2 VKG)|Drx, i

(315) Tl < , and |2

Proof. We want to show that the step length conditions (3.15) are sufficient for

i+1 ”7i+1 i+1

"™ =Xl < rein X7 =Xl <rxi, and Iy =Yl <1y

We do this by applying the testing argument on the primal and dual variables separately.
Multiplying (PP) by Z7 ,(u'™! — ) with ®; = I and ¥;,; = 0, we get

i+1

0e <aG(xi+1) + [VK(xi)]*yi,xi+1 _ A>Ti + <xi+1 _ xi,xi+1 _ )’C*>
Using the standard three-point formula or Pythagoras’ identity

TS T TS USRS ST FO R TP S NTO SPSTT NS SRR AC R
(3-16) (=t T =X = ST =X = Sl =X+ Sl =X

2 2 2
we obtain
llx' = %[I* € 2(0G(x") + [VK()"y', ™ = %), + ™ = 22 + [l = X%

Using 0 € dG(X) + [VK(X)]*y and the monotonicity of dG, we then arrive at

[ = 2 + [l = F)? + 2([VK()]'y' = [VK@)]'T, % = D), < I’ = 7%

11



With Cx = [[[VK(x)]*y" = [VK&)]"Yll72 then

(3.17) [l =12+ [Ix™ = X < 2C |16 = x| + [Ix' = X%,

or, after rearranging the terms and using ||x™*! — X|| < ||x™*! — x| + ||x? - X,
(™ = x| = Co)? + [Ix™ = X1* < (JIx" = x| + Cx)?,

which leads to

(3.18) ™! = %] < flx" = x| + Cx.
Hence, if Cy < (1— 8y)rx,i, we get the first required estimate ||x™*! — X|| < ry. ;.
To estimate the dual variable, we multiply (PP) by Z;, (""" — u) with ®; = 0, ¥;,; = I. This
gives
= <6F*(y1+1) _ K(J?Hl),ylﬂ _ ;’V\>2i+1 + <y1+1 _ yz’yz+1 _ y>
Using 0 € dF*(y) — K(x) and following the steps leading to (3.18), we deduce

i+1

(3-19) ly™ =3l < Iy' =Yl + G,

with C), := [|K(X) - K()?i+1)||zg+l. Consequently, if Cy, < (1= 6,)ry ;, then [y = 3] < ry ;.
We now proceed to deriving bounds on Cy and C,, with the goal of bounding (3.18) and (3.19)
from above. Using Assumption 3.1, and arguing as in (3.2), we estimate

(3.20) Cx < ITNAVKGCOHNY' = Il + LIPayllllx’ = X)) =: Ry, and
(3.21) Cy < IZimll@IX™ = %/2 + VK@ IDIX™ =%l = R, (f " € Xg).

We need to verify that x*1 € Xk, used for the bound on Cy. By definition,

||J?i+l _ 5(?”2 — ”xi+1 _ 5(_‘_'_ a)i(xi+1 _ xi)||2
— ”xi+1 _ 5(?“2 + (,()?”.X'H—l _ xi“2 + zwi<xi+1 _ .;C\,.X'H—l _ xi>
= (1+ wp)llx™ = %]* + 01+ wp)l|x™ = x||” = wi||x" - x]|?

< @+ )™ = X7 + I = X [17) - willx’ = X1
Applying (3.17) and (3.18), we obtain

X7 = X% < 4C,||x™! = X|| + ||x" = X]|? < 4Cx(8xTx,i + Cx) + 8242

x'x,i*

Hence, ||x'*! = X|| < ry; if

ACx(Oxry,i + Cx) + 8512 <12, & Cx < (1-8)rai/2.

x"x,i
Consequently, if R, < (1— 8x)rx.i/2, then ||x'*! — X]|| < ry, ;. Coincidentally, from (3.18) we get
||x*! = X|| < ry.;- Then we impose Ry, < (1-6y)ry,; so that (3.19) yields ly™*t =3l < ry,i. After
substituting the expression for Ry and Ry, in (3.20) and (3.21), these imposed bounds expand into

(1- 5x)rx,i (1- 5y)ry,i

ITill < ; = = :
U T 2V, ry, i + 2L PNLY N BT (Lry,i/2 + IVKGOI) 7,

»oand Bl <

Since 6y, 5y < 1, the bounds from the statement of the lemma will also suffice. O
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Remark 3.8. If we can take Xx = X in Assumption 3.1, 8x7,; will stand for ||x* — x||, and the
upper bound on ||T;|| in Lemma 3.7 will only be needed to ensure y'** € B(y,ry, ;). However, if ry ;
escapes to infinity, the constraint on ||X;41|| in (3.15) goes to zero. Therefore, other approaches are
needed to ensure y'*' € B(y, 1, ;).

In particular, ry ; — oo is not a problem if dom F* is bounded and dom F* C B(y, ry, ;). Indeed
the operator (I + cOF*)™" in Algorithm 1.1 will always ensure y'*! € dom F*. Hence, if Xx = X
and dom F* C B(y, ry.i); utl e Xgp x Y always, unconditionally. Moreover, if ¢ = a; = 0
in (3.14), the step length bounds will only depend on p,,. Consequently, it will suffice to verify
dom F* C Bni(y, py).

4 REFINEMENT TO SCALAR STEP LENGTHS

To derive convergence rates, we now simplify Theorem 3.6 for scalar step lengths. Specifically,
we assume for some scalars yg, yr+, 7;, 9i, 05, ¥; > 0, and 0 € R, the structure

Ti = Tl'I, (I)i = ¢il, 1-‘G = YGI’
(4.1)

Zi = O'l'I, ‘I]i = l)bil, FF* = YF*L and @) = 0[

This reduces (PP) to Algorithm 1.1, which for convex, proper, lower semicontinuous G and F* is
always solvable for the iterates {u’ := (x', y%)};en.

For the sake of brevity and simplicity, we divide our analysis into the two cases a; = a; = 0
and a; = oz = 1, in the respective Sections 4.3 and 4.4. We explain the implications of these
choices in Section 4.1. In both cases, we show weak and strong convergence for constant step
lengths, and provide step length rules that ensure O(1/N?) under primal strong monotonicity,
and linear convergence under primal-dual strong monotonicity. Finally, in Section 4.5, we
consider the particular case of (K(-),y) having a hypomonotone gradient.

4.1 GENERAL DERIVATIONS AND ASSUMPTIONS

Under the setup (4.1), the rules (3.5) and (3.14) demand for some a1, @z € [0,1]; By, B2, { > 0;
Y6, YF+ = 0 (non-negativity introduced here); and 0 < § < k < 1 that

(4.2a) i = ni/Nis1, ni = Yio; = ¢ty
(4.2b) ¢z+1 $i(1+ 213yG), Viva = Yiri(1 + 20504y,
-1
(4.20) Vi 2 T 4 LIl VP > T+ (1 + )pr,
5B
(42d)  ya+02To+ (g + [[Spy,ﬁsz]] ), and
2
(4:2¢) ¢ > ”2—5(@ + (05 + 22y, (05 + Difipcl ™).

If &y = az = 0, (4.2) will not depend on p. Indeed, substituting n; = @;7; and r]f = ¢iiYio;
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in (4.2¢) and the first part of (4.2¢), we get the upper bounds
é 1-«k

, and oi1; < 5
+(wi+2)py) K

. <
(3) e (HEaE
2

where Rg = supy ||[VK(x)||. In the latter bound, we also used ¥/;4; > ¥;, which follows from
assumed (4.2b) and yr- > 0. We see from (4.3) that a level of dual locality is required: we need
the bound p,, for 7; to be finite. We consider this case in detail in Section 4.3

If oy = oz = 1, (4.2) does not depend on p,,. To satisfy the second inequality in (4.2c) and
(4.2d), we select fy = Lpxf2/((yr+ — Yr)B2 — Lpx) and { = yg + 0 — Y — LP2px/16w;. If we
define yg := (yg + 0 —ys)/L and yp+ := (yp- —yr+)/L, the required nonnegativity of f; and ¢ will
hold if and only if ; € (px/¥F*, 16w;i7c/px). Consequently, for such f;, f,, and {, we require
the following condition, which will be sufficient for (4.2c) and (4.2d) to hold:

(4-4) px < 4NOiYGYF-
For such py, substituting n; = ¢;7;, p1, and { to (4.2e), we obtain

20

(16| PaLy |I? (@0i+2)’p% P2\
Lo (mwiyo—pxﬂz * e B

TiS

Minimizing the denominator in f, over [px/{r+, 16w;7G/px], We arrive at

- 5(16w;fcyr- — p2)

(4.5) T; < and o;7; < where

— K

. - 2
d; R

d; = 4Ly 2l PaTIPie + 1Pyl (@i + 2)p% + 20(01 + 2)76p%).

Now, to get useful step lengths, we need a form of primal locality: p, has to be sufficiently small.
We also need yp+ > 0, i.e., F* to be strongly convex. We study this case in detail in Section 4.4.

While the bounds above will further be refined in the coming lemmas and theorems, we
collect the refinements of all the more structural assumptions of Section 3 in:

Assumption 4.1. Suppose G : X — R and F* — R are convex, proper, and lower semiconti-
nous; K € C'(X;Y); and the following hold for some py, py, > 0 and the iterates {u'}ien of
Algorithm 1.1:

(i) (Locally Lipschitz VK) There exists L > 0 with ||VK(x) — VK(x)|| < L||x — x’|| for any
x,x" € Xk

(ii) (Locally bounded VK) There exists Rk > 0 with sup, . v [[VK(x)|| < Rk;

(iii) (Monotone dG and OF*) For any w = (v, g) € H(u), the map G is ygI-strongly monotone
at x for v — [VK(x)]"y in Xg with y > 0; and the map 9F" is yf-I-strongly monotone at
y for & + K(x) in Yp- with yp- > 0;

(iv) (Point-hypomonotone saddle term gradient) There exists 8 € R such that (VK(x) —
VK(X))(x — X),y) > 0]|lx — x||* for any u € U(px, py) defined by (3.4);
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(v) (Neighborhood-compatible iterations) {u'};en € U(py, py) with {x"*1};en € Xk

We will not further refine the above assumptions other than providing sufficient conditions
for Assumption 4.1(v) in the following subsection.
4.2 NEIGHBORHOOD-COMPATIBLE ITERATIONS

The purpose of this subsection is to provide explicit formulas to ensure Assumption 4.1(v) holds.

Lemma 4.1. Let 6x,9, € (0,1), as wellas0 < 6§ < x < 1and py,p, > 0 be given, and assume

(4.2) holds with Yy = 1,1/4/1+ 217y < w; < 1foralli € N. Also assume sup,.c x, [|VK(x)|| < Rg.
Define

H = O'()/T(), "min ‘= ”x() - ;C\”/ax’ and Fmax = 6;1\/25_1(”-7(0 - 7?”2 + ,U_1||y0 - ?”2)

Assume that B(X, rmax) X B(y, 7)) € U(px, py) for somery, > rma/p/(x = 6)/(26,) and the step
length 1y to satisfy

(1= 6x)min 2(1- 5Y)w0ry }

(4.6) Ty < min{ = ,
0 2Riry + 2L|[Pxey | Fmin (Lrmax + 2Ri)maxht

Then Assumption 4.1(v) holds.

Proof of Lemma 4.1. The proof will be carried out by induction. We will show that u’ € B(x, 8,7y, ;)X
B(y,dyry), and that

T; 1-6 21=36y)r
(4.7) — < — , and  Ojary; < #,
rx,i  2Rgry + 2L||PaLy||7x, i Lry,i + 2Rk

where ry ; == ||luo — Ul|z,m,/(\/8¢:5x). For this purpose, we introduce the sets

2
rx, i

U = {(x,y) e X xY | [lx =X + L2 2211y - 51* < 82

and show that U; C B(Xx, x7y,;) X B(y, 8, ry). It immediately follows that U; C B(X, 5yry,;) X Y.
To show U; € X x B(y, dyry), it is enough if we demonstrate

S2rl i (1-5)5 _ O2rs odo (1- 6)5
¢i+1 K—0 ¢i+1 Kk—08

2 2
(4.8) 5yry >

Due to (4.2), yr+ > 0 and therefore ;11 > ¢; > ¥4 > 1as well as ¢y = p. If we expand ry o and
apply Lemma 3.2, we obtain

9 ~12 2 =112 /82 2
P2 o = lluo = @ll3, pr, /(56082) = llxo — I /62 = r2.
On the other hand,

lluo = @%, 51, = 00/ 7010 = FII* = 200¢x" = X, [VK(x)I*(° = 7)) + llyo = JII*,
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therefore, using Cauchy’s inequality and estimating ||VK(x?)|| < Rk, we arrive at
rio < @ullxo = xII” + (1+ 00noRY) lyo = Y1I*)/(683).

Similar to the derivations of (4.3) or (4.5), from (4.2), we obtain O'0T0R§< < 1-«k < 1which
leads to r)zc’0 < rZ... Summarizing the estimates derived in this paragraph, for (4.8) it is enough
to show 5}2, rf, > 82rZ 11— 8)8/(x — §), which follows from the assumed bound on ry since
8,8y € [0,1). Therefore, U; C B(X, dxr,i) X B(y, 5y 1y).

For the basis of induction, since (4.2) holds, we can apply Lemma 3.2 to ||ug — u||z,m, to verify
uy € Uy C B(X, Iy 0) X B(y, dyry). Moreover, since o1 = 0o/(wo(1 + 200yF+)) < 0o/wo =
17/ wo, the bound (4.7) for i = 0 follows from (4.6) and the derived bounds ryin < 750 < Tmax-
Therefore, the basis of the induction holds.

For the inductive step, suppose u”™ € B(X, 8¢rx,n) X B(¥,8,r,) and (4.7) holds for i = N.
We can apply Lemma 3.7 to obtain uV*! € B(¥, ry,n) X B(¥,7y) and x¥*! € B(x, r,n). From
(4.2) follows ¢n+1 > ¢pn and therefore ry N1 < 7y N < Fmax as well as B(x, 7 n) X B(y,1y) C
B(X, rmax) X B(y,ry) € U(px, py). Consequently, un41 € U(px, py) and *N* e Xk.

Then using Theorems 2.1 and 3.6, (CI) is satisfied for i < N with Ayx4; < 0, which after using
Lemma 3.2, turns into

N+1

N+ _ =2 -5 =2 0 _ 2
SoNmllx™ T = x| + YN Iy = VI < lu = ullZp,-

In other words, uN*! € Uy € B(X, Sx7x. n+1) X B(¥, Syry).

From (4.2) we deduce 7n+1 = nn+1/PN+1 = TN/ (ON(1+27NY6)). Similarly, on 41 = on/(wn(1+

20NYF+)) and ry N+1 = ', N/4/1 + 27NYG. Consequently, using w;+/1+ 27,y > 1and ry n4p <
Ix, N, it follows that

TN+1 1 ™N 1- 6y
(4.9) = — < R s , and
Te N+ w1+ 21876 TN 2Rkry + 2LIPNLY e, N+1
ON+1Tx,N 2(1=6,)ry
(4.10) ON+2Vx,N+1 = a

< .
win1+ 2tnyo(1 + 20nYr:)  LrxN+1+ 2Rk

This completes the induction. Then Assumption 4.1(v) holds since in the induction step we
showed un11 € U(px, py) and x'*! € Xi. O

Remark 4.2. The condition y, = 1 is without loss of generality, as we can always rescale all the
testing variables {; and ¢; by a constant in (4.2).

Corollary 4.3. The claims of Lemma 4.1 are valid for any 0 < w; < 1 if the step lengths t; = T and
o; = 0 are constant.

Proof. Since the step lengths are chosen constant in (4.2), it is no longer necessary to update
rx,; and, consequently, verify (4.7) in the induction. The remaining steps follow those in the
proof of Lemma 4.1. o

Corollary 4.4. Assume Assumptions 3.1and 3.3 hold for Xx = Xg = X andRk := sup,.x || VK(x)|| <
co. Then Assumption 4.1 holds for any large enough py, p, > 0 that dom F* C Bni(Y, py ).

Proof. The result follows immediately from the assumptions and Remark 3.8. O
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4.3 DUAL LOCALITY

We now refine the choices that led to the bounds (4.3).

Theorem 4.5 (Convergence without rates). Suppose Assumption 4.1 holds. Choose step lengths
7y =17,0; =0, and w; = 1. Assumeyg + 0 > Lp,, that VK(x")x — VK(x*)x if x* — x* for all
x € X, and for some 0 < § < k < 1 the bounds

) 1-
(4.11) T < , and ot < RZK

L{IPnc Y12
L (Z(YG_+9)—LPy + 3/’Y) K

If either H(u) is maximal monotone in X X Y or (x,y) — ([VK(x)]*y, K(x)) is weak-to-strong
continuous in XX, then the sequence {u'} converges weakly to someu* € H™(0), possibly different
fromu. If (x,y) — ([VK(x)]*y, K(x)) is only weak-to-weak continuous, but Assumption 4. 1(111)
and (iv) hold at any weak limit u* = (x*,y*) of {u'} in addition to u, then the sequence of u'
converges strongly to some u* € H™1(0).

Proof. We recall that (4.2) implies (3.5), (3.14). By taking yg = yr+ = 0, and any constants  and
¢ such that Yo = ¢r, we verify (4.2a) and (4.2b). We take @y = @, = 0. Then the second part of
(4.2¢) holds. Since w; = 1, (4.2d) holds with maximal { := yg + 6 — Lp,, /2. With the selected {
and w;, (4.11) is equivalent to (4.3); therefore the first part of (4.2c) and (4.2e) hold. Hence (4.2)
holds.

We will now apply Proposition 2.2. Of its assumptions, (CI) and the self-adjointness of Z; 1M 41
are verified by the combination of Theorem 3.6 and Lemma 3.2, the requirements of which
immediately follow from (4.2) shown and Assumption 4.1. In fact, since the bounds (4.11) are
strict, Theorem 3.6 holds with A;; < 5||u“r1 u'||? for some 5> 0. Combining (3.7) and (4.11),
we verify Proposition 2.2(i). Then (iii) follows from the assumed constant step lengths and the
assumption that VK(x!)x — VK(x*)x if x' — x*.

It only remains to show the condition (ii) of Proposition 2.2. If H(u) is maximal monotone, the
necessary inclusion follows from the fact that maximal monotone operators have sequentially

Weakly strongly closed graphs [3, Proposition 20.38]. Otherwise, for any x'*! — x* and y'*! —
y* we have W;; = W and

—[VK(x+1)]*yi*t . AG(x™)
(4.12) Vi1 = W( K(x™) +Vin(@™) ew OF*(y*))) = Au'™).

We need to show that v;4; — v* := (-[VK(x™)]*y*, K(x*)) and v* € A(u™), which is tantamount
to the inclusion u* € H71(0). Since Z; . iM;1(u'*' — u’) — 0, it follows that V;_;(u'*!) — 0 from
the definition of V;4; in (2.2) and (2.3).

If [VK(x)]*y and K(x) are weak-to-strong continuous, v;4+; — v* and the required inclusion
v* € A(u*) follows from the fact that, in the case of convex lower semicontinuous functions,
the graph of a subgradient mapping (A in our case) is sequentially weakly-strongly closed ([3,
Proposition 16.36]). Therefore, u' — u* € H™}(0).

If [VK(x)]*y and K(x) are only weak-to-weak continuous and Assumption 4.1(iii) and (iv)
hold at u*, then v;,; — v*. We apply [3, Corollary 20.59 (iii)], which states that if A is maxi-
mally monotone, (u;,v;) — (u*,v") with v; € A(u;), and lim; o0 (u; — u*,v; — v*) < 0, then
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(ui,v;) = (u*,v") and v* € A(u"). In our case, A is as in (4.12), and Vis1(u'*) — 0. Consequently
lim;_,eo (u; —u*,v; — ") =lim;_,o ¢; for
qi = <[VK(x*)]*y* _ [VK(le)]*yiH,xiH _ x*> + <K(xi+1) _ K(x*)’yi+1 _ y*>
Note that [|[y"*! — y*||p,. < 2p, because ||y = Jllpy, 1Y = ¥*llp. < py. With this, (3.2), and
both Assumption 4.1(iii) and (iv) at u*, we bound
qi = <K(xi+1) _ K(X*) + VK(xi+1)(x* _ xi+1)’yi+1 _ y*>
— ((VK(x"™) = VK(x)(x"™ = x"),y") < (Lpy = 0) [Ix"™! = x7|1%.

Since yg + 6 > Lp,, this proves q; < 0if y5 = 0. If yg > 0, we can apply the argument to
A- (YGI 0 ) which is monotone. Therefore, the conditions of [3, Corollary 20.59 (iii)] hold.

00
Consequently, Proposition 2.2(ii) holds with u’ — u* € H™1(0) strongly. |

We can choose different step lengths on the “linear” and “nonlinear” dual subspaces:

Corollary 4.6. Let us write

(4.132) VK(x)(Ax) := PLKLAx + Pn\p VKNL(X)(Ax)  and Ry := sup || VKNL(X)]].

xeX

If we choose distinct step lengths on the subspaces Y1, and Yy as
(4.13b) Yi=olPL+oinuPae and Y = ;L P+ i NLPNLs

then the claims of Theorem 4.5 continue to hold if we replace (4.11) by

1-x
o017 < 475
4 LT < K2

T < LIPaT 2 , an { 1—1c
NLY ONLT < 57—
L (2(yg+9)—pr + SPY) R\

Proof. The proof repeats that of Theorem 4.5, but now with (3.14) leading to two variants of the
last condition in (4.2a) for ¢¥; 1 and ¥; nr.. m]

To ensure weak convergence above, we had to impose additional conditions on K. These will
not be required if G and F* are regular enough to give convergence rates.

If yp+ = 0, we need to take yp+ = oy = ap = 0 to satisfy the second part of (4.2¢c). With
yp+ = 0, the second part of (4.2b) forces ¥/; = 1)y. Then (4.2a) holds when w; = 0;/0;4+1 and
ni := Yoo; = ¢;7;. Taking into account (4.3), we would like to maintain o;7; = ¢¢ for a constant
co. Therefore ¢; = cothy/ Ti2. If now y > 0, we obtain from (4.2b) the update rule

(414) Tiyl = Tiwi, Oiy1 = 0i/wi, @ = 1/4/1+ 213)6.

As shown in [7] and [25, Remark 3.2], this update rules causes 7y to go to zero at the rate O(1/N),
hence, ¢; to grow at the rate Q(N?). Thus we obtain:

18



Theorem 4.7 (Acceleration). Suppose Assumption 4.1 holds. Letyg = (yc+0)(1-8/6)—Lp,, /2~ >
0 for some 0 < § < k <1,{ > 0, and apply the update rules (4.14) for initial iterates satisfying

o 1-x
. and TOO'()SR—Z

L|[Pny |2 ’
% + 3py) K

(4.15) 7o <
al

Then ||x* — X||* converges to zero at the rate O(1/N?).

Proof. The first stages of the proof are similar to Theorem 4.5: We have to verify (4.2); but then
we do not need to verify the conditions of Proposition 2.2, as we directly use Theorem 2.1 and
afterwards estimate the convergence rate from Zn 1My 1.

We start with (4.2). The discussion above (4.14) and the second bound of (4.15) verify (4.2a)-
(4.2¢). Using (4.14) and our choice of yi, we estimate

Ywr < 1/wo < \/1 +28(yc + 0)/(3Lpy) < 1+ 8(yg + 0)/(3Lp,).

This quickly shows (4.2d) with @, = 0. The remaining (4.2e) follows via (4.3) from the first
bound of (4.15).

We now apply Theorems 2.1 and 3.6 to arrive at (DI) with each A;4; < 0. Then, using Lemma 3.2,
we conclude

N — —
(4.16) Sonllx™ = X1 < [lu® ~ullZ,
and obtain the desired convergence rate due to ¢ growing as Q(N?). O

Remark 4.8. The update rule (4.14) on w; is consistent with the bound required in Lemma 4.1.
Consequently, if for the starting point u® and U(px., py ), the conditions of Lemma 4.1, including the
initialization bounds (4.6) on 7y, 09, @y, and u®, are satisfied, all the iterations {u'};en will belong
to U(px, py) and verify Assumption 4.1(v).

Corollary 4.9. With the split steps (4.13) on Y1 and Yni, the claims of Theorem 4.7 hold if the rules
for i1 and oy in (4.14) and (4.15) are replaced by

(4.17)

_ <
Oi+L = 01/ Wi, an T000.L = Y |2
Oi+1,NL = Gi,NL/wi,

Finally, if F* is strongly monotone as well, an algorithm with constant step lengths converges
linearly in the primal variable according to the following theorem.

Theorem 4.10 (Linear convergence). Suppose Assumption 4.1 holds. Let yp+ = yp- > 0, and
Yo =(yg +0)1-6/3) = Lpy/2 = > 0 for some small{ > 0. Take0 < 5 <k <1, and7; = 7,
o; = 0, and w; = w for

. 5 V=)V /¥G YG 1
(4.18) 0<7< mm{ AT , R , o:=227, and ®:= =
L( I g%yll +3py) K Yr Yt

Then ||u’ — u||? converges to zero with the rate O(1/(1 + 2ygT)N).
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Proof. The structure of the proof is as of Theorem 4.7: We verify (4.2) and then estimate
ZN+1Mn 41 in (DI).

To verify (4.2), we take ¢y = 1/0, and ¢y = 1/7. Then the o-rule of (4.18) verifies (4.2b). The
latter applied repeatedly gives

(4.19) ONT = YNno = (1+ Z?GT)N.

With N = i this proves (4.2a) for w; = w given by (4.18). The second inequality of (4.2c) holds
due to yr+ = yp+ > 0 by taking a; = a, = 0. For the first inequality, from (4.18), 7 < §/(3p, L),
consequently, 1/o < 1+ 2(yg + 0)5/(3p,, L). This gives yg + 0 — yc — Lp, /(2w) = { > 0, as
required with a, = 0. It remains to prove the first inequality of (4.2¢c) and (4.2€), which follow
via (4.3) from the bound on 7 in (4.18).

Finally, we apply Lemma 3.2, (4.19), and Theorem 2.1 to conclude that

K=0 N _=pz) < Lo =y
T&”y - SEHU = ul|Z, a1, -

6
(1+ 2767) (zf”’“ T+ o

This gives the desired convergence rate. O

Remark g.11. To verify Assumption 4.1(v) in this case, one can use Corollary 4.3 by checking the
bounds (4.6) for the starting point u°, selected 7, o, w, and U(px, py).

Corollary 4.12. With the split steps (4.13) on Yy, and Yni, and I'r+ := ypPL + yNLPnL, the claims of
Theorem 4.10 continue to hold if we take o1, = 7{17(;1' and onp, = ?ﬁ?@f withyy, = yL > 0 and
YNL = YL > 0, and replace (4.18) by

s VA= /ve - KWNL/?G}

7 < min
= L|IPnLy |2 ’ ’
{ L(HBIE ) T IR

Remark 4.13 (Global convergence). Following Remark 3.8 and Corollary 4.4, if Assumption 4.1
holds for Xk = Xg = X and Rk := sup, .y || VK(x)|| < oo, then p, can be taken infinitely large.
Consequently, the convergence results of Theorem 4.5, Theorem 4.7, and Theorem 4.10 will hold
globally provided dom F* C BL(Y, py).

4.4 PRIMAL LOCALITY; DUAL STRONG CONVEXITY

With a1 = @, = 1 and the additional requirement yg« > 0, the results of Section 4.1 can be
reformulated using locality in the primal variable rather than dual, i.e. relying on p, instead of
py in the step length bounds sufficient for convergence. Since the main differences from the
proofs of Section 4.1 are in replacing the instances of (4.3) with (4.5), the proofs only indicate
those differences.

Theorem 4.14 (Convergence without rates). Suppose Assumption 4.1 holds for yp- > 0,y +6 > 0;
px < 4+/(yG + 0)yr+/L; and the step lengths t; = T and 0; = o. Also assume that VK(x)x —
VK(x*)x if x' — x* for all x € X, and the step lengths satisfy for some 0 < § < k < 1 the bounds

6(16(yc + O)yp- JL? — pi) 1-«x
and ot <

8||PaLylI2yre + 12L[| Pyl % + 72(yG + 0)p% R%

(4.20)
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If either H(u) is maximal monotone in X X Y or (x,y) — ([VK(x)]"y, K(x)) is weak-to-strong
continuous in X X Y, then the sequence {u'} converges weakly to some u* € H™'(0), possibly
different from u. If instead (x,y) — ([VK(x)]"y, K(x)) is only weak-to-weak continuous, but

(4.21) (VK(x") = VK(x))(x" = x7),y") = 0"[Ix" = x7||?

for any weak limit u* = (x*,y*) of {u'} and some 6* € R such that yg + 0* > Lp,, then the
sequence of u' converges strongly to some u* € H™}(0).

Proof. We take a; = oz = 1in (4.2). Since py < 44/(yg + 0)yp+/L, the bound (4.4) follows with
w; = 1land yg = yp+ = 0. Then (4.2d) are satisfied for the choices f; = Lpxf2/(yrf2 — Lpx),
{ =yg+0—LBpx/16, and B, leading to (4.5). The latter is equivalent to (4.20) for the selected
Y6, YF*» and w. And from the derivation of (4.5), we get bounds (4.2c) and (4.2€). The remaining
steps of the proof repeat those of Theorem 4.5. O

Corollary 4.15. With the split steps (4.13), the claims of Theorem 4.14 continue to hold if all the
instances of yp+ in the formulation of Theorem 4.14 are replaced with yn1., and the o-rule of (4.20)
is split into oyt < (1—«)/|IKL||* and onpT < (1-K)/R%; .

Theorem 4.16 (Acceleration). Suppose Assumption 4.1 holds for yp- > 0,y = yc + 0 —{ > 0 for
some small { > 0, and px < 4+/Cyr+ /(L1 + 10YG). Apply the update rules (4.14), assuming for
some 0 < § < k < 1 the initialization conditions

516 yr- /L* = p%) 1-k

7 < = — , To0p < 2
8||PnLYII?yF+ + 12L||PaLy |l px + 720 p% Ry

(4.22)

Then ||x* — X||* converges to zero at the rate O(1/N?).

Proof. Similar to Theorem 4.14, the only difference with the proof of Theorem 4.7 is in the
verification of (4.2d). With &y = @y = 11in (4.2), w; > wo = 1/(1 + 79yc), consequently, (4.4)

holds if py < 44/{yF+/(L\/1 + T0¥G), as was assumed. The remaining steps follow the proof of
Theorem 4.7. O

Corollary 4.17. With the split steps of (4.13), the claims of Theorem 4.16 continue to hold if all
the instances of yp+ in the formulation of Theorem 4.16 are replaced with yn1., the o update rule
of (4.14) is replaced with (4.17) and (4.22) initialization is split into oo1.7 < (1— k)/||KL||* and
oo, LT < (1-K)/R;.

Theorem 4.18 (Linear convergence). Suppose Assumption 4.1 holds foryg = yg + 0 — (i > 0 and

Yr+ = ype — (o > 0 for some small {1, {5 > 0, and py < 4~4/{102 /(L1 + 27YG). Pick0 < § <k < 1,

and take constant w; = w = 1/(1+ 21yyc) and step lengths t; = 7, 0; = 0, satisfying

. 516454 /L2 —p2) VA=x)¥r/¥G YG
< — —= = ="T.
(423 7 < mm{8||PNLy||2§z+1zL||PNLy||pi+72§1pi’ Ry , and o Ve

Then ||u’ — u||? converges to zero with the rate O(1/(1 + 2ygT)N).
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Proof. Similar to Theorem 4.14, now with the nonzero yg and yp+; the only difference with
the proof of Theorem 4.18 is in the verification of (4.2d). With ¢y = a; = 11in (4.2), w; =
1/(1+ 27Y5), consequently, the bound (4.4) holds if px < 44/Cyp- /(L1 + 27¥5), as was assumed.
The remaining steps follow the proof of Theorem 4.10. O

Corollary 4.19. With the split steps of (4.13), the claims of Theorem 4.10 continue to hold if we
take oy, = ¥ 'yor and oxL = Yy YoT withyL = yu > 0 and yno = yno > 0, and instead of
Y+ = Yr+ — {3 > 0 and (4.23), we require yn., = YNL — (2 > 0 and

- < min 516510 /L% — p2) VA -01/ve VA -x)yL/ve
B 8IIPNLY PG + 12L||PaLy Il p3 + 728192 (16— [IRNL| '

4.5 HYPOMONOTONE SADDLE TERM GRADIENT

In Assumption 4.1 we required the gradient of (K(x), ) to be hypomonotone at x:
((VK(x) = VK(®))(x = %), ) 2 0llx = X|I*  (x € X)

for some factor 6 € R. In the proof of Theorem 4.5 we saw that if this property holds at any
weak limit of {u'};cn with 6 +y > 0, the convergence with fixed step lengths becomes locally
strong. In this section, we explore what improvements to the main result can be expected if the
gradient of (K(x), y) is hypomonotone at any x € X.

Lemma 4.20. In addition to the requirements of Theorem 3.6, suppose x +— VK(x)*y to be hy-
pomonotone in X:

(4.24) ((VK(x) = VK(x))(x = x),3) 2 Ollx = x| (x,x" € Xk),

with the factor > —L’ for L’ := L||y||p,, and the neighborhood Xx convex. Then (CI) is satisfied
with

Mror € oo (rialle™ = FIP ~ nile’ ~ FI7)
if for some 0 < § < k <1 we have
20 1-k
25) S i 2y fi% S ARG
~ ~ 1 [ 20L
(4.26) 0 <yp <yp-, and Y £ yG + Zor (m - pr) .

Proof. We abbreviate A(x) := VK(x)*y. Then A is hypomonotone with factor 6, and Lipschitz
with factor L” := L||y||p,, . We begin by showing that the Cauchy inequality that introduced
{ into (3.10) is no longer needed to estimate the nonlinear preconditioner V/,, in Lemma 3.4.
Indeed, observe that the map Q(x) := (K(x),y) — 9% llx||? is convex within Xg, as by (4.24) its
differential VQ(x) = A(x) — 0x is monotone in this convex domain. Moreover, VQ is Lipschitz
with the constant L’ — . Indeed, with (3.2) we estimate

’

0
Q(x") = Q(x) = VO(x)(x" — x) < E(IIXII2 — [Ix"1I%) + 6¢x, x" = x) + %le - x'|I?
L'-0

2
llc = x]I°.
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If 6 > 0, (3.1a) and (4.24) establish L’ > 6. Therefore, always L’ — 8 > 0. Applying [3, Theorem
18.15], we conclude that VQ is Lipschitz with the constant L’ — 6 > 0.
Hence, VQ is also (L’ — §) -cocoercive, see, e.g., [3, Theorem 18.1], so that:

’

427) 0= = O (YOG ~ Q@) ¥ ~ ) + Ollx’ ~ T ~ (A - A®), ' - )
_ S . o

VORI + g (0llx' = FI* = (AG") - AR, x' =)
= oA — AR - (AR~ A@. X ~ B) + Tk I

Next, we decompose

(A(x") = Ax™), x™ = %) = (A(x") = A(x), x" = %) + (A(x') — AX), x"" = x7)
_ <A(xi+1) _ A(;C\), xi+1 _ 55)

First using Cauchy’s inequality, and then (4.27), we therefore estimate

(A(x") = AG™,x™ = X) 2 (A(x') - A®R), x" ~ [VKG]" = [VK@T)7II?

L'+6, ; ; ; — -
_ T”le _ xl||2 _ <A(xl+1) _ A(X), x1+1 _ X>
oL’ S L'+6, . ; ; ~ ~
> gl = FI - T ) (A - AR ).

Expanding A(x) := VK(x)*y and using this estimate in (3.10), we obtain

i —~ L'+6 - . )
(428) D= ||“‘”—ullé,-ﬂ<o,o>"71( Gy I|y’“—y||pNL) I+t = )
oL’ 2 i+1 i+1 =~
+ izl = F? = (VK () = VK@) - %), 9).

Notice that the last term 1; ([ VK (x'*!) — VK(x)](x*! — X), y) cancels out with the corresponding
term in Lemma 3.5, i.e. in (3.12). Following the logic of Theorem 3.6 and rearranging some terms,
(CI) is thus satisfied if

1, . . o ~
Sl =l 4 =T~ A = A,
! i+1

where for some 0 < § < k < 1 now

- 5CDi—17(L+0+L(wl+2)py) 0
i1 1= .
0 Yiv1 — KVK(X N0 VK (x)]*
—~ oL Lp
Siuy = | [Te - To + (w5570 ~ 70 )1 O ). ad
0 Ni+1[Tr — Tp]
~ oL’ : - N
(4.29) A = L’—+9 (’71‘+1||lerl - x||2 - ’7i||xl - x||2) .
But (4.25) and (4.26) show 3 |lu’*! — uillé~ + |lu"™t —@||2 > 0, which yields the claim. ]
i+1

i+1
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Remark 4.21. If Lemma 4.20 holds, we will have A;.; < Aj+1, where A4y is given by (4.29). However,
5\51 Niv1 = OL (nn|lxn = X11? = nollxo — XI12)/(L’ + ). Therefore, after application of Theorem 2.1
and Lemma 3.2, (DI) becomes

LN =2 K=8 N 2 Lo ~p2 "0 =2
430) Gl =TIy + 5= IV =Tl < 51 = By = ol =71+ Dy,
where N

20/ = ~
AN = ¢N (5 - T+ QTN) I, and DN = Z(Ai+1 - Ai+1) <0.
i=0

Hence, the convergence rate will again correspond to ¢ and x4 as long asty < §(L'+0)/(20L")—
¢, which in fact will hold if the first inequality of (4.25) is either strict or holds with p,, > 0 or with
0<L'.

In particular, for constant step lengths, Proposition 2.2 is still applicable even though now Ay —
Ajst < —%IIu”“ - ui”%mMm- Indeed, if Ajyy — Aja < —%IIu"“ - ui”éiﬂMm, inequality (4.30)

o

being nonincreasing and Y32 5 |lu**!

. . .. i 2 _ 412
will still result ini — |ju ullzli_+1 u ||Zi+1Mi+1 < o0,

Given Lemma 4.20 and Remark 4.21, the following corollaries immediately follow:
Corollary 4.22 (Convergence without rates: hypomonotone case). Suppose the conditions of
Theorem 4.5 are satisfied with (4.11) replaced by

26 1-«x

rT<——— and 10<
L' +0+6Lp, R%

Ifx = VK(x)*y is hypomonotone in X with the parameter > —L" and yg + 0L’ /(L' + 0) > Lp,,
the results of Theorem 4.5 still hold.

Corollary 4.23 (Acceleration: hypomonotone case). Suppose the conditions of Theorem 4.7 are
satisfied withyc = (1-58/6)(yc + OL'/(L" + 0)) — Lp, /2 > 0, and the initialization conditions

(4.15) replaced with
20 1-«x
and To0o < .

<, <
L'+ 0 +6Lp, R%

7o

Ifx — VK(x)*y is hypomonotone in X with the parameter § > —L’, then ||x’ — x||? converges to
zero at the rate O(1/N?).

Corollary 4.24 (Linear convergence: hypomonotone case). Suppose the conditions of Theorem 4.10
are satisfied withyg = (1—6/3)(yc + OL'/(L" + 0)) — Lp,, /2 > 0, and the step length rules (4.18)
replaced with

2 1—x)yve /7, V. 1
T<min{ 5 V( K)}’F/YG}, 5o JC

, —7, and w=
L'+ 0 +6Lp, Rk 4

Y- 1+ 2ygt’

Ifx — VK(x)*y is hypomonotone in X with the parameter 0 > —L’, then ||u’ — ul|* converges to
zero with the rate O(1/(1 + 2ygT)N).
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Example 4.1 (Forward—-backward splitting). Take Y = R, F(z) = z, and K € C'(X;R) convex
with Lipschitz gradient. Then F* = &y, in particular y = 1, so the hypomonotonicity
follows from the convexity of K. Since ¢ and w have no effect in Algorithm 1.1, it reduces
to conventional forward-backward splitting, consisting of the single update x'*! := (I +
10G) (x' — TVK(x?)).

In Lemma 4.20, we can take § = 1and p,, = 0. Since now H is maximal monotone, we can
apply Corollary 4.22 to obtain weak convergence under the standard condition 7L < 2; see
also [14]. Our other results can be used for linear and O(1/N?) convergence.

5 NUMERICAL EXAMPLES

We now illustrate the effects of acceleration together with the possibility of satisfying the
assumptions on the step sizes using examples from [12]. As a nonlinear operator, we consider
the mapping from a potential coefficient in an elliptic equation to the corresponding solution,
i.e., for a Lipschitz domain Q ¢ R?,d < 3and X = Y = L*(Q), we set S : x > z for z satisfying

(51) {Az +xz=f onQ,

0,z=0 onodQ.

Here f € L*(Q) is given; for our examples below we take f = 1. The operator S is uniformly
bounded for all x > ¢ > 0 almost everywhere as well as completely continuous and twice Fréchet
differentiable with uniformly bounded derivatives. Furthermore, for any h € X, the application
VS(x)*h of the adjoint Fréchet derivative can be computed by solving a similar elliptic equation;
see [12, Section 3]. For our numerical examples, we take Q = (—1,1) and approximate S by a
standard finite element discretization on a uniform mesh with 1000 elements with piecewise
constant x and piecewise linear z. We use the MATLAB codes accompanying [12] that can be
downloaded from [11].
The first example is the L! fitting problem
1

1

: 19 2
2 min —||S(x) -z + —||x ,

(5 ) xel(Q) || ( ) ”L1 2” ||L2

for some noisy data z° € L?(Q) and a regularization parameter a > 0; see [12, Section 3.1] for
details. For the purpose of this example, we take z° as arising from random-valued impulsive
noise applied to z' = S(x") for x7(t) = 2 — |t| and @ = 1072. This fits into the framework of
problem (P) with F(y) = $||y||L1, G(x) = %||x||i2, and K(x) = S(x) — z%. (Note that in contrast to
[12], we do not introduce a Moreau-Yosida regularization of F here.) Due to the properties of S,
Assumption 4.1 are satisfied with 8 > —L, y6 = 1and yr = 0. As in [12], we estimate the Lipschitz
constant L by L = max{1, ||VS"(u°)u°||/||u°||} ~ 1. We then set 7, = (4L)" and g9 = (2L)"". The
starting points are chosen as xo = 1 and y, = 0. Figure 1 shows the convergence behavior
|xN — fc||]2] of the primal iterates for N € {1, ..., Nyax} for Npax = 104, both without and with
acceleration. Since the exact minimiser to (5.2) is unavailable, here we take % := x*Mmax as an
approximation. As can be seen, the convergence in the first case (corresponding to ys = 0) is
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Figure 1: L' fitting: [|x™ — #||?, for different values Figure 2: L fitting: [u™ —4]|?, , (solid) and bounds
of yo (1+ 2ygr)™N (dashed) for strongly convex
F* and different values of yp-

at best O(1/N), while the accelerated algorithm according to Theorem 4.7 with y5 = % <vG
indeed eventually enters a region with quadratic convergence. If we replace F by its Moreau-
Yosida regularization Fy, i.e., replace F* by Fy=F"+ %H . ||§, Theorem 4.10 is applicable for
Yr+ =y > 0. As Figure 2 shows for different choices of y and constant step sizes 7 = /yr-/yGL ™},
o = (Yo/yr+)7, the corresponding algorithm leads to linear convergence of the full iterates
|uN — ﬁllizxL2 with a rate of (1+ 2y57)™N (which depends on y by way of 7).

We also consider the example of optimal control with state constraints mentioned in the
introduction, i.e.,

.1 1 .
(5:3) ngagﬂﬂx)—2ﬂ62+gﬂﬂﬁz st [S@)I(t) <c aeinQ,

see [12, Section 3.3] for details. Here we choose z¢ = S(x) with x™ as above, @ = 1073, and
¢ = 0.68 such that the state constraints are violated for z<. Again, this fits into the framework of
problem (P) with F(y) = i”y - z”l||]?:2 + 8(—c0,c](¥), G(x) = %||x||iz, and K(x) = S(x). With the
same parameter choice as in the last example, we again observe locally quadratic convergence
for the accelerated algorithm (see Figure 3) as well as linear convergence if the state constraints
are replaced by a Moreau-Yosida regularization (see Figure 4).

6 CONCLUSIONS

We have applied the testing framework, gradually developed in [22, 24, 25], to obtain sufficient
conditions on primal and dual step lengths that ensure convergence and fast convergence rates of
the NL-PDHGM. We have shown how usual acceleration rules give local O(1/N?) convergence,
justifying their use in previously published numerical examples [12]. Moreover, we have provided
novel linear convergence results, and demonstrated their usefulness in practice. These results are
based on bounds on initial step lengths. We have further demonstrated how hypomonotonicity
of the saddle term gradient can be used to obtain weaker bounds, indeed deriving standard
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Figure 3: State constraints: ||x™ — fclIiZ for different Figure 4: State constraints: ||uN—12||iz><L2 (solid) and

values of yg bounds (1+ 2yg7)™"N (dashed) for strongly
convex F* and different values of yp-

results for forward-backward splitting via this route. Since our main derivations were for
general operators, a potential extension of the present work is to combine with [22] to derive
block-coordinate methods for nonconvex problems.
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APPENDIX A A SMALL IMPROVEMENT OF OPIAL’S LEMMA

The earliest version of the next lemma is contained in the proof of [19, Theorem 1].

Lemma A.1([6, Lemma 6]). On a Hilbert space X, let X C X be closed and convex, and {x'};en C X.
Then x' — x* weakly in X for some x* € X if:

(i) i = ||x' = x*|| is nonincreasing for all x* € X.
(ii) All weak limit points of {x'};cn belong to X.

We can improve it to the following:
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Lemma A.2. Let X be a Hilbert space, XcX (not necessarily closed or convex), and {x'};en C X.
Also let A; € L(X;X) be self-adjoint and A; > €I for some é # 0 for alli € N. If the following
conditions hold, then x' — x* weakly in X for some x* € X:

(i) i+ ||Ix" = %||a, is nonincreasing for some % € X.
(ii) All weak limit points of {x'};en belong to X.

(iii) There exists C such that ||A;|| < C? for all i, and for any weakly convergent subsequence x;,
there exists Ao € L(X;X) such that A;, x — Acox strongly in X forall x € X.

Proof. For x € cl conv X, define p(x) := liminf; e ||x — x'||4,. Clearly (i) yields

p() = lim |1 = x'lla, € [0, ).

Using the triangle inequality and (iii), for any x, x” € cl conv X moreover

(a) 0 < p(x) < p(x”) +limsup [|x" — x]|4, < p(x”) + C||lx" — x]|.

i—o0

Choosing x” = x we see from (a.1) that p is well-defined and finite. It is moreover bounded from
below. Given € > 0, we can therefore find x* € clconv X such that p(x?)? — €* < inf deony i PP
The norm |[|x}|| is bounded from above for small values of e: for the subsequence {x;, } realizing
the limes inferior in p(x}),

llxella;, < llxe =x*la, +lIx* = Xlla, + I%lla,,,
and consequently

él|xl] < ( inf Ap) +e+|x° — x|l4, + ClIxl,
clconv X

so there is a subsequence of ||x]|| weakly converging to some x* when € \, 0. Without loss of
generality, by restricting the allowed values of €, we may assume that x* is unique.

Let x** be some weak limit of {x'}. By (ii), x** € X. We have to show that x* = x**. For
simplicity of notation, we may assume that the whole sequence {x'} converges weakly to x**.
By (iii), for any x € X, we have

(a.2) ili_)rg(x, x; — xi)Ai = ili—{l; ((x, x; — xi>Am + ((A; — Aco)x, x5 — xi)) = (x,x; —x")a,,-

Moreover, for any A € (0,1), we have x” ; := (1 - A)xf + Ax™ € cl conv X. Now, since x* is a

minimizer of p on cl conv X, we estimate

(a3) PO — € < p(xl ) = pGe)® + Him (2l = x™[, = 2A4x% = x™x; = x4,

= p(x)® + (A% = 22)[Ixg = x5 -
In the second equality we have used (iii) and (a.2). Now, since A* < 21, we obtain

0 < (24— A)|lxf — x5 < €.
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This implies x; — x™* strongly as € N\ 0. But also x*¢ — x*. Therefore x™ = x™.

Finally, by A; > €I and (i), the sequence {x'} is bounded, so any subsequence contains a
weakly convergent subsequence. Since the limit is always x*, the whole sequence converges
weakly to x*. O

Remark A.3. The condition A; > €I is implied if we replace (iii) by A; — A in the operator
topology with A > 2€I.
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