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The paper deals with a class of optimal control problems governed by a viscous damage model
including two damage variables which are coupled through a penalty term. The existence and
directional differentiability of the associated control-to-state operator is established. More-
over, necessary optimality conditions are derived. It is shown that these are equivalent to an
optimality system, provided that a strict complementarity condition is satisfied.
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1 Introduction

This paper is concerned with the optimal control of a viscous gradient damage model. The
latter one involves two damage variables which are connected through a penalty term in the
stored energy functional. It is inspired by the one presented in [4], which is a popular model
that is widely used in computational mechanics. The reasoning behind considering two dam-
age variables instead of one is of numerical nature, see [4] for more details. While one damage
variable provides a local character and carries the non-smooth time evolution, the other one
accounts for nonlocal effects. Because of theoretical reasons, see [18, Section 2.2], we deal
with a slightly modified version of the model in [4]. The viscous gradient damage model
considered in this paper reads as follows

(u(t), ϕ(t)) ∈ arg min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)),

−∂dE(t,u(t), ϕ(t), d(t)) ∈ ∂Rγ(ḋ(t)), d(0) = d0 a.e. in Ω

 (P)

for almost all t ∈ (0, T ). Herein, d and ϕ denote the local and non-local damage variable,
respectively, and u stands for the displacement of the body occupying the domain Ω ⊂ RN ,
N = 2, 3. The problem (P) describes the effect of a force ` on an elastic body in terms
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2 L. M. Susu: Optimal Control of a Viscous Two-Field Gradient Damage Model

of the displacement u, the non-local damage ϕ and the local damage d. The stored energy
E : [0, T ]× V ×H1(Ω)× L2(Ω)→ R is given by

E(t,u, ϕ, d) :=
1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22,

(1.1)

where ε = 1/2(∇ + ∇>) is the linearized strain, C the elasticity tensor, and ` the applied
load. The function g describes the influence of the damage on the elastic behavior of the body.
Furthermore, α > 0 denotes the gradient regularization parameter and β > 0 stands for the
penalization parameter. The viscous dissipation functional Rγ : L2(Ω) → [0,∞] appearing
in (P) is defined as

Rγ(η) :=

{
r
∫

Ω
η dx+ γ

2 ‖η‖
2
2, if η ≥ 0 a.e. in Ω,

∞, otherwise,

where r > 0 stands for the threshold value which triggers the damage evolution and γ > 0 is
the viscosity parameter. Moreover, the initial damage is supposed to satisfy d0 ∈ L2(Ω). For
a more detailed description of the model, as well as its motivation, see [18, Section 2] and [4].
Throughout the paper, we will often refer to (P) as “penalized damage model”.

In many practical applications it is of interest to gain information about those loads which
(locally) minimize a given cost functional, e.g. one may be interested to minimize the damage
or the distance to a desired damage or/and displacement. This motivates our goal in this
paper: to derive necessary optimality conditions for an optimal control problem governed by
the penalized damage model, where the load is used as control. The optimization problem
studied throughout this paper is therefore given by

min
`∈L

J (u, ϕ, d, `)

s.t. (u, ϕ, d) solves (P) with right-hand side `.
(Pmin)

The assumptions on the objective J and the control set L are to be introduced and motivated
in Section 5 below. As we will see, the structure of (P) accounts for a non-smooth optimal
control problem. To be more precise, we deal with an optimal control problem governed by
a non-smooth parabolic PDE. Thus, the control-to-state operator associated to the penalized
damage model is not necessarily Gâteaux-differentiable, and the standard adjoint calculus for
the derivation of qualified optimality conditions is not applicable, at least not without further
ado.

Let us put our work into perspective. While the optimal control of smooth parabolic equa-
tions was investigated by many authors, see e.g. [25] and the references therein, less papers are
dealing with non-smooth equations. Most of the contributions in this field focus on variational
inequalities of the first kind, such as the parabolic obstacle problem, see [1,2,5,6,11,16,17]. In
all these contributions, the lack of differentiability of the control-to-state operator is overcome
by employing regularization and relaxation techniques. The thereby derived optimality sys-
tems are in the best case of intermediate strength, such as C stationarity, see e.g. [13, 15, 16].
For the optimal control of the parabolic obstacle problem, a strong stationarity system can be
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found in [21], but no rigorous proof is given there. Recently, an optimality system of strong
stationary type was derived in [19] for an optimal control problem governed by a non-smooth
parabolic PDE. This was possible due to the presence of so-called ‘ample controls’, which are
necessary for deriving strong stationarity in most existing contributions, see e.g. [3, 14, 22]
(elliptic VIs). To the best of our knowledge, [26] is the only paper where a strong stationary
optimality system is derived in the absence thereof, however by requiring that the (unknown)
optimizer satisfies certain assumptions (constraint qualifications). Hence, it is not surprising,
that without regularizing, additional assumptions are needed in order to derive an optimality
system for (Pmin). Therefor we make use of the special structure of the constraint in (Pmin).
To be more precise, we employ the fact that (P) can be reduced to an ordinary (non-smooth)
differential equation in Banach space, cf. [18].

The paper is organized as follows. Section 2 collects the notations and standing assump-
tions. In Section 3 we introduce the control-to-state operator by carefully choosing its domain
of definition, while in Section 4 we investigate its (directional) differentiability. This is the
preparatory step for deriving first order necessary optimality conditions, which are established
in Section 5. Therein one arrives at an assumption under which the control-to-state operator
is Gâteaux-differentiable. By means thereof, we can derive the optimality system for (Pmin).
Section 6 is concerned with a short discussion regarding the existence of solutions for (Pmin).

2 Notation and standing assumptions

In what follows, T > 0 is fixed and N ∈ {2, 3} is the spatial dimension. Throughout the
paper, c andC denote generic positive constants. By bold-face letters we denote vector-valued
variables and vector-valued spaces. The Frobenius norm on RN×N , as well as the euclidean
norm on RN are denoted by | · |, whereas the inducing scalar product in RN×N is represented
by (· : ·). Let X and Y be Banach spaces. The open ball in X around x ∈ X with radius
R > 0 is denoted by BX(x,R). The space of linear and bounded operators from X to Y is
called L(X,Y ) and if X = Y , it is called L(X). The dual of the space X will be denoted by
X∗ and for the dual pairing between X and X∗ we write 〈., .〉X . IfX is compactly embedded

in Y , we write X ↪→↪→ Y and X
d
↪→ Y means that X is dense in Y . Let s ∈ [1,∞]. By ‖ · ‖s

we abbreviate the notation for the Ls(Ω)-norm, and by (·, ·)2, the L2(Ω)-scalar product. For
frequently used function spaces we introduce the following abbreviations:

W 1,s
D (Ω) := {v ∈W 1,s(Ω) : v|ΓD = 0}, V := W 1,2

D (Ω).

The dual space of W 1,s′

D (Ω) is denoted by W−1,s(Ω), where s′ is the conjugate exponent of
s. For the following often employed subspaces of the Bochner-Sobolev space W 1,s(0, T ;X)
we use the notations:

W 1,s
0 (0, T ;X) := {z ∈W 1,s(0, T ;X) : z(0) = 0},

W 1,s
T (0, T ;X) := {z ∈W 1,s(0, T ;X) : z(T ) = 0},

H1
0 (0, T ;X) := W 1,2

0 (0, T ;X).
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4 L. M. Susu: Optimal Control of a Viscous Two-Field Gradient Damage Model

By div : Ls(Ω;RN×Nsym )→W 1,s′(Ω)∗ we denote the distributional vector-valued divergence
and ∆ : W 1,s(Ω) → W 1,s′(Ω)∗ is the distributional Laplace operator. The Nemytskii op-
erator (considered with different domains and ranges) associated to max : R → R, x 7→
max{x, 0} is denoted by max. By χM we denote the characteristic function associated to the
set M . Time derivatives are frequently denoted by a dot.

Let us now state our standing assumptions.
Assumption 2.1 The domain Ω ⊂ RN , N ∈ {2, 3}, is a bounded Lipschitz domain, see [8,
Chap. 1.2]. Its boundary is denoted by Γ and consists of two disjoint measurable parts ΓN
and ΓD such that Γ = ΓN ∪ ΓD. While ΓN is an open subset, ΓD is a closed subset of Γ.
Moreover, ΓD is assumed to have positive measure.

In addition, the set Ω ∪ ΓN is regular in the sense of Gröger, cf. [9, Definition 2]. That is, for
every point x ∈ Γ, there exists an open neighborhood Ux ⊂ RN of x and a bi-Lipschitz map
(a Lipschitz continuous and bijective map with Lipschitz continuous inverse) Ψx : Ux → RN
such that Ψx(x) = 0 ∈ RN and Ψx

(
Ux ∩ (Ω ∪ ΓN )

)
equals one of the following sets:

E1 :=
{
y ∈ RN : |y| < 1, yN < 0

}
,

E2 :=
{
y ∈ RN : |y| < 1, yN ≤ 0

}
,

E3 := {y ∈ E2 : yN < 0 or y1 > 0} .

A detailed characterization of Gröger regular sets in two and three spatial dimensions is given
in [10, Section 5].
Assumption 2.2 The function g : R→ [ε, 1], where ε ∈ (0, 1], satisfies

g ∈ C2(R) and g, g′ ∈ C0,1(R). (2.1)

With a little abuse of notation, the Nemytskii operators associated to g, g′ and g′′, considered
with different domains and ranges, will be denoted by the same symbol.

The coefficient function g measures how the elastic properties of the body are preserved de-
pending on the value of the damage. Since with increasing damage the material becomes
weaker, it would make sense to impose that g is monotonically decreasing. This property of g
is needed e.g. if one aims to show that the non-local damage variable admits just non-negative
values, as the local damage variable does. For this, it suffices in fact that g decreases only on
R−. However, since we do not need this result in our analysis, we do not require that g has
this property here.

We emphasize that, due to the condition g ≥ ε, our model constitutes a partial damage model.
By contrast, limϕ→∞ g(ϕ) = 0 is assumed in [4, (2)], which assures that complete material
rigidity loss occurs in the case of complete damage. However, in order to guarantee coercivity
of the bilinear form associated with the balance of momentum in (3.1a) below, we have to
impose a positive lower bound on g.
Assumption 2.3 The fourth-order tensor C ∈ L∞(Ω;L(RN×Nsym )) is symmetric and uni-
formly coercive, i.e., there is a constant γC > 0 such that

C(x)σ : σ ≥ γC|σ|2 ∀σ ∈ RN×Nsym and f.a.a. x ∈ Ω. (2.2)
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Our last assumption concerns the balance of momentum associated with the energy functional
in (1.1). For its precise statement we need the following
Definition 2.4 For given ϕ ∈ L1(Ω) and p̄ ∈ (1,∞), we define the linear form Aϕ :

W 1,p
D (Ω)→W−1,p(Ω) as

〈Aϕu,v〉 :=

∫
Ω

g(ϕ)Cε(u) : ε(v) dx.

Assumption 2.5 For the rest of the paper we require the following:

1. There exists p > N such that, for all p ∈ [2, p] and all ϕ ∈ L1(Ω), the operator Aϕ :

W 1,p
D (Ω) → W−1,p(Ω) is continuously invertible. Moreover, there exists a constant

c > 0, independent of ϕ and p, such that

‖A−1
ϕ ‖L(W−1,p(Ω),W 1,p

D (Ω)) ≤ c

holds for all p ∈ [2, p] and all ϕ ∈ L1(Ω).

2. The penalization parameter β is sufficiently large, depending only on the data, see [18,
(3.35)] and Remark 3.2 below.

Let us point out that p stands for the integrability exponent in Assumption 2.5.1 throughout
the entire paper.
Remark 2.6 The critical assumption is Assumption 2.5.1. If N = 2, then this condition is
automatically fulfilled, see [18, Lemma 3.2] and [12]. The situation changes however if one
turns to N = 3. In this case, this assumption can be guaranteed by imposing additional
and rather restrictive conditions on the data, in particular on the ellipticity and boundedness
constants associated with C and g, see [18, Remark 3.20] and [12] for more details. However,
as explained in [18, Remark 3.21], one could alternatively modify the energy functional in
(1.1) by replacing ‖∇ϕ‖22 with its H3/2-seminorm. This would allow to drop Assumption
2.5.1 in the three dimensional case, too. However, we chose not to work with the H3/2-
seminorm, as the associated bilinear form is difficult to realize in numerical computations.

3 Control-to-state operator

In this section we investigate the constraint in (Pmin), i.e., the problem (P). The unique
solvability thereof was already established in [18, Section 3.2], in the context where ` ∈
C0,1([0, T ];W−1,p(Ω)) was fixed. Therein it was reasonable to focus on the time depen-
dence of the solution operators, not on the dependence on the load, which was just one of the
given data. In particular, one was interested in the differentiability with respect to time of the
solution operators, which in combination with the smoothness in time of the load played an
essential role for proving the viability of the penalization approach, see [20]. However, for
the sole purpose of showing unique solvability of (P), it suffices that the load ` belongs to
L∞(0, T ;W−1,p(Ω)). The situation changes when we want to control the load in the context
of analyzing the problem (Pmin). As we will see, this calls for working with (variable) loads
in a bounded subset of L∞(0, T ;W−1,p(Ω)), see Definition 3.3 below.
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6 L. M. Susu: Optimal Control of a Viscous Two-Field Gradient Damage Model

In the following, we abbreviate the open ball

BM := BW−1,p(Ω)(0,M),

for a given M > 0. By employing the exact same arguments as in [18, Sections 3 and 5], one
proves
Lemma 3.1 Let M > 0 be given. Then, for any pair (`, d) ∈ W−1,p(Ω) × L2(Ω), the
following elliptic system

−div g(ϕ̄)Cε(ū) = ` inW−1,p(Ω) (3.1a)

−α∆ϕ̄+ β ϕ̄+
1

2
g′(ϕ̄)C ε(ū) : ε(ū) = βd in H1(Ω)∗. (3.1b)

admits a unique solution (ū, ϕ̄) ∈ W 1,p
D (Ω) × H1(Ω). The solution operator associated to

(3.1a) is denoted by U : W−1,p(Ω) ×H1(Ω) 3 (`, ϕ) 7→ U(`, ϕ) ∈W 1,p
D (Ω), whereas the

solution operator of (3.1b) is called Φ : BM × L2(Ω) 3 (`, d) 7→ Φ(`, d) ∈ H1(Ω). These
are well-defined and have the following properties:

• The operator U satisfies

‖U(`, ϕ)‖W 1,p
D (Ω) ≤ c‖`‖W−1,p(Ω) ∀ (`, ϕ) ∈W−1,p(Ω)×H1(Ω), (3.2)

where c > 0 is independent of ` and ϕ.

• U is continuous fromW−1,p(Ω)×L1(Ω) toW 1,s
D (Ω) for every s ∈ [2, p) and Lipschitz

continuous from BM ×H1(Ω) to V .

• Φ is Lipschitz continuous from BM × L2(Ω) to H1(Ω).

Moreover, U and Φ are continuously Fréchet-differentiable, in the sense that U ∈ C1(W−1,p(Ω)×
H1(Ω);V ) and Φ ∈ C1(BM × L2(Ω);H1(Ω)). Their derivatives satisfy the estimates

‖U ′(`, ϕ)‖L(W−1,p(Ω)×H1(Ω);V ) ≤ L(M), ‖Φ′(`, d)‖L(W−1,p(Ω)×L2(Ω);H1(Ω)) ≤ L(M)

(3.3)

for all (`, ϕ, d) ∈ BM ×H1(Ω) × L2(Ω), where L(M) is a positive constant dependent on
M .
Remark 3.2 We point out that the choice of the domain for the operator Φ is due to the
fact that ` varies in W−1,p(Ω). A closer inspection of the proof of [18, Lemma 3.16]
shows that the unique solvability of (3.1) is guaranteed when β exceeds a threshold involving
‖`‖W−1,p(Ω), cf. [18, (3.35)], see also [18, Section 3]. Since ` is now a variable, we need to
require that ‖`‖W−1,p(Ω) < M , with some M > 0, in order to guarantee that β depends only
on the given data (including M ) and is thus independent of the (variable) load `.

Let now ` ∈ L∞(0, T ;W−1,p(Ω)) be fixed. Provided that the threshold for β exceeds a
certain value, which depends on ‖`‖L∞(0,T ;W−1,p(Ω)) this time, we have due to Lemma 3.1
and [18, Theorem 3.17, Lemma 3.22] that (P) reduces to the operator differential equation

ḋ(t) =
1

γ
max

(
−β(d(t)−Φ(`(t), d(t)))−r

)
f.a.a. t ∈ (0, T ), d(0) = d0. (3.4)
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A contraction argument then yields that (3.4) admits a unique solution d which belongs to
W 1,∞(0, T ;L2(Ω)). The problem (P) is then uniquely solvable by u = U

(
`(·),Φ(`(·), d(·)),

ϕ = Φ
(
`(·), d(·)

)
and d. Moreover, from the properties of U and Φ in Lemma 3.1 we obtain

that u ∈ L∞(0, T ;W 1,s
D (Ω)), with s ∈ [2, p), and ϕ ∈ L∞(0, T ;H1(Ω)), respectively.

For the existence of the control-to-state operator we need however that this result holds for
variable ` as well. To ensure that β does not depend on the variable `, we consider only
controls belonging to a bounded set, namely

Definition 3.3 (Admissible loads) For a given M > 0 we define

BM := BL∞(0,T ;W−1,p(Ω))(0,M).

Note that this implies BM ⊂ {` ∈ L∞(0, T ;W−1,p(Ω)) : `(t) ∈ BM f.a.a. t ∈ (0, T )}.

We are now in the position to introduce

Definition 3.4 (Control-to-state operator associated to (P)) Let M > 0 be given. Then we
define S : BM → L∞(0, T ;W 1,s

D (Ω)) × L∞(0, T ;H1(Ω)) × W 1,∞(0, T ;L2(Ω)), with
s ∈ [2, p), as

S(`) := (u, ϕ, d),

where (u, ϕ, d) is the unique solution of (P). This satisfies the system of differential equations

−div g(ϕ(t))Cε(u(t)) = `(t) inW−1,p(Ω),

(3.5a)

−α∆ϕ(t) + β ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) = βd(t) in H1(Ω)∗, (3.5b)

ḋ(t)− 1

γ
max

(
− β(d(t)− ϕ(t))− r

)
= 0, d(0) = d0 (3.5c)

f.a.a. t ∈ (0, T ). For i ∈ {1, 2, 3} we denote by Si the operator which associates to any
` ∈ BM the i-th component of S(`).

Lemma 3.5 Let M > 0 and s ∈ [2, p) be given. Then the control-to-state operator S :

BM → L∞(0, T ;W 1,s
D (Ω))× L∞(0, T ;H1(Ω))×W 1,∞(0, T ;L2(Ω)) is Lipschitz contin-

uous.

P r o o f. It is easy to see that the second term in the operator differential equation in (3.5c)
is Lipschitz continuous w.r.t. (`(t), d(t)) ∈ BM × L2(Ω) f.a.a. t ∈ (0, T ), where M > 0
is given. This follows from the Lipschitz continuity of max : L2(Ω) → L2(Ω) and Φ :
BM × L2(Ω) → H1(Ω), see Lemmata A.1.(i) and 3.1, respectively. In light of Gronwall’s
inequality, it can then be shown that S3 : BM →W 1,∞(0, T ;L2(Ω)) is Lipschitz continuous,
which as a result of the Lipschitz continuity of U and Φ, cf. Lemma 3.1, gives in turn the
Lipschitz continuity of S : BM → L∞(0, T ;V )×L∞(0, T ;H1(Ω))×W 1,∞(0, T ;L2(Ω)).

Copyright line will be provided by the publisher



8 L. M. Susu: Optimal Control of a Viscous Two-Field Gradient Damage Model

4 Directional differentiability

Since we aim to derive necessary optimality conditions in primal form for (Pmin) in the next
section, we address the differentiability of the control-to-state operator S in what follows.
Notice that this is not expected to be Gâteaux-differentiable, since in (3.5c) the evolution of
the local damage d is described via the max-function, which is not Gâteaux-differentiable at
0.

For the sake of convenience we work with a fixed pair (`, δ`) ∈ BM ×L∞(0, T ;W−1,p(Ω))
in the rest of the section, where M > 0 is given. In order to have a better overview of the
upcoming results, we abbreviate

`τ := `+ τδ`, (u, ϕ, d) := S(`), (uτ , ϕτ , dτ ) := S(`τ ),

δu := U ′
(
`(·), ϕ(·)

)(
δ`(·), δϕ(·)

)
, δϕ := Φ′

(
`(·), d(·)

)(
δ`(·), δd(·)

)
,

(4.1)

where δd ∈ L∞(0, T ;L2(Ω)) is arbitrary, but fixed and τ > 0 is small enough such that `τ ∈
BM . Notice that such a τ exists, since BM is open, and all the operators in (4.1) are well de-
fined. Moreover, by the continuity of U ′ and Φ′, cf. Lemma 3.1, we deduce the measurability
of U ′

(
`(·), ϕ(·)

)
and Φ′

(
`(·), d(·)

)
, which in view of (3.3) yields that U ′

(
`(·), ϕ(·)

)
belongs

to L∞
(
0, T ;L(W−1,p(Ω) × H1(Ω);V )

)
and Φ′

(
`(·), d(·)

)
∈ L∞

(
0, T ;L(W−1,p(Ω) ×

L2(Ω);H1(Ω)). Since (δ`, δd) ∈ L∞(0, T ;W−1,p(Ω)× L2(Ω)), we have

δϕ ∈ L∞(0, T ;H1(Ω)), δu ∈ L∞(0, T ;V ). (4.2)

Lemma 4.1 There exist constants C, c > 0, so that for the quantities defined in (4.1) we have
the estimates

∥∥∥uτ (t)− u(t)

τ
− δu(t)

∥∥∥
V
≤ C

∥∥∥dτ (t)− d(t)

τ
− δd(t)

∥∥∥
2

+ cRΦ(t, τ) +RU (t, τ),

(4.3a)∥∥∥ϕτ (t)− ϕ(t)

τ
− δϕ(t)

∥∥∥
H1(Ω)

≤ C
∥∥∥dτ (t)− d(t)

τ
− δd(t)

∥∥∥
2

+RΦ(t, τ) (4.3b)

f.a.a. t ∈ (0, T ), where τ > 0 is small enough, independent of t, and RU , RΦ : (0, T ) ×
(0, 1)→ [0,∞) are mappings which satisfy

RU (·, τ), RΦ(·, τ)→ 0 in L%(0, T ) as τ ↘ 0, (4.4)

for any % ∈ [1,∞).
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P r o o f. Let us fix τ > 0 such that ` + τδ` ∈ BM . Then, by the Lipschitz continuity of
U , cf. Lemma 3.1, see also Definition 3.3, we arrive at∥∥∥uτ (t)− u(t)

τ
− δu(t)

∥∥∥
V

=
∥∥∥U(`τ (t), ϕτ (t)

)
− U

(
`(t), ϕ(t)

)
τ

− U ′
(
`(t), ϕ(t)

)(
δ`(t), δϕ(t)

)∥∥∥
V

≤
∥∥∥U(`τ (t), ϕτ (t)

)
− U

(
`(t) + τδ`(t), ϕ(t) + τδϕ(t)

)
τ

∥∥∥
V

+
∥∥∥U(`(t) + τδ`(t), ϕ(t) + τδϕ(t)

)
− U

(
`(t), ϕ(t)

)
τ

− U ′
(
`(t), ϕ(t)

)(
δ`(t), δϕ(t)

)∥∥∥
V

≤ LU
∥∥∥ (`τ (t), ϕτ (t)

)
−
(
`(t), ϕ(t)

)
τ

− (δ`(t), δϕ(t))
∥∥∥
W−1,p(Ω)×H1(Ω)

+RU (t, τ)

= LU

∥∥∥ϕτ (t)− ϕ(t)

τ
− δϕ(t)

∥∥∥
H1(Ω)

+RU (t, τ) f.a.a. t ∈ (0, T ),

(4.5)

where LU > 0 and RU (t, τ) is the abbreviation for the second addend in the first inequality
above. Since U is continuously differentiable at (`(t), ϕ(t)), it holds

RU (t, τ)→ 0 as τ ↘ 0 f.a.a. t ∈ (0, T ).

Employing the Lipschitz continuity of U together with (3.3) further gives

RU (t, τ) ≤ C‖(δ`(t), δϕ(t))‖W−1,p(Ω)×H1(Ω) f.a.a. t ∈ (0, T ).

From (4.2) we know that (δ`(·), δϕ(·)) ∈ L∞(0, T ;W−1,p(Ω) × H1(Ω)), and thus, by
Lebesgue’s dominated convergence theorem, we now have

RU (·, τ)→ 0 in L%(0, T ) as τ ↘ 0, ∀ % ∈ [1,∞).

The estimate (4.3b) follows by the exact same arguments. By inserting (4.3b) in (4.5), one
immediately obtains (4.3a), which completes the proof.

The next lemma provides the candidate for the derivative of S3 at ` in direction δ`.

Lemma 4.2 The equation

η̇(t) =
1

γ
max ′

(
− β(d(t)− ϕ(t))− r ;−β

(
η(t)− Φ′

(
`(t), d(t)

)(
δ`(t), η(t)

)))
f.a.a. t ∈ (0, T ),

η(0) = 0


(4.6)

admits a unique solution η ∈W 1,∞
0 (0, T ;L2(Ω)), where d = S3(`) and ϕ = S2(`).
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P r o o f. We begin by defining f : (0, T )× L2(Ω)→ L2(Ω) as

f(t, η) =
1

γ
max ′

(
− β(d(t)−ϕ(t))− r ;−β

(
η−Φ′

(
`(t), d(t)

)(
δ`(t), η

)))
. (4.7)

Definition 3.4 tells us that d−ϕ ∈ L∞(0, T ;L2(Ω)) and for η ∈ L∞(0, T ;L2(Ω)) we deduce
from (4.1) and (4.2) that

η − Φ′
(
`(·), d(·)

)(
δ`(·), η(·)

)
∈ L∞(0, T ;L2(Ω)).

Therefore, f(·, η(·)) ∈ L∞(0, T ;L2(Ω)) for η ∈ L∞(0, T ;L2(Ω)), by Lemma A.1.(ii). Let
now ηi ∈ L2(Ω) be arbitrary, but fixed, and let us abbreviate δϕi := Φ′(`(·), d(·))(δ`(·), ηi)
for i = 1, 2. From Lemma A.1.(i) we know that the operator max ′(y; ·) : L2(Ω)→ L2(Ω) is
Lipschitz continuous for any y ∈ L2(Ω), and as a consequence of (3.3), we have the estimate

‖f(t, η1)− f(t, η2)‖2 ≤
1

γ
‖ − β

(
η1 − δϕ1(t)

)
+ β

(
η2 − δϕ2(t)

)
‖2

≤ β

γ

(
‖η1 − η2‖2 + ‖Φ′(`(t), d(t))‖L(W−1,p(Ω)×L2(Ω);H1(Ω))‖η1 − η2‖2

)
≤ β

γ
(L+ 1) ‖η1 − η2‖2 f.a.a. t ∈ (0, T ).

The properties of f shown above together with a fixed point argument allow us to deduce the
existence of a unique (local) solution for (4.6) on some interval [0, t], t ≤ T . The global
solution of (4.6) is obtained by concatenating the local solutions.

With the candidate for the derivative of S3 at hand, we can now prove its directional differen-
tiability at ` in direction δ`, which is covered by the following

Lemma 4.3 (Directional differentiability of S3) Let % ∈ [1,∞). Then, the following conver-
gence holds true

S3(`+ τδ`)− S3(`)

τ
→ η in W 1,%(0, T ;L2(Ω)) as τ ↘ 0,

where η ∈W 1,∞
0 (0, T ;L2(Ω)) is the unique solution of (4.6).

P r o o f. For simplicity, we use the notations dτ = S3(`+τδ`) and d = S3(`) again, where
τ > 0 is small enough such that `+ τδ` ∈ BM . In view of (3.5c), (4.6) and the properties of
max, cf. Lemma A.1, one derives in the exact same way as (4.5) the following estimate f.a.a.
t ∈ (0, T ):

γ
∥∥∥ ḋτ (t)− ḋ(t)

τ
− η̇(t)

∥∥∥
2

≤ β
∥∥∥−(dτ (t)− ϕτ (t)

)
+
(
d(t)− ϕ(t)

)
τ

+ η(t)− Φ′
(
`(t), d(t)

)(
δ`(t), η(t)

)∥∥∥
2

+Rmax(t, τ),

(4.8)
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where Rmax : (0, T ) × (0, 1) → [0,∞) satisfies Rmax(·, τ) → 0 in L%(0, T ) for τ ↘ 0. On
account of (4.3b), the estimate (4.8) can be continued as follows

γ
∥∥∥ ḋτ (t)− ḋ(t)

τ
− η̇(t)

∥∥∥
2

≤ β
∥∥∥dτ (t)− d(t)

τ
− η(t)

∥∥∥
2

+ β
∥∥∥ϕτ (t)− ϕ(t)

τ
− Φ′

(
`(t), d(t)

)(
δ`(t), η(t)

)∥∥∥
2

+Rmax(t, τ)

≤ C
∥∥∥dτ (t)− d(t)

τ
− η(t)

∥∥∥
2

+ cRΦ(t, τ) +Rmax(t, τ) f.a.a. t ∈ (0, T ).

(4.9)

Note thatR(·, τ) := cRΦ(·, τ)+Rmax(·, τ) ≥ 0 f.a.a. t ∈ (0, T ) andR(·, τ)→ 0 in L%(0, T )
as τ ↘ 0. Integrating (4.9) further yields for all t ∈ [0, T ]

γ
∥∥∥dτ (t)− d(t)

τ
− η(t)

∥∥∥
2
≤ C

∫ t

0

∥∥∥dτ (s)− d(s)

τ
− η(s)

∥∥∥
2
ds+

∫ t

0

R(s, τ) ds.

The positivity of R(·, τ) together with Gronwall’s inequality then implies∥∥∥dτ − d
τ
− η
∥∥∥
L%(0,T ;L2(Ω))

≤ C‖R(·, τ)‖L%(0,T ) → 0 as τ ↘ 0,

which, combined with (4.9), gives the desired result.

We now have all the necessary tools to conclude the main result of this section.
Proposition 4.4 (Directional differentiability of the control-to-state operator) Let M > 0
and % ∈ [1,∞) be given. Then, the operator S : BM → L%(0, T ;V ) × L%(0, T ;H1(Ω)) ×
W 1,%(0, T ;L2(Ω)) is directionally differentiable. The derivative at ` ∈ BM in direction δ` ∈
L∞(0, T ;W−1,p(Ω)), which we denote by S ′(`; δ`) := (δu, δϕ, δd), belongs toL∞(0, T ;V )×
L∞(0, T ;H1(Ω))×W 1,∞

0 (0, T ;L2(Ω)). Moreover, this satisfies the following system

δu(t) = U ′(`(t), ϕ(t))(δ`(t), δϕ(t)),

δϕ(t) = Φ′(`(t), d(t))(δ`(t), δd(t)),

δ̇d(t) =
1

γ
max ′

(
− β(d(t)− ϕ(t))− r;−β(δd(t)− δϕ(t))

)
,

δd(0) = 0


(4.10)

f.a.a. t ∈ (0, T ), where we abbreviate ϕ := S2(`) and d := S3(`).

P r o o f. Let ` ∈ BM and δ` ∈ L∞(0, T ;W−1,p(Ω)) be arbitrary, but fixed. From
Lemma 4.3 we know that S3 : BM → W 1,%(0, T ;L2(Ω)) is directionally differentiable
and S ′3(`; δ`) ∈ W 1,∞

0 (0, T ;L2(Ω)) is the unique solution of the operator differential equa-
tion in (4.10). The directional differentiability of S1 and S2 is then an immediate consequence
of Lemma 4.1. To see this, one constructs L%(0, T )-norms on both sides in (4.3). Moreover,
according to Lemma 4.1, (4.1) and (4.2) we have

S ′1(`; δ`) = δu = U ′
(
`(·), ϕ(·)

)(
δ`(·), δϕ(·)

)
∈ L∞(0, T ;V ),

S ′2(`; δ`) = δϕ = Φ′
(
`(·), d(·)

)(
δ`(·), δd(·)

)
∈ L∞(0, T ;H1(Ω)).

This completes the proof.
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12 L. M. Susu: Optimal Control of a Viscous Two-Field Gradient Damage Model

Remark 4.5 Note that due to the Lipschitz continuity of S, cf. Lemma 3.5, the control-to-
state operator is in fact Hadamard directional differentiable, see e.g. [24, Lemma 3.1.2].

5 Optimality system

This section is concerned with deriving an optimality system for the optimal control problem
governed by the penalized damage model, i.e., (Pmin). For convenience, let us recall that this
reads as follows

min
`∈L

J (u, ϕ, d, `)

s.t. (u, ϕ, d) solves (P),
(Pmin)

where L denotes the set of admissible loads and J is the objective functional. In the last
section we saw that the control-to-state operator is not necessarily Gâteaux-differentiable, and
thus, the standard adjoint calculus for the derivation of optimality conditions is not applicable
without further ado. However, by requiring that a strict complementarity condition is fulfilled,
one is able to derive an optimality system equivalent to the classical purely primal optimality
condition.

We begin by fixing the assumptions on the optimal control problem.
Assumption 5.1 The control set L is a nonempty, convex and bounded subset ofL∞(0, T ;W−1,p(Ω)).

Note that the boundedness assumption on the control set implies that there exists someM > 0
so that L ⊂ BM . Therefore, the control-to-state operator is defined and directional differen-
tiable on L.
Assumption 5.2 The objective functional J : L2(0, T ;W 1,ν

D (Ω)) × L2(0, T ;H1(Ω)) ×
L2(0, T ;L2(Ω)) × L2(0, T ;W−1,p(Ω)) → R is continuously Fréchet-differentiable, where
ν ∈ (1, 2) is given.

For example, one can choose the functional Jex : L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)) ×
L2(0, T ;V ∗) given by

Jex(u, d, `) :=
1

2
‖u−ud‖2L2(0,T ;L2(Ω)) +

α1

2
‖d‖2L2(0,T ;L2(Ω)) +

α2

2
‖`‖2L2(0,T ;V ∗)

as objective, where ud ∈ L2(0, T ;L2(Ω)) is a desired displacement and α1, α2 > 0. Note
that Jex fulfills Assumption 5.2 for ν ∈ (1, 2) and ν ∈ [6/5, 2) in the two-dimensional
and three-dimensional case, respectively. This is due to W 1,ν

D (Ω) ↪→ L2(Ω) (see e.g. [25,
Theorem 7.1]) and W−1,p(Ω) ↪→ V ∗. Moreover, note that J is continuously Fréchet-
differentiable.
Remark 5.3 Although it might seem more reasonable to consider in Assumption 5.2 the
Hilbert space L2(0, T ;V ) for the displacement, instead of L2(0, T ;W 1,ν

D (Ω)), where ν ∈
(1, 2), we choose to work with the latter one in order to obtain L2(0, T ;V )-regularity in both
dimensions for the adjoint statew in Lemma 5.7 below. Otherwise, the adjoint state belongs to
L2(0, T ;W 1,ζ

D (Ω)), where ζ < 2 in the three-dimensional case, while in the two-dimensional
case it belongs to L2(0, T ;V ). For a better overview of the analysis in the proof of Lemma
5.7 below, it is convenient not to make this distinction.
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With the properties of L and J at hand, we can now derive necessary optimality conditions
in primal form:
Lemma 5.4 Let Assumptions 5.1 and 5.2 hold. Then, any local solution ¯̀ of the problem
(Pmin) satisfies

∂(u,ϕ,d)J (S(¯̀), ¯̀)
(
S ′(¯̀; δ`− ¯̀)

)
+ ∂`J (S(¯̀), ¯̀)(δ`− ¯̀) ≥ 0 ∀ δ` ∈ L. (VI)

P r o o f. By Proposition 4.4, Assumption 5.2, and [14, Lemma 3.9], the composite map-
ping L 3 ` 7→ J (S(`), `) ∈ R is directionally differentiable at ¯̀∈ L with

f ′(¯̀; δ`− ¯̀) = J ′(S(¯̀), ¯̀)(S ′(¯̀; δ`− ¯̀), δ`− ¯̀) ∀ δ` ∈ L∞(0, T ;W−1,p(Ω)).

From the convexity of L we then deduce that any local minimizer of (Pmin) satisfies (VI),
which completes the proof.

Clearly, if S3 is Gâteaux-differentiable at ¯̀, then all the terms in (VI) are linear in δ` − ¯̀.
Since, within our scope of deriving an optimality system, we want to write the left-hand side
in (VI) as a linear form in δ` − ¯̀, in the following we investigate under which conditions
the nonlinearity of S ′3(¯̀; ·) can be overcome. Therefor, a closer inspection of the operator
differential equation in (4.10) is required. Prior to this, let us define for simplicity
Definition 5.5 For a given ` ∈ L, we define for almost all t ∈ (0, T ) the following sets (up to
sets of zero measure):

• Ω+
t := {x ∈ Ω : −β(d(t, x)− ϕ(t, x))− r > 0},

• Ω0
t := {x ∈ Ω : −β(d(t, x)− ϕ(t, x))− r = 0},

• Ω−t := {x ∈ Ω : −β(d(t, x)− ϕ(t, x))− r < 0},

where we abbreviate ϕ := S2(`) and d := S3(`). We emphasize that the above defined sets
ultimately depend on ` and the given data.

Let now ` ∈ L and δ` ∈ L∞(0, T ;W−1,p(Ω)) be given. In view of Proposition 4.4 and (A.1)
combined with Definition 5.5, δd := S ′3(`; δ`) is characterized as the unique solution of the
operator differential equation

δ̇d(t)=


−β
γ

(δd(t)− δϕ(t)) a.e. in Ω+
t

max
(
− β

γ
(δd(t)− δϕ(t))

)
a.e. in Ω0

t

0 a.e. in Ω−t

f.a.a. t ∈ (0, T ), δd(0) = 0. (5.1)

Here we use the notation δϕ := Φ′(`(·), d(·))(δ`(·), δd(·)) again, where d := S3(`).

From (5.1) we read, in view of the nonlinearity of max{·, 0}, that as long as there exist
0 ≤ t1 < t2 ≤ T such that µ(Ω0

t ) > 0 f.a.a. t ∈ (t1, t2), the operator S3 is not necessarily
Gâteaux-differentiable at `. This is also shown by straight forward computation. Indeed, the
linearity of S ′3(`; ·) is ensured if the following assumption is satisfied, as we will next see.
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Assumption 5.6 (Strict complementarity) The set Ω0
t associated to ` ∈ L has measure zero

for almost all t ∈ (0, T ), i.e.,

µ(Ω0
t ) = 0 f.a.a. t ∈ (0, T ).

To prove that S ′3(`; ·) is linear under Assumption 5.6, note that (5.1) reads

δ̇d(t) = ft(δ`(t), δd(t)) f.a.a. t ∈ (0, T ), δd(0) = 0, (5.2)

where ft : W−1,p(Ω)× L2(Ω)→ L2(Ω) is given by

ft(δ`, δd) := −β
γ
χ

Ω+
t

(
δd− Φ′(`(t), d(t))(δ`, δd)

)
.

Observe that, since Φ is Gâteaux-differentiable at (`(t), d(t)), ft is linear for almost all t ∈
(0, T ). Now let δ`1, δ`2 ∈ L∞(0, T ;W−1,p(Ω)) and a, b ∈ R. With the notation δdi :=
S ′3(`; δ`i), where i = 1, 2, (5.2) leads to

a ˙δd1(t) + b ˙δd2(t) = aft(δ`1(t), δd1(t)) + bft(δ`2(t), δd2(t))

= ft(a δ`1(t) + b δ`2(t), a δd1(t) + b δd2(t)) f.a.a. t ∈ (0, T )

and aδd1(0) + bδd2(0) = 0. Hence, a δd1 + b δd2 is the unique solution of (5.2) associated
to a δ`1 + b δ`2, that is, aS ′3(`; δ`1) + bS ′3(`; δ`2) = S ′3(`; a δ`1 + b δ`2).

At the end of this section we make a few comments on the strict complementarity assumption,
including possible alternative approaches, such as regularization, see Remark 5.11 below.

The following result is an essential tool for deriving the optimality system for (Pmin), as it
provides the candidates for the adjoint states associated to ` ∈ L.
Lemma 5.7 (Adjoint equation) Let Assumptions 5.1 and 5.2 hold. Moreover, let ` ∈ L be
given and define (u, ϕ, d) := S(`). Then, there exists a unique (w, υ, ξ) ∈ L2(0, T ;V ) ×
L2(0, T ;H1(Ω))×W 1,2

T (0, T ;L2(Ω)), which satisfies the following system of equations

−div
(
g(ϕ(t))Cε(w(t)) + g′(ϕ(t))υ(t)Cε(u(t))

)
= ∂uJ (·)(t) in V ∗, (5.3a)

−α∆υ(t) + β
(
υ(t)− 1

γ
χ

Ω+
t
ξ(t)

)
+ g′(ϕ(t))Cε(u(t)) : ε(w(t))

+
1

2
g′′(ϕ(t))υ(t)Cε(u(t)) : ε(u(t)) = ∂ϕJ (·)(t) in H1(Ω)∗,


(5.3b)

−ξ̇(t) = β
(
υ(t)− 1

γ
χ

Ω+
t
ξ(t)

)
+ ∂dJ (·)(t) in L2(Ω),

ξ(T ) = 0

 (5.3c)

f.a.a. t ∈ (0, T ), where (·) stands for (S(`), `).

P r o o f. Before we begin to discuss the solvability of (5.3), we observe that, sinceW 1,ν
D (Ω),

H1(Ω) and L2(Ω) are reflexive Banach spaces, the partial derivatives ∂uJ (·), ∂ϕJ (·) and
∂dJ (·) belong toL2(0, T ;W−1,ν′(Ω)),L2(0, T ;H1(Ω)∗) andL2(0, T ;L2(Ω)), respectively.
Note that, due to ν′ > 2, we have ∂uJ (·) ∈ L2(0, T ;V ∗).
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(i) Solvability of (5.3a). We search f.a.a. t ∈ (0, T ) and for any υ ∈ H1(Ω) for w such that

−div
(
g(ϕ(t))Cε(w)

)
= ∂uJ (·)(t) + div

(
g′(ϕ(t))υCε(u(t))

)
in V ∗. (5.4)

First we notice that H1(Ω) ↪→ L2p/(p−2)(Ω), as a result of p > N , cf. Assumption 2.5.1.
Then, in view of Assumption 2.2 and the fact that u(t) ∈W 1,p

D (Ω), we obtain with Hölder’s
inequality that, f.a.a. t ∈ (0, T ) and for any υ ∈ H1(Ω), it holds

‖ div
(
g′(ϕ(t))υCε(u(t))

)
‖V ∗ ≤ C‖υ‖2p/(p−2)‖U(`(t), ϕ(t))‖W 1,p

D (Ω) ≤ C‖υ‖H1(Ω).

(5.5)

Note that we used (3.2) and the fact that ` belongs to a bounded subset ofL∞(0, T ;W−1,p(Ω))
for the last inequality. Assumption 2.5.1 now ensures that (5.4) is uniquely solvable at almost
all t ∈ (0, T ) and for any υ ∈ H1(Ω) with

w(t, υ) = A−1
ϕ(t)

(
∂uJ (·)(t) + div

(
g′(ϕ(t))υCε(u(t))

)
∈ V. (5.6)

Moreover, we have

‖w(t, υ)‖V ≤ C
(
‖∂uJ (·)(t)‖V ∗+‖υ‖H1(Ω)

)
f.a.a. t ∈ (0, T ), ∀ υ ∈ H1(Ω). (5.7)

We now show that the Nemytskii operator associated towmapsL2(0, T ;H1(Ω)) toL2(0, T ;V ).
This result will be useful at the end of the proof, after the time regularity of the solution of the
operator differential equation (5.3c) is established. First, let us observe that H1(Ω) 3 ϕ 7→
A−1
ϕ ∈ L(W−1,q(Ω), V ) is continuous, provided that q > 2, whence the Bochner measur-

ability of t 7→ A−1
ϕ(t) ∈ L(W−1,q(Ω), V ). Let now υ ∈ L2(0, T ;H1(Ω)) be arbitrary, but

fixed. Similarly to (5.5), we obtain the following estimate f.a.a. t ∈ (0, T )

‖div
(
g′(ϕ(t))υ(t)Cε(u(t))

)
‖W−1,ρ(Ω) ≤ ‖g′(ϕ(t))‖%‖υ(t)‖κ‖Cε(u(t))‖s. (5.8)

Here the index ρ > 2 is defined via 1/ρ := 1/%+ 1/κ+ 1/s < 1/2, where κ > 2p/(p− 2)
is chosen so that the embedding H1(Ω) ↪→ Lκ(Ω) holds true, whereas % <∞ and s ∈ [2, p)
are chosen large enough, such that 1/% + 1/κ + 1/s < (p − 2)/2p + 1/p = 1/2. Notice
that it is possible to choose κ as above, in view of p > N , see Assumption 2.5.1. Fur-
ther, we infer from [7, Theorem 4] that g′ : H1(Ω) → L%(Ω) is continuous, and thus,
the mapping t 7→ g′(ϕ(t)) ∈ L%(Ω) is Bochner measurable, as ϕ : [0, T ] → H1(Ω)
is. Moreover, t 7→ Cε(u(t)) ∈ Ls(Ω;RN×N ) is Bochner measurable as well, as a re-
sult of the regularity of u. On account of (5.8), this implies the Bochner measurability of
t 7→ ∂uJ (·)(t) + div

(
g′(ϕ(t))υ(t)Cε(u(t))

)
∈ W−1,ω(Ω), where ω := min{ρ, ν′} > 2.

Therefor we also employed that υ : [0, T ] → H1(Ω) ↪→ Lκ(Ω) is Bochner measurable,
by assumption. Altogether, we can now deduce by (5.6) the Bochner measurability of t 7→
w(t, υ(t)) ∈ V . Assumption 5.2 together with (5.7) finally yields

w(·, υ(·)) ∈ L2(0, T ;V ) for υ ∈ L2(0, T ;H1(Ω)). (5.9)
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(ii) Solvability of (5.3b). For almost all t ∈ (0, T ) and for any ξ ∈ L2(Ω), we now search for
υ ∈ H1(Ω) that solves

−α4υ + βυ + g′(ϕ(t))Cε(u(t)) : ε(w(t, υ))+
1

2
g′′(ϕ(t))υCε(u(t)) : ε(u(t))

= ∂ϕJ (·)(t) +
β

γ
χ

Ω+
t
ξ in H1(Ω)∗.


(5.10)

To this end, we first define B := −α4 + βI and the mapping F : W−1,p(Ω) × H1(Ω) 3
(`, ϕ) 7→ 1

2g
′(ϕ)Cε(U(`, ϕ)) : ε(U(`, ϕ)) ∈ H1(Ω)∗. In view of (5.6) and [18, Lemma 5.3],

it holds

w(t, υ) = A−1
ϕ(t)∂uJ (·)(t) + ∂ϕU(`(t), ϕ(t))(υ) f.a.a. t ∈ (0, T ), ∀ υ ∈ H1(Ω).

By taking a look at [18, Lemma 5.9], one sees now that (5.10) is in fact equivalent to

Bυ + ∂ϕF (`(t), ϕ(t))υ = ι(t, ξ) in H1(Ω)∗,

where the mapping ι : (0, T )× L2(Ω)→ H1(Ω)∗ is given by

ι(t, ξ) := ∂ϕJ (·)(t) +
β

γ
χ

Ω+
t
ξ − g′(ϕ(t))Cε(u(t)) : ε

(
A−1
ϕ(t)

(
∂uJ (·)(t)

))
. (5.11)

Assumption 2.2, (3.2), Assumption 2.5.1 combined with Hölder’s inequality with 1/p+1/2+
(p− 2)/2p = 1, and H1(Ω) ↪→ L2p/(p−2)(Ω) (see Assumption 2.5.1) yield∥∥g′(ϕ(t))Cε(u(t)) : ε

(
A−1
ϕ(t)

(
∂uJ (·)(t)

))∥∥
H1(Ω)∗

≤ C‖∂uJ (·)(t)‖V ∗ f.a.a. t ∈ (0, T ).

(5.12)

Thus, ι is well defined. From [18, Proof of Lemma 5.11], see also [18, Definition 5.7], we
know that B + ∂ϕF (`(t), ϕ(t)) ∈ L(H1(Ω), H1(Ω)∗) is continuously invertible f.a.a. t ∈
(0, T ) with

‖
(
B + ∂ϕF (`(t), ϕ(t))

)−1‖L(H1(Ω)∗,H1(Ω)) ≤ c f.a.a. t ∈ (0, T ). (5.13)

Hence, (5.10) is uniquely solvable f.a.a. t ∈ (0, T ) and for any ξ ∈ L2(Ω) with

υ(t, ξ) =
(
B + ∂ϕF (`(t), ϕ(t))

)−1
ι(t, ξ) ∈ H1(Ω). (5.14)

Moreover, due to (5.13) and (5.11), we have

‖υ(t, ξ1)− υ(t, ξ2)‖H1(Ω) ≤
2

α
‖ι(t, ξ1)− ι(t, ξ2)‖H1(Ω)∗ ≤

2β

αγ
‖ξ1 − ξ2‖2 (5.15)

f.a.a. t ∈ (0, T ) and for all ξ1, ξ2 ∈ L2(Ω). In preparation for the next part of the proof, we
prove that υ belongs to L2(0, T ;H1(Ω)) if ξ ∈ L2(0, T ;L2(Ω)) in the following. Firstly, we
observe that(

B + ∂ϕF (`(·), ϕ(·))
)−1 ∈ L∞

(
0, T ;L(H1(Ω)∗, H1(Ω))

)
. (5.16)
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This is a result of the continuity of ∂ϕF : W−1,p(Ω) × H1(Ω) → L(H1(Ω), H1(Ω)∗),
cf. [18, Lemma 5.9], which gives the Bochner measurability of the mapping in (5.16), and
estimate (5.13). Secondly, it holds

ι(·, ξ(·)) ∈ L2(0, T ;H1(Ω)∗) for ξ ∈ L2(0, T ;L2(Ω)). (5.17)

To see this, note that Definition 5.5 allows us to write χΩ+
t

(x)ξ(t)(x) = (χQ+ξ)(t, x) f.a.a.
(t, x) ∈ (0, T ) × Ω, where Q+ := {(t, x) ∈ (0, T ) × Ω : −β(d(t, x) − ϕ(t, x)) − r > 0}
and ξ ∈ L2(0, T ;L2(Ω)). Since χQ+

∈ L∞((0, T )× Ω), we have χQ+
ξ ∈ L2((0, T )× Ω),

whence

t 7→ χ
Ω+
t
ξ(t) ∈ L2(0, T ;L2(Ω)) for ξ ∈ L2(0, T ;L2(Ω)). (5.18)

By arguing as at the end of part (i), we infer that t 7→ g′(ϕ(t))Cε(u(t)) : ε
(
A−1
ϕ(t)

(
∂uJ (·)(t)

))
∈

H1(Ω)∗ is Bochner measurable, on account of Hölder’s inequality. From (5.12) we then ob-
tain t 7→ g′(ϕ(t))Cε(u(t)) : ε

(
A−1
ϕ(t)

(
∂uJ (·)(t)

))
∈ L2(0, T ;H1(Ω)∗), which together

with (5.18) and ∂ϕJ (·) ∈ L2(0, T ;H1(Ω)∗) now gives (5.17). This in combination with
(5.16) finally yields

υ(·, ξ(·)) ∈ L2(0, T ;H1(Ω)) for ξ ∈ L2(0, T ;L2(Ω)), (5.19)

in view of (5.14).

(iii) Solvability of (5.3c). By means of the ‘solution operator’ (t, ξ) 7→ υ(t, ξ) of the elliptic
system, (5.3) reduces to

−ξ̇(t) = β
(
υ(t, ξ(t))− 1

γ
χ

Ω+
t
ξ(t)

)
+ ∂dJ (·)(t) f.a.a. t ∈ (0, T ),

ξ(T ) = 0.

 (5.20)

We see that, via the transformation ξ̃(·) = ξ(T − ·), (5.20) is equivalent to

˙̃
ξ(t) = f(t, ξ̃(t)) f.a.a. t ∈ (0, T ), ξ̃(0) = 0, (5.21)

where f : (0, T )× L2(Ω)→ L2(Ω) is given by

f(t, ξ̃) = β
(
υ(T − t, ξ̃)− 1

γ
χ

Ω+
T−t

ξ̃
)

+ ∂dJ (·)(T − t). (5.22)

To show that (5.21) is uniquely solvable, we proceed as in the proof of Lemma 4.2. Let now
ξ̃ ∈ L2(0, T ;L2(Ω)) be arbitrary, but fixed. This implies t 7→ ξ̃(T − t) ∈ L2(0, T ;L2(Ω))

and according to (5.19), we then have t 7→ υ(T − t, ξ̃(t)) ∈ L2(0, T ;H1(Ω)). With (5.18)
we establish t 7→ χ

Ω+
T−t

ξ̃(t) ∈ L2(0, T ;L2(Ω)), which combined with t 7→ ∂dJ (·)(T − t) ∈

L2(0, T ;L2(Ω)) gives in turn f(·, ξ̃(·)) ∈ L2(0, T ;L2(Ω)), in view of (5.22). Moreover,
(5.15) implies

‖f(t, ξ̃1)− f(t, ξ̃2)‖2 ≤ β‖υ(T − t, ξ̃1)− υ(T − t, ξ̃2)‖2 + β/γ‖ξ̃1 − ξ̃2‖2
≤ L‖ξ̃1 − ξ̃2‖2 ∀ ξ̃1, ξ̃2 ∈ L2(Ω), f.a.a. t ∈ (0, T ).
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With the above properties of f , the unique solvability of (5.21) follows by a fixed point argu-
ment. Therefrom we also obtain ξ̃ ∈ W 1,2

0 (0, T ;L2(Ω)). This means that (5.20) is uniquely
solvable with t 7→ ξ(t) = ξ̃(T − t) ∈ W 1,2

T (0, T ;L2(Ω)). Now (5.9) and (5.19) give the
regularity of the adjoint states in the elliptic system (5.3a)-(5.3b), which completes the proof.

Remark 5.8 Clearly, given ` ∈ L, the system (5.3) admits a unique solution (with the exact
same regularity) for an arbitrary right-hand side h ∈ L2(0, T ;W−1,ν′(Ω))×L2(0, T ;H1(Ω)∗)×
L2(0, T ;L2(Ω)) (instead of ∂(u,ϕ,d)J (S(`), `)), where ν ∈ (1, 2) is given. The thereby
induced solution operator, which we call Υ here, can be interpreted as an ‘artificial ad-
joint operator’ of S ′(`), provided that Assumption 5.6 holds true for `. We call this ad-
joint operator ’artificial’, since its range is a subset of a product space and not a subset of
L∞(0, T ;W−1,p(Ω))∗, as one would expect. This holds however true for the range of the
first component of Ψ. To see this, we linearize the state equation (5.23) below at ` in some ar-
bitrary direction δ` ∈ L∞(0, T ;W−1,p(Ω)), and argue as in the proof of Theorem 5.9 below,
where we replace the partial derivatives of J in (5.24) by h as above. Then, instead of (5.32)
below, one has the equality

∫ T

0

3∑
i=1

〈hi(t),S ′i(`)(δ`)(t)〉 dt =

∫ T

0

〈δ`(t),Υ1(h)(t)〉V dt,

i.e., 〈h,S ′(`)(δ`)〉L2(0,T ;W 1,ν
D (Ω)×H1(Ω)×L2(Ω)) = 〈Υ1h, δ`〉L2(0,T ;W−1,p(Ω)) for any h ∈

L2(0, T ;W−1,ν′(Ω) × H1(Ω)∗ × L2(Ω)) and any δ` ∈ L∞(0, T ;W−1,p(Ω)). Here Υ1

stands for the first component of the operator Υ. We point out that Υ1 is the classical adjoint
operator of S ′(`) : L∞(0, T ;W−1,p(Ω)) → L2(0, T ;W 1,ν

D (Ω) × H1(Ω) × L2(Ω)), as a
result of the above identity and as it maps as follows

L2(0, T ;W−1,ν′(Ω)×H1(Ω)∗ × L2(Ω))
Υ17−→ L2(0, T ;V ) ⊂ L∞(0, T ;W−1,p(Ω))∗,

in view of Lemma 5.7 and L∞(0, T ;W−1,p(Ω)) ↪→ L2(0, T ;V ∗).

We are now in the position to state the main result of this section.

Theorem 5.9 (Optimality system) Let Assumptions 5.1 and 5.2 hold. Moreover, let ¯̀ be a
local solution of (Pmin) with associated states

(ū, ϕ̄, d̄) = S(¯̀) ∈ L∞(0, T ;W 1,s
D (Ω))× L∞(0, T ;H1(Ω))×W 1,∞(0, T ;L2(Ω)),

where s ∈ [2, p), and suppose that Assumption 5.6 is fulfilled for ¯̀. Then, there exist unique
adjoint states

(w, υ, ξ) ∈ L2(0, T ;V )× L2(0, T ;H1(Ω))×W 1,2
T (0, T ;L2(Ω))
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so that the following optimality system is satisfied f.a.a. t ∈ (0, T ):

− div g(ϕ̄(t))Cε(ū(t)) = ¯̀(t) inW−1,p(Ω),

(5.23a)

−α∆ϕ̄(t) + β ϕ̄(t) +
1

2
g′(ϕ̄(t))C ε(ū(t)) : ε(ū(t)) = βd̄(t) in H1(Ω)∗,

(5.23b)

˙̄d(t) =
1

γ
max(−β(d̄(t)− ϕ̄(t))−r), d̄(0) = d0, (5.23c)

−div
(
g(ϕ̄(t))Cε(w(t)) + g′(ϕ̄(t))υ(t)Cε(ū(t))

)
= ∂uJ (·)(t) in V ∗, (5.24a)

−α∆υ(t) + β
(
υ(t)− 1

γ
χ

Ω+
t
ξ(t)

)
+ g′(ϕ̄(t))Cε(ū(t)) : ε(w(t))

+
1

2
g′′(ϕ̄(t))υ(t)Cε(ū(t)) : ε(ū(t)) = ∂ϕJ (·)(t) in H1(Ω)∗,


(5.24b)

−ξ̇(t) = β
(
υ(t)− 1

γ
χ

Ω+
t
ξ(t)

)
+ ∂dJ (·)(t) in L2(Ω),

ξ(T ) = 0,

 (5.24c)

〈w + ∂`J (·), δ`− ¯̀〉L2(0,T ;W−1,p(Ω)) ≥ 0 ∀ δ` ∈ L, (5.25)

where (·) denotes (S(¯̀), ¯̀).

P r o o f. The state equation is a direct result of Definition 3.4, while from Lemma 5.7 we
know that (5.24) admits a unique solution (w, υ, ξ) with the desired regularity. Hence, it
remains to prove the gradient inequality (5.25). To this end, we test the linearized counterpart
of (5.23) with the adjoint states and show that the (integrated over time) sum of the resulting
equations is the (integrated over time) sum of the equations in (5.24) tested with the directional
derivatives of S. Using this in (VI) will ultimately give the claim. For a better overview, we
split the rest of the proof in two parts: in the first one we derive a linearization for the state
equation, while in the second one we test as depicted above and finalize the proof.

(i) Let δ` ∈ L∞(0, T ;W−1,p(Ω)) be arbitrary, but fixed and define (δu, δϕ, δd) := S ′(¯̀; δ`−
¯̀). Proposition 4.4 and Assumption 5.6 ensure that (δu, δϕ, δd) satisfies the system

δu(t) = U ′(¯̀(t), ϕ̄(t))(δ`(t)− ¯̀(t), δϕ(t)), (5.26a)

δϕ(t) = Φ′(¯̀(t), d̄(t))(δ`(t)− ¯̀(t), δd(t)), (5.26b)

δ̇d(t) = −β
γ
χ

Ω+
t

(δd(t)− δϕ(t)), δd(0) = 0 (5.26c)

f.a.a. t ∈ (0, T ).

From the differentiability results in [18, Section 5] we can deduce the equations which char-
acterize δu and δϕ as follows. Completely analogously to the result in [18, Lemma 5.2], we
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have −div
(
g(ϕ̄(t))Cε(∂`U(¯̀(t), ϕ̄(t))η)

)
= η ∀ η ∈ W−1,p(Ω), which in combination

with [18, Lemma 5.3] leads to

−div
(
g(ϕ̄(t))Cε(δu(t))

)
= δ`(t)− ¯̀(t) + div

(
g′(ϕ̄(t))δϕ(t)Cε(ū(t))

)
in V ∗

(5.27)

f.a.a. t ∈ (0, T ). Further, as in [18, Lemma 5.9, Proposition 5.12], we arrive at

−α∆δϕ(t) + βδϕ(t) +
1

2
g′′(ϕ̄(t))δϕ(t)Cε(ū(t)) : ε(ū(t))

= βδd(t)− g′(ϕ̄(t))Cε(ū(t)) : ε(δu(t)) in H1(Ω)∗

 (5.28)

f.a.a. t ∈ (0, T ). Let us recall here that (δu, δϕ, δd) belongs toL∞(0, T ;V )×L∞(0, T ;H1(Ω))×
W 1,∞

0 (0, T ;L2(Ω)), cf. Proposition 4.4.

(ii) We test (5.27), (5.28), and (5.26c) with w(t) ∈ V , υ(t) ∈ H1(Ω), and ξ(t) ∈ L2(Ω),
respectively, at almost all t ∈ (0, T ). For the sake of convenience, we bring all the resulting
terms containing δu and δϕ together, by abbreviating

ι(t) : = −〈div
(
g(ϕ̄(t))Cε(δu(t)) + g′(ϕ̄(t))δϕ(t)Cε(ū(t))

)
,w(t)〉V

+ 〈−α∆δϕ(t) + βδϕ(t) +
1

2
g′′(ϕ̄(t))δϕ(t)Cε(ū(t)) : ε(ū(t)), υ(t)〉H1(Ω)

+ 〈g′(ϕ̄(t))Cε(ū(t)) : ε(δu(t)), υ(t)〉H1(Ω) −
β

γ
(χΩ+

t
δϕ(t), ξ(t))2 f.a.a. t ∈ (0, T ).

Thereby, the sum of the above tested equations reads as follows

ι(t) + (δ̇d(t), ξ(t))2 = β(δd(t), υ(t))2 −
β

γ
(χΩ+

t
δd(t), ξ(t))2 + 〈δ`(t)− ¯̀(t),w(t)〉V

(5.29)

f.a.a. t ∈ (0, T ). Furthermore, as a result of (5.24a) and (5.24b), we observe that

ι(t) = 〈∂uJ (·)(t), δu(t)〉V + 〈∂ϕJ (·)(t), δϕ(t)〉H1(Ω) f.a.a. t ∈ (0, T ). (5.30)

Testing (5.24c) with δd(t) and integration by parts results in∫ T

0

(∂dJ (·)(t), δd(t))2 dt = −
∫ T

0

(ξ̇(t), δd(t))2 dt−
∫ T

0

β(υ(t), δd(t))2 −
β

γ
(χΩ+

t
ξ(t), δd(t))2 dt

= −(ξ(T ), δd(T ))2 + (ξ(0), δd(0))2 +

∫ T

0

(δ̇d(t), ξ(t))2

−
∫ T

0

β(υ(t), δd(t))2 −
β

γ
(χΩ+

t
ξ(t), δd(t))2 dt

=

∫ T

0

(δ̇d(t), ξ(t))2 −
∫ T

0

β(υ(t), δd(t))2 −
β

γ
(χΩ+

t
ξ(t), δd(t))2 dt,

(5.31)
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where we employed ξ ∈ W 1,2
T (0, T ;L2(Ω)), δd ∈ W 1,∞

0 (0, T ;L2(Ω)). Inserting (5.30) and
(5.31) in (5.29) leads to∫ T

0

〈∂uJ (·)(t), δu(t)〉V + 〈∂ϕJ (·)(t), δϕ(t)〉H1(Ω)+(∂dJ (·)(t), δd(t))2 dt

=

∫ T

0

〈δ`(t)− ¯̀(t),w(t)〉V dt.

(5.32)

As ¯̀is a local minimizer of (Pmin), it satisfies the variational inequality in Lemma 5.4, which
in light of (5.32) now reads∫ T

0

〈δ`(t)− ¯̀(t),w(t)〉V dt+ 〈∂`J (S(¯̀), ¯̀), δ`− ¯̀〉L2(0,T ;W−1,p(Ω))

= 〈w, δ`− ¯̀〉L2(0,T ;W−1,p(Ω)) + 〈∂`J (S(¯̀), ¯̀), δ`− ¯̀〉L2(0,T ;W−1,p(Ω)) ≥ 0 ∀δ` ∈ L,

(5.33)

where we employed the reflexivity of V ,H1(Ω), andL2(Ω), the embedding V ↪→W−1,p(Ω)∗,
as well as the regularity of w. This completes the proof.

From the above proof we deduce that the optimality system (5.23)-(5.25) is in fact equiva-
lent to the first order necessary optimality condition in Lemma 5.4, provided that the strict
complementarity assumption is fulfilled:
Proposition 5.10 Suppose that Assumptions 5.1 and 5.2 hold true. Moreover, let Assumption
5.6 be fulfilled for some ¯̀∈ L. Then, if ¯̀ together with its states

(ū, ϕ̄, d̄) ∈ L∞(0, T ;W 1,s
D (Ω))× L∞(0, T ;H1(Ω))×W 1,∞(0, T ;L2(Ω)),

where s ∈ [2, p), and adjoint states

(w, υ, ξ) ∈ L2(0, T ;V )× L2(0, T ;H1(Ω))×W 1,2
T (0, T ;L2(Ω)),

satisfies the optimality system (5.23)-(5.25), it also satisfies the variational inequality (VI).

We end this section with some remarks related with Assumption 5.6. First, let us point out
that one can reformulate (Pmin) as an MPCC, provided that the set L is chosen accordingly.
In view of (3.5) and since the max{·, 0}-function is a complementarity function, the unique
solution (u, ϕ, d) of the problem (P) with right-hand side ` ∈ L is characterized by

−div g(ϕ(t))Cε(u(t)) = `(t) inW−1,p(Ω),

−α∆ϕ(t) + β ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) = βd(t) in H1(Ω)∗,

0 ≤ ḋ(t) ⊥ β(d(t)− ϕ(t)) + r + γḋ(t) ≥ 0 a.e. in Ω, d(0) = d0

f.a.a. t ∈ (0, T ). Thus, if the control set can be described e.g. only by inequalities, e.g.
L = BM , then the problem (Pmin) falls into the class of MPCCs, see [23] for the definition
thereof in the finite-dimensional case.
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Remark 5.11 (Strict complementarity) In contrast to our approach, most authors dealing
with time-dependent MPCCs make use of regularization and penalization techniques, see
e.g. [1,17] (parabolic obstacle problem), [27] (quasistatic plasticity), and [5,15] (Allen-Cahn
and Cahn-Hilliard VIs). The optimality systems obtained thereby are in the best case of in-
termediate strength. This is not surprising at all, since one loses information when passing to
the limit in the regularized/penalized problem. Roughly speaking, the strict complementarity
assumption is the price one has to pay for not regularizing, and thus for obtaining a stronger
optimality system as in the case of regularizing.
Remark 5.12 (‘Ample controls’) When it comes to the optimal control of non-smooth prob-
lems, strong stationary optimality systems have been mostly derived in the presence of ‘am-
ple controls’, i.e., (distributed) controls that are not restricted by additional constraints. The
literature here is rather scarce. We refer to [3, 14, 22] (elliptic VIs) and to [19] (non-smooth
parabolic equations). Until recently, it was an open question whether such a system can be de-
rived in the absence of ‘ample controls’, see also [22, Section 4]. It turns out that the necessity
of strong stationarity can indeed be proven for the obstacle problem with pointwise constraints
on the control. This was shown in [26], however by requiring that the (unknown) optimizer
satisfies certain assumptions (constraint qualifications). There one obtains a strong stationary
optimality system, which is a generalization of the optimality system derived by [22] in the
more restrictive case of ‘ample controls’.

6 Existence of solutions for (Pmin)

In this section we shortly address the existence of solutions for (Pmin). To be more precise,
we derive a setting so that the direct method of variational calculus can be applied for (Pmin).
To this end, let us recall that this can be written as

min
`∈L

f(`), (6.1)

where f : ` 7→ J (S(`), `) is the reduced objective functional. The first thing to observe is
that the direct method of variational calculus cannot be applied to solve (6.1) without further
ado. The control set L is indeed a bounded subset of the reflexive Banach space L2(0, T ;V ∗),
in light of L∞(0, T ;W−1,p(Ω)) ↪→ L2(0, T ;V ∗). Since cf. Assumption 5.1, L is convex,
it would suffice to impose that it is also closed in L2(0, T ;V ∗), in order to obtain its weak
compactness (in L2(0, T ;V ∗)). However, f : L ⊂ L2(0, T ;V ∗) → R is not necessarily
weakly lower semicontinuous. This would be the case if S were (at least) weakly continuous,
which is not to be expected due to the structure of (3.5). Since by Lemma 3.5, S is Lipschitz
continuous, it makes sense to require that the control set is a bounded subset of a reflexive
Banach space which compactly embeds in L∞(0, T ;W−1,p(Ω)). An example for such a
control set, which as we will see, satisfies all the conditions needed for showing existence of
solutions, is

L := {` ∈ H1
0 (0, T ;Lp(Ω;RN )) : ‖ ˙̀‖L2(0,T ;Lp(Ω;RN )) ≤ b}, (6.2)

where b > 0 is a given bound.

We now prove that the optimal control problem (Pmin) admits solutions for L given by (6.2)
and for a continuous objective J . We begin by noticing that L is a nonempty, convex, closed
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and bounded subset of the reflexive Banach space H1(0, T ;Lp(Ω;RN )), which in particular
means that L is weakly compact. Moreover, f : L → R is weakly lower semicontinuous. To
see this, consider a sequence {`n} ⊂ L with `n ⇀ ` inH1(0, T ;Lp(Ω;RN )) as n→∞. Due
toW 1,p′

D (Ω) ↪→↪→ Lp
′
(Ω;RN ), we have the compact embeddingH1(0, T ;Lp(Ω;RN )) ↪→↪→

L∞(0, T ;W−1,p(Ω)). With Lemma 3.5 we then infer

S(`n)→ S(`) in L∞(0, T ;V )× L∞(0, T ;H1(Ω))×W 1,∞(0, T ;L2(Ω))

as n→∞. SinceJ is continuous onL2(0, T ;W 1,ν
D (Ω))×L2(0, T ;H1(Ω))×L2(0, T ;L2(Ω))×

L2(0, T ;W−1,p(Ω)), the above convergence gives in turn the weak lower semicontinuity of
f . Finally, a standard argument yields that (6.1), and thus (Pmin), admits solutions. Clearly,
the main result in Section 5 applies for this setting provided that J fulfills Assumption 5.2.

A Directional differentiability of max

Lemma A.1 (i) The Nemytskii operator associated to max : R→ R, max(·) := max{·, 0},
maps L2(Ω) to L2(Ω). Moreover, max : L2(Ω)→ L2(Ω) is Lipschitz continuous and direc-
tionally differentiable. For any y, h ∈ L2(Ω), the derivative satisfies

max ′(y;h)(x) =


h(x) if y(x) > 0

max{h(x), 0} if y(x) = 0

0 if y(x) < 0

f.a.a. x ∈ Ω. (A.1)

In addition, at any y ∈ L2(Ω), the operator max ′(y; ·) : L2(Ω) → L2(Ω) is Lipschitz con-
tinuous (with Lipschitz constant 1).
(ii) The Nemytskii operator associated to max : L2(Ω) → L2(Ω) maps L∞(0, T ;L2(Ω))
to L∞(0, T ;L2(Ω)). Moreover, max : L∞(0, T ;L2(Ω)) → L∞(0, T ;L2(Ω)) is Lipschitz
continuous. The operator max : L∞(0, T ;L2(Ω)) → L%(0, T ;L2(Ω)) is directionally
differentiable for any % ∈ [1,∞), with max ′(·; ·) ∈ L∞(0, T ;L2(Ω)). For any y, h ∈
L∞(0, T ;L2(Ω)) the derivative is given by

max ′(y;h)(t, x) =


h(t, x) if y(t, x) > 0

max{h(t, x), 0} if y(t, x) = 0

0 if y(t, x) < 0

f.a.a. (t, x) ∈ (0, T )× Ω.

(A.2)

P r o o f. (i) The first thing to notice is that the Nemytskii operator max : L2(Ω)→ L2(Ω)
is well defined and Lipschitz continuous, since max{·, 0} is Lipschitz continuous. Further-
more, straight forward computation shows that max : R → R is directionally differentiable
with

max ′(v; δv) =


δv if v > 0

max{δv, 0} if v = 0

0 if v < 0

∀ v, δv ∈ R. (A.3)
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As a consequence thereof, we deduce that

|max ′(v; δv)| ≤ |δv| ∀ v, δv ∈ R. (A.4)

Let now y, h ∈ L2(Ω) be arbitrary, but fixed. The directional differentiability of max : R →
R yields ∣∣∣max(y(x) + τh(x))−max(y(x))

τ
−max ′(y(x);h(x))

∣∣∣ τ↘0−→ 0 f.a.a. x ∈ Ω.

On the other hand, the global Lipschitz continuity of max : R → R with constant 1 together
with (A.4) implies for τ 6= 0 that∣∣∣max(y(x) + τh(x))−max(y(x))

τ
−max ′(y(x);h(x))

∣∣∣ ≤ 2 |h(x)| f.a.a. x ∈ Ω.

Now, Lebesgue’s dominated convergence theorem gives that max : L2(Ω) → L2(Ω) is di-
rectionally differentiable with directional derivative given by (A.1), in view of (A.3). It now
remains to show that the operator max ′(y; ·) : L2(Ω)→ L2(Ω) is Lipschitz continuous (with
Lipschitz constant 1) at any y ∈ L2(Ω). This follows immediately from the definition of the
directional derivative and the Lipschitz continuity of the operator max, which imply that

‖max ′(y;h1)−max ′(y;h2)‖2 = lim
τ↘0

∥∥∥max(y + τh1)−max(y + τh2)

τ

∥∥∥
2

≤ ‖h1 − h2‖2 ∀h1, h2 ∈ L2(Ω).

(ii) The result follows by the exact same arguments. Notice that the norm gap is due to
Lebesgue’s dominated convergence theorem.
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