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ADAPTIVE FINITE ELEMENT APPROXIMATION OF
STEADY FLOWS OF INCOMPRESSIBLE FLUIDS WITH
IMPLICIT POWER-LAW-LIKE RHEOLOGY

CHRISTIAN KREUZER AND ENDRE SULI

ABsTrRACT. We develop the a posteriori error analysis of finite element approx-
imations of implicit power-law-like models for viscous incompressible fluids.
The Cauchy stress and the symmetric part of the velocity gradient in the class
of models under consideration are related by a, possibly multi—valued, maximal

monotone r-graph, with % < r < o0. We establish upper and lower bounds

on the finite element residual, as well as the local stability of the error bound.
We then consider an adaptive finite element approximation of the problem,
and, under suitable assumptions, we show the weak convergence of the adap-
tive algorithm to a weak solution of the boundary-value problem. The argu-
ment is based on a variety of weak compactness techniques, including Chacon’s
biting lemma and a finite element counterpart of the Acerbi-Fusco Lipschitz
truncation of Sobolev functions, introduced by L. Diening, C. Kreuzer and E.
Siili [Finite element approximation of steady flows of incompressible fluids with
implicit power-law-like rheology. SIAM J. Numer. Anal., 51(2), 984-1015|.

1. INTRODUCTION

Typical physical models of fluid flow rely on the assumption that the Cauchy
stress is an explicit function of the symmetric part of the velocity gradient of the
fluid. This constitutive hypothesis then leads to the Navier—Stokes system and
its nonlinear generalizations, such as various electro-rheological flow models. It is
known however that the framework of classical continuum mechanics, built upon
the notions of current and reference configuration and an explicit constitutive equa-
tion for the Cauchy stress, is too narrow for the accurate description of inelastic
behavior of solid-like materials or viscoelastic properties of materials. Our starting
point in this paper is therefore a generalization of the classical framework of con-
tinuum mechanics, referred to as implicit constitutive theory, which was proposed
recently in a series of papers by Rajagopal and collaborators; see, for example,
[Raj03, Rajo6, RS08]. The underlying principle of implicit constitutive theory in
the context of viscous flows is the following: instead of demanding that the Cauchy
stress is an explicit function of the symmetric part of the velocity gradient, one
may allow an implicit and not necessarily continuous relationship between these
quantities. This then leads to a general theory, which admits fluid flow models with
implicit and possibly discontinuous power-law-like rheology; see, [Mal07, Mal08|.
Very recently a rigorous mathematical existence theory was developed for these
models by Buli¢ek, Gwiazda, Malek, and Swierczewska-Gwiazda in [BGMSGO09),
for r > dQ—fQ; for the range % <r< d37+d2 the Acerbi—Fusco Lipschitz truncation
[AF88] was used in order to prove the existence of a weak solution. In [DKS13],
using a variety of weak compactness techniques, we showed that a subsequence of
the sequence of finite element solutions converges weakly to a weak solution of the
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problem as the finite element discretization parameter h tends to 0. A key new tech-
nical tool in the analysis presented in [DKS13| was a finite element counterpart of
the Acerbi—Fusco Lipschitz truncation of Sobolev functions. However, in the case of
velocity approximations that are not exactly divergence-free the convergence theory
developed there was restricted to the range dQ—fl <r <.

The focus of the present paper is on the adaptive finite element approximation
of implicitly constituted power-law-like models for viscous incompressible fluids. As
in [DKS13], the implicit constitutive relation between the stress and the symmetric
part of the velocity gradient is approximated by an explicit (smooth) constitutive
law. The resulting steady non-Newtonian flow problem is then discretized by a
mixed finite element method. Guided by an a posteriori error analysis, we propose
a numerical method with competing adaptive strategies for the mesh refinement
and the approximation of the implicit constitutive law, and we present a rigorous
convergence proof generalizing the ideas in [MSV07] and [Sie09]. More precisely, we
show that a subsequence of the adaptively generated sequence of discrete approxi-
mations converges, in the weak topology of the ambient function space, to a weak
solution of the model when dQ—fl < r < 0. In contrast with [DKS13], stimulated by
ideas from [BGMSG12| we shall be able to avoid resorting to the theory of Young
measures. We emphasize that even in the case when the weak solution is unique we
have only weak convergence of a subsequence; in this case, however, such a subse-
quence can be identified with the aid of the a posteriori bounds derived herein; cf.
Remark 31.

The paper is structured as follows. In Section 2 we shall formulate the prob-
lem under consideration and will introduce some known mathematical results. In
Section 3 we define the finite element approximation of the problem and present
related technical properties and tools, such as the discrete Lipschitz truncation from
[DKS13]. Section 4 is concerned with the a posteriori error analysis for both the
error in the approximation of the graph and the finite element approximation. The
adaptive algorithm together with our main result are stated in Section 5; for the
sake of clarity of the presentation certain technical parts of the proof are deferred to
Section 6. We conclude the paper by discussing concrete graph approximations for
certain problems of practical relevance. While the emphasis in this paper is on the
mathematical analysis of adaptive finite elements algorithms for implicitly consti-
tuted fluid flow models, the ideas developed herein may be of more general interest
in the convergence analysis of adaptive finite element methods for other nonlinear
problems in continuum mechanics with possibly nonunique weak solutions.

2. IMPLICITLY CONSTITUTED POWER-LAW-LIKE FLUIDS

In this section we introduce the variational model of the steady flow for an
incompressible fluid with an implicit constitutive law given by a maximal monotone
z-dependent r-graph. We then recall the existence result from [BGMSG09] together
with some known results and mathematical tools from the literature. Finally we
conclude the section by discussing the approximation of z-dependent r-graphs by
regular single-valued tensor fields.

2.1. The variational formulation. Before we are able to state the weak formula-
tion of the problem we need to introduce basic notations and recall some well-known
properties of Lebesgue and Sobolev function spaces.

For a measurable subset w — R? we denote the classical spaces of Lebesgue
and vector-valued Sobolev functions by (L*(w), ||-[,.,) and (Whs(w), Il 5:0)s 8 €
[1,00], respectively. We denote the closure of D(Q) := CF(w)? in Wh¥(w)? by
Wy (w)? and let Wol”(;v(w)d = {v e Wy*(w)?: dive = 0}. Moreover, we denote
the space of functions in L®(w) with zero integral mean by L§(w). For s, s’ € (1, 0)
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with 1 + L =1 we have that L*(Q) and L§ () are the dual spaces of L*(Q) and
L (9), respectively. The dual of Wy**(Q)? is denoted by W~ (Q)%. For w = Q
we omit the domain in our notation for norms; e.g., we write ||, instead of ||, o

Let Q c R%, d € N, be a bounded open Lipschitz domain with polyhedral bound-
ary. For r € (1,00), we define v’ € (1, 0), with % + % =1, and set

1 dr : 3d

. = if r < 2%

- {2;” < @ (2.1)
r

otherwise.

With such r, " and 7, we shall consider the following boundary-value problem.
Problem. For f e L ()¢ find (u,p, S) € Wy (Q)% x Lj(Q) x L™ (€2)#*4 such that
diviu@u+pl—8)=f in D'(Q),
divu =0 in D'(Q), (2.2)
(Du(x),S(x)) € A(x) for almost every z € €.

Here, Du := 1(Vu + (Vu)T) signifies the symmetric part of the gradient of u. As
is indicated in our choice of the solution space for the velocity w in the statement
of the above boundary-value problem, we shall suppose a homogenous Dirichlet
boundary condition for u.

The implicit constitutive law, which relates the shear rate to the shear stress,
is given by an inhomogeneous maximal monotone r graph A : z — A(z). In
particular, we assume that for almost every x € Q) the following properties hold:

(A1) (0,0) € A(z);
(A2) For all (81,01), (02,02) € A(x),
(o1 —02): (87 —82) =0 (A(x) is a monotone graph),
and if 6, # d2 and o1 # o9, then the inequality is strict;
(A3) If (§,0) e REXd x R4 and

Sym sym
(6—0):(6—8)=0 forall (§,5)c Ax),
then (8,0) € A(z) (i.e., A(z) is a maximal monotone graph);

(A4) There exists a nonnegative function m € L'(Q) and a constant ¢ > 0, such
that for all (4, 0) € A(z) we have

o:8>=-—m(z)+c(6]” + o) (i.e., A(z) is an r-graph);

(A5) The set-valued mapping A : Q@ — RE<? x REx is measurable, i.e., for any

closed sets Cq,Ca < Rg;rg, we have that

{zeQ: Alx) n (C1 x C2) # T}
is a Lebesgue measurable subset of €.

Remark 1. Two remarks on the definition of x-dependent maximal monotone graph
A are now in order:

o Let D < RIXT x R be a closed set; then, for a.e. x € Q we have that the set
A(x) n D is closed. To see this, we assume w.l.o.g. that A(x) "D # & and let
{(6,01)}ven < A(z) N D, such that 6, — & € RY*? and o), — o € R¥*? gs

sym sym

n — . Let (8,6) € A(zx) be arbitrary. We then have that
0< (&—Gk) : (3—6k)—>(5'—0') : (5—6)

as k — oo. This proves that (8,0) € A(x) thanks to condition (A3) and the
closedness of D. Taking D := {o} x R we then deduce that the set

sym?

{0 e R (5,0) e Alz)}

sym
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is closed. This is condition (A5)(i) of [BGMSGO09).

o According to [AF09, Theorem 8.1.4| property (A5) is equivalent to the fact that
the graph of the set-valued map A(x) belongs to the product o-algebra £(Q) ®
BRI @ B(RI*), Here £() denotes the Lebesque measurable subsets of Q

sym sym

and B(RIXD) the Borel subsets of R4 With the same argument it follows

sym sym*
that (A5) is equivalent to the fact that, for any closed C = R2X4 the sets

sym?

{(x,0) e Q x RE: there exists § € C, such that (8,0) € A(z)},

sym

{(z,8) e @ x REX?: there exists o € C, such that (8,0) € A(z)}

sym
are measurable relative to £(Q) @ B(RLX). These equivalent conditions imply

that there exist measurable functions (so-called selections) S*, D* : Q x ngxg —

RI*? such that (8,8 (x,8)), (D*(z,0),0) € A(z) for a.e. € Q and all 6,0 €

sym

R4 compare also with [BGMSG12, Remark 1.1].

sym?’

Bulicek, Gwiazda, Malek, and Swierczewska-Gwiazda proved the following exis-
tence result in [BGMSG09).

2d

Proposition 2. Forr > £5

tion of (2.2).

there exists some (not necessarily unique) weak solu-

2.2. Analytical framework. We shall shortly recall some results that are crucial
for the existence theory of (2.2).

Inf-sup condition. The inf-sup condition has a central role in the analysis of the
Stokes problem. It states that, for s,s’ € (1,00) with % + 5 = 1, there exists an
g > 0 such that

divvdz
qp  Joddiveds

>a,|q|,  forall ge L§ (Q). (2.3)
0£veW ) * (Q)d |\v||17s

This follows from the existence of the Bogouvskii operator B : L§(2) — Wy *(),
with

div®Bh=h  and o, |Bh],, <A,

for all s € (1,0); compare e.g. with [DRS10, Bog79]. It follows from [BF91, §II,
Proposition 1.2] that condition (2.3) is equivalent to the isomorphism

LY (Q) = {v’ e W15 (Q): (v, w) =0 for all w e Wol,’;iv(Q)d} : (2.4)

Korn’s inequality. According to (2.2) the maximal monotone graph defined in
(A1)—(Ab) provides control only on the symmetric part of the velocity gradient.
Korn’s inequality states that this is already enough to control the norm of a Sobolev
function; i. e., for s € (1,00), there exists a v, > 0 such that

Vs vl . < D], for all v e W,*(2)%; (2.5)

compare e.g. with [DRS10].
We conclude this subsection with Chacon’s biting lemma and a corollary of it
that is relevant for our purposes [GMS07, Lemma 7.3].

Lemma 3 (Chacon’s biting lemma). Let Q be a bounded domain in R and let
{Un}nen be a bounded sequence in L*(Q2). Then, there exists a monincreasing se-
quence of measurable subsets E; < Q with |E;| — 0 as j — o, such that {vp}nen is
precompact in the weak topology of L*(Q\Ej), for each j € N.

In other words, there exists a v e L'(Q), such that for a subsequence (not rela-
belled) of {vp}nen, vy — v weakly in L*(Q\E;) as n — « for all j € N. We denote
this by writing

vn 2v in L'(Q)
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and call v the biting limit of {vy, }nen.

Lemma 4 ([GMS07, Lemma 7.3]). Let {v,,}nen < LY () be a sequence of nonneg-

ative functions such that vy, LAY for some ve LY(Q). Then,

nlingc (vp —v)dz =0 implies that v, —v weakly in L'(Q) as n — .
—%Jo

2.3. Approximation of maximal monotone r-graphs. In general an x-depen-
dent maximal monotone r-graph A satisfying (A1)—(A5) cannot be represented in
an explicit fashion. However, it can be approximated by a regular single-valued
monotone tensor field based on a regularized measurable selection S* with the fol-
lowing properties; compare with [BGMSG09, BGMSG12| and Remark 1.

Lemma 5 ([BGMSG12, Lemma 2.2]). Let S§* : @ x Rixd x Rixd — RIxd pe
a measurable selection of the x-dependent maximal monotone r graph A with the
properties (A1)-(A5). Then, for §,0 € R¥X2 the following two statements are

sym>
equivalent for almost all x € Q:
e (0—-S"(z,D)):(6—D)=0 Jor all D € RIx1,
e (§,0) € A(x).

However, our convergence analysis relies on stronger structural properties of the
graph approximation. We shall demonstrate in Section 7, how such graph approx-
imations can be constructed for some typical problems of practical interest within
the class of problems under consideration.

Assumption 6. For n € N, there exists a mapping S™ :  x R‘Sj;n‘f — Rg;rg, such
that

S"(-,0): Q— Rg;rg is measurable for all § € Rx4;

sym?

5" (x,-) : R — RIXE is continuous for almost every z € (;

S" is strictly monotone; i.e., for almost every x €  we have

(S™(x,81) — 8™(2,82)) : (61— 2) >0 forall &1 # &2 € R

There exist constants é;,é, > 0 and nonnegative functions m € L(Q),
ke L™ (Q) such that, uniformly in n € N, we have

18" (x,8)| <& 6] + k(z) and S™(2,8):8 =& 8] — m(x)

for all 6 € ngxn‘f and almost every z € €.

We aim to approximate the solution of (2.2) by solving the following explicit
nonlinear problem: For f € L™ (Q)? find (u,p, S) € Wy " ()4 x Lj(Q) x L™ (Q)4x4
such that

diviu®@u+pl—S)=f in D'(Q)4,
divu =0 in D'(Q2), (2.6)
S(x) = 8" (x,Du(x)) for almost every z € Q.

3. FINITE ELEMENT APPROXIMATION

This section is concerned with approximating problem (2.2) by finite elements.
To this end, we first approximate (2.2) by an explicitly constituted problem. We
introduce a general finite element framework for inf-sup stable Stokes elements.
This, together with some representative examples of velocity-pressure pairs of finite
element spaces, is the subject of section 3.2. The finite element approximation
of (2.2) is stated in section 3.3.
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3.1. Domain partition and refinement framework. In this section we provide
the framework for adaptive grid refinement. For the sake of simplicity, we restrict
our presentation to conforming simplicial meshes and refinement by bisection. To be
more precise, let Gy be a regular conforming partition of 2 into closed simplexes, the
so-called macro mesh. Each simplex in the partition is referred to as an element. We
assume that there exists a refinement routine REFINE with the following properties.
e The refinement routine has two input arguments: a regular conforming partition
G and a subset M < G of marked elements. The output is a refined regular
conforming triangulation of €2, where all elements in M have been bisected at
least once. The input grid can be Gy or the output of a previous application of
REFINE.
o Shape-regularity: We call G’ a refinement of G (briefly G’ > G), when it can be
produced from G by a finite number of applications of REFINE. The set

G :={G: G is a refinement of Gy}

is shape-regular, i.e., for any element E € G, G € G, the ratio of its diameter to
the diameter of the largest inscribed ball is bounded, uniformly with respect to
all partitions G, G € G.

For the existence of such a procedure, we refer to [Bé&n91], [Kos94| or the monograph
[SS05] and the references therein.
The neighbourhood of an element E € G, with G € G, is denoted by

NY(E):={E'€G: E'nE # &}.
Let w = Q and define U9 (w) := | J{E € G| Enw # &}. For subsets M < G, let
QM) = {E|EeM} and UI(M):=U(QM)).

Thanks to the shape regularity of G, we have that #N9(E) < C and |L{g(E)’ =
QWY (E))| < C|E| with a constant C' > 0 independent of G € G. For G € G, we
define the mesh-size function

Q5 hg(x) = U9 ()"

For z € interior(E), this coincides with the usual definition hg(z) = |E|1/d =:hg.
The mesh-size function is monotonic decreasing under refinement.

We call the (d — 1)-dimensional sub-simplexes of any simplex E € G, whose
interiors lie inside 2, the sides of G and denote the set of all of them by S(G). For
S e 8(G), we define hg := |S|*/(4=1) and observe for z € S that chs < hg(x) < Chg,
with constants C, c > 0 depending solely on the shape-regularity of G.

3.2. Finite element spaces. Denote by P, the space of polynomials of degree
at most m € N. For a given grid G € G and certain subspaces Q < L*(Q) and
V < C(Q), the finite element spaces are then given by

V(G) = {V €V : V]goFglePy, EcGand Vipg = 0}, (3.1a)
Q)= {QeQ: QlroF5' eby, Eeg}, (3.1b)

where Py ¢ WH*(E)? and Py < L®(E) are finite-dimensional subspaces P; <

Py € Py and Py < Pg < P, for some ¢ > 3 € N. For convenience, we introduce the

space of piecewise polynomials of degree at most m € N over G by
P,.(G):={R:Q—R:R|lgpeP,, Eeg}.

Note that Q(G) = L¥(Q) n P,(G) and since V(G) = Cy(Q) n P(G) it follows that
V(G) c I/VO1 (). Additionally, we assume that the finite element spaces are nested,
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i.e., if G, is a refinement of G, then
V(@) =V(G,) and  Q(G) = Q(G.). (3.2)

Each of the above spaces is supposed to have a finite and locally supported basis;
e.g. for the discrete velocity space this means that for G € G there exists an Ng € N
such that

V(G) = span{V¥, ..., V%g}

and for each basis function Vlg, i=1,..., Ng, we have that if there exists an F € G
with Vig # 0 on F, then supp ng c UY(E). We introduce the subspace of V((G) of
discretely divergence-free functions by

Vo(G) = {VEV”: /Qdidea:=0for allQe@"}
Q
and we define
(@) —{Q=a@): [ Qar-o}.

It will be assumed throughout the paper that all pairs of velocity-pressure finite
element spaces considered possess the following properties.

Assumption 7 (Projector 35, ). We assume that for each G € G there exists a
linear projection operator J5,, : Wy (Q)? — V(G) such that, for all s e (1,0),

e 39 preserves divergence in Q(G)*; i.e., for v € W, *(Q)¢ we have
/ Qdivvdz = / Qdivif vdr  forall Q e Q(G).
Q Q
e 39 is locally defined; i.e., for any other partition G, € G we have

I3 0lues () = 3 0lus (p) (3.3)

for all v e W, *(Q)% and all E € G with N9(E) < G,.
. jgiv is locally W' l-stable; i.e., there exists a ¢; > 0, independent of G, such
that

/ 35, v| + hg |VIG, v| do < cl/ |v| + hg |Vo| dz (3.4)
E U9 (E)

for all v e W) *(Q)? and all E € G. Here we have used the notation fp-do =
ﬁ I} p - dx for the integral mean-value over a measurable set B < RY, |B| # 0.

As in [DKS13, BBDR12, DRO7], the local W'!-stability property (3.4) implies
global Wh*-stability, i.e., for each s € [1,0], there exists a ¢, > 0, such that

ngivv”l,s S Cs HUHLS for all v e WOLS(Q)d' (35)

Moreover, since V(G) contains piecewise affine functions, we have the following
interpolation estimate. For all s € [1, 0], there exists a ¢s > 0 such that

/E v = 350" + 13 |[Vo = V3G 0" do < cohit ) ol oy (3:6)

forall E€ G and ve W, (Q)% 0<e<1.

As a consequence, we conclude the following result for weak limits in nested
spaces. Before stating the result, we adopt the following notational convention: we
shall write A < B to denote A < C - B with a constant C > 0 that is independent
of the discretization parameter h.
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Proposition 8. Let {vg}reny © Wy * ()%, s € (1,0), be such that vy — 0 weakly
in Wy s ()% as k — o0 and let {Gr}ren © G be a sequence of nested partitions of
Q, i.e., Gy < Ggi1 for all ke N. Then,

39k v — 0 weakly in Wy *(Q)? as k — oo.

Proof. Thanks to the uniform boundedness (3.5) of the sequence of linear operators
(355 - Ws(D? — V(Gr) © Wy* ()% ken, we have that there exists a not rela-
belled weakly converging subsequence of {3%’1’]1;;6} keN N WO1 *(Q)9. By the compact
embedding W*(2)¢ <> L*(Q)? the sequence {ﬁ(gﬁ’“vvk}keN converges strongly in
L*(2)4. Thanks to the uniqueness of the strong limit, it suffices to identify the limit
of {’Jgi’"vvk}keN in L*(Q)?. To this end, we introduce the sets
gr = ﬂgj and Q,‘: = {Eeg,j:Ng’C(E)eg,:},
i=k

ie., N9 (E) = N9 (E) for all j > k and F € g,j For j > k, we consider the
decomposition

~Gj ~Gj ~Gj
Jaw®i = (i vi)xaen + Gaivvi)Xa@aér):

For the latter term, we have according to (3.6) that

IV, < [haxugugn], V9l -

~Gi
H (v; = Jaiv¥i)Xa(g,é) LS thj Xu(g\g})

Here we have used the monotonicity of the mesh-size under refinement in the last

step. It follows from [MNS08, Corollary 4.1 and (4.15)] that thk XQ(G\G) )L‘ . —
0 as k — 0. Thanks to the shape-regularity of G, this readily implies that
kh_{go th’“xu(gk\é;) @) (8:7)

By the compact embedding Wol"s(Q)d <> L*(Q)¢ we have that v; — 0 strongly
in L5(Q)¢ as j — c0. Combining these observations, we conclude that for any € > 0
there exists a K. > 0 such that

<e forall j > k > K.. (3.8)

S

H(dev”j)XQ(gk\g“;)
We next investigate the term (jgfvvj)xg(é:). Thanks to the definition of g,j and
(3.3) we have
~Gj ~G .
(Jdiv”j)b(g",j) = (Jgikvvj”g(g“;) for all j > k.

Since a linear operator between two normed linear spaces is norm-continuous if and
only if it is weakly continuous (cf. Theorem 6.17 in [AB06], for example,) we deduce
that, for fixed k € N, we have

(jgfv”j)|ﬂ(g",j) —0  weakly in W5*(Q(G)? as j — o
By the compact embedding W, * ()¢ <>« L*(Q)? this implies that
(Jgfvvj)xg(gv:) — 0  strongly in L*(Q)? as j — 0.
Together with (3.8), we have, for all j > k > K, that

~G; i G
HJdivajHS < H(Jdiv”j)XQ(gk\g“,j) LT H(jdijv"’j)xﬂ(g“;) .
~Gj .
<e+ ‘ (devvj)xﬂ(g:) e as j — 0.
Since € > 0 was arbitrary, this proves the assertion. O

Next, we shall introduce a quasi-interpolation operator, which will be important
for the treatment of the, generally non-polynomial, stress approximation.
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Assumption 9. We assume that for each G € G there exists a linear projection
operator Ilg : L}(Q)?*¢ — P,_1(G)?*4, such that Ilg is locally L' stable, i.e., there
exists a ¢ > 0, depending on Gy, such that

/ [IgS| dz < c/ |S| dz  for all 8 e L*(€Q)%*¢,
E Us(E)

As a consequence, this implies that
TS|, < eS|, for all S e L*(Q)4*9, (3.9)
with a constant ¢, depending on Gy and s; compare also with (3.5).

Assumption 10 (Projector TJ%) We assume that for each G € G there exists a
linear projection operator 36 : LY(Q) — Q(G) such that, for all s’ € (1,0), 36 is
locally L' stable, i.e., there exists a ¢ > 0, independent of G, such that

/ 1384 da < c/ lgl dz forall ge L'(Q) and all E € G.
E U9 (E)
We may argue similarly as for jgiv to deduce that

|38al, < ¢slal, and /E|q —34[" do < eh |alives e () (3.10)

forall Ee G and ge We*(Q2),0<e < 1.

As a consequence of (2.3) and Assumption 7 (compare also with (3.5)) the fol-
lowing discrete counterpart of (2.3) holds; see [BBDR12].
Proposition 11 (Inf-sup stability). For all s,s" € (1,00) with % + é = 1, there
exists a Bs > 0, independent of G € G, such that

QdivVdx
sup fﬂvi > S |Qll, for all Qe Qy(G).
ozvev) Vi,
Thanks to the above considerations, there exists a discrete Bogovskii operator,
which has the following properties; compare also with [DKS13, Corollary 9.

Corollary 12 (Discrete Bogovskii operator). The linear operator B9 := jgiv 0B :
divV(G) — V(G) satisfies

HQd
div(BH) = H and Bs H%QHHI < sup M
* g Qs

for all H € divV(G) and s € (1,0), with a positive constant B, independent of
GeG.

Moreover, let {Gr}ren © G be a sequence of nested partitions of 0, i.e., Gry1 = Gk
for all k € N, and let Vi, € V(Gi) be such that Vi, — 0 weakly in W, *(Q)? as
k — oo. We then have that

BI*divVy, — 0 weakly in Wy *(Q)? as k — 0.

Proof. The claim follows as in [DKS12, Corollary 10] after replacing [DKS12, Propo-
sition 7| by Proposition 8 here in the proof. (Il

As in [Tem84|, we wish to ensure that the discrete counterpart of the convec-
tion term inherits the skew-symmetry of the convection term. In particular, upon
integration by parts, it follows that

f/('v®'w):Vhd:z:z/(v®h):Vw+(divv)(w~h)d:z: (3.11)
Q Q
for all v, w,h € D(Q)d. The last term vanishes provided that dive = 0, and then

/(v@v):V’vda::O.
Q
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It can be easily seen that this is not generally true for finite element functions
V e V(G), even if

/ QdivVdr =0 for all @ € Q(G), (3.12)
Q

i.e., if V' is discretely divergence-free. However, we observe from (3.11) that

—/(v@w):Vhdx:%/(v@h):Vw—(v@w):Vhdx =: Blv, w, h|
Q Q
(3.13)

for all v,w, h € Wolw’giov(Q)d. We extend this definition to W1 *(Q) in the obvious
way and deduce that

Blv, v,v] =0 for all v e WH*(Q)% (3.14)

We further investigate this modified convection term for fixed r,r’ € (1,00) with
1+ L =1; recall the definition of 7 from (2.1). We note that 7 > 1 is equivalent to
the condition r > d2—f2. In this case we can define its dual 7/ € (1,00) by + + £ =1

and we note that the Sobolev embedding
Whr(Q)4 — L*(Q)¢ (3.15)

holds. This is a crucial property in the continuous problem, which guarantees that

1,r Hh|

1,7 (316)

[ w@w): Vhds <c ol Jw
for all v,w, h e WH*(Q)4; see [BGMSGO09]. Because of the extension (3.13) of the
convection term to functions that are not necessarily pointwise divergence-free, we
have to adopt the following stronger condition in order to ensure that the trilinear
form B[-,-,-] is bounded on WL (Q)4 x Wh(Q)? x WL (Q). In particular, let
r > ﬁdl, in order to ensure that there exists an s € (1, 0) such that % + # + % = 1.
In other words, we have for v, w, h € WH*(Q)¢ that

|h

/Q(divv) (w - h)de < [[divo], |wl,: [k, < ¢ v, |w

1,r 1,7

with a constant ¢ depending on 7, {2 and d. Here we have used the embeddings
(3.15) and W™ (Q)? — L*(Q)?. Consequently, together with (3.16) we thus obtain

Blv, w, h] < c |v|,, |lw], . [k, - (3.17)
In view of (3.13), for v = (v1,...,va)T € Wy " (Q)?, the convective term can be
reformulated as
/ B[v,v] - wdz = Blv, v, w], we W, (Q), (3.18)
Q

where B[v,v] € L7(Q)% is defined by (B[v,v]); = L3¢ v, 2% 4 52 (vivy) for

v Oor.
ox

j=1,...,d. In particular, for v = V € V(G), we have that B[V, V] € Py,_1(G)%

Example 13. The following velocity-pressure pairs of finite elements satisfy As-
sumptions 7 and 10 for d = 2, 3 (see, e.g., [BBDR12, GL01, GS03]):

e Lowest order Taylor-Hood element;
e Spaces of continuous piecewise quadratic elements for the velocity and piecewise
constants for the pressure ([BF91, §VI Example 3.6]).

We note that the MINI element and the conforming Crouzeix—Raviart Stokes ele-
ment do not satisfy the nestedness hypothesis stated in (3.2).
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Remark 14. The boundedness of the trilinear form Bl-, -, -] stated in (3.17) re-

quires that r > %. In [DKS12] and [DKS13] the set of admissible values of r
2d

was the same range, r € (d—”,oo), as in the existence theorem for the continuous

problem in [BGMSGO9|; however, for r € (%, %] the finite element space for the

velocity was assumed in [DKS12] and [DKS13] to consist of pointwise divergence-

free functions, whose construction is more complicated. For simplicity, we shall
2d

therefore confine ourselves here to the limited range of r > 741 S0 as to be able to

admit standard discretely divergence-free (cf. (3.12)) finite element velocity spaces.

3.3. The Galerkin approximation. We are now ready to state the discrete prob-
lem. Let {V(G),Q(G)}gec be the finite element spaces of Section 3.2.

For n € N and G € G we call a triple of functions (Ug, PZ) € V(G) x Qo(G) a
Galerkin approximation of (2.6) if it satisfies

/S”(-,DUg):Dv+B[ g,Ug]-V—Pgdidex:/f-de,
. 0 (3.19)
/QQdingdxzo,

for all V € V(G) and @ € Q(G).
Restricting the test-functions to V(G) the discrete problem (3.23) reduces to
finding Ug € V(G) such that

/S”(~,DUZ):Dde+B[ 3 g,V]:/f.de (3.20)
Q Q

for all V' € Vy(G). Thanks to (3.14), it follows from Assumption 6 and Korn’s
inequality (2.5) that the nonlinear operator defined on Vo (G) by the left-hand side
of (3.20) is coercive and continuous on Vy(G). Since the dimension of V(G) is finite,
Brouwer’s fixed point theorem ensures the existence of a solution to (3.20). The
existence of a solution triple to (3.23) then follows by the discrete inf-sup stability,
Proposition 11. Of course, because of the weak assumptions in the definition of
the maximal monotone r-graph, (3.23) does not define the Galerkin approximation
(Ug, Pg) uniquely. However, supposing the axiom of choice, for eachn e N, G € G,
we may choose an arbitrary one among possibly infinitely many solution triples and
thus obtain

{( S,Pg,S”(~,DU6))}neN,geg. (3.21)

From (3.23) we see that Ug is discretely divergence-free and thus, thanks to (3.20)
and (3.14), we have that

| 87DV : DG dz = (1. UB) <11 UL, -

The coercivity of S™ (Assumption 6) and Korn’s inequality (2.5) imply that the
sequence {U¢ }nen is bounded in the norm of WO1 "(Q)?, independently of G € G and
n € N. This in turn implies, again by Assumption 6, the uniform boundedness of
S"(-,DUg) in L7 ()%, In other words, there exists a constant ¢y > 0 depending
on the data f, such that

lugl,, +[s"(-DUg)

Iy, L <cy, for all G € G and n € N. (3.22)

For the sake of simplicity of the presentation, if there is no risk of confusion, we
will denote in what follows S"(DUg) = §"(-,DUg).
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Remark 15. An alternative formulation of (3.20) is follows: find a triple ( G P&, Sg) €
V(G) x Qo(G) x Pe_1(G)¥*¢ such that

/sg;DV+B[ nUL VPR didexz/ﬁde,

Q Q
/ Q divUZ dz = 0, (3.23)
Q

/Sg:Dd:L'z/S”(DUE):Dd:z:7
Q Q

for all V e V(G), Q € Q(G), and D € Py_1(G)¥<. In particular, if we define
Hg . Ll(Q)dxd —>Pg_1(g)d><d by

/HgS:Ddx=/S:Ddx, for all D € Py_1(G)4*¢,
Q Q

then Assumption 9 can be easily verified and Sg may take the role of IlgS" (DUg)
in the subsequent analysis.

3.4. Discrete Lipschitz truncation. In this section we shall recall a discrete
counterpart of Lipschitz truncation, which acts on finite element spaces. This dis-
crete Lipschitz truncation is a composition of a continuous Lipschitz truncation
with a projection onto the finite element space. The continuous Lipschitz trunca-
tion used here is based on results from [DMS08, BDF12, BDS13|, which provides
finer estimates than the original Lipschitz truncation technique proposed by Acerbi
and Fusco in [AF88]; for details consider [DKS13].

We summarize the properties of the discrete Lipschitz truncation in the following
result. Similar results for Sobolev functions can be found in [DMS08] and [BDF12].

Proposition 16. Let 1 < s < o0 and let {Eg}ren be a sequence such that for all
k € N we have Ey € V(Gyi) for some G, € G. In addition, assume that {Ey}ren <
Wy s ()4 converges to zero weakly in Wy * ()4, as k — oo.
Then, there exists a sequence {Ai ;}r jen © R with 22" < Ak < 2271 4ng
Lipschitz truncated functions Ey j = E », ;, k,j € N, with the following properties:
(a) Ek;eV(Gr);
(b) [Erjl, ¢ <c Bkl forl<s<oo;
) IVEk;llo < €Ak
Ey; —0in L*(Q)? as k — oo;

VE; —*0 in L®(Q)4*? as k — o0;

(c
(d
(e

(f) For all k,j € N we have H>‘kaj X{Ek#Ek,j}Hs <e275

)
)

VEkHs'

The constants ¢ appearing in the inequalities (b), (¢) and (f) depend on d, Q, Py
and the shape-regularity of {G }ren. The constants in (b) and (f) also depend on s.

Proof. The proof is exactly the same as that of [DKS12, Theorem 17 and Corollary
18], replacing [DKS12, Proposition 7] by Proposition 8. |

4. ERROR ANALYSIS

4.1. Graph approximation error. In order to quantify the error committed in
the approximation of the graph A(x), x € 0, we introduce the following indicator.
For D e L"(2)%?, S e L" (Q)?*¢, we define

EAD,S ;:/ inf  |D—6"+|S—o| dz. 4.1
4(D, S) Q(é)a)eA(w)l "+ | (4.1)

The following result shows that this indicator is well-defined.
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Proposition 17. Let D e L"(Q)?¢ and S e LT'(Q)dXd; then, the mapping

T — inf Dx—5r+5x—0'r/
i D)= 8] +15() ~ o]

is_integrable. Moreover, there exist D e L"(Q)% and S € L ()% such that
(D(z),8(x)) € A(z) for a.e. x€Q and

/’,_/
dzx.

E4(D,S) = /Q ’D—f)

T+‘S—S

Proof. The first claim is an immediate consequence of the second one. The second
assertion follows from [AF09, Theorem 8.2.11| by observing that the mapping
Q x Rg;rg X Rg;ﬁ 5 (z;(8,0)) — |D(z) — 8" + |S(z) — ol

is Carathéodory, i.e., z — |D(z)—8|" +|S(x)—0o|" is measurable for all §, o € Rexd

and (8,0) — |D(z) — 8|" + |S(z) — o] is continuous for a.e. x € €. O

4.2. A posteriori finite element error estimates. In this section we shall prove
bounds on the residual

R(UE, P§, 8" (DUG)) = (RP*(Ug, P§,8"(DUY)), RE(UE)) € W7 (Q)4x Lj(Q)
of (2.6). In particular, for (v,q,T) € WY (Q)4 x LE(Q) x L (Q2)4*4 we have

( ) p 9 ( , 4, ) 0 ( ) 0

(R(v,q,T), (w,0)) := <dee(v, ¢, T), w> + <Ri°(v), 0>

:=/T:Dw—l—B['u,v]~w—qdivw—f~w—0divvdx,
Q
(4.2)

where (w,0) € W&’F,(Q)d x L™ (Q)/R. Although for the sake of simplicity we re-
strict ourselves here to residual-based estimates, we note that in principle other a
posteriori techniques, such as hierarchical estimates, flux-equilibration or estimates
based on local problems, can be used as well; compare with [MSV07, Sie09]. For
neNand G e G let (Ug, P}) € V(G) x Qo(G) be the Galerkin approximation
defined in (3.23). We begin with some preliminary observations.

The first part of the residual in (4.2), RP4(v,q, T) € W~17(Q)9, provides infor-
mation about how well the functions v, ¢, T satisfy the first equation in (2.6). For
the second part, we have Ri°(v) € (L5(£2))*. We note that the space (L5())* is
isometrically isomorphic to L™ (€2)/R, which is, in turn, isomorphic to L, (Q) since
r € (1,0). The term <Ri°(v), 0> provides information about the compressibility
of v.

We emphasize that R(v, ¢, T) = 0 if and only if RP4(v, ¢, T) = 0 and R¢(v) = 0,
but that a vanishing residual itself does not guarantee that (Dv(z),T(z)) € A(x)
for almost every z € Q. For this, additionally E4(Dwv,T) = 0 is needed.

For the rest of the paper let ¢ and ¢ be such that

- 1 dt 3d
2Py d fi=- 2 ifr< -2 (4
dr1 "7 o 2d—t’ fr<giz (3
t=r and t=t =7=1r, otherwise. (4.3b)

Note that (4.3a) implies that if 7 < 324, then ¢t <r and < 7.

Lemma 18. The triple (u,p, S) € Wy " ()% x Li(Q) x L ()% is a solution of
(2.2) if and only if

R(u,p,8) =0 in W Q)4 x LEQ)  and  Ea(u,S) = 0.
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Proof. Thanks to the fact, that Wol’t/(Q)d x L' (Q)/R is dense in Wol’f/(Q)d X
L™ (Q)/R we have that R(u,p,S) = 0 in WL{(Q)? x LE(Q) is equivalent to
R(u,p,8) = 0 in W=L7(Q)4 x L5(Q). This is, in turn, equivalent to the fact
that the triple (u,p, S) satisfies the system of partial differential equations (2.2).
On the other hand we have that (Du(z), S(x)) € A(x) for almost every x € § if
and only if £4(Du, S) =0, and that completes the proof. a

Note that Lemma 18 does not provide a quantitative relation between the error
and the residual. Even for simple r-Laplacian type problems, such a relation requires
complicated techniques and problem-adapted error notions (e.g. a suitable quasi-
norm); cf. [DK08, BDK12, LY01]. However, because of the possible nonuniqueness
of solutions to (2.2), such a relation cannot be guaranteed in our situation. We shall
therefore restrict the a posteriori analysis to bounding the residual of the problem
instead of bounding the error.

Recalling the quasi-interpolation IIg from Assumption 9 as well as the represen-
tation of the discrete convective term in (3.18), we define the local indicators on
FE € G as follows:

8% (Ug, Py, S™(DUB); B) = th( — divIIgS™(DUE) + B[US, Us] + VP} — f) HZ .

; t
+ " [Mes™(DU) - Pyid] |
+[8s"(DUg) — gS" (DU,
4.4a)
E5(Ug: B) = [divUg|; (4.4b)

and
Eg(Us, Py, S"(DUR) E) = EE%°(UG, P, S"(DUR) E) + E5(Un; E).  (4.4c)

Here, for S € S(9), []l|s denotes the normal jump across S and [[-] |oq = O.
Moreover, we define the error bounds to be the sums of the local indicators, i.e., for
M c G, we have

EEe (UL, Py, 8"(DUR); M) = > g (U, Py, 8" (DUY); E),
FEeM

EE(UgM) = |divUZ[; o 0

and
& (Ug, Py, S™(DUR)) := X% (Ug, Py, S™(DUY)) + £&(UR)
= E§(UG, Pg, " (DU);0) + E5(UG:6).
Theorem 19 (Upper bound on the residual). Let n € N and G € G, and denote by

(U™, PE) € V(G) x Qu(G) a Galerkin approzimation of (3.23). We then have the
following bounds:

[RP4 (UG, Pg. 8" (DUE)) |y 1.0 < C1 E67(UG. P5. 8" (DUE)" (450)

sup <R’C(Ug) 0> _ eir(um", (4.5b)

oeLY (Q)/R " infeer o — ¢l

The constant C; > 0 depends only on the shape-regularity of G, t, and on the
dimension d.
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Proof. The assertions are proved using standard techniques; compare e.g. with
[Ver96, AOOO] For the reader’s convenience we sketch the arguments. For arbitrary

(v,q) € Wy’ 7 Q)% x LY (Q)/R with vl # = lIpll;; = 1 we deduce from (3.23) that
(RP%(Ug, Pg, S"(DU)), v)
= /QHQSH(DUS) : D(v - d1v v) + B[Ug, Ug] - (v - jgivv) —f(v- jgivv)dx
_ /Q P div(v — 39, v) da + /Q (§"(DUE) — gS" (DUL)) : Dw — 39 v) da.
Thanks to (3.18), local integration by parts and using Holder’s inequality, we obtain
(RP(UG, Pg, 8" (DU)), v)

< Y { |- divlgs"(DUR) + BUS, UE) + VP -
Eeg

o R ] g

1 .
+ 5 |[MgS"(DUG) — Py

i,0F Hv - jgiv'“ 7 0F

+[8"(DUR) ~ g8 (DU); , IDvl |

< (Y {ng(~ diviigs™(DUG) + BUS, UZl + VP - £)];
EeG

v Hh;/f [TgS"(DUZE) — P2id]] ‘;E

1/t
D ol

Here, in the last inequality, we used the stablhty of 35, (see (3.4)), a scaled trace
theorem, and the interpolation estimate for 3
lapping of patches and a scaled trace theorem.

To prove the bound (4.5b), we first conclude from [, 1divUgdz = 0 and
Holder’s inequality that for all ¢ € R, we have

+|S"(DUE) —11gS™(D

div 0 (3.6), as well as the finite over-

/0divU§dx=/(0—c)d1vU"da? |divUg|, o —cl, -
Q )

Taking the infimum over all ¢ € R and then the supremum over all o € L (Q) proves
‘<’ in (4.5b). In order to prove ‘>’, we observe that

& (Ug) =/d1ng|dlvU "2 divUg dz

< s (RE@Y), >|
ocL? (Q)/R infeep HO —cly

Together with the definition of £§ (Ug) and noting that

ic n 1_% ic n\
=& (Ug) " =¢&5(Ug)7,
this yields (4.5b). O

|l divUg|" 2 divUg

n Ht—l

= Hdiv

Corollary 20. Under the conditions of Theorem 19, we have
(RP(UG, Pg, 8" (DU)), v)

d 1/{
<0 Y e (Un, Py, S (DUR); E) Vol e )
Eeg
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and

i 1/t
<RC Un Z 8 Ug, Hth’ Z/{g )
Eeg

for all ve W (Q)d and g € LY ().
0

Theorem 21 (Lower bound on the residual). Under the conditions of Theorem 19,

we have

0 &*(UG. Py 5" (DUR)) o
< |RP(UE, PE.S"(DUR) |y 11 + 0506 (U, S"(OUR)
The constant co > 0 solely depends on the shape-regularity of G, t, and on the
dimension d. The oscillation term is defined by

oscg (Ug, S"(DUP)) := Y. osc (Ug, 8" (DUY), E)

Eeg
=X min [he(F— o)l
Eeg T B

+|s™(DbUg) —11gS™(DUY) HtE

Proof. Let E € G and let S € §(G), i.e., there exist F1, Es € G, E7 # Es, such that
S = E1 N Ey. Let £ € P4, | be arbitrary; for convenience we use the notation

Rp = —divIlgS™"(DUR) + B[UZ, U] + VP} — fr e P4,_,,
and
Js = [lIgS"(DU) — PFid]| |s € PL*?,  where m = max{¢ — 1,5}

It is well known that there exist local bubble functions 6z, b5 € Wy *(€2), such
that

0<bg,bs <1, supp bp = F and supp bs = wg := E1 U Ey.  (4.7a)
Moreover, we have that there exist pg € ]Pge—1 and pg € Pixd
lpsllz g» such that

s with [pplp p =1 =

IReli < C [ Retopede,  [V(epe)ly < C g ol
E
sles < C [ Jsbspsde,  [V(bspslpu, <C 0" ps], , (@T0)
S )
17
and [ bspsz g <0th Ps|, o

compare e.g. with [Ver13, Chapter 3.6]. Here the constants only depend on r, the
polynomial degree of Rg, respectively Jg, on the shape-regularity of G, and on the
dimension d. Hence, for the element residual, we conclude that

[Rpls.s < C{(RP(U, P, S™(DUY)), brpr)

+ (TlgS™"(DUG) — §"(DUE), D(bepr)) + |f — felip }
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where we have used Holder’s inequality and that 0 < bg < 1. Together with a
triangle inequality and (4.7b), this implies that

|ng(—divIigS™(DUG) + B[UG. U] + VPG — f)];
C { (RP(U, Py, S™(DUR)), hgbrpr) (4.8)

+ g 8™ (DUG) — §*(DUG); ; + ke (f = FE)lie }

For the jump residual, we deduce from (4.7a) and integration by parts, that

sl s < c/ [16S™(DUE) — Py id]] bsps ds
s
= C{(RP*(U, Pg, 8" (DUY)), bsps)
+ > / (divIlgS™(DUG) — BIUG, U] — VP + f)6sps da}.
i=1,27 Ei
Therefore, we obtain, with (4.7b), Holder’s inequality, and (4.8), that

ng 5" 0U3) -

< c{(Ree(Ug, Pg, S"(DUR)), hy'bsps )

+ 3 [(RPe U, B2, 87 (DU), hgb,pr,)
i=1,2

+[igs™(DUg) — S"(DUE); .

+ th(f —fr)

We define ap = |hg(—divIlg§™(DUR) + BUS, US| + VP - f)[ ;. E

- -1
and fs = Hh;/t [1igS™(DUE) — P2 id]]H~S, S € S(G). Then, combining (4.8)
t,
and (4.9) and summing over all E € G, S € §(G), yields

&b (U, Py, 8" (DUY))
= Y ag|hg( - divlgS™"(DUE) + BUG, U] + VPG — f) I &

EeG
+ ) Bs | [S"(DUE) - P ld]]H
seS(9)
<C{<dee(Ug7Pg,Sn DUg Z (OéE-‘r Z 5s)hg5EpE>
EegG ScoENnQ

+<deE( gapgvsn(DUg))v Z 5Sh}§'/£55p5’>

SeS(G)

+ ) (aE+ 3 Bs) osc (Ug,sn(DUg),E)”f}.

Eeg ScOENQ

Here we have used that f e Pgéfh FE € G are arbitrary in the last step.
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Thanks to the fact that the supp bg, FE € G, are mutually disjoint up to a nullset
together with (4.7b), we have that

HZ(‘J‘EJ“ 2 65) thEpE)‘Z

Eeg SCOENQ
= E ap + E /35‘ heV 5El7E' ild

ScOENQ

(ZQE + Z ﬂs)

SeS(G)

< C & (UL, Py, 8" (DUY))

l/t

where we have used that each element E has at most (d + 1) sides S € S(G) with
S < 0F. The constants C depend only on the shape-regularity of G. Analogously,
we conclude from the fact that only finitely many of the supp bg, S € S(G), overlap,
that

V(X sshlfssps)|, <0 X o [ e <o Y
SeS(G) SeS(G) ws SeS(G)

e n n n n 1 El
< cere(uy, Py, S (DU

Combining Hélder’s inequality with similar arguments yields for the last term

Z(aE+ 3 ﬂ5>osc(Ug,S”(DUg);E)1/£

Eeg ScoEnQ

(Z aE+ Z ﬁs) v osc( Ug,S”(DU"))l/t

Eeg SeS(9)

< C e (U, py, s"oum)”

osc(U%, S"(DUR))Y.

Altogether, we have thus proved that
d n n n n
85 e(Ug,Pg,S (DUg))

<C{H72Pde( o Py, S"(DUL) gxte (s, Py, sm(dum)’

HW LE ()
+ osc(Ug, §"(DU)) €U, g, (DU ) " }.
This is the desired bound. ]

The following result states the local stability of the error bound and is referred
to as local lower bound in the context of linear elliptic problems.

Corollary 22 (Local stability). Suppose the conditions of Theorem 19 and let
M < G; then, there exists a constant C' depending solely on the shape-regularity of
G, t,d and 2, such that

£r% (U, Py, S"(DUR): M)

< C( |RPEUG, PG, 8" (DUG)) |y 1.+ g0 (pn) + 05¢Usg, S”(DUg);M)l/f)

|Pg

< (108 s re * 1B warsrn * 20+ [Fl, o)

LU (M)

Proof. The first bound follows as in the proof of Theorem 21. In order to prove
the second bound, let v € W’ (Z/{g(./\/l))d. We then have with Hoélder’s inequality
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and (3.17), with ¢ and # instead of r and 7, that
(RF(U}, P§. 5" (DUR)). v)
_ /Qngs"(DUg) Do+ BUL, UL v — Pidive — f-vde

<c(|ngs"(ouy)

+ UL,

LU (M) ;UI (M)

+ Hpguf;ug(/\/{) +1f |£;u9(/v1)) |v] 1,iUS (M) -

Note that in the case of (4.3a), we have
1 dt 1 dt
[ — < R —
2d—t 2d-—r
Hence, Holder’s inequality, the stability of IIg (Assumption 9) and Assumption 6
yield

~ _t
t = =r—-<r-= =:85.
r

Mg S (DU 5 10 0y < [UF (M) T [TgS™ (DUE)

s U9 (M)
< | e g S™(DUY) s UG (M)
< C( HDUSHt;ug(M) + H]% ;U9 (M) )

The oscillation term can be bounded above similarly, and the assertions follows. O

Remark 23. Corollary 22 states the stability properties of the estimator, which
are required in order to apply the convergence theory in [Sie09, MNS08|; compare
with [Sie09, (2.10b)], for example. The stability of the estimator is also of im-
portance for the efficiency of the estimator. If Corollary 22 fails to hold, it may
happen that the a posteriori error estimator is unbounded even though the sequence
of discrete solutions is convergent; in particular, div 8" (DUg) need not belong to
LT,(E) when 1 < r < 2. This problem already appears in the a posteriori analy-
sis of quadratic finite element approximations of the r-Laplacian, or the r-Stokes
problem (cf. [BS08]) for 1 < r < 2. In order to avoid this, we use IlIgS™(DUg)
instead of S"(DUg) in the element residual (4.4a). This is compensated by the

term |S™(DUG) — HgS"(DUg)H~ in the a posteriori bounds (4.5a) and (4.6); cf.
Appendixz A for further details.

5. CONVERGENT ADAPTIVE FINITE ELEMENTS

This section is concerned with the proof of convergence of an adaptive finite
element algorithm for the implicit constitutive model under consideration.

5.1. The adaptive finite element method (AFEM). In this section, we shall
introduce an adaptive finite element method for (2.2). The details of the subroutines
used in the process are listed below:

The routine SOLVE. We assume that for arbitrary n € N, G € G, the routine
SOLVE(n,G) = (Ug, P,,, 8" (-,DU)) computes an exact solution (Ug, P,,) € V(G) x
Q(G) of (3.23).

The routine MARK. For a fixed function ¢ : Ra’ — Ra’ , which is continuous at 0 with
g(0) = 0, we assume that the set M = MARK({Sg (Ug,PS,S"(DUZ);E)}EEQ,Q)
satisfies

max {&g (UG, PG, S"(-,DUG); E) : E € G\M}

5.1
<g(maX{Eg(Ug,Pg,S"(~,DU8);E) :EEM}). (5.1
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Algorithm 1 AFEM
Let £ =0, ng = 1, and let Gy be a given partition of Q.

1: loop forever

2: let S, = S™".

3: (Ug, P, Si(-,DU})) = SOLVE(ng, Gr)

4: compute {Eg, (Uk,Pk,Sk(~,DUk);E)}EEgk, and E4(DUy, Sk(-,DUY))

5: if £, (Uk, Py, Sk(-,DUy)) = E4(DUy, Si(-,DU})) then

6: My, = MARK ({€g, (U, Pr, Sk (DU ) E) } g - Gk)

7 Gyl = REFINE(gk,Mk) % mesh-refinement
8: Ng+1 = Nk

9: else

10: Ng+1 =Nk + 1 % graph-refinement
11: end if

12: k=k+1

13: end loop forever

Hence the marking criterion guarantees that all indicators in G are controlled by
the maximal indicator in M. Note that this criterion covers most commonly used
marking strategies with g(s) = s; cf. [Sie09, MNS08].

For the definition of the routine REFINE see Section 3.1.

For the sake of simplicity of the presentation, in the following, we will suppress
the dependence on x in our notation and write Si(DU}) = Si(-,DU}) if there is
no risk of confusion.

5.2. Convergence of the AFEM. Let {G;}reny = G be the sequence of meshes
produced by AFEM. For s € (1, 0], we define

Vi, = V@) W@ and @5 = JOG) @), (52)

k=0 k=0

Lemma 24. Let {(Ug, P, Sk(DUR))}, y © W5(2)* x Lg() x L7 ()4 be the
sequence produced by AFEM; then, at least for a not relabelled subsequence, we have

Ur — uep weakly in W, (Q)?,
P — pyo weakly in L} (%),
Sr(DU) — S weakly in L" ()47,
for some (Wop, Poo, Sop) € VI, x QF, x LSI(Q). Moreover, we have that
R(Uk, P, Sp(DUL)) —=* R(Uco, oo So)  weakly™ in W17 (Q)
and
(R(Uop, Py Sw), (©v,q)y =0 for all q € Qg,v € V;.
Proof. The proof is postponed to Section 6.1. O
Corollary 25. Let {(Uy, Py, Skc(DUL))}, o © W) x Li(€) x L™ ()44 be a

not relabelled subsequence with weak limit (we, P, Seo) € VI x Q7 x L (Q)¥*d gs
in Lemma 24. Then,

&, Uk, Py, Sk(DU)) — 0, ask — oo;
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implies that
R(Uep, ooy Soo) = 0 € WHT(Q)%
Proof. The upper bound, Theorem 19, together with &g, (U, Py, Sx(DU})) — 0
as k — oo, implies that
R(Up, P, Sp(DU})) — 0 strongly in W~ 5f(Q)%.
Thus the assertion follows from Lemma 24 and the uniqueness of the limit. (]

Lemma 26. Let {(Uy, Py, Si(DUR))}, oy © WE(Q)? x Li(2) x L ()% be a
dxd

not relabelled subsequence with weak limit (Ue, P, Seo) € Vo x QL x L™(Q) as
in Lemma 24. Assume that

EA(DU, S,(DUE)) - 0 as k — oo;
then,
(Duw(z), Sw(x)) € A(z)  for almost every x € Q.
Proof. The proof of this lemma is postponed to Section 6.2 below. |

Lemma 27. Assume that the sequence {ny}ren satisfies ny — N < o0 as k — 0.
We then have that

Egk(Uk,Pk,Sk(DUk))HO as k — 0.
Proof. The proof of this lemma is postponed to Section 6.3 below. ]

We further assume that the graph approximation is uniform with respect to the
graph approximation indicator.

Assumption 28. For every € > 0, there exists an N = N(¢) € N, such that
Ea(Dv,8"(-,Dv)) <e  forallve Wy ()¢ and n > N.

We note that this and Assumption 6 are the only strong assumptions among the
ones we have made; Assumption 28 is, however, only used in the proof of the next
theorem, and is not required for any of the preceding results.

Theorem 29. Let {(Uy, Py, S(DUY}))} be the sequence of function triples produced
by the AFEM. We then have that

EA(DUy, S, (DU)) — 0 as k — o0
and, for a not relabelled subsequence, we have that
&, Uk, Py, S, (DUy)) — 0 as k — oo.

Proof. We argue by contradiction. First assume that there exists an € > 0 such
that, for some subsequence, we have that

E4(DUy,, Sy, (DUL,)) >€,  forall £eN.

Consequently, by Assumption 28, we have that ny, = N, for some ¢y, N € N, and all
¢ = £y. Moreover, thanks to Lemma 24, there exists a not relabelled subsequence
{(Uy,, Py,, Sk, (DUY,)) }ZEN that converges weakly in W (Q)% x Ly (Q) x L™ (Q)4x.
Combining these facts, we conclude with Lemma 27 that

591% (Ukys Py, Sk, (DU, )) — 0.

In particular, there exists an £ > /g, such that gng(UkakUSkg (DU,)) < e
Therefore, by line 10 of AFEM we have that ng,+1 = N + 1, a contradiction.
Consequently, we have (for the full sequence) that

5A(DUk,Sk(DUk))—>O as k — oo.

This proves the first claim.
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Assume now that there exists an € > 0 such that we have that
ggk<Uk,Pk,Sk(DUk)) > € for all £ e N. (5.3)

By the above considerations, there exists a ko € N, such that E4 (DU, S (DU%)) <
e for all &k > ko. Therefore, according to line 5 of AFEM, we have that ni = ng,
for all k = ko. Consequently, Lemma 27 contradicts (5.3).

Combining the two cases proves the assertion. O

Corollary 30. Let {(Uy, Py, Sp(DUy))} be the sequence of function triples pro-
duced by the AFEM. Then, there exists a not relabelled subsequence with weak limit
(Uep, Pooy So) € Wy ()4 x Liy(Q) x L ()4 such that

EA(DU, S,(DUL) -0  and &g, (U, Py, Sx(DUR)) — 0,
as k — 00 and (Yo, P, S ) solves (2.2).

Proof. The claim follows from Theorem 29, Lemma 26, Corollary 25, and Lemma 18.
|

Remark 31. We emphasize that even in the case when the exact solution of (2.2)
is unique, we do not have that the statement of Corollary 30 is true for the full
sequence. This is due to the fact that the finite element error estimator is not
necessarily decreasing with respect to the refinement of the graph approximation.
However, when the exact solution is unique, it is easy to select a converging sub-
sequence with the help of the estimators; choose, for example, a subsequence, such
that £, (Uy,, Pr,, Sk,(DU},)) is monotonic decreasing in £.

6. THE PROOFS OF THE AUXILIARY RESULTS

6.1. Proof of Lemma 24. We recall (3.22) and observe that the spaces W, (€2)¢
and L™ (Q)% 1 e (1,00), are reflexive. Therefore, there exist u,, € V%, and
S, € L (©2)?%? such that for a not relabelled subsequence we have

Up — up weakly in W, " (Q)? (6.1)
and
S,(DUR) — S, weakly in  L" ()¢, (6.2)

as k — 0. The function uy, is discretely divergence-free with respect to 27 ie.,

/ qdivug, dr = lim (jgkq) divUpdx =0 for all g € Qg.
Q Q

k—o0

This follows from (3.10) as in the proof of [DKS13, Lemma 19|, replacing [DKS13,
(3.5)] with the density of the union of the discrete pressure spaces in Q7.
Moreover, using compact embeddings of Sobolev spaces, we have that

if r <d,

1 rd
Ui — uyp strongly in  L*(Q)¢  for all {5 © ( ' d_r> ’ (6.3)

s € (1,0), otherwise.
This implies, for arbitrary v € VVO1 *(Q)?, that
BlUg, U, v] = Blug, Uy, v],
or equivalently,
B[U},Ui] — Bltto, uen]  weakly in W11(Q)¢

as k — o0; compare also with [DKS13, Lemma 19].
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We now prove convergence of the pressure. Thanks to (3.17), we have
/ P, divVde = / Sy(DU) : DV + B[U, U] -V — f-Vdz
Q Q

2
< [SkOUR)|,. [PV, +c Uy, Ve + £y VI

for all V' € V(Gi). By (3.22) and the discrete inf-sup condition stated in Proposi-
tion 11, it follows that the sequence { Py } ken is bounded in the reflexive Banach space
LI(€). Hence, there exists a py, € Q7 < Li(2) such that, for a (not relabelled)
subsequence,

P — poo weakly in Lj)(€).

On the other hand we deduce for an arbitrary v € V% < W,'*(Q)? that
/ Poo divo dz — / Py divodz = / Py div 39k v dz
Q Q Q
= / S,(DU}) : DIk v — f -39 v + B[U, U] - 39 v da
Q
—>/ Sy :Dvde + Blug, uep] v — f-vde
Q

as k — oo, where we have used (6.2), the properties of ﬁgi’i, together with the
density of the union of the discrete velocity spaces in V% and the boundedness of
the sequence { Py }nen in L5 (). The assertion for all v € V7. then follows from the
density of V2 in V7 . 0

6.2. Proof of Lemma 26. According to Proposition 17, ~for k € N there exist

Dy € L"(Q)% and 8y < L ()4, such that (Dy(z), Sk(z)) € A(z) for a.e.

x € and

, = gA(DUk,Sk(DUk)) —0 ask — oo.
(6.4)

Thanks to (3.22), the sequences { Dy} e and { S} }ren are bounded in L™ (€)% and
L (2)@*4 respectively. Since both spaces are reflexive, together with the uniqueness
of the limits, we obtain that

D — Duy, weakly in L"(Q)%*4, (6.5a)

Sk — S weakly in L (Q)?*¢ (6.5b)

’
T
T

”DUk — D,

:+ s.pT) - 5

as k — oo.

Let §* : Q x RYXY — REX4 be a measurable selection with (8,5 (z,6)) € A(x)
for a.e. z € Q and thus (Duy (), S*(z, Duy(z))) € A(z) for a.e. x € Q ;compare
with Remark 1. Consequently, for every bounded sequence {¢}ren € LP(2) of

nonnegative functions, we have (recall (A3)) that

0< limsup/ ’S’k — S*(Duoo)) : (Dk — Duy)| ¢ dz
Q

k—0o0

= hrnsup/Q (S’k — S*(Duoo)) . (D, — Duy,) ¢ dz: (6.6)

k—0o0

= limsup/Q (Sk(DU) — S*(Dug)) : (DU, — Duy) ¢ dz,

k—o0

=:ap(z)
where we have used (6.4) in the last step. We assume for the moment that a; — 0
in measure and therefore

ar — 0 a.e. in (6.7)
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for at least a subsequence of ay. Since aj, is bounded in L' (2), we obtain with the
biting Lemma (Lemma 3) and Vitali’s theorem, that there exists a nonincreasing
sequence of measurable subsets E; < Q with |Ej| — 0 as j — 00, such that for all
j €N, we have

ap — 0 strongly in L'(Q\E;) as k — oo.

This, together with (6.6) and (6.5), implies for all nonnegative ¢ € L*(Q\E;) <
L*(Q) (extend ¢ by zero on Ej;) and each fixed j € N, that

lim Sk;Dmdx:/ S : Duy¢da.
k—=o Jo\E, O\E;

dxd

sym and

Consequently, since the graph is monotone, we observe, for arbitrary é € R
all nonnegative ¢ € L*(Q\E;), that

0 < lim (S‘k - S5*(-,9)) : (Dy, — 8)¢da.
k=0 Jo\E;

Since ¢ was arbitrary, we have that

(S —8*(,8)) : (Duw, —6) >0 forall § e R and a.e. € Q\Ej.

sym
According to Lemma 5, this implies that
(Dug(z), Sw(x)) € A(x) for almost every x € Q\E;.

The assertion then follows from |E;| — 0 as j — co.

It remains to verify that axy — 0 in measure as k — o0. We divide the proof into
four steps.

Step 1: First, we introduce some preliminary facts concerning discrete Lipschitz
truncations. For convenience we use the notation

Ey = jgikv(Uk —Uuyp) =Uj, — jgik;,uoo € V(Gr)

and let {Ey ;}x jen be the sequence of Lipschitz-truncated finite element func-
tions according to Proposition 16. Recall from Lemma 24 that E;, — 0 weakly
in Wol’r(Q)d, i.e., we are exactly in the situation of Proposition 16. Although
Ej, € Vo(Gi), i.e., Ey, is discretely divergence-free, this does not necessarily imply
that Ey ; € Vo(Gx) and thus we need to modify Ej ; in order to be able to use it
as a test function in (3.20). With the discrete Bogovskil operator B* := B9 from
Corollary 12, we define

Uy, = B*(div By, ;) € V(Gy). (6.8a)
The ‘corrected’ function

®y,j = Exj — ¥k, € Vo(Gr) (6.8b)
is then discretely divergence-free. We need to control the correction in a norm.

To this end we recall from Section 3.2 that Q(Gx) = span{QF,...,Q%, } for a
certain locally supported basis. Then, thanks to properties of the discrete Bogovskii
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operator and Corollary 12, we have that
fQQdika,j dx fQQdikaJ —div E} dx

[, < sup ==————=— = sup
BT Gen(on) (o] QeQ(Gr) ([o]

;OF div(E* — E;)d
= sup ( 2 pr Q7 div( k) dz
Q=% piQ supp Q¥ c{Ey ;=E} Q1.
2 Jo piQF div(Ey, ; — Ek)d:r>
supp Q¥ {Ey ;#Er}#J HQHTI

= sup ( Z Jo piQF div(Ey ; — Ek)dx>

Q:Zi‘v:kl piQ7 N\ supp Q¥ {Ey ;#EL}#J HQHT/

-~ ( 5 priQfdika,jdx>

Q= Zz 1 PiQ supp Q¥ N {Ex ;2Er}#QD HQ”T'

Br [P ;

+

. stupr;m{E G#Ey 2o Pi
< leEk-J‘XQk LT

su
{Eg,j#E} p

- amsih mat el

c ||div Ey j xqr ¢ \VEy ; Xk

{Eg j#EL} {Eg j#EL}

where xqx is the characteristic function of the set
{Ep j#Ek}

Q]{“Ek,j#Ek} = U {Q’f; | E € Gy, such that E c {Ey ; # Ek}}

Note that in the penultimate step of the above estimate we have used norm equiv-
alence on the reference space Pg from (3. 1b) In particular, we see by means of
standard scaling arguments that for Q) = ZZ f piQ¥ the norms

(Z il | QF

are equivalent with constants depending on the shape-regularity of G,, and I@’Q only.
This directly implies the desired estimate.

Observe that ‘Qk ’ <c \E| for all E € G, k € N, with a shape-dependent constant
¢ > 0; hence, ‘Q c|{Ex; # Ey}|, and it follows from Proposition 16(f)
that

1/r
N ma Qe lal,

{E j#Ek}

Br ¥y, <c < c27M|VEy],. . (6.9)

Ak,jXQ’{v

Eri7Brl|,

Moreover, we have from Proposition 16 and the continuity properties of B" (see
Corollary 12) that

®;,;,¥,; —0 weakly in W&’S(Q 4 for all s € [1,00), (6.10a)
D, ¥, —0 strongly in L*(Q)?  for all s € [1,0), (6.10b)
as k — oo.

Step 2: We shall prove (recall the last line of (6.6) for the definition of aj) that
n—a0

limsup/ lag| dz < ¢279/7,
{Ek Ey ]}

with a constant ¢ > 0 independent of j. To see this we first observe that |ai| =
ar + 2a;, with the usual notation a, (r) = max{—ay(x),0}, z € Q. Therefore, we



26 C. KREUZER AND E. SULI

have that

limsup/ lax| dz < limsup/ ay dz
k—o0 {En=En,j} k—o0 {E"=E"’j}

+ 21lim sup/ a, dz.
k—ow J{E"=E"J}

supp(a;) € L*(Q) in (6.6), we observe that the latter term is
zero. In order to bound the first term, we recall (6.8) and observe that

(6.11)
By choosing ¢y := x

/ apdzr = / (S — 8*(-,Duw)) : (DI gy, — Duy) dz
{Er=Ey ;} {Er=Ey,;}
+/ S, :D®y; dx+/ S :DW¥y ;dx
Q Q
—/ S*(-,Duy) : DE}, j dz
Q

+ / (S*(-, D’U,OC) - Sk) . DEk’j dx
{Er#Ey,;}
= Ik,j + IIkJ‘ + IIIk,j + IVkJ + Vk,j.
Thanks to (5.2) and (3.22) we have that

i g/ [Sk(-, DUY) = §° (-, Dus) | DI 0 — Duus| o
{(Ex=Ex,;}

_>07
T

< |Sk(-,DUL) — 8* (-, Duw)|,. [DIF o — Duy,

as k — oo. In order to estimate IIj ; we recall that ®;; € Vo(Gy) is discretely
divergence-free, and we can therefore use it as a test function in (3.20) to deduce
that

Iy, = =B[Ug, Uk, Pyl +/ f®p;dr—0 as k — oo.
Q

Indeed, the second term vanishes thanks to (6.10a). The first term vanishes thanks
to (6.3) and the weak convergence (6.10a) of ®;, ;. The term IIIj ; can be bounded
by means of (6.9); in particular,

lim sup [III; ;| < lim sup |S(-,DUR)|,., [D® |, < c27IIm,
k—o0

k—o0
where we have used (3.22). Proposition 16 implies that
lim IV ; = 0.
dm Ve =0
Finally, by (3.22) and Proposition 16, we have that

lim sup |V} ;| < lim. sup (18*(, Duc) ], + |Sk(-- DU, ) |DEk jX (B, 2By 13 ],
—00

k—o0
<279,
In view of (6.11), this completes Step 2.
Step 3: We prove, for any ¢ € (0,1), that

lim [ |ag|” dz =0, (6.12)
k—o0 O

which then implies the assertion ay — 0 in measure as k — 0.
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Using Holder’s inequality, we easily obtain that

/ lay|” dz = / lag|” da —|—/ lay|” dz
Q {Er=FEy,;} {Ex#Ey,;}

v 9
<of ([ qlae) ([l ar) 1B A B
{Er=Ey ;} 2

Thanks to (3.22), we have that ([, |ax| dz)? is bounded uniformly in k and by
Proposition 16 we have that

|E:ly,

Ap 22
»J

Bk # By i < c

where we have used that {E}}gey is bounded in Wy ()¢ according to (3.22) and
Assumption 7. Consequently, from Step 2 we deduce that

_ 4 c
lim sup/ lap|” dz < c|Q) 7 2790 4 —
Q 922ir(1-9)

k—00

The left-hand side is independent of j and we can thus pass to the limit j — oo.
This proves (6.12). O

6.3. Proof of Lemma 27. Since ny — N as k — o0, we may, w.l.o.g., assume that
n, = N for all k € N.
Step 1: We shall first prove that, in this case, we have that the (sub)sequences
in Lemma 24 do actually converge strongly, i.e.,
Ur — ugp in Wy (Q)4,
Py — poy in L (9), (6.13)
S,(DU) = SN (DU) — Sy = SV (Duy)  in L),
To this end, we investigate
ap := (SN (DUy) — Y (Duw)) : DU, — us) =0

3d 3d
ays and r > 335,

Ifr < dSTiiz’ then we can conclude, as in the proof of Lemma 26 in Section 6.2,
that

0 < /Q lag|? dz = /Q ((SN(DUk) — SY(Duy)) : DU}, — uoo))ﬁ dz — 0, (6.14)

(compare with Assumption 6) distinguishing two cases: r <

where we have used that a,, = 0 almost everywhere in €2. Thus, recalling that s
is strictly monotone, we obtain that

DU, —»Du,, and SYDU;) - SV (Duy,) ae inQ, (6.15)

at least for a subsequence of k — o0. Since 1 <t < r and 1 <t < 7/ (compare
with (4.3a)), we obtain with Lemma 24 and Vitali’s theorem that

Up > up in WHHQ), and SN(DUL) - SV (Duy) = S, in LI(Q)4
Indeed, using Holder’s inequality, we obtain with (3.22) that

r—t
DUk — Dug,, < |w[7 [DUk — Dugl,,

for all measurable w < €; i.e., {|{DU} — Duw|t}ren is uniformly integrable and
the claim follows from Vitali’s theorem and (6.15). The convergence of the stress
sequence follows analogously and the claim S (Duy) = Sy is a consequence of
the uniqueness of limits.
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If r > d3—4‘_12, then t = r and £ = 7 = r'; compare with (4.3b). We deduce from

Lemma 24 and (3.23) that

0 < lim sup/ (SY(DUy) — SV (Duy)) : DUy — ug) dv
Q

k—0

= limsup/ SN(DU}) : DUy — Sy : Duy, dz
Q

k—o0
:hmsup/ F-Ug— Sy :Duoodm:/f-uoo—SoozDuoodx:O.
k—w Jo Q
As before, thanks to the strict monotonicity of SY . we have that
Up — ugp and SN (DU} — SN (Duy) a.e. in Q (6.16)
at least for a subsequence of k — oo. Moreover,

lim SN(DUk):Ddex:/SN(DuOO):DuOOd%

and thanks to (3.22), we have that S (DU}) : DU} is bounded in L'(Q), hence
SN(DU}) : DU, LN SN (Duy) : Dug; compare with Lemma 3. Recalling As-
sumption 6 we have 0 < m + SY(DU}) : DU}, almost everywhere in Q. Com-
bining these properties, it follows from Lemma 4 that m + S~ (DU}) : DU, —
m 4+ SN (Duy) : Duy in L'(Q) and thus SY(DUY) : DU, — SY (Duy) : Dugy,
in L'(Q). Consequently, by the Dunford-Pettis theorem, {S™ (DU}) : DU} }ren is
uniformly integrable. Thanks to the coercivity of 87, we have that {| DUg|" }ren
and {|SY(DU)|" }xen are uniformly integrable and hence we deduce from (6.16),
with Vitali’s theorem, that
Up - uy, i WeT(Q)? and SY(DUL) — S, in L7 (Q)%4.
It remains to prove the strong convergence of the pressure (sub)sequence { Py} ken

in Lg(Q). Thanks to (2.3), for k € N there exists a v;, € Wy'* ()7 with |vell- = 1,
such that

i [P — Prl; < /(pOO — Py) divg da.
Q

Since {v}ren is bounded in WO1 ’%/(Q)d7 there exists a not relabelled weakly con-

verging subsequence with weak limit v € VVO1 4 (2)4. Therefore, we deduce using the
properties of ﬁgi’cv (see Assumption 7) that

ai |[pee — Pz < /(poo — Py)divug dz
Q

= /(poo — Pp)div39k vy, da + / Poo div(vy, — I vy) da.
Q Q

The second term vanishes thanks to Proposition 8. For the first term, we have,
thanks to Lemma 24 and (3.23), that

P — Pi) div 39k v dx
div
Q

= / (Soo — SY(DUY)) = 355 v + (Blttes, uoo] — B[U, Uy)) - 35k vy da
Q
—0 as k — oo.

Here we have ~us.ed in the last step the strong convergence of {SN (DU)}ken and
{Up}ken in LH(Q)%*? respectively Wol’t(Q)d, as well as that the latter result im-
plies that B[U}, Ux] — B[te, ue] strongly in L (Q)9. This completes the proof
of (6.13).
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Step 2: As a consequence of (6.13) we shall prove that
R(Uk, P, SN (DU})) — R(ton, pon, S (D)) strongly in WL Q)4 (6.17)

To this end we observe, for v € Wol’fl(Q)d, that

(RP%(UY, Py, SN (DUY)) = R (1, pi, Soc), v )

- / (SN(DUy) - Sw) : Dv + (B[U, Ui] — Blug, ug]) - vda
Q

+/(Pk—poo)div'vda:
Q
<{|$YOUL) S| + IBIUK U]~ Blur, ol + [P = pecle | 0l

Hence, thanks to (2.1), (6.13), and the fact, that B[Uj, U] — Bluw, uy ] strongly
in L¥(Q) (see Step 1), this proves the assertion for RPY. The assertion for R is
an immediate consequence of (6.13).

Step 3: We use the techniques of [Sie09] to prove that

R (U, Poos SN(DUOC)) = 0. (6.18)

To this end, we first need to recall some results from [Sie09].
For each x € {1, the mesh-size hg, (x) is monotonically decreasing and bounded
from below by zero; hence, there exists an hy, € L¥(2), such that

lim hg, = he in L¥(Q); (6.19)
k—0
compare e.g. with [Sie09, Lemma 3.2]. We next split the domain Q according to

Gi=()Gi={EeG:Eeg foralli>k} and Gf:=Gi\G},
i=k
ie., setting ) := Q(G;}) and QY := Q(GY), we have Q = Q U QY. It is proved in
[Sie09, Corollary 3.3] (compare also (3.7)) that, in the limit, the mesh-size function
hg vanishes on QY i.e.,

Jim, |guxoy

0= Jim [hg ey, (6:20

Here Qf := U9(92)) and we have used the local quasi-uniformity of meshes for the
latter limit. Since G;" = G;" = Gy, for any k > i, we have

QY = Q(G7) = QGx\G)).

Now, fix v € W27 (Q)4 A Wy () and g € W (), with [Jv],; = 1 = |q|
We shall prove that

1,¢

<R(Uk,Pk, SN (DUY)), ('v,q)> — <dee(Uk,Pk, SN(DU)), v — Jﬁivv>
+(R(Uk), ¢ — 350y

vanishes as k — o. Here we use the abbreviations Jgiv = 33{; and 36 = Jgk.

Then, (6.18) follows from (6.17) and the density of WQ’f(Q)de(}’t_(Q)d in Wol’f(Q)d
and of W (Q) in L¥ (€2). We shall estimate the two terms on the right-hand side



30 C. KREUZER AND E. SULI
separately. For the first one, we have with Corollary 20 that
(RP%(U, P, SV (DUY)), v = 0 )

< 3 &% (U, P SV (DU B) ' [V — VI, v

U (E)
EegGy,
< Z 5pde Uk,Pk, (DU )l/t HV - VIgiv Uk (B)
EeGi\G;
+ Y (UL P SY DU E) Y Vo - V30 Uk (E)
Eegf
< &8 (U P S (DU 606) [ Vo = V35 0]
+ 55:e (Ui, P, SY (DU); g;r)l/f [Vo - V30 #UI (G’

where we have used Holder’s inequality and the finite overlapping of the U9 (E),
E € Gi. In view of Lemma 24 and Corollary 22 we obtain that

&8 (U, P, SN (DUL); Gu\G;) < E8°(Uy, P, SN (DUY)) <1
Recalling (3.6), we thus obtain from the monotonicity of the mesh-size function that
(RP%(U, P, SV (DUY)), v = T0)

+ E2% (U, Py, SV (DUR); 6) .

S thiXQ; 0
A similar argument shows that
i ~ i 1/t
(R*(Uk), q— JQQ> < |lhg, war T &, (UL G) "
Thanks to (6.20), for € > 0 there exists an ¢ € N such that

(R(U, Py, 8¥(DUY)), (0,0) ) < € + &, (Us, Py, S¥ (DUR); 67,

and it therefore remains to prove that

g, (U, Py, SY(DUY);G) =0 ask — (6.21)
in order to deduce (6.18). To this end, let
& = €, (U, Py, SN (DUL); Ey) := max {5gk (U, P, SN (DU ) E): E Mk}.

Then, by the stability estimate, Corollary 22, and (4.4b) we have that
i i -1t

TS ||Ukumg (0 VO s ey + 1 Pelis iy + 1 Vs oy + [F] o

Ty k

< Uk — ) Uk — ue )+ [Pe _pOOHE;ug(Ek)

+ [div UkHiug(Ek)

t,U9( Ek)
The first line of this bound vanishes thanks to (6.13). Since Ej, € 29, we have that
|Ex Y < | hg, HOO_QQ and the remaining terms therefore vanish thanks to (6.20) and

the observation that Ej € QY. Therefore, we conclude with (5.1) that
€6, (Us, P, S (DU,); G7) < #G; max {&g, (U, i S¥(DUR); E): E€ G/}
< #Q;rg(fk) —0 ask — oo,
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where we have used the continuity of g at zero and that gj c g,j < Gp\Mj.
Combining these observations proves (6.18).
Step 4: In this step, we shall prove that

ggk(UkHPk?SN(DUk))_)O as k — .
To this end, we observe from (6.21) that it suffices to prove that
€, (Ur, Pi, S (DUL);GK\G) = 0 ask — o

for some fixed ¢ > 0. In view of Corollary 22, (6.17) and (6.18), it thus suffices to
show that

osc(Uy, SN (DUL); Gk\G;') -0 as k — .
This is a consequence of the properties of the oscillation, (6.20), (6.13), and As-
sumption 9, noting that

HSN(DUk) g, SN(DUk)“ o HHngOO _ HngN(DUk)H

+ 6, S0 = Secllzao + S — SYOUL)|__ -
Observing that this readily implies that the estimator vanishes on the whole se-
quence completes the proof. O

7. GRAPH APPROXIMATION

In this section we shall discuss the approximation of certain typical maximal
monotone graphs satisfying Assumption 28. Admittedly, for particular problems
the approximations suggested here might not always represent the best possible
choices, and in the context of discrete nonlinear solvers, such as Newton’s method,
properties of the smoothness of the approximation may become important as well.
We believe however that the following examples provide a reasonable guideline for
constructing graph approximations with properties that are required in applications.

7.1. Discontinuous stresses. Typical examples of discontinuous dependence of
the stress on the shear rate are Bingham or Herschel-Bulckeley fluids. In this case,
the fluid behaves like a rigid body when the shear stress is below a certain critical
value S* and like a Navier—Stokes, respectively power-law, fluid otherwise; compare
with Figure 1. To be more precise, for some yield stress ¢ > 0, we have
|IS|<oc < D=0,
D 2
IS|>0 < S=o0—+2v(D|")D;
| D|
where v > 0 denotes the viscosity v > 0; see [DL76]. A selection of the correspond-
ing maximal monotone graph is given, for example, by
D 0, iftD=0
|D|’ o +2v(D)D, otherwise.

(7.1)

S*(D) := S*(|D|) with S*(D) := { (7.2a)
For the sake of simplicity of presentation, we restrict ourselves in the following to
v > 0 being a constant. However, we emphasize, that the approximation techniques

presented below can be generalized to more complex relations such as, for example,

* D f D 9;—2
S*(D) = S1D), ! <,‘S S¥(D) = ¢i(k? + D*)"= D,  (7.2b)
S3(D), otherwise,

for D = 0. Here 6 > 0 and ¢y, ¢2, k1,42 = 0, g1 > 1, g2 = r, such that S1(8) < S3(9).

We denote the maximal monotone graph containing {(D, S*(D)): t > 0} by a and
observe that (d,0) € A if and only if (|d], |o|) € a. Therefore, the approximation of
the monotone graph reduces to approximating the univariate function S* by some
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smooth S™ : Ra’ — Rar . The explicit smooth approximation of S* is the obtained
setting

D forall De R (7.3)

Sn(D) = Sn(|DD|D| sym

IS A IST A

D 4 D

ot - - - - =

F1GURE 1. Bingham fluid (left) and schematic approximation of a
more complex law (right).

A simple approximation. A simple approach to approximating S* in (7.2a) is to
use the following smooth explicit law (cf. [HMST13]):
ST(D) := (2v + DL)D, where D, :=+/D? 4 72.
First assume that o > S7(D); then, (0,57(D)) € a according to (7.1). If D < 7,
then |S7(D) — S™(D)[|?> + |D — 0|? = |D|* < 72. Otherwise, we have
o= (2v+ Di)D < or2>2DD,(D+ D) > 4vD?,
and hence
1/3
1ST(D) — ST(D)|2+ |D — 02 = |D? < (%) 723,
Assume now that 0 < o < S7(D); then, D < 7 implies
D T 1
2vD — =57(D) > —D> ——— > —.
vDtop- =8 D)>0 < D> 5 55571
In other words this case can occur only for ‘large’ 7 > D
similarly

> 7 then we have

1/3
ot <20DD,(D+D,;)<8D° < D> Tz/s(gi) .

v
Therefore, we obtain

D,—D or? or?
S*D_STD _ T _ <7<42/3 1/32/3.
[7(D) = ST (D)| = o =5~ D.(D+D,y D2 - 7T
Combining the above cases shows the validity of Assumption 28 with 7 = L1, for

n
example. The verification of Assumption 6 is left to the reader.

Approximation by mollification. We can extend $* to an odd function on the
whole real axis by setting

S*(D) := —S*(—D) for D < 0.

Then, for n € N, we define an approximation of S* by

S™(t) = / S*(s)n™(s —t)ds,

—00
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with n™(t) = nn(nt); here n € C°(R) is a nonnegative even function with support
(=1,1) such that [;n(s)ds = 1. Consequently, the function S™ € C(R) is odd and
thus S™(0) = 0.

For nonnegative D € R} we have by the monotonicity of S* and the definition
of 5™, that there exists some 0 < D* € (D — 1, D + 1) such that (D*, S"(D)) € a.
Therefore, we have

/ 1
|S™(D) - S™(D)|" +|D—-D*|" <0+ —

and consequently
1
E4(0,8"(0) < ——0 asn—
n’f’

for all & € R%*?. This shows that Assumption 28 holds. Moreover, ¢,, satisfies

sym *

Assumption 6; compare e.g. with [BGMSG09, GMS07, GZG07|.

7.2. Monotone graph with plateaus. Similarly to (7.2), we consider a maximal
monotone graph with selection S*(D) = S*(\D|)%7 but now assume that S* :

RS — R{ is continuous with

ST(D), if D < d;
S*(D) =< o = const., if 61 <D < s
S3(D), else,

with

;=2

SH(D)=c¢i(k+D*) "= D, i=12

Here ¢1,c2, k1,62 = 0, ¢1 > 1, g2 = r, such that S7(d7) = S5 = S5(63); compare
with Figure 2 (left). In this case, we are basically in the same situation as in

1s| A

FIGURE 2. Graph with plateau (left) and plateau and jump (right).

Section 7.1 with interchanged roles of S and D. Therefore, using the approximation
techniques of Section 7.1, we can construct an approximation of the monotone
graph where the shear rate depends explicitly on the shear stress. However, in a
practical numerical method this relation typically has to be inverted, which may
cause additional computational difficulties.

Another approach is to use an approximation of the form

S\ (D) it S, (D) <o — L
S™(D) := { S5(D) if $1(D) >0+ %
S(D) otherwise,
where S? is the linear interpolant between o — 1 and ¢ + + with corresponding

values for D.
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Combined with an approximation strategy as in Section 7.1, this procedure can
also applied to cases where jumps and plateaus are both present; compare with
Figure 2 (right).

Remark 32. The arguments of §7.1 and 7.2 can obviously be extended to finitely
many jumps/plateaus and in particular cases even to countably many jumps/plateaus.
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APPENDIX A. STABILITY OF THE A POSTERIORI ESTIMATOR

Referring to Remark 23 we shall illustrate that div S"(DU¢) does not need to
belong to L (©2) when 1 < r < 2. In fact, this problem already appears in the

loc
a posteriori analysis of quadratic finite element approximations of the r-Laplacian.

To see this, we consider the following problem: for f e L™ (), find u € Wy (),
such that

—div (|Vu|"2Vu) = fe W (Q).

For Ge G, =2, let Ug e V(G) = {V e C(Q) : V|g € P, for all E € G}. Then, for
the residual

R(U) = f + div(|VU["2VU) e W17 (Q)
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and 7 < 7/, we have the bound
|div [VUG "2V Ug + f[fy-1rqy < C D (= div |VUG|""2VUg + f)|[

Eeg i
3 [l o[,

= Y E(U,G,E) = £(U,G);
Eeg
compare e.g. with [BS08|. In fact, it can be shown as in [Ver13, Chapter 3.8]|, that

ROy, < £0.9) < [RW)|_, , + ose(U1.9).
However, it is not clear, whether the element residual

3 Ing (= div [VUg|"2VUg + £,
Eeg
(and thus (U, G) and osc(U, G)) is bounded. In fact, elementary calculations show

that on an element E € G, we have

div(|VU|"~2VU)

d
re2 vU _y VU ?U
- 1- ——(VU), —2)|VU[" Ry
;1 [Ivor=( o YY) )+ =2V o YY) | 0a?
As a consequence of U|g € Py, we have that (g;—?])g - is bounded. Since |VU|
t/ oo

Y may have different zeros, we need to check when

A2
[%
and pr

/ VU |27 dz < 0.
B

Since VU € Py_1, for this to hold we need to have that

C-Dr—2F>-1 = e<1+ﬁ (A1)

where we have used that 1 < r < 2. This puts a restriction on the polynomial

degree of the finite element space.

We consider some special cases:
ed=1and ¢ =2 1<7r < 2and7 = r'. For simplicity, we assume that

E =[0,1] and that U = 22. Thus VU = U’ = 2z, divVU = U” = 2, and

we have that
1 , 1 ,
/ |div(|VU["2VU)|" da :/ | div(|2z|"?22)|" dz =
0 0

1 /
= 2(’"71)#/0 |div(acr71)|r dz

1
— 2= — 1)’”// 227" dg.
0

This term is finite if and only if
(r—2)r" > -1
< rir=2)>1-r
s rP-r—1>0

o rel _2*/5, ! +2*/5].




AFEM FOR IMPLICIT POWER-LAW FLUIDS 37

This restriction applies to any dimension, since one could always choose
U = [22,0,...,0]" as a quadratic function on the standard d-simplex.

el <r<d=2and7 = % d‘ﬁ“r. This case is relevant for power-law type
. . 3d .
models when r is close to 1, or, more precisely, when 7 < 725 respectively

r’ > 440 compare with (2.1). Then, (A.1) becomes
T 1

d—
(<14+2———=1+—.
dr(2—r) T
Since r > 1, in this case the residual is in general not in L] () even for
quadratic elements (¢ = 2).
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