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Abstract: In the context of infinitesimal strain plasticity with hardening, we
derive a stochastic homogenization result. We assume that the coefficients
of the equation are random functions: elasticity tensor, hardening parameter
and flow-rule function are given through a dynamical system on a probability
space. A parameter ε > 0 denotes the typical length scale of oscillations.
We derive effective equations that describe the behavior of solutions in the
limit ε→ 0. Our results are based on the needle-problem approach: We verify
that the stochastic coefficients “allow averaging”: In average, a strain evolution
[0, T ] 3 t 7→ ξ(t) ∈ Rd×d

s induces a stress evolution [0, T ] 3 t 7→ Σ(ξ)(t) ∈ Rd×d
s .

With the abstract result of [11] we conclude the stochastic homogenization
result.

1 Introduction
In its history, mathematics has often been inspired by questions from continuum mechanics:
Given a body of metal and given a force acting on it, what is the deformation that the body
of metal is experiencing? Euler has been inspired by this question; much later, the develop-
ment of linear and non-linear elasticity theory provided excellent models (and mathematical
theories) for non-permanent deformations. In contrast, the description of permanent defor-
mations with plasticity models is much less developed. The only well-established plasticity
models are based on infinitesimal strain theories, ad-hoc decomposition rules of the strain
tensor and flow rules for the plastic deformation tensor.

Homogenization theory is, in its origins, concerned with the following question: How
does a heterogeneous material (composed of different materials) behave effectively? Can we
characterize an effective material such that a heterogeneous medium (consisting of a very fine
mixture) behaves like the effective material? This homogenization question has a positive
answer in the context of linear elasticity: effective coefficients can be computed and bounds
for these effective coefficients are available. The situation is quite different for plasticity
models: Results have been obtained only in the last ten years and the effective model cannot
be reduced to one effective macro-model (it remains a two-scale model).

With only two exceptions, so far, homogenization results in plasticity treat essentially
the same system: Infinitesimal strains and an additive decomposition of the strain tensor are

∗Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, D-44227 Dortmund,
Germany.

1



Stochastic homogenization of plasticity equations 2

used, some hardening effect is included, and the homogenization is performed in a periodic
setting. The two exceptions are [7] and [16]: In [7], no hardening effect is used and the
limit system is much more involved. In [16], stochastic coefficients are permitted, but at the
expence of a one-dimensional setting. The present article is based on [11] and provides the
third exception: We treat a model with stochastic coefficients in dimensions 2 and 3.

We mention at this point the more abstract approach in the framework of energetic
solutions, see [12, 13], and its application in gradient plasticity in [9].

Plasticity equations

We study a bounded domain Q ⊂ Rd, d ∈ {2, 3}, occupied by a heterogeneous material,
and its evolution in some time interval (0, T ) ⊂ R. For a parameter ε > 0, we consider on
Q× (0, T ) the plasticity system

−∇ · σε = f , σε = C−1
ε eε ,

∇suε = eε + pε , ∂tp
ε ∈ ∂Ψε(σ

ε −Bεp
ε) .

(1.1)

The first relation is the quasi-static balance of forces in the body, f is a given load, σ the
stress tensor. The second relation is Hooke’s law which relates linearly the stress σ with the
elastic strain e. The third relation is the additive decomposition of the infinitesimal strain
∇su = (∇u + (∇u)T )/2. The fourth relation is the flow rule for the plastic strain p, it uses
the subdifferential ∂Ψ of a convex function Ψ. We refer to [1, 8] for the modelling.

Our interest here is to study coefficients B = Bε (hardening), C = Cε (elasticity tensor),
and Ψ = Ψε (convex flow rule function) that depend on the parameter ε > 0. We imagine ε
to be the spatial length scale of the heterogeneities. Since the coefficients depend on ε, also
the solution (u, σ, e, p) = (uε, σε, eε, pε) depends on ε.

We consider only positive and symmetric coefficient tensors, using the following setting:
We denote by Rd×d

s ⊂ Rd×d the space of symmetric matrices, L(Rd×d
s ,Rd×d

s ) is the space of
linear mappings on Rd×d

s . For every ε > 0 and almost every x ∈ Q, the tensors Cε(x), Bε(x) ∈
L(Rd×d

s ,Rd×d
s ) are assumed to be symmetric with respect to the scalar product on Rd×d

s .
Furthermore, for constants γ, β > 0, we assume the positivity and boundedness

γ |ξ|2 ≤ ξ : (Cε(x) ξ) ≤ 1

γ
|ξ|2 , β |ξ|2 ≤ ξ : (Bε(x) ξ) ≤ 1

β
|ξ|2 (1.2)

for every ξ ∈ Rd×d
s , a.e. x ∈ Q, and every ε > 0.

System (1.1) is accompanied by a Dirichlet boundary condition uε = U on ∂Q×(0, T ) and
an initial condition for the plastic strain tensor (for simplicity, we assume here a vanishing
initial plastic deformation). Finally, the load f must be imposed. We consider data

U ∈ H1(0, T ;H1(Q;Rd)) , f ∈ H1(0, T ;L2(Q,Rd)) , pε|t=0 ≡ 0 . (1.3)

The fundamental task of homogenization theory is the following: If uε ⇀ u converges in some
topology as ε→ 0, what is the equation that characterizes u?
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Known homogenization results and the needle-problem approach

The periodic homogenization of system (1.1) was performed in the last 10 years. The effective
two-scale limit system was first stated in [2]. The rigorous derivation of the limit system
(under different assumptions on the coefficients) was obtained by Visintin with two-scale
convergence methods [20, 21, 22], by Alber and Nesenenko with phase-shift convergence [3,
14], and by Veneroni together with the second author with energy methods [17]. By the same
authors, some progress was achieved regarding the monotone flow rule and a simplification
of proofs in [19]. We refer to these publications also for a further discussion of the periodic
homogenization of system (1.1).

The non-periodic homogenization of system (1.1) is much less treated. In particular, we
are not aware of any stochastic homogenization result (with the exception of [16], but the
analysis of the one-dimensional case is much simpler, since the stress variable can be obtained
by a simple integration from the force f).

For the non-periodic case, a partial homogenization result has been obtained in [11].
That contribution is based on the needle-problem approach, which has its origin in [18].
The present article is based on [11] and we therefore describe in the next paragraph the
needle-problem approach in more detail.

In the needle-problem approach, homogenization is seen as a two-step procedure. We
describe the two steps here with the scalar model −∇ · (aε∇uε) = f for a deformation
uε : Q → R. Step 1 is concerned with cell-problems: One verifies that, on a representative
elementary volume (REV, usually the unit square) and for a vanishing load, the material
behaves in a well-defined way: An input (here: the averaged gradient ξ of the solution across
the REV) results in a certain output (here: the averaged stress σ(ξ) = a∗ξ for some matrix
a∗). Step 2 is concerned with arbitrary domains Q and arbitrary loads f . The conclusion
of Step 2 (justified with the needle-problem approach) is the following: If the REV-analysis
provides the material law ξ 7→ σ(ξ), then the behavior of the material on the macroscopic
scale is characterized by −∇ · (σ(∇u)) = f in Q (in our example by −∇ · (a∗∇u) = f).
In [18], methods are developed and the two-step scheme is illustrated in the linear model:
The assumption of an averaging property on simplices implies the homogenization on the
macroscopic scale with the corresponding law.

In [11], we performed Step 2 of the needle-problem approach in the context of plasticity.
Our assumption was that the material parameters allow averaging: solutions on simplices
with affine boundary data x 7→ ξ · x and vanishing forces f ≡ 0 have convergent stress
averages: in the limit ε → 0, stress integrals converge to some deterministic quantity Σ(ξ).
Due to memory effects in plasticity problems, one has to find for every evolution of strains
ξ = ξ(t) an evolution of stresses Σ(ξ)(t) = Σ(ξ(.))(t). In [11], we derived from this averaging
assumption a homogenization result: For general domains Q, general boundary data U and
general forces f , the effective problem for every limit u = limε→0 u

ε reads

−∇ · Σ(∇su) = f in Q× (0, T ) . (1.4)

We recall the precise statement in Section 1.3, see Definition 1.9 and Theorem 1.10.
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The stochastic homogenization result

In this contribution, we perform the stochastic homogenization of the plasticity system.
Using the results of [11], we only have to verify the following: When the coefficient functions
of system (1.1) are given by some ergodic stochastic process, then averaging occurs for the
homogeneous plasticity system on simplices with affine boundary data.

The map Σ : ξ 7→ σ can be characterized in terms of a stochastic cell-problem. In the
homogenized system (1.5), the first relation coincides with (1.4) for z̄ = Σ(∇su). The other
two relations in (1.5) characterize the map Σ, see Definition 2.2 of Σ.

Definition 1.1 (The limit problem). Let the domain Q ⊂ Rd and the time horizon T > 0 be
as above, let Ω be a probability space with ergodic dynamical system as in Section 1.1,
let the stochastic coefficients C, B and Ψ be as in Assumption 1.5. We use the func-
tion spaces L2

pot(Ω) and L2
sol(Ω) of (1.11) and (1.12). For U and f as in (1.3) we con-

sider the following problem: Find u ∈ H1(0, T ;H1(Q)), p ∈ H1(0, T ;L2(Q;L2(Ω;Rd×d))),
z ∈ H1(0, T ;L2(Q;L2

sol(Ω))) and υ ∈ H1(0, T ;L2(Q;L2
pot(Ω))) such that, with z(x, t) :=´

Ω
z(x, t, ω)dP(ω), there holds

ˆ T

0

ˆ
Q

z : ∇ϕ =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)) ,

∇s
xu = Cz − vs + p a.e. in [0, T ]×Q× Ω ,

∂tp ∈ ∂Ψ(z −Bp) a.e. in [0, T ]×Q× Ω .

(1.5)

Additionally, we demand that the boundary condition u = U on ∂Q× (0, T ) and the initial
condition p ≡ 0 for t = 0 are satisfied in the sense of traces.

Our main result is the following homogenization statement.

Theorem 1.2 (Stochastic homogenization in plasticity). Let Q ⊂ Rd be a bounded domain,
d ∈ {2, 3}, T > 0. Let τ be an ergodic dynamical system on the probability space (Ω,ΣΩ,P)
as in Section 1.1, let the stochastic coefficients B, C, Ψ and the data U and f be as in
Assumption 1.5. Then, there exists a unique solution (u, p, z, υ) to the limit problem (1.5)
of Definition 1.1. For ω ∈ Ω, let (uε, σε, eε, pε) be weak solutions to (1.1). Then, for a.e.
ω ∈ Ω, as ε→ 0,

uε ⇀ u weakly in H1(0, T ;H1(Q)) and

pε ⇀

ˆ
Ω

p dP , σε ⇀
ˆ

Ω

z dP weakly in H1(0, T ;L2(Q)) .

Remarks. The weak solution concept for the ε-problem (1.1) is made precise in Definition
1.6. The unique existence of a solution for a.e.ω ∈ Ω is guaranteed by Theorem 1.7.

The proof of Theorem 1.2 is concluded in Section 3.4. A sketch of the proof is presented
at the end of Section 1.3.
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1.1 Setting in stochastic homogenization

Let (Ω, dΩ) be a compact metric space with the corresponding Borel-σ-algebra ΣΩ and a Borel
measure P such that (Ω,ΣΩ,P) is a probability space. Let (τx)x∈Rd be an ergodic dynamical
system on (Ω,ΣΩ,P). We rely on the following definitions: A family (τx)x∈Rd of measurable
bijective mappings τx : Ω 7→ Ω is called a dynamical system on (Ω,ΣΩ,P) if it satisfies

(i) τx ◦ τy = τx+y , τ0 = id (group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ∈ ΣΩ (measure preservation)

(iii) A : Rd × Ω→ Ω (x, ω) 7→ τxω is continuous (continuity property)

We say that the system (τx)x∈Rd is ergodic, if for every measurable function f : Ω→ R holds[
f(ω) = f(τxω) ∀x ∈ Rd , a.e. ω ∈ Ω

]
⇒ [∃c0 ∈ R : f(ω) = c0 for a.e. ω ∈ Ω] . (1.6)

An important property of ergodic dynamical systems is the fact that spatial averages can be
related to expectations. For a quite general version of the ergodic theorem, we refer to [24].

Theorem 1.3 (Ergodic theorem). Let (Ω,ΣΩ,P) be a probability space with an ergodic dy-
namical system (τx)x∈Rd on Ω. Let f ∈ L1(Ω) be a function and Q ⊂ Rd be a bounded open
set. Then, for P-almost every ω ∈ Ω,

lim
ε→0

ˆ
Q

f(τx
ε
ω) dx = |Q|

ˆ
Ω

f dP . (1.7)

Furthermore, for every f ∈ Lp(Ω), 1 ≤ p ≤ ∞, and a.e. ω ∈ Ω, the function fω(x) = f(τxω)
satisfies fω ∈ Lploc(Rd). For p <∞ holds fω(·/ε) = f(τ·/εω) ⇀

´
Ω
f dP weakly in Lploc(Rd) as

ε→ 0.

For brevity of notation in calculations and proofs, we will often omit the symbol dP in
Ω-integrals. We assume that the coefficients in (1.1) have the form

Cε(x) = C(τx
ε
ω) , Bε(x) = B(τx

ε
ω) , Ψε(σ) = Ψ(σ; τx

ε
ω) (1.8)

for some functions B, C, and Ψ.
The stochastic homogenization result uses the function spaces L2

pot(Ω) and L2
sol(Ω) that

we define next. We denote the set of continuous functions Ω → R by C(Ω). We note that
Ω is a separable metric space and thus the Borel-σ-algebra is generated by countably many
open sets. From [5] Theorem 4.13 we get that Lp(Ω) is separable for every 1 ≤ p <∞. From
[4] Theorems 67.2 and 68.1 we get that C(Ω) is dense in L1(Ω) and thus in Lp(Ω) for every
1 ≤ p <∞.

With the help of the dynamical system τ and the canonical basis (ei)1≤i≤d of Rd we define
derivatives of a function f ∈ C(Ω) by

∂ω,i f(ω) := lim
R3h→0

f(τheiω)− f(ω)

h
, (1.9)
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if the limit exists. The space of continuously differentiable functions on Ω is

C1(Ω) := {f ∈ C(Ω) | limit (1.9) exists for everyω ∈ Ω, i ≤ d,

and ∂ω,if ∈ C(Ω) for every 1 ≤ i ≤ d} .

We use the gradient ∇ωf := (∂ω,1f, . . . , ∂ω,df) and define divergence ∇ω ·F and spaces Ck(Ω)
in the usual way. The spaces Ck(Ω) are Banach spaces with respect to the norm

‖f‖Ck(Ω) := max
ω∈Ω

∑
|α|≤k

|∂αωf(ω)| .

From [24] (see note before Definition 2.2), it follows that Ck(Ω) is dense in Ck−1(Ω) and in
Lp(Ω) for every 1 ≤ p <∞ and for every k ∈ N.

For a set X, a function f : Ω → X and ω ∈ Ω, the function fω : Rd → X, fω(x) :=
f(τxω) is called a realization (or the ω-realization) of f . For every continuous function f ,
the realizations fω : x 7→ f(τxω) are continuous by (iii) above. If f ∈ C1(Ω), then fω is
differentiable for every ω, since

∂ifω(x) := lim
R3h→0

fω(x+ hei)− fω(x)

h
= lim

R3h→0

f(τheiτxω)− f(τxω)

h
= ∂ω,i f(τxω) .

In particular, for f ∈ C1(Ω), we find

∇xfω(x) = ∇ωf(τxω) ∀ω ∈ Ω, x ∈ Rd . (1.10)

We usually drop the index x in x-derivatives and simply write ∇fω for the spatial gradient.
With the derivatives of functions on Ω we can now define two useful function spaces as the
closure and the orthogonal complement of subsets of L2(Ω,Rd×d),

L2
pot(Ω) := clL2(Ω)

{
∇ωu |u ∈ C1(Ω;Rd)

}
, (1.11)

L2
sol(Ω) :=

(
L2
pot(Ω)

)⊥
. (1.12)

Constant maps are in L2
sol(Ω): for every vector c ∈ Rd, every u ∈ C1(Ω,R), and almost every

ω ∈ Ω, we find by the ergodic theorem∣∣∣∣ˆ
Ω

∇ωu · c
∣∣∣∣ = lim

n→∞

∣∣∣∣ 1

(2n)d

ˆ
[−n,n]d

∇ωu(τxω) · c dx
∣∣∣∣ ≤ lim

n→∞

1

(2n)d

ˆ
∂[−n,n]d

‖u‖∞ |c| = 0 .

We denote by L2
loc(Rd;Rd×d) the set of measurable functions f such that f |U ∈ L2(U ;Rd×d)

for every bounded set U ⊂ Rd. We furthermore use the corresponding function spaces in the
spatial variable x,

L2
pot,loc(Rd) :=

{
u ∈ L2

loc(Rd;Rd×d) | ∀U bounded domain, ∃ϕ ∈ H1(U ;Rd) : u = ∇ϕ
}
,

L2
sol,loc(Rd) :=

{
u ∈ L2

loc(Rd;Rd×d) |
ˆ
Rd

u · ∇ϕ = 0 ∀ϕ ∈ C1
c (Rd)

}
.

The following theorem is an important tool in stochastic homogenization, see e.g. [23] or
[24], Lemma 2.3 and Theorem 2.1 for a generalized form.
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Theorem 1.4 (Realizations of potentials and solenoidals). Let v ∈ L2
pot(Ω). Then P-almost

all realizations x 7→ v(τxω) belong to L2
pot,loc(Rd). Let w ∈ L2

sol(Ω). Then P-almost all
realizations x 7→ w(τxω) belong to L2

sol,loc(Rd).

Remark. The above theory for Ck(Ω), L2
pot(Ω) and L2

sol(Ω) can also be developed for arbitrary
stochastic geometries, see [10]. In particular, the compactness of Ω can be replaced by the
assumption that (Ω, σ,P) is the probability space of a stochastic geometry.
Remark. The periodic homogenization setting is a special case of the stochastic setting. In
the periodic case we recover known results. The problem on the periodicity cell is related to
a problem on Ω, which is formulated in (1.5) with the help of the spaces L2

pot(Ω) and L2
sol(Ω).

1.2 Solution concepts and existence results

To formulate a stochastic setting, we consider C,B ∈ L∞(Ω;L(Rd×d
s ,Rd×d

s )), pointwise sym-
metric, such that for γ, β > 0 holds

γ |ξ|2 ≤ ξ : C(ω)ξ ≤ 1

γ
|ξ|2 , β |ξ|2 ≤ ξ : B(ω)ξ ≤ 1

β
|ξ|2 , (1.13)

for every ξ ∈ Rd and a.e. ω ∈ Ω. Let Ψ : Rd×d
s ×Ω→ (−∞,+∞] be measurable in Rd×d

s ×Ω,
lower semicontinuous and convex in Rd×d

s for a.e. ω ∈ Ω, and with Ψ(0, ω) = 0 for a.e.ω ∈ Ω.
We furthermore assume that for a.e.ω ∈ Ω there is c(ω) > 0 such that the convex dual
satisfies

|Ψ∗(σ; τxω)−Ψ∗(σ; τyω)| ≤ c(ω) |x− y| |σ| ∀σ ∈ Rd×d
s , x, y ∈ Rd . (1.14)

Assumption 1.5 (Data). Let C,B ∈ L∞(Ω;L(Rd×d
s ,Rd×d

s )) and Ψ : Rd×d
s ×Ω→ (−∞,+∞]

be such that (1.13)–(1.14) are satisfied. We consider only parameters ω ∈ Ω such that the ω-
realizations Cω(x) := C(τxω), Bω(x) := B(τxω) are measurable and such that (1.2) and (1.14)
hold. We furthermore assume that U and f satisfy the regularity (1.3) and the compatibility
conditions U |t=0 = 0, f |t=0 = 0.

Our aim is to study (1.1) with the coefficients defined in (1.8). Omitting the index ω
whenever possible, we find that Cε := Cε,ω(x) := C(τx

ε
ω) and Bε := Bε,ω(x) := B(τx

ε
ω)

satisfy (1.2) and Ψε satisfies∣∣Ψ∗ε,ω(σ;x1)−Ψ∗ε,ω(σ;x2)
∣∣ ≤ c(ε, ω) |x1 − x2| |σ| . (1.15)

The condition (1.15) is of technical nature and is used only in the proof of the existence
result, Theorem 1.7. Using the methods of Section 2, one can prove Theorem 1.7 also without
this Lipschitz condition.

Definition 1.6 (Weak formulation of the ε-problem). We say that (uε, σε, eε, pε) is a weak
solution to the ε-problem (1.1) on Q with boundary condition U if the following is satisfied:
There holds uε = vε + U with

vε ∈ H1(0, T ;H1
0 (Q)) , eε, pε, σε ∈ H1(0, T ;L2(Q;Rd×d

s )) ,

equation (1.1)1 holds in the distributional sense and the other relations of (1.1) hold pointwise
almost everywhere in Q× (0, T ).
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We note that, due to the regularity of σε, every weak solution to (1.1) satisfies
ˆ T

0

ˆ
Q

σε : ∇sϕ =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)) . (1.16)

Theorem 1.2 of [11] provides the following:

Theorem 1.7 (Existence of solutions to the ε-problem). Let the coefficient functions C, B,
Ψ, the parameter ω ∈ Ω, and the data U and f be as in Assumption 1.5. Then, for every
ε > 0, there exists a unique weak solution (uε, σε, eε, pε) to the ε-problem (1.1) in the sense
of Definition 1.6. The solutions satisfy the a priori estimate

‖uε‖V1
1

+ ‖eε‖V1
0

+ ‖pε‖V1
0

+ ‖σε‖V1
0
≤ C , (1.17)

in the spaces V1
0 := H1(0, T ;L2(Q;Rd×d

s )) and V1
1 := H1(0, T ;H1

0 (Q)), the constant C =
C(U, f, β, γ) depends on β and γ from (1.2), but it does not depend on ε > 0 or ω ∈ Ω.

1.3 The needle problem approach to plasticity

The main result of [11] is a homogenization theorem. Under the assumption that causal
operators Σ and Π satisfy certain admissibility and averaging properties, we obtain the
convergence of the ε-solutions uε to the solution u of the effective problem (1.4). We
next recall the required properties. In the following, we use the space H1

∗ (0, T ;Rd×d
s ) :=

H1(0, T ;Rd×d
s ) ∩ {ξ | ξ|t=0 = 0} of evolutions with vanishing initial values.

Definition 1.8 (Averaging). We say that a map F : H1
∗ (0, T ;Rd×d

s )→ H1(0, T ;Rd×d
s ) defines

a causal operator, if, for almost every t ∈ [0, T ], the value F (ξ, t) := F (ξ)(t) is independent
of ξ|(t,T ]. We say that the coefficients Cε, Bε and Ψε allow averaging, if there exist causal
operators Σ and Π such that the following property holds: For every simplex T ⊂ Q, every
boundary condition ξ ∈ H1

∗ (0, T ;Rd×d
s ) and every additive constant a ∈ H1(0, T ;Rd), the

corresponding solution (uε, σε, eε, pε) of the ε-problem (1.1) on T with f = 0 and U(x, t) =
ξ(t)x + a(t) satisfies the following: As ε → 0, for a.e. t ∈ (0, T ), the averages of pε and σε
converge:  

T
pε(t)→ Π(ξ)(t) ,

 
T
σε(t)→ Σ(ξ)(t) . (1.18)

Here,
ffl
T = |T |−1

´
T denotes averages. In particular, we demand that limits of (averages of)

stress and plastic strain depend only on the (time-dependent) boundary condition ξ, not on
a and not on the simplex T .

Definition 1.9 (Effective equation in the needle problem approach). The effective plasticity
problem in the needle problem approach is given by

−∇ · Σ(∇su) = f in Q× (0, T ) , (1.19)

with boundary condition u = U on ∂Q × (0, T ). A function u is a solution to this limit
problem if u = U + v holds with v ∈ H1(0, T ;H1

0 (Q;Rd)) and (1.19) is satisfied in the
distributional sense. Regarding the expression Σ(∇su) we note that, for a.e.x ∈ Q, the map
t 7→ ∇su(x, t) is in the space H1

∗ (0, T ;Rd×d
s ), hence Σ(∇su) is well-defined for almost every

point in Q× (0, T ).
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Result of the needle problem approach. Theorem 1.6 and Remark 5 of [11] (Proposi-
tion 4.6 in a revised version) provide the following result:

Theorem 1.10 (Needle-approach homogenization theorem in plasticity). Let Q ⊂ Rd be
open and bounded, let the data f and U be as in Assumption 1.5, let the coefficients Cε, Bε

and Ψε be as above, satisfying (1.2). Let the data allow averaging in the sense of Definition
1.8 with causal operators Σ and Π, and let Σ satisfy the admissibility condition of Definition
1.11. Let (uε, σε, eε, pε) be the weak solutions to the ε-problems (1.1). Then, as ε→ 0, there
holds

uε ⇀ u weakly in H1(0, T ;H1
0 (Q;Rd)) ,

pε ⇀ Π(∇su), σε ⇀ Σ(∇su) weakly in H1(0, T ;L2(Q;Rd×d)) ,

where u is the unique weak solution to the homogenized problem

−∇ · Σ(∇su) = f on Q× (0, T )

with boundary condition U in the sense of Definition 1.9.

An assumption that implies admissibility. For arbitrary h > 0, we use a polygonal
domain Qh ⊂ Q and a triangulation Th with the properties

Th := {Tk}k∈Λh
is a triangulation of Qh, diam (Tk) < h ∀ Tk ∈ Th,

Qh has the property that x ∈ Q, dist(x, ∂Q) ≥ h implies x ∈ Qh ,
(1.20)

where Tk are disjoint open simplices and Λh ⊂ N is a finite set of indices. We always assume
that the sequence of meshes is regular in the sense of [6], Section 3.1. As in [18], we consider
the finite element space of continuous and piecewise linear functions with vanishing boundary
values,

Yh :=
{
φ ∈ H1

0 (Q) | φ|Tk is affine ∀ Tk ∈ Th, φ ≡ 0 on Q \Qh

}
. (1.21)

Discretization of boundary conditions: We may extend the triangulation of Qh by a finite
amount of simplices with diameter not greater than h to obtain a grid T̃h that covers Q
in the sense Q ⊂

⋃
Tk∈T̃h

T̄k and introduce Ỹh :=
{
φ ∈ H1(Q) | φ|Tk∩Q is affine ∀ Tk ∈ T̃h

}
.

Denoting by RQ,h the H1-orthogonal Riesz-projection H1(Q) → Ỹh, we set Uh := RQ,h(U)
and observe that Uh → U converges strongly in H1(0, T ;H1(Q)) as h→ 0.

Definition 1.11 (Sufficient condition for admissibility of Σ). We consider a causal operator
Σ : H1

∗ (0, T ;Rd×d
s ) → H1(0, T ;Rd×d

s ). We say that Σ satisfies the sufficient condition for
admissibility if the following property holds: Let h→ 0 be a sequence of positive numbers, let
Th be a sequence of regular grids satisfying (1.20), and let vh ∈ L2(0, T ;Yh) be a corresponding
sequence of solutions to the discretized problems (the existence is guaranteed in [11])ˆ

Q

Σ (∇s (vh + Uh)) : ∇ϕh =

ˆ
Q

fϕh ∀ϕh ∈ L2(0, T ;Yh) .

Assume furthermore that the solutions converge, vh ⇀ v weakly in H1(0, T ;H1
0 (Q)) as h→ 0.

Then v is a solution toˆ
Q

Σ (∇s (v + U)) : ∇ϕ =

ˆ
Q

fϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)) .
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Using Theorem 1.10, our stochastic homogenization result of Theorem 1.2 can be shown
as follows: For stochastic parameters Cε, Bε and Ψε we define causal operators Σ and Π with
cell-problems on Ω. For these operators, we only have to check the averaging property of
Definition 1.8 and the admissibility condition of Definition 1.11.

2 Stochastic cell problem and definition of Σ
We investigate an auxiliary problem, using the space H1

∗ (0, T ;Rd×d
s ) := H1(0, T ;Rd×d

s ) ∩
{ξ|ξ|t=0 = 0} of evolutions with vanishing initial values. For any function ξ ∈ H1

∗ (0, T ;Rd×d
s )

we consider the ordinary differential equation (inclusion) for p(t, . ) ∈ L2(Ω;Rd×d
s ),

∂tp(t, ω) ∈ ∂Ψ (z(t, ω)−B(ω) p(t, ω) ; ω) , (2.1)

with the initial condition p(0, ω) = 0. In order to close the system, the function z(t) must be
determined through ξ(t) and p(t). We search for a map z(t) ∈ L2

sol(Ω), symmetric in every
point ω, i.e. z(t, ω) = zs(t, ω), such that the equality

Cz(t) = ξ(t) + υs(t)− p(t) (2.2)

holds in L2(Ω) for a function υ ∈ L2(0, T ;L2
pot(Ω)). We remark that υ ∈ L2

pot(Ω) does not
imply υs ∈ L2

pot(Ω). Equation (2.2) is (up to the matrix factor C and the symmetrization) a
Helmholz decomposition of ξ(t)− p(t).

The next theorem provides the crucial existence result. Furthermore, the function spaces
regarding the time dependence are made precise.

Theorem 2.1. Let C, B and Ψ be as in Assumption 1.5. Then, for ξ ∈ H1
∗ (0, T ;Rd×d

s ),
there exists a unique solution (p, z, υ) ∈ H1(0, T ;L2(Ω;Rd×d

s )) × H1(0, T ;L2
sol(Ω;Rd×d)) ×

H1(0, T ;L2
pot(Ω;Rd×d)) with z = zs to (2.1)–(2.2) satisfying the a priori estimate

‖p‖V1
0

+ ‖z‖V1
0

+ ‖υ‖V1
0
≤ C ‖ξ‖H1(0,T ) , (2.3)

where V1
0 := H1(0, T ;L2(Ω;Rd×d

s )). The solution (p, z, υ) ∈ (V1
0 )3 depends continuously on

ξ ∈ H1
∗ (0, T ;Rd×d

s ) with respect to the weak topologies in both spaces.

Theorem 2.1 permits us to define the operators Σ and Π.

Definition 2.2 (The effective plasticity operators). For arbitrary ξ ∈ H1
∗ (0, T ;Rd×d

s ), let
(p, z, υ) be the solution of (2.1)–(2.2) with z = zs. We set

Σ(ξ)(t) :=

ˆ
Ω

z(t, ω) dP(ω) , Π(ξ)(t) :=

ˆ
Ω

p(t, ω) dP(ω) . (2.4)

We note that the operators Σ, Π : H1
∗ (0, T ;Rd×d

s ) → H1(0, T ;Rd×d
s ) are well defined and

continuous by Theorem 2.1.

The rest of this section is devoted to the proof of Theorem 2.1. We proceed as follows: In
Section 2.1, we introduce a Galerkin approximation scheme for (2.1)–(2.2), using additionally
a regularization of Ψ. In 2.2, we recall some results from the theory of convex functions, in
2.3 we provide a Korn’s inequality on Ω. In Section 2.4 we prove existence and uniqueness of
solutions to the approximate problems and show that these solutions satisfy uniform bounds.
Finally, in Section 2.5, we show that the solutions of the approximate problems converge to
the unique solution of the original system (2.1)–(2.2).
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2.1 Galerkin method and regularization

Finite dimensional approximation. In what follows, let 〈ϕ, ψ〉Ω :=
´

Ω
ϕ : ψ dP de-

note the scalar product in L2(Ω) := L2(Ω;Rd×d). We choose complete orthonormal systems
{ek}k∈N of L2

pot(Ω) and {ẽk}k∈N of L2
sol(Ω) and consider the finite dimensional spaces

L̃2
n(Ω) := span {ek}k=1,...,n ⊕ span {ẽk}k=1,...,n , L2

n(Ω) := L̃n(Ω)⊕
{
vs | v ∈ L̃n(Ω)

}
,

L2
pot,n(Ω) := L2

pot(Ω) ∩ L2
n(Ω) , L2

sol,n(Ω) := L2
sol(Ω) ∩ L2

n(Ω) .

We furthermore set L2
s(Ω) := L2(Ω;Rd×d

s ) and L2
n,s(Ω) := {vs | v ∈ L2

n(Ω)}. Since constants
are in L2

sol(Ω), we can assume that they are in L2
n(Ω) and thus in L2

sol,n(Ω) for every n ≥ d2.
We finally introduce the orthogonal projection Pn : L2(Ω)→ L2

n(Ω) and note that Pnϕ→ ϕ
strongly in L2(Ω;Rd×d) as n→∞ for every ϕ ∈ L2(Ω;Rd×d).

Definition of regularized convex functionals. In order to prove Theorem 2.1, we con-
sider the family of Moreau-Yosida approximations

Ψδ(σ, ω) := inf
ξ∈Rd×d

s

{
Ψ(ξ, ω) +

|ξ − σ|2

2δ

}
, (2.5)

satisfying (see [15], Exercise 12.23; for the definition of the subdifferential ∂Ψδ see (2.10))

Ψδ : Rd×d
s → R is convex, coercive and continuously differentiable

∂Ψδ : Rd×d
s → Rd×d

s is single valued and globally Lipschitz-continuous (2.6)
lim
δ→0

Ψδ(σ;ω) = Ψ(σ;ω) ∀σ ∈ Rd×d
s , and a.e. ω ∈ Ω .

Note that the last convergence is monotone, since Ψδ2 ≥ Ψδ1 for all δ2 < δ1. Given Ψ and
Ψδ, we consider the corresponding functionals

Υ,Υδ : L2
s(Ω)→ R , Υ(z) :=

ˆ
Ω

Ψ(z(ω)) dP(ω) , Υδ(z) :=

ˆ
Ω

Ψδ(z(ω)) dP(ω) . (2.7)

We denote by Υn : L2
n,s(Ω)→ R the restriction of Υ to L2

n,s(Ω). the subdifferential of Υn is
∂Υn. Accordingly, we can define Υδ

n and ∂Υδ
n.

The approximate problem for (2.1)–(2.2)

We consider the following problem on discretized function spaces: Given ξ ∈ H1
∗ (0, T ;Rd×d

s ),
we look for

pδ,n ∈ C1(0, T ;L2
n,s(Ω)) , zδ,n ∈ H1(0, T ;L2

sol,n(Ω)) , υδ,n ∈ H1(0, T ;L2
pot,n(Ω)) ,

with the symmetry zδ,n = zsδ,n , satisfying

∂tpδ,n = ∂Υδ
n (zδ,n −Bn pδ,n) (2.8)
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and Cn zδ,n = ξ + υsδ,n − pδ,n. The last equation can be written as

zδ,n = C−1
n

(
ξ + υsδ,n − pδ,n

)
. (2.9)

Here, Bn, Cn : L2
n,s(Ω) → L2

n,s(Ω) are bounded positive (and thus invertible) operators
defined through

〈Bnψ, ϕ〉Ω =

ˆ
Ω

(Bψ) : ϕ , 〈Cnψ, ϕ〉Ω =

ˆ
Ω

(Cψ) : ϕ ∀ϕ, ψ ∈ L2
n,s(Ω) .

We obtain the existence and uniqueness of solutions to (2.8)–(2.9) from the Picard-
Lindelöf theorem: We show that the system can be understood as a single ordinary dif-
ferential equation for pδ,n with Lipschitz continuous right hand side, and that the solutions
are uniformly bounded.

2.2 Convex functionals

Basic concepts of convex functions. We recall some well known results from convex
analysis on a separable Hilbert space X with scalar product “·”. In the following, ϕ : X →
R∪{+∞} is a convex and lower-semicontinuous functional with ϕ 6≡ +∞. The domain of ϕ
is dom(ϕ) := {σ ∈ X|ϕ(σ) < +∞}, and the Legendre-Fenchel conjugate ϕ∗ is defined by

ϕ∗ : X → R ∪ {+∞}, ε 7→ sup
σ∈X
{ε · σ − ϕ(σ)}.

The subdifferential ∂ϕ : dom(ϕ)→ P(X) is defined by

∂ϕ(σ) = {ε ∈ X |ϕ(ξ) ≥ ϕ(σ) + ε · (ξ − σ) ∀ ξ ∈ X} . (2.10)

A multivalued operator f : dom(f) ⊂ X → P(X) is said to be monotone if

(σ1 − σ2) · (ε1 − ε2) ≥ 0, ∀ εi ∈ dom(f), σi ∈ f(εi), (i = 1, 2).

In what follows, we frequently use the following properties of convex functionals [15].

Lemma 2.3. For every convex and lower semicontinuous function ϕ on a Hilbert space X
with ϕ 6≡ +∞ holds

(i) ϕ∗ is convex, lower-semicontinuous, and dom(ϕ∗) 6= ∅
(ii) ∂ϕ, ∂ϕ∗ are monotone operators
(iii) ϕ(σ) + ϕ∗(ε) ≥ σ · ε ∀σ, ε ∈ X
(iv) σ ∈ dom(ϕ) and ε ∈ ∂ϕ(σ) ⇔ ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε)
(v) ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε) ⇔ ϕ(σ) + ϕ∗(ε) = σ · ε
(vi) ϕ∗∗ = ϕ.

We refer to (v) as Fenchel’s equality and to (iii) as Fenchel’s inequality.



Stochastic homogenization of plasticity equations 13

Continuity properties of Υ and Υδ and subdifferentials

In order to obtain the subdifferential of the functional Υ : L2
s(Ω)→ R we calculate

a ∈ ∂Υ(z) ⇔ Υ(z + ψ) ≥ Υ(z) + 〈a, ψ〉Ω ∀ψ ∈ L2
s(Ω)

⇔
ˆ

Ω

Ψ(z + ψ) ≥
ˆ

Ω

Ψ(z) + 〈a, ψ〉Ω ∀ψ ∈ L2
s(Ω)

⇔ a(ω) ∈ ∂Ψ(z(ω)) for a.e. ω ∈ Ω . (2.11)

Similarly, a ∈ ∂Υδ(z) if and only if a ∈ ∂Ψδ(z) almost everywhere. Both subdifferentials
are therefore single-valued and we may identify ∂Υδ(z) = ∂Ψδ(z). We next determine the
subdifferential of the restricted functional Υδ

n.

Lemma 2.4. The functionals Υδ
n have a single valued subdifferential in every z0 ∈ L2

n,s(Ω),
given through

∂Υδ
n(z0) = Pn∂Ψδ(z0) . (2.12)

Proof. Let a ∈ ∂Υδ
n(z0) ⊂ L2

n,s(Ω) and let id be the identity on L2
s(Ω). For arbitrary ϕ ∈

L2
s(Ω) we set ϕn := Pnϕ and ϕo := (id− Pn)ϕ. We obtain

ˆ
Ω

Ψδ(z0 + tϕ) = Υδ (z0 + tϕn + tϕo) ≥ Υδ
n (z0 + tϕn) + t

〈
∂Ψδ (z0 + tϕn) , ϕo

〉
Ω

≥ Υδ
n (z0) + t 〈a, ϕn〉Ω + t

〈
∂Ψδ (z0 + tϕn) , ϕo

〉
Ω

Since Ψδ is differentiable and ∂Ψδ is Lipschitz continuous, we obtain from the fact that the
subdifferential coincides with the derivative and from the last inequality

〈
∂Ψδ(z0), ϕ

〉
Ω

= lim
t→0

1

t

(ˆ
Ω

Ψδ(z0 + tϕ)−
ˆ

Ω

Ψδ(z0)

)
≥ 〈a, ϕn〉Ω +

〈
∂Ψδ (z0) , ϕo

〉
Ω
.

Replacing ϕ by −ϕ in the above calculations, we obtain ∂Ψδ(z0) = a + (id− Pn)∂Ψδ(z0) or
Pn∂Ψδ(z0) = a.

The Fenchel conjugate of Υδ
n in L2

n,s(Ω) is

Υδ∗
n (σ) := sup

{ˆ
Ω

σ : e dP −Υδ
n(e) | e ∈ L2

n,s(Ω)

}
.

Since −Υδ
n(·) is coercive in a finite dimensional space, it has compact sublevels in L2

n(Ω), and
the supremum is indeed attained.

Lemma 2.5. Let Υδ∗ be the Fenchel conjugate of Υδ. For every p ∈ L2
s(Ω) holds

Υ∗(p) =

ˆ
Ω

Ψ∗(p) dP , Υδ∗(p) =

ˆ
Ω

Ψδ∗(p) dP , (2.13)

and the functionals Υ, Υ∗, Υδ and Υδ∗ are convex and weakly lower semicontinuous on L2
s(Ω).
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Proof. The functional Υ is convex with the conjugate

Υ∗(p) := sup
{
〈p, e〉Ω −Υ(e) | e ∈ L2

s(Ω)
}

∀p ∈ L2
s(Ω) .

We first prove (2.13): Let p ∈ domΥ∗ = L2
s(Ω). Since Υ∗ is convex, we know that ∂Υ∗(p) 6= ∅.

Lemma 2.3 (iv) yields for any σ ∈ ∂Υ∗(p) that σ ∈ domΥ with p ∈ ∂Υ(σ) and Lemma 2.3
(v) then yields

Υ∗(p) + Υ(σ) = 〈p, σ〉Ω . (2.14)

Since p ∈ ∂Υ(σ), (2.11) yields p(ω) ∈ ∂Ψ(σ(ω);ω) for a.e. ω ∈ Ω and Lemma 2.3 (v) yields
Ψ∗(p)+Ψ(σ) = p : σ a.e.. Integrating the last equality over Ω and comparing with (2.14), we
find Υ∗(p) =

´
Ω

Ψ∗(p) since Υ(σ) =
´

Ω
Ψ(σ). The proof for the second statement in (2.13) is

similar.
We now prove the weak lower semicontinuity of Υ∗. Let σi ∈ dom(Ψ), i ∈ N, be dense in

dom(Ψ). We define Ψ∗m as the maximum of finitely many functions

Ψ∗m(p) := max
i=1,...,m

{p : σi −Ψ(σi)} ∀p ∈ Rd×d
s

and note that Ψ∗m(p) ≤ Ψ∗(p) for every p ∈ Rd×d
s . For z ∈ L2

s(Ω) and i = 1, . . . ,m, we
introduce the sets

Ωi := {ω ∈ Ω |Ψ∗m(z) = z : σi −Ψ(σi)} \
⋃
j<i

Ωj .

Let (zn)n be a sequence such that zn ⇀ z weakly in L2
s(Ω). We find that

lim inf
n→∞

ˆ
Ω

Ψ∗(zn) ≥ lim inf
n→∞

m∑
i=1

ˆ
Ω

Ψ∗m(zn) = lim inf
n→∞

∑
i

ˆ
Ωi

max
j=1,...,m

(zn : σj −Ψ(σj))

≥ lim inf
n→∞

∑
i

ˆ
Ωi

(zn : σi −Ψ(σi)) =
∑
i

ˆ
Ωi

(z : σi −Ψ(σi)) =

ˆ
Ω

Ψ∗m(z) .

Since Ψ∗(p) = limm→∞Ψ∗m(p) for every p ∈ Rd×d
s by definition of Ψ∗m, and since this conver-

gence is monotone, we can apply the monotone convergence theorem and get
´

Ω
Ψ∗m(z) →´

Ω
Ψ∗(z) = Υ∗(z). This yields the weak lower semicontinuity of Υ∗.
Since Ψ is convex and lower semicontinuous, we find Ψ = Ψ∗∗ and switching Ψ and Ψ∗

in the above argumentation, the weak lower semicontinuity of Υ follows. The statements for
Υδ and Υδ∗ follow similarly.

Convergence properties

We will later need additional lower semicontinuity properties: We have to analyze the be-
havior of, e.g., Υδ(uδ).

Lemma 2.6 (Lower semicontinuity property of Ψδ and Ψδ∗). Let Us := Ω × (0, s) be the
space-time cylinder and let (uδ)δ be a weakly convergent sequence, uδ ⇀ u weakly in L2(Us)
as δ → 0. Then, for Ψδ, Ψ as above, we find

lim inf
δ→0

ˆ
Us

Ψδ∗(uδ) dP dt ≥
ˆ
Us

Ψ∗(u) dP dt . (2.15)
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For every sequence (uδ)δ with uδ ⇀ u weakly in L2
s(Ω) we find

lim inf
δ→0

Υδ(uδ) ≥ Υ(u) . (2.16)

Proof. The proof of (2.15) is the same as in [17], Lemma 2.6.
Using the definition of Ψδ in (2.5), we choose, for every δ > 0, a function πδ ∈ L2(Ω;Rd×d)

such that ˆ
Ω

(
|πδ − uδ|2

δ
+ Ψ(πδ)

)
dP ≤

ˆ
Ω

Ψδ(uδ) dP + δ .

Without loss of generality, we may assume lim infδ→0

´
Ω

Ψδ(uδ) dP < ∞. Then we get for a
subsequence

´
Ω
|πδ − uδ|2 → 0 as δ → 0 and hence πδ ⇀ u weakly in L2(Ω;Rd×d) for this sub-

sequence. Since
´

Ω
|πδ − uδ|2 is positive and Υ(z) =

´
Ω

Ψ(z) is weakly lower semicontinuous,
we find (2.16).

The following lemma uses time-dependent functions and the discretization parameter
n ∈ N.

Lemma 2.7. Let s > 0 and let p ∈ L2(0, s;L2
s(Ω)) and pn ∈ L2(0, s;L2

n(Ω)) such that pn ⇀ p
weakly in L2(0, s;L2(Ω;Rd×d)) as n→∞. Then, for Υδ∗

n and Υδ
n as above we find

lim inf
n→∞

ˆ s

0

Υδ
n(pn) dt ≥

ˆ s

0

Υδ(p) dt , lim inf
n→∞

ˆ s

0

Υδ∗
n (pn) dt ≥

ˆ s

0

Υδ∗(p) dt . (2.17)

Furthermore, if zn → z strongly in L2(Ω;Rd×d) as n→∞, then

lim
n→∞

Υδ
n(zn) = Υδ(z) . (2.18)

Proof. Let zn → z strongly in L2(Ω;Rd×d). Since Ψδ is Lipschitz continuous with Ψδ(0) = 0,
we find because of Υδ

n(zn) = Υδ(zn)

lim
n→∞

Υδ
n(zn) = lim

n→∞

ˆ
Ω

Ψδ(zn) =

ˆ
Ω

Ψδ(z)

and thus (2.18). For pn ⇀ p weakly in L2(Us) with pn ∈ L2(0, s;L2
n(Ω)), the first inequality

in (2.17) can be proved similarly to the weak lower semicontinuity results of Lemma 2.5,
using Υδ

n(pn) = Υδ(pn).
For the second inequality in (2.17), we choose finite sets Bn = {ein | i = 1, . . . , Kn} ⊂

L2
n(Ω) with Kn ≥ n such that Bn ⊂ Bn+1 and

⋃
nBn is dense in L2(Ω;Rd×d). For fixed

N ∈ N, the interval [0, s] is split into subsets

T̃iN :=
{
t ∈ [0, s] | max

{
〈e, p(t)〉Ω −Υδ(e) | e ∈ BN

}
=
〈
eiN , p(t)

〉
Ω
−Υδ(eiN)

}
(2.19)

and we set T1
N := T̃1

N and TiN := T̃iN\
⋃
j<i T

j
N for i = 2, . . . , KN . For n ≥ N we find,

decomposing the time integral, taking the maximum, performing the weak limit, and using
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the definition of TiN :

lim inf
n→∞

ˆ s

0

Υδ∗
n (pn) ≥ lim inf

n→∞

KN∑
i=1

ˆ
Ti
N

max
{
〈e, pn(t)〉Ω −Υδ

n(e) | e ∈ BN

}
dt

≥ lim inf
n→∞

KN∑
i=1

ˆ
Ti
N

(〈
eiN , pn(t)

〉
Ω
−Υδ

n(eiN)
)
dt

=

KN∑
i=1

ˆ
Ti
N

(〈
eiN , p(t)

〉
Ω
−Υδ(eiN)

)
dt

(2.19)
=

KN∑
i=1

ˆ
Ti
N

max
{
〈e, p(t)〉Ω −Υδ(e) | e ∈ BN

}
dt

= sup

{ˆ s

0

(
〈ẽ, p(t)〉Ω −Υδ(ẽ(t))

)
dt | ẽ ∈ L2(0, s;BN)

}
.

This inequality implies, due to density of
⋃
N BN in L2(Ω;Rd×d),

lim inf
n→∞

ˆ s

0

Υδ∗
n (pn) ≥ sup

{ˆ s

0

ˆ
Ω

(
e : p−Ψδ(e)

)
| e ∈ L2(0, s;L2(Ω;Rd×d))

}
=

ˆ s

0

ˆ
Ω

Ψδ∗(p) =

ˆ s

0

Υδ∗(p) ,

where we used (2.13) in the last equality. We have thus verified the second inequality of
(2.17).

2.3 A Korn’s inequality on Ω

Lemma 2.8 (A Korn’s inequality on Ω). For all υ ∈ L2
pot(Ω) holds

‖υ‖L2(Ω;Rd×d) ≤ 2 ‖υs‖L2(Ω;Rd×d) . (2.20)

Proof. In what follows, we will often use the following: compactness of Ω implies boundednes
of every g ∈ C(Ω). Denoting Qn := (−n, n)d ⊂ Rd the cube with volume (2n)d we find with
the help of |∂Qn| = 2d (2n)d−1

lim
n→∞

∣∣∣∣ 1

(2n)d

ˆ
∂Qn

gω(x) dx

∣∣∣∣ ≤ lim
n→∞

d

n
sup
ω∈Ω
|g(ω)| = 0 .

In what follows, we denote by ν the outer normal vector of the domainQn. For any f ∈ C2(Ω),
we get from the ergodic theorem 1.3 and relation (1.10) for P-a.e. ω ∈ Ωˆ

Ω

|∇s
ωf |

2 dP =

ˆ
Ω

∇s
ωf : ∇ωf dP

1.3
= lim

n→∞

1

2d

ˆ
(−1,1)d

∇s
ωf(τnxω) : ∇ωf(τnxω) dx

= lim
n→∞

1

(2n)d

ˆ
Qn

∇s
ωf(τxω) : ∇ωf(τxω) dx

(1.10)
= lim

n→∞

1

(2n)d

ˆ
Qn

∇sfω : ∇fω dx

= lim
n→∞

1

(2n)d

(ˆ
∂Qn

ν (∇sfω) fω −
ˆ
Qn

∇ · (∇sfω) fω dx

)
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= lim
n→∞

1

(2n)d

(
−
ˆ
Qn

∑
i

(
1

2
∂i∇ · fω +

1

2
∆fω,i

)
fω,i dx

)
= lim

n→∞

1

(2n)d
1

2

ˆ
Qn

(
|∇ · fω|2 + |∇fω|2

)
dx

≥ lim
n→∞

1

(2n)d
1

2

ˆ
Qn

|∇fω|2 = lim
n→∞

1

(2n)d
1

2

ˆ
Qn

|(∇ωf) (τxω)|2 dx =
1

2

ˆ
Ω

|∇ωf |2 dP .

We have thus found (2.20) for υ = ∇ωf .
Let now υ ∈ L2

pot(Ω) be arbitrary. By definition of L2
pot(Ω), there exists a sequence (gk)k∈N

in C1(Ω) such that ∇gk → υ in L2(Ω;Rd×d), implying ∇sgk → υs in L2(Ω;Rd×d). On the
other hand, for every gk ∈ C1(Ω) we find fk ∈ C2(Ω) with ‖fk − gk‖C1(Ω) ≤

1
k
by density.

Estimate (2.20) holds for υk = ∇ωfk, hence, in the limit k → ∞, the estimate holds for
υs = limk→∞∇s

ωfk and υ = limk→∞∇ωfk.

2.4 Solutions to the approximate problem and a priori estimates

Lemma 2.9. There exists a unique solution pδ,n, zδ,n, υδ,n to problem (2.8)–(2.9) which
satisfies the a priori estimate

‖pδ,n‖V1
0

+ ‖zδ,n‖V1
0

+ ‖υδ,n‖V1
0
≤ c

(
Υδ
n(zδ,n(0)) + ‖ξ‖H1(0,T )

)
, (2.21)

with V1
0 := H1(0, T ;L2(Ω;Rd×d

s )) and c independent of δ and n.

Proof. In the following, all integrals over Ω are with respect to P and we omit dP for ease of
notation. We will prove the lemma in two steps: we first show that the system (2.8)–(2.9) is
equivalent to an ordinary differential equation for pδ,n with Lipschitz continuous right hand
side. Then, we show that the solution admits uniform a priori estimates.

Step 1: Existence. In order to study (2.8)–(2.9), we fix p̃ ∈ L2
n,s(Ω) and ξ̃ ∈ Rd×d

s , and
search for υ̃ ∈ L2(0, T ;L2

pot,n(Ω)) such that〈
C−1
n υ̃s, ζ

〉
Ω

=
〈
C−1
n p̃, ζ

〉
Ω
−
〈
C−1
n ξ̃, ζ

〉
Ω

∀ζ ∈ L2
pot,n(Ω) . (2.22)

The Lax-Milgram theorem in combination with Korn’s inequality (2.20) yields a unique so-
lution υ̃ ∈ H1(0, T ;L2

pot,n(Ω)) of the last equality. We introduce the mapping Vξ̃ : L2
n,s(Ω)→

L2
pot,n(Ω) with Vξ̃(p̃) = υ̃ and note that this operator is linear and bounded. We then look

for a solution pδ,n ∈ C1(0, T ;L2
n(Ω)) to the following version of (2.8):

∂tpδ,n = ∂Υδ
n

(
C−1
n (ξ + Vξ(pδ,n)s − pδ,n)−Bn pδ,n

)
.

Relation (2.12) yields the Lipschitz continuity of ∂Υδ
n. Therefore, since also ∂Υδ

n, C−1
n ,

V s
ξ and Bn are Lipschitz-continuous mappings L2

n,s(Ω) → L2
n,s(Ω), we find a unique so-

lution pδ,n ∈ C1([0, T ];L2
n,s(Ω)) of the ordinary differential equation (a priori bounds are

provided below). We furthermore set υδ,n = Vξ(pδ,n) ∈ C1([0, T ];L2
n,pot(Ω)) and zδ,n =

C−1
n

(
ξ + υsδ,n − pδ,n

)
∈ H1(0, T ;L2

n,s(Ω)). From (2.22) and the definition of υδ,n, it follows
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that zδ,n ∈ H1(0, T ;L2
n,sol(Ω)). Note that pδ,n, zδ,n and υδ,n are constructed in such a way

that (2.8)–(2.9) holds. The construction shows that the solution is uniquely determined.
Step 2: A priori estimates of order 0. We take the time derivative of (2.9), multiply

by zδ,n and integrate over [0, t]× Ω for t ∈ (0, T ] to find
ˆ t

0

ˆ
Ω

∂tξ : zδ,n
(2.9)
=

ˆ t

0

ˆ
Ω

(
(Cn∂tzδ,n) : zδ,n + ∂tpδ,n : zδ,n − ∂tυsδ,n : zδ,n

)
=

1

2

ˆ
Ω

(pδ,n : Bnpδ,n + zδ,n : Cnzδ,n)

∣∣∣∣t
0

+

ˆ t

0

〈∂tpδ,n, zδ,n −Bnpδ,n〉Ω −
ˆ t

0

ˆ
Ω

zδ,n : ∂tυδ,n

(∗)
=

1

2

ˆ
Ω

(pδ,n : (Bpδ,n) + zδ,n : (Czδ,n))

∣∣∣∣t
0

+

ˆ t

0

(
Υδ∗
n (∂tpδ,n) + Υδ

n (zδ,n −Bnpδ,n)
)
. (2.23)

In (∗) we used the orthogonality of potentials and (symmetric) solenoidals,
´

Ω
zδ,n : ∂tυδ,n = 0,

and Lemma 2.3 (v), written as

〈∂tp, z −Bp〉Ω = Υδ
n(z −Bp) + Υδ∗

n (∂tp) ⇔ ∂tp = ∂Υδ
n(z −Bp) .

A priori estimates of order 1. Taking the time derivative of (2.9), multiplying the result
by ∂tzδ,n and integrating over Ω, we get

ˆ
Ω

∂tξ : ∂tzδ,n =

ˆ
Ω

∂tzδ,n : ∂t (pδ,n + Cnzδ,n − υδ,n) +

ˆ
Ω

(Bn∂tpδ,n −Bn∂tpδ,n) : ∂tpδ,n

(2.8)
=
〈
∂tzδ,n −Bn∂tpδ,n, ∂Υδ

n(zδ,n −Bnpδ,n)
〉

Ω
+

ˆ
Ω

(Bn∂tpδ,n) : ∂tpδ,n

+

ˆ
Ω

(Cn∂tzδ,n) : ∂tzδ,n −
ˆ

Ω

∂tzδ,n : ∂tυδ,n

(∗)
=

d

dt
Υδ
n(zδ,n −Bnpδ,n) +

ˆ
Ω

((C∂tzδ,n) : ∂tzδ,n + (B∂tpδ,n) : ∂tpδ,n) ,

where we used
´

Ω
∂tzδ,n : ∂tυδ,n = 0 in (∗). We integrate the last equality over (0, t) for

t ∈ (0, T ] and obtain

Υδ
n(zδ,n(0)) +

ˆ t

0

ˆ
Ω

∂tzδ,n : ∂tξ
s

≥ Υδ
n(zδ,n(t)−Bnpδ,n(t)) +

ˆ t

0

ˆ
Ω

((C∂tzδ,n) : ∂tzδ,n + (B∂tpδ,n) : ∂tpδ,n) . (2.24)

Since Υδ∗
n and Υδ

n are positive, we can neglect them in (2.23). Applying the Cauchy-Schwarz
inequality to the right hand side of (2.23) and then Gronwall’s inequality yields an estimate

sup
t∈[0,T ]

‖zδ,n(t)‖L2(Ω;Rd×d) + sup
t∈[0,T ]

‖pδ,n(t)‖L2(Ω;Rd×d) ≤ c ‖ξ‖H1 .
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From positivity of Υδ
n on the right hand side of (2.24), it follows thatˆ t

0

ˆ
Ω

((C∂tzδ,n) : ∂tzδ,n + (B∂tpδ,n) : ∂tpδ,n) ≤ Υδ
n(zδ,n(0)) + ‖ξ‖H1 .

The last two inequalities yield (2.21) for zδ,n and pδ,n. The inequality for υδ,n follows from
equation (2.9).

2.5 Proof of Theorem 2.1

Existence. Using the sequence (pδ,n, zδ,n, υδ,n) of solutions to (2.8)–(2.9), we can now prove
Theorem 2.1. For n → ∞, we find weakly convergent subsequences of pδ,n, zδ,n, υδ,n in V1

0

with limits pδ, zδ, υδ. We note that zδ,n(0) is the unique solution in L2
n,sol(Ω) toˆ

Ω

(Cnzδ,n(0)) : ψ =

ˆ
Ω

ξ(0) : ψ ∀ψ ∈ L2
n,sol(Ω) .

Hence, since we consider only ξ with ξ(0) = 0, the initial values zδ,n(0) vanish identically.
As a consequence, also Υδ

n(zδ,n(0)) in (2.21) vanishes. The estimate (2.21) therefore implies
(2.3) for (pδ, zδ, υδ).

Since pδ,n, zδ,n, υδ,n satisfy (2.9), the limits pδ, zδ, υδ satisfy

Czδ = ξ + υsδ − pδ . (2.25)

We take the limit n→∞ in (2.23), apply Lemma 2.7 and exploit the vanishing initial data
to conclude that the functions pδ, zδ, υδ satisfyˆ t

0

ˆ
Ω

(
Ψδ∗ (∂tpδ) + Ψδ (zδ −B pδ)

)
≤
ˆ t

0

ˆ
Ω

zδ : ∂tξ −
1

2

ˆ
Ω

(pδ : (B pδ) + zδ : (Czδ))

∣∣∣∣t
0

.

(2.26)
In the limit δ → 0 we find weakly convergent subsequences of pδ, zδ, υδ with the respective

weak limits p, z, υ satisfying the estimate (2.3). Passing to the limit δ → 0 in (2.25), we find
that (p, z, υ) satisfies (2.2). Furthermore, passing to the limit in (2.26), using Lemma 2.6, we
find that the functions p, z, υ satisfyˆ t

0

ˆ
Ω

(Ψ∗ (∂tp) + Ψ (z −B p)) ≤
ˆ t

0

ˆ
Ω

z : ∂tξ −
1

2

(ˆ
Ω

p : (Bp) +

ˆ
Ω

z : (Cz)

)∣∣∣∣t
0

.

We thus obtainˆ t

0

ˆ
Ω

(Ψ∗ (∂tp) + Ψ (z −B p)) =

ˆ t

0

ˆ
Ω

(z : ∂tξ − ∂tp : Bp− ∂tz : Cz)

(2.2)
=

ˆ t

0

ˆ
Ω

(z : C∂tz − z : ∂tυ
s + z : ∂tp− ∂tp : Bp− ∂tz : Cz)

=

ˆ t

0

ˆ
Ω

(−z : ∂tυ
s + ∂tp : (z −B p)) =

ˆ t

0

ˆ
Ω

∂tp : (z −B p)

for every t ∈ (0, T ). On the other hand, since Lemma 2.3 (iii) yields (Ψ∗ (∂tp) + Ψ (z −Bp)) ≥
∂tp : (z −Bp) pointwise a.e., we find

(Ψ∗ (∂tp) + Ψ (z −Bp)) = ∂tp : (z −Bp)
pointwise a.e. in (0, T )× Ω. The Fenchel equality of Lemma 2.3 (v) then yields (2.1).
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Uniqueness and continuity. Let ξ1, ξ2 ∈ H1
∗ (0, T ;Rd×d

s ). Let (pi, zi, υi)i∈{1,2} be two
solutions to (2.1)-(2.2) for ξ1, ξ2 respectively with the difference (p̃, z̃, υ̃) := (p1, z1, υ1) −
(p2, z2, υ2). We integrate z̃ : ∂t (ξ1 − ξ2) over Ω and obtain from a calculation similar to
(2.23)

ˆ
Ω

z̃ : (ξ1 − ξ2)

∣∣∣∣t
0

−
ˆ t

0

ˆ
Ω

∂tz̃ : (ξ1 − ξ2)

=

ˆ t

0

ˆ
Ω

z̃ : ∂t(ξ1 − ξ2) =

ˆ
Ω

z̃ : ∂t (Cz̃ − p̃+ υ̃)

=
1

2

d

dt

ˆ
Ω

(p̃ : (Bp̃) + z̃ : (Cz̃))

+

ˆ
Ω

[(z1(t, ω)−B(ω) p1(t, ω))− (z2(t, ω)−B(ω) p2(t, ω))] (∂tp1 − ∂tp2) .

From the monotonicity of ∂Ψ (Lemma 2.3 (ii)) and (2.1)1,2, we find

1

2

ˆ
Ω

(p̃ : (Bp̃) + z̃ : (Cz̃))

∣∣∣∣t
0

≤
ˆ

Ω

z̃ : (ξ1 − ξ2)

∣∣∣∣t
0

−
ˆ t

0

ˆ
Ω

∂tz̃ : (ξ1 − ξ2)

for every t ∈ (0, T ). Compactness of the embedding H1(0, T ;Rd×d
s ) ⊂ C([0, T ];Rd×d

s ) and
boundedness of ∂tz̃ provide the weak continuity of the mapping ξ 7→ (z, p, υ). At the same
time, it implies uniqueness of solutions, i.e. (p̃, z̃, υ̃) = (0, 0, 0) for ξ1 = ξ2. This completes
the proof of Theorem 2.1.

3 Proof of the main theorem

3.1 Preliminaries

Lemma 3.1 (A time dependent ergodic theorem). Let f ∈ Lp(0, T ;Lp(Ω)), 1 ≤ p < ∞
and fω(t, x) := f(t, τxω). Then, for almost every ω ∈ Ω, there holds fω ∈ Lp(0, T ;Lploc(Rd)).
Furthermore, for almost every ω ∈ Ω, there holds

lim
ε→0

ˆ T

0

ˆ
Q

f(t, τx
ε
ω) dx dt = |Q|

ˆ T

0

ˆ
Ω

f(t, ω) dP(ω) dt . (3.1)

Proof. Since the mapping (x, ω) 7→ τxω is continuous, we find that f̃(ω, t, x) := f(t, τxω) is
P ⊗L⊗Ld-measurable. Since the mappings τx : Ω→ Ω are measure preserving, we find for
every x ∈ Rd ˆ T

0

ˆ
Ω

|f(t, ω)|p dP(ω)dt =

ˆ T

0

ˆ
Ω

|f(t, τxω)|p dP(ω)dt .

Integrating the last equation over Q ⊂ Rd and applying Fubini’s theorem, we obtain

|Q|
ˆ T

0

ˆ
Ω

|f(t, ω)|p dP(ω)dt =

ˆ
Ω

ˆ T

0

ˆ
Q

|f(t, τxω)|p dx dt dP(ω) .
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Thus, f̃ has the integrability f̃ ∈ Lp(Ω;Lp(0, T ;Lp(Q))) and fω ∈ Lp(0, T ;Lp(Q)) for almost
every ω ∈ Ω. In particular, fω ∈ L1(0, T ;L1(Q)). Setting F (ω) :=

´ T
0
f(t, ω) dt, we find as a

consequence of Theorem 1.3:

lim
ε→0

ˆ T

0

ˆ
Q

f(t, τx
ε
ω) dx dt = lim

ε→0

ˆ
Q

F (τx
ε
ω) dx = |Q|

ˆ
Ω

F dP = |Q|
ˆ T

0

ˆ
Ω

f dP dt .

Lemma 3.2. (Div-curl-lemma) Let U ⊂ Rd be an open and bounded set with Lipschitz-
boundary ∂U . For a sequence ε→ 0 we consider sequences of functions uε and υε as follows:

uε ∈ L2(0, T ;L2(U ;Rd×d)) with ∇ · uε(t) = 0 in D′(U) for a.e. t ∈ [0, T ] ,

υε(t, x) := υ(t, τx
ε
ω) with υ ∈ L2(0, T ;L2

pot(Ω)) and some ω ∈ Ω ,

with ‖uε‖L2(0,T ;L2(U)) ≤ C0 bounded. Then, for almost every ω ∈ Ω, there holds

lim
ε→0

ˆ T

0

ˆ
U

uε : υε = 0 . (3.2)

Proof. In this proof, we omit the time-dependence of uε and υ for simplicity of notation, i.e.
we consider uε ∈ L2(U ;Rd×d) and υ ∈ L2

pot(Ω). In the time dependent case, one needs to
apply Lemma 3.1 instead of the ergodic theorem 1.3.

We fix ω ∈ Ω such that υ(τxω) ∈ L2
pot,loc(Rd), which holds for a.e. ω ∈ Ω due to Theorem

1.4. We consider a compact set K ⊂ U and a cut-off function ψ ∈ C∞(Rd) with ψ ≡ 1 on K,
ψ ≡ 0 on Rd\U and 1 ≥ ψ ≥ 0. For arbitrary V ∈ C1(Ω;Rd) we set V ε(x) := V (τx

ε
ω) and

(∇ωV )ε(x) := (∇ωV ) (τx
ε
ω) = ε∇xV

ε(x). The triangle inequality and the Cauchy-Schwarz
inequality imply∣∣∣∣ˆ

U

uε : υεψ

∣∣∣∣ ≤ ‖uε‖L2(U) ‖υ
ε − (∇ωV )ε‖L2(U) +

∣∣∣∣ˆ
U

uε : (∇ωV )εψ

∣∣∣∣ . (3.3)

For the last integral in (3.3) we obtainˆ
U

uε : (∇ωV )εψ =

ˆ
U

uε : ∇x (εV εψ)−
ˆ
U

uε : (εV ε ⊗∇xψ) = −
ˆ
U

uε : (εV ε ⊗∇xψ) .

We take the limes superior as ε→∞. The last integral in (3.3) vanishes due to boundedness
of V (remember that Ω is compact) and boundedness of∇ψ. The ergodic theorem 1.3 applied
to the first term on the right hand side of (3.3) yields

lim sup
ε→0

∣∣∣∣ˆ
U

uε : υεψ

∣∣∣∣ ≤ lim sup
ε→0

‖uε‖L2(U) ‖υ
ε − (∇ωV )ε‖L2(U) ≤ C0

√
|U | ‖υ −∇ωV ‖L2(Ω) .

(3.4)
Since {∇ωV |V ∈ C1(Ω)} is dense in L2

pot(Ω), the right hand side of (3.4) is arbitrarily small
for an appropriate choice of V ∈ C1

b (Ω).
Concerning the integral over uε : υε(1− ψ), we find by the ergodic theorem 1.3∣∣∣∣ˆ

U

uε : υε(1− ψ)

∣∣∣∣ ≤ C0 ‖υε‖L2(U\K) → C0 ‖υ‖L2(Ω;Rd×d) |U\K|
1
2 (3.5)

as ε→ 0. Choosing first K ⊂ U large and then V ∈ C1(Ω) appropriately, we obtain that the
integral in (3.2) is arbitrarily small.
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3.2 The averaging property of Σ and Π

Theorem 3.3 (Averaging property). Let the coefficients B(ω), C(ω), Ψ( · ; ω) be as in As-
sumption 1.5, let Cε, Bε, Ψε be as in (1.8). Then, for a.e.ω ∈ Ω, the coefficients allow
averaging in sense of Definition 1.8 with the averaging operators Σ and Π given by (2.4).

Proof. We will prove a slightly stronger result: Given ξ ∈ H1
∗ (0, T ;Rd×d

s ), let (p, z, υ) be
the unique solution of (2.1)–(2.2) (which exists by Theorem 2.1). Let ω ∈ Ω be such that
pω(t, x) := p(t, τxω), zω(t, x) := z(t, τxω) and υω(t, x) := υ(t, τxω) satisfy

pω ∈ H1(0, T ;L2
loc(Rd;Rd×d

s )) , zω ∈ H1(0, T ;L2
sol,loc(Rd)) , υω ∈ H1(0, T ;L2

pot,loc(Rd)) .

This regularity is valid for a.e. ω as can be seen applying Lemma 3.1 to time derivatives.
Furthermore, we choose ω as in Assumption 1.5. For any ε > 0 let p̃ε(t, x) := p

(
t, τx

ε
ω
)
,

z̃ε(t, x) := z
(
t, τx

ε
ω
)
, υ̃ε(t, x) := υ

(
t, τx

ε
ω
)
be realizations. Let T ⊂ Rd be a simplex and let

uε, pε, σε be the unique solution to

−∇ · σε = 0 ,

∇suε = Cεσ
ε + pε (3.6)

∂tp
ε ∈ ∂Ψε(σ

ε −Bεp
ε ; . )

on T (we recall ∂Ψε(σ ; x) := ∂Ψ(σ ; τx
ε
ω)) with boundary condition

uε(x) = ξ · x on ∂T (3.7)

and initial condition pε(0, ·) = 0 . We will prove that the realizations of the stochastic cell
solutions and the plasticity solutions on T coincide in the limit ε → 0; more precisely, we
claim that

lim
ε→0

(
‖σε − z̃ε‖L2(0,T ;L2(T )) + ‖pε − p̃ε‖L2(0,T ;L2(T )

)
= 0 . (3.8)

Let us first show that (3.8) indeed implies Theorem 3.3: The ergodic theorem in the
version of Lemma 3.1 and the definition of Σ and Π in (2.4) imply that

ffl
T z̃

ε(.)→
´

Ω
z(.) =

Σ(ξ)(.) and
ffl
T p̃

ε(.) →
´

Ω
p(.) = Π(ξ)(.) holds in the space L2(0, T ;Rd×d

s ). Equation (3.8)
therefore yields

ffl
T σ

ε → Σ(ξ) and
ffl
T p

ε → Π(ξ) in L2(0, T ;Rd×d
s ). This provides the aver-

aging property (1.18) of Definition 1.8 (at first, for a subsequence ε → 0 for almost every
t ∈ (0, T ), then, since the limit is determined, along the original sequence ε→ 0).

Let us now prove (3.8). We will use a testing procedure and energy-type estimates. Due
to (2.1)–(2.2), z̃ε, p̃ε and υ̃ε satisfy the following system of equations on T × (0, T )

−∇ · z̃ε = 0 ,

ξ = Cεz̃
ε + p̃ε − (υ̃ε)s , (3.9)

∂tp̃
ε ∈ ∂Ψε(z̃

ε −Bεp̃
ε ; . ) .

In what follows we use the notation |ζ|2Bε
:= ζ : Bεζ and |ζ|2Cε

:= ζ : Cεζ. We take the
difference of (3.6)1 and (3.9)1, multiply the result by (∂tu

ε − ∂t (ξ · x)) and integrate over T .
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We integrate by parts yields and exploit that boundary integrals vanish by (3.7),

0 = −
ˆ
T

(z̃ε − σε) : (∂t∇suε − ∂tξ)

=

ˆ
T

(z̃ε − σε) : ∂t (Cεz̃
ε + p̃ε − (υ̃ε)s − Cεσε − pε)

=
1

2

d

dt

ˆ
T

[(z̃ε − σε) : (Cε (z̃ε − σε)) + (p̃ε − pε) : (Bε (p̃ε − pε))] +

ˆ
T

(z̃ε − σε) : ∂tυ̃
ε

+

ˆ
T

(∂tp̃
ε − ∂tpε) : ((z̃ε −Bεp̃

ε)− (σε −Bεp
ε)) .

∈ 1

2

d

dt

ˆ
T

[
|z̃ε − σε|2Cε

+ |p̃ε − pε|2Bε

]
+

ˆ
T

(z̃ε − σε) : ∂tυ̃
ε

+

ˆ
T

(∂Ψε (z̃ε −Bεp̃
ε)− ∂Ψε (σε −Bεp

ε)) : ((z̃ε −Bεp̃
ε)− (σε −Bεp

ε)) . (3.10)

In the second line, we used (3.6)2 and (3.9)2. Additionally, we use symmetry of σε and z̃ε to
replace (υ̃ε)s by υ̃ε.

Concerning the second integral on the right hand side of (3.10), note that
´ t

0

´
T z̃

ε : ∂tυ̃
ε →´ t

0

´
T

´
Ω
z : ∂tυ = 0 by Lemma 3.1 and orthogonality of L2

sol(Ω) and L2
pot(Ω). Furthermore,´ t

0

´
T σ

ε : ∂tυ̃
ε → 0 by Lemma 3.2. By monotonicity of ∂Ψε, the last integral on the right

hand side of (3.10) is positive. An integration over (0, t) therefore provides

lim sup
ε→0

ˆ
T

[
|z̃ε − σε|2Cε

+ |p̃ε − pε|2Bε

]
(t) ≤ lim sup

ε→0

ˆ t

0

ˆ
T

(z̃ε − σε)∂tυ̃ε = 0 . (3.11)

We have thus shown (3.8). This concludes the proof of Theorem 3.3.

3.3 Admissibility of Σ

Theorem 3.4 (Admissibility). Let the coefficients B(ω), C(ω), Ψ( · ; ω) and data U , f be
as in Assumption 1.5. Then the causal operator Σ of Definition 2.2 satisfies the sufficient
condition for admissibility of Definition 1.11.

Proof. We have to study solutions uh of the discretized effective problem with the discretized
boundary data Uh → U strongly in H1(0, T ;H1(Q)) as h→ 0. With Σ given through (2.4),
let uh ∈ H1(0, T ;H1(Q)) be a sequence with uh ∈ Uh + H1(0, T ;Yh), satisfying the discrete
system ˆ T

0

ˆ
Q

Σ(∇suh) : ∇ϕ =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;Yh) . (3.12)

We can assume the weak convergence uh ⇀ u ∈ H1(0, T ;H1(Q;Rd) as h → 0 for some
u ∈ U +H1(0, T ;H1

0 (Q;Rd)). Our aim is to show that u solves the effective problem
ˆ T

0

ˆ
Q

Σ(∇su) : ∇ϕ =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)) . (3.13)
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Step 1. For every x ∈ Q, we denote by ph(t, x, ·), zh(t, x, ·), υh(t, x, ·) the solutions of
(2.1)–(2.2) corresponding to ξ(t) = ∇suh(t, x). By definition of Σ, there holds Σ(∇suh) =´

Ω
zh(ω) dP(ω). The a priori estimate of Theorem 2.1 provides

‖ph‖V1
0,0

+ ‖zh‖V1
0,0

+ ‖υh‖V1
0,0
≤ C ‖∇su‖H1(0,T ;L2(Q)) ,

where V1
0,0 := H1(0, T ;L2(Q;L2(Ω;Rd×d))). By this estimate, we obtain the weak conver-

gence in (V1
0,0)3 of a subsequence, again denoted (ph, zh, υh), weakly converging to some limit

(p, z, υ). The limit satisfies again the linear law (2.2),

Cz = ∇su+ υs − p . (3.14)

Equation (3.12) can be rewritten as
ˆ T

0

ˆ
Q

ˆ
Ω

zh(t, x, ω) dP(ω) : ∇ϕ(x) dx =

ˆ T

0

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;Yh) ,

and the limit h→ 0 provides
ˆ
Q

ˆ
Ω

z : ∇ϕ =

ˆ
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)) . (3.15)

Step 2. It remains to verify
´

Ω
z = Σ(∇su). We use ϕ = ∂t (uh − Uh) as a test function in

(3.12) and exploit the orthogonality 0 =
´
Q

´
Ω
zh : ∂tυh. We follow the lines of the calculation

in (2.23) to obtain
ˆ
Q

f · ∂t (uh − Uh) +

ˆ
Q

ˆ
Ω

zh : ∇∂tUh

=

ˆ
Q

ˆ
Ω

zh : ∂t∇suh =

ˆ
Q

ˆ
Ω

[zh : C∂tzh + zh : ∂tph − zh : ∂tυh]

=
1

2

d

dt

(ˆ
Q

ˆ
Ω

ph : Bph +

ˆ
Q

ˆ
Ω

zh : Czh

)
+

ˆ
Q

ˆ
Ω

(Ψ∗ (∂tph) + Ψ (zh −Bph)) . (3.16)

Taking weak limits in (3.16) yields

ˆ T

0

ˆ
Q

ˆ
Ω

(Ψ∗ (∂tp) + Ψ (z −Bp))

≤
ˆ T

0

ˆ
Q

f · ∂t (u− U) +

ˆ T

0

ˆ
Q

ˆ
Ω

z : ∇∂tU −
1

2

(ˆ
Q

ˆ
Ω

p : (Bp) +

ˆ
Q

ˆ
Ω

z : (Cz)

)∣∣∣∣T
0

.

Relations (3.14) and (3.15) allow to perform the calculations of (3.16) also for the limit
functions. We obtain from the last inequality

ˆ T

0

ˆ
Q

ˆ
Ω

(Ψ∗ (∂tp) + Ψ (z −Bp)) ≤
ˆ T

0

ˆ
Q

ˆ
Ω

∂tp : (z −Bp) .
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The Fenchel inequality of Lemma 2.3 (iii) yields ∂tp : (z − Bp) ≤ Ψ∗ (∂tp) + Ψ (z −Bp)
pointwise. We can therefore conclude from the Fenchel equality

∂tp ∈ ∂Ψ(σ −Bp) . (3.17)

Relations (3.14) and (3.17) imply that z is defined as in the definition of Σ, hence´
Ω
z(t, x, . ) = Σ(∇su)(t, x, . ) for every t ∈ [0, T ] and a.e. x ∈ Q. Therefore, (3.15) is

equivalent with (3.13).

3.4 Proof of the main theorem

Theorem 3.4 yields that Σ of (2.4) is admissible. Theorem 3.3 yields that, for almost every
ω ∈ Ω, the coefficients Cε,ω(x), Bε,ω(x), Ψε,ω(σ;x) allow averaging with the limit operator Σ.

We can therefore apply Theorem 1.10 and obtain

uε ⇀ u weakly in H1(0, T ;H1
0 (Q;Rd))

pε ⇀ Π(∇su), σε ⇀ Σ(∇su) weakly in H1(0, T ;L2(Q;Rd×d)) ,

where u is the unique weak solution to the homogenized problem

−∇ · Σ(∇su) = f

with boundary condition U in the sense of Definition 1.9. Definition 2.2 implies that

Σ(∇su) =

ˆ
Ω

z dP ,

where the functions z ∈ H1(0, T ;L2(Q;L2
sol(Ω))), υ ∈ H1(0, T ;L2(Q;L2

pot(Ω))), and p ∈
H1(0, T ;L2(Q;L2(Ω;Rd×d

s ))) solve

∇s
xu = Cz − υs + p a.e. in [0, T ]×Q× Ω ,

∂tp ∈ ∂Ψ(z −Bp) a.e. in [0, T ]×Q× Ω .

In particular, (z, p, υ) is a solution to (1.5). This concludes the proof.

A An example for the stochastic setting
Our aim here is to describe briefly a non-trivial example for a stochastic setting: the checker
board construction of i.i.d. random variables. Our main goal is to show that the compactness
assumption on Ω is not too restrictive and still permits the analysis of interesting problems.

We use Y := [0, 1[d with the topology of the torus and the partition of Rd with unit cubes
Cz := z + Y for z ∈ Zd. We consider the sets

Ω̃ :=
{
u ∈ L∞(Rd) |u|Cz ≡ cz , for some c : Zd → [0, 1], z 7→ cz

}
Ω :=

{
u ∈ L∞(Rd) | ∃ξ ∈ Y s.t. u(.− ξ) ∈ Ω̃

}
.
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For u ∈ Ω we denote a shift ξ from the above definition as ξ(u). Since L1(Rd) is separable,
we infer from [5], Theorem III.28, that L∞(Rd) with the weak-∗-topology is metrizable: With
a countable and dense subset (φi)i∈N of L1(Rd), a metric d on B∞ is given by

d(u, v) :=
∞∑
i=1

1

2i
|〈u− v, φi〉| .

We infer that B∞ := B1(0) ⊂ L∞(Rd) with the weak-∗-topology is a compact metric space.
The sets Ω̃ and Ω are closed subsets of (B∞, d) and thus compact metric spaces.

The probability measure on Ω corresponding to i.i.d. random variables can be defined
with the help of elementary subsets. For an open set U ⊆ Y , a number k ∈ N, and relatively
open intervals Iz := ((az, bz) ∩ [0, 1]) ⊂ [0, 1], z ∈ Zd and az < bz, the sets

A (U, (Iz)z∈Zd , k) = {u ∈ Ω | ξ(u) ∈ U , u(.− ξ(u))|Cz ∈ Iz ∀z , |z| ≤ k} (A.1)

are open and form a basis of the topology in Ω. For any such set A( . ) we define

P (A (U, (Iz)z∈Zd , k)) := |U |
∏
|z|≤k

|bz − az| .

We finally introduce τx : Ω → Ω for every x ∈ Rd through τxu( . ) = u(x + .). It is easy
to check that the family (τx)x∈Rd is a dynamical system. Since P(A) = P(τxA) for A as in
(A.1) and x ∈ Rd, the dynamical system is measure preserving.
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