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OPTIMAL CONTROL OF NONSMOOTH, SEMILINEAR
PARABOLIC EQUATIONS

C. MEYER∗ AND L. M. SUSU∗

Abstract. This paper is concerned with an optimal control problem governed by a semilinear,
nonsmooth operator differential equation. The nonlinearity is locally Lipschitz-continuous and direc-
tionally differentiable, but not Gâteaux-differentiable. Two types of necessary optimality conditions
are derived, the first one by means of regularization, the second one by using the directional differen-
tiability of the control-to-state mapping. The paper ends with the application of the general results
to a semilinear heat equation involving the max-function.
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1. Introduction. This paper is concerned with an optimal control problem gov-
erned by a semilinear operator differential equation. The essential feature of the prob-
lem under consideration is that the non-linearity in the state equation is only Lipschitz
continuous and not necessarily Gâteaux-differentiable. Therefore, the standard ad-
joint calculus for the derivation of qualified optimality conditions is not applicable in
our situation.
We present two alternative strategies to overcome this issue. The first one is to regu-
larize the state equation in order to obtain a differentiable control-to-state mapping,
which allows to derive Karush-Kuhn-Tucker (KKT) conditions by standard argu-
ments. A passage to the limit then yields an optimality system, which turns out to be
rather weak. A sharper result is obtained by employing the directional differentiability
of the original unregularized control-to-state map. The optimality system obtained in
this way is equivalent to the classical purely primal optimality condition, saying that
the directional derivative of the objective in feasible directions is non-negative.
A similar situation, where various optimality conditions of different strength are
known, arise in mathematical programs with equilibrium constraints (MPECs). In
this context, the purely primal conditions are called Bouligand (B) stationarity. The
most rigorous stationarity concept is strong stationarity. Roughly speaking, the
strong stationarity conditions involve an optimality system, which is equivalent to B-
stationarity. Other stationarity concepts such as Clarke (C) and Mordukhovich (M)
stationarity are less rigorous compared to strong stationarity. The weakest concept is
weak stationarity, which involves the existence of multipliers but no sign conditions for
the multipliers at all. For a detailed overview we refer to [27] for the finite dimensional
and [18] for the infinite dimensional case. If one adopts this scheme of stationarity
conditions for our problem, the optimality conditions derived via regularization can
be seen as weak stationarity, whereas the optimality system established by means of
the directional derivative can be interpreted as strong stationarity.
Let us put our work into perspective. To keep the depiction concise we concentrate
on parabolic problems. While there is a plenty of contributions in the field of opti-
mal control of smooth semilinear parabolic equation, see e.g. [32] and the references
therein, less papers are dealing with non-smooth equations. Most of the contributions
in this field focus on variational inequalities of the first kind such as the parabolic ob-
stacle problem. We only refer to [3,9,10,15,19,20], where different regularization and
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relaxation schemes are used to smooth the problem. The optimality systems derived
by regularization and relaxation are of intermediate strength such as C stationarity.
For optimal control of the parabolic obstacle problem a strong stationarity system can
be found in [24], but no rigorous proof is given there. Much less is known concerning
parabolic equations involving more regular nonlinearities, which are not only maxi-
mal monotone operators but single-valued, Lipschitz continuous functions as in our
case. To the best of our knowledge there are only contributions dealing with optimal
control of ODEs in this case, see e.g. [6, 22] and [7, Chapter 5]. Our main result is
the strong stationarity condition in Section 5. As we will exemplarily demonstrate by
a comparison with the results of [7, Chapter 5], these conditions are more rigorous
than the optimality conditions known so far for optimal control of non-smooth ODEs.
This is due to the special structure of our problem, which is employed by the analysis
in Section 5.

The paper is organized as follows: After a short introduction of our notation, we lay
the foundations for our analysis in Section 2. We prove existence and uniqueness of
the state equation in suitable spaces, which allows to define the control-to-state map.
Section 3 is then devoted to a further investigation of the control-to-state map. We
show that this mapping is directionally differentiable, which is the basis for our main
result, the strong stationarity conditions in Section 5. In Section 4 we pursue the
regularization approach to derive necessary optimality conditions. As a result weak
stationarity conditions are established. The use of this approach is twofold. First it
guarantees an improved regularity of locally optimal controls, which is required for the
proof of strong stationarity. Secondly, weak stationarity enables a comparison to the
strong stationarity conditions, which demonstrates that the latter ones are compara-
tively rigorous. After having established strong stationarity in Section 5, we address
a specific example in Section 6. While Sections 2–5 deal with a general operator dif-
ferential equation, Section 6 is concerned with the application of the general results
to a semilinear heat equation involving the max-function. By employing the special
structure of the max-function, the optimality conditions can further be sharpened.

Notation. Throughout the paper, c denotes a generic positive constant. If X
and Y are two linear normed spaces, the space of linear and bounded operators from
X to Y is denoted by L(X,Y ). The open ball in X around x ∈ X with radius R is
denoted by BX(x,R). The dual of a linear normed space X will be denoted by X∗.
For the dual pairing between X and X∗ we write 〈., .〉X . If X is compactly embedded

in Y , we write X ↪→↪→ Y , and X
d
↪→ Y means that X is dense in Y .

2. Standing Assumptions and Preliminaries. Our optimal control problem
reads as follows:

min J(y, u)

s.t. ẏ(t) +Ay(t) + f(y(t)) = B u(t) in ]0, T [

y(0) = 0.

 (P)

For the quantities in (P) we require the following:

Assumption 2.1.

1. T > 0 is a given fixed final time.
2. X and U are real reflexive and separable Banach spaces. U is equipped with

a norm such that U and U∗ become locally uniformly convex spaces.
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3. A : X → X is a linear, unbounded, and closed operator. Its domain of
definition

D = {x ∈ X : ‖Ax‖X <∞}

is densely and compactly embedded in X. Moreover, A is the infinitesimal
generator of an analytic semigroup e−tA on X. In addition, 0 /∈ σ(A), where
σ(A) denotes the spectrum of A.

4. For the nonlinearity we require f : Y → X, where Y is a real reflexive seper-
able Banach space. Moreover, there exists a real number θ ∈ ]0, 1[ such that
(X,D)θ,∞ ↪→ Y , where (X,D)θ,∞ denotes the real interpolation space, see
e.g. [31]. Furthermore, f is assumed to be Lipschitz continuous on bounded
sets, i.e., for every M > 0, there exists L(M) > 0 so that

‖f(x)− f(y)‖X ≤ L(M) ‖x− y‖Y ∀x, y ∈ BY (0,M) (2.1)

and satisfies the following growth condition

‖f(y)‖X ≤ K
(
1 + ‖y‖Y

)
∀ y ∈ Y (2.2)

with a constant K > 0.
5. Moreover, f is assumed to be directionally differentiable, i.e.,∥∥∥f(x+ τ h)− f(x)

τ
− f ′(x;h)

∥∥∥
X

τ↘0−→ 0 ∀x, h ∈ Y, (2.3)

and, similarly to f itself, its directional derivative is supposed to satisfy

∀M > 0 ∃Q(M) > 0 such that

‖f ′(y;h)− f ′(y; s)‖X ≤ Q(M) ‖h− s‖Y ∀h, s ∈ Y, y ∈ BY (0,M),
(2.4)

∀M > 0 ∃K(M) > 0 such that

‖f ′(y;h)‖X ≤ K(M) ‖h‖Y ∀h ∈ Y, y ∈ BY (0,M).
(2.5)

6. The operator B : U → X is linear and bounded. Its range is dense in X.
7. Let

r >
1

1− θ
(2.6)

with θ ∈ ]0, 1[ from Assumption 2.1.4. Then the objective J : Lr(][0, T [;D)×
Lr(]0, T [;U)→ R is convex and continuously Fréchet-differentiable w.r.t. both
variables.

Remark 2.2. We point out that one always find a norm such that U and U∗ become
locally uniformly convex spaces, since U is assumed to be reflexive, cf. [29, Theorem
4.7.12]. If U is a Hilbert space, then one can simply take the natural norm induced
by the scalar product, see [29, Example 4.7.7].

Remark 2.3. With a little abuse of notation the Nemystkii-operator associated with
f , considered with different ranges, will be denoted by the same symbol.

We start the discussion of (P) with a global existence and uniqueness result for the
state equation in Proposition 2.5 below. Although such a result is not surprising in
view of the Lipschitz and growth conditions on f , we give a detailed proof in Appendix
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A, as, for the best of our knowledge, there is no suitable reference for a global existence
result for our particular equation.

Since A is closed, its domain D equipped with the graph norm forms a Banach space.
Moreover, since 0 /∈ σ(A), the graph norm is equivalent to

‖x‖D := ‖Ax‖X ,

which is the norm we use for D in the sequel. The following result will be useful for
various parts of the paper.

Lemma 2.4. There holds∫ T

0

‖e−tA‖αL(X,Y ) dt <∞ ∀α ∈ [0, θ−1[.

Proof. Using Assumption 2.1.4, [31, Theorem 1.15.2], and [26, Theorem 2.6.13] we
estimate

‖e−tA‖L(X,Y ) ≤ c ‖e−tA‖L(X,(X,D)θ,∞)

≤ c ‖e−tA‖L(X,D(Aθ)) = c ‖Aθe−tA‖L(X,X) ≤ c t−θ.
(2.7)

Herein, D(Aθ) denotes the domain of definition of Aθ. Since α < 1/θ, the right hand
side in (2.7) is an element of Lα(0, T ) giving the claim.

Proposition 2.5. For every u ∈ Lr(]0, T [;U) there exists a unique mild solution
y ∈ C([0, T ];Y ) of

ẏ(t) +Ay(t) + f(y(t)) = B u(t) in ]0, T [

y(0) = 0,
(2.8)

which satisfies the following integral equation

y(t) =

∫ t

0

e−(t−s)A(Bu(s)− f(y(s))
)
ds. (2.9)

The associated solution operator S : Lr(]0, T [;U) 3 u 7→ y ∈ C([0, T ];Y ) is locally
Lipschitz continuous in the following sense: For every R > 0 there exists a constant
L(R) > 0 such that

‖S(u1)− S(u2)‖C([0,T ];Y ) ≤ L(R)‖u1 − u2‖Lr(]0,T [;U) (2.10)

for all u1, u2 ∈ BLr(]0,T [;U)(0, R).

The proof of Proposition 2.5 is based on classical results of semi-group theory, in
particular Lemma 2.4. As mentioned above, we did not found a reference suited for
(2.8) so that we added the proof in Appendix A for convenience of the reader. An
inspection of part (ii) of the proof of Proposition 2.5, in particular the arguments
leading to (A.1), immediately shows the following result, which will be frequently
used in the sequel:

Corollary 2.6. There is a constant C > 0 such that, for all u ∈ Lr(]0, T [;U),

‖S(u)‖C([0,T ];Y ) ≤ C
(
1 + ‖u‖Lr(]0,T [;U)

)
4



holds true.

Definition 2.7. The operator A is said to satisfy maximal parabolic Lr(]0, T [;X)-
regularity, r ∈]1,∞[, iff, for every g ∈ Lr(]0, T [;X), the equation ẇ+Aw = g admits
a unique solution w ∈ W 1,r

0 (]0, T [;X) ∩ Lr(]0, T [;D). In the following we abbrevi-
ate Wr

0(D, X) := W 1,r
0 (]0, T [;X) ∩ Lr(]0, T [;D). Moreover, we sometimes just say

maximal parabolic regularity, i.e., we drop Lr(]0, T [;X), if the context is clear.

Proposition 2.8. If A satisfies maximal parabolic Lr(]0, T [;X)-regularity, then, for
every u ∈ Lr(]0, T [;U), there exists a unique solution y ∈ Wr

0(D, X) of (2.8). The
solution operator S : Lr([0, T ];U) → Wr

0(D, X) is locally Lipschitz continuous in the
sense of Proposition 2.5.

Proof. We apply a standard boot strapping argument. Let y ∈ C([0, T ];Y ) denote
the solution of (2.8) according to Proposition 2.5. Consider the following auxiliary
linear equation

ẇ +Aw = B u− f(y), w(0) = 0. (2.11)

Because of y ∈ C([0, T ];Y ) we have f(y) ∈ L∞(]0, T [;X) by (2.2). According to
maximal parabolic regularity (2.11) admits a unique solution w ∈ Wr

0(D, X). This
solution is given by

w(t) =

∫ t

0

e−(t−s)A(Bu(s)− f(y(s))
)
ds,

which in view of (2.9) implies y = w ∈Wr
0(D, X).

To prove the local Lipschitz continuity, let R > 0 be arbitrary and consider two
functions u1, u2 ∈ Lr(]0, T [;U) with ‖ui‖Lr(]0,T [;U) ≤ R. Then, due to Corollary 2.6,
there holds

‖yi(t)‖Y ≤ C(1 +R) =: M, i = 1, 2.

Thanks to the open mapping theorem, ∂t + A : Wr
0(D, X) → Lr(]0, T [;X) is contin-

uously invertible, if A satisfies maximal parabolic regularity. Therefore one arrives
at

‖y1 − y2‖Wr
0(D,X) ≤ ‖(∂t +A)−1‖L(Lr(]0,T ;X[);Wr

0(D,X))(
‖B(u1 − u2)‖Lr(]0,T [;X) + ‖f(y1)− f(y2)‖Lr(]0,T [;X)

)
≤ c
(
‖B‖L(U,X)‖u1 − u2‖Lr(]0,T [;U) + L(M)‖y1 − y2‖Lr(]0,T [;Y )

)
≤ c

(
‖B‖L(U,X) + L(M)L(R)

)
‖u1 − u2‖Lr(]0,T [;U),

where we used (2.1) and (2.10).

Remark 2.9. Thanks to (2.6), we have 1 − 1/r > θ and therefore, by [1, Ch. III,
Thm. 4.10.2], it holds

Wr
0(D, X) ↪→ C([0, T ]; (X,D)1−1/r,r) ↪→ C([0, T ]; (X,D)θ,∞) ↪→ C([0, T ];Y ).

Thus the assertion of Proposition 2.8 is indeed sharper than the one of Proposition
2.5.

Lemma 2.10. Let A satisfy maximal parabolic regularity. Then S : Lr(]0, T [;U) →
Wr

0(D, X) is weakly continuous.
5



Proof. Let un ⇀ u in Lr(]0, T [;U) and set yn := S(un) and y = S(u). Then, due to
Corollary 2.6 and (2.2), there exists a constant C > 0 such that

‖yn‖Wr
0(D,X)

≤ ‖(∂t +A)−1‖L(Lr(]0,T ;X[);Wr
0(D,X))

(
‖Bun‖Lr(]0,T [;X) + ‖f(yn)‖Lr(]0,T [;X)

)
≤ C

(
1 + ‖un‖Lr(]0,T [;U)

)
∀n ∈ N.

Therefore there exists a further subsequence, for simplicity denoted by the same sym-
bol, so that

yn ⇀ y in Wr
0(D, X) for n→∞.

Note that Wr
0(D, X) is reflexive, as X and D are assumed to be so, see [11, Thm.

I.5.13]. Since ∂t, A, and B are weakly continuous, we immediately obtain

ẏn +Ayn ⇀ ẏ +Ay, Bun ⇀ Bu in Lr(]0, T [;X).

Because of Wr
0(D, X) ↪→ C([0, T ];Y ), cf. Remark 2.9, the sequence {yn} is bounded

in C([0, T ];Y ) by a constant M > 0 so that (2.1) yields

‖f(yn)− f(y)‖Lr(]0,T [;X) ≤ L(M)‖yn − y‖Lr(]0,T [;Y ).

Since the embedding Wr
0(D, X) ↪→↪→ Lr(]0, T [;Y ) is compact because of D ↪→↪→ X,

cf. Assumption 2.1.3, (2.6), and [1, Thm. II.4.10.2], we deduce f(yn) → f(y) in
Lr(]0, T [;X). This allows to pass to the limit in (2.8), and its unique solvability
yields y = S(u). By a known argument the uniqueness of the weak limit gives the
weak convergence of the whole sequence.

Proposition 2.11. In addition to Assumption 2.1 and the maximal parabolic regu-
larity of A, suppose that Lr(]0, T [;U) 3 u 7→ J(S(u), u) ∈ R is radially unbounded.
Then there exists at least one (not necessarily unique) solution to the optimal control
problem (P).

Proof. The arguments are standard. Every minimizing sequence is bounded due to the
radial unboundedness. As Lr(]0, T [;U) is reflexive by assumption, we can therefore
select a weakly converging subsequence. By Lemma 2.10, the sequence of associated
states also converges weakly in Wr

0(D, X). As the objective is continuous and convex
by assumption, thus weakly lower semicontinuous, we can pass to the limit in the
objective, giving optimality of the weak limit.

Note that the additional assumption of radial unboundedness is not necessary for the
rest of the paper, as we are investigating the characterization of local minima. This
is why we do not impose this additional hypothesis in our standing assumptions.

3. Directional Differentiability. This section is devoted to the directional
differentiability of the solution operator S. In Section 5 this result will be used to
derive a comparatively rigorous optimality condition. We start the discussion with a
differentiability result of the nonlinearity in (2.8) in abstract function spaces.

Lemma 3.1. Under Assumption 2.1.4 and 5, the function f is directionally differ-
entiable from C([0, T ];Y ) to Lβ(]0, T [;X) for every β < ∞. If the Lipschitz and
boundedness conditions in (2.1) and (2.5) are satisfied globally, i.e., with constants L
and K independent of M , then f is directionally differentiable from Lβ(]0, T [;Y ) to
Lβ(]0, T [;X) for every β <∞.
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Proof. Let y, v ∈ C([0, T ];Y ) be given. Thanks to (2.3) it holds

Aτ (t) :=
∥∥∥f(y(t) + τ v(t))− f(y(t))

τ
− f ′(y(t); v(t))

∥∥∥
X

τ↘0−→ 0 f.a.a. t ∈ ]0, T [. (3.1)

In view of (2.1) and (2.5) we find

|Aτ (t)| ≤
(
L(M) +K(M)

)
‖v(t)‖Y f.a.a. t ∈ ]0, T [, (3.2)

withM := ‖y‖C([0,T ];Y )+‖v‖C([0,T ];Y ). Thus, from Lebesgue’s dominated convergence
theorem, we deduce

Aτ
τ↘0−→ 0 in Lβ(]0, T [) for all β <∞,

which shows the first claim.

If (2.1) and (2.5) are satisfied globally, then (3.2) implies |Aτ (t)| ≤ (L+K) ‖v(t)‖Y for
a.a. t ∈ ]0, T [ and all y, v ∈ Lβ(]0, T [;Y ), and again Lebesgue’s dominated convergence
theorem yields the second assertion.

Theorem 3.2. The solution operator S : Lr(]0, T [;U) → C([0, T ];Y ) is direction-
ally differentiable and its directional derivative η = S′(u;h) at u ∈ Lr(]0, T [;U) in
direction h ∈ Lr(]0, T [;U) is given by the mild solution of

η̇(t) +Aη(t) + f ′(y(t); η(t)) = B h(t) in [0, T ]

η(0) = 0.
(3.3)

with y = S(u).

If A satisfies maximal Lr(]0, T [;X)-regularity, then S is directionally differentiable
from Lr(]0, T [;U) to Wr

0(D, X).

Proof. We first shortly address the existence of unique solutions to (3.3). For this
purpose, let u, h ∈ Lr(]0, T [;U) be arbitrary and set y = S(u). By Corollary 2.6,
(2.4), and (2.5) we have

∃Qy > 0 such that ‖f ′(y; η1)− f ′(y; η2)‖X ≤ Qy ‖η1 − η2‖Y ∀ η1, η2 ∈ Y, (3.4)
∃Ky > 0 such that ‖f ′(y; η)‖X ≤ Ky‖η‖Y ∀ η ∈ Y, (3.5)

i.e., η 7→ f(y; η) satisfies the same Lipschitz and growth conditions as stated for
y 7→ f(y) in Assumption 2.1.4. Therefore the same arguments apply as in the proofs
of Proposition 2.5 and 2.8, and we obtain a unique solution η ∈ C([0, T ];Y ), which
fulfills η ∈Wr

0(D, X), provided that A satisfies maximal parabolic regularity.

The associated integral equation reads

η(t) =

∫ t

0

e−(t−s)A(Bh(s)− f ′(y(s); η(s))
)
ds. (3.6)

Subtracting this equation from the ones for y = S(u) and yτ = S(u+ τ h), τ ∈ [0, 1],
yields (yτ − y

τ
− η
)

(t) =

∫ t

0

e−(t−s)A
(f(yτ (s))− f(y(s))

τ
− f ′(y(s); η(s))

)
ds.
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Consequently, one obtains∥∥∥(yτ − y
τ

− η
)

(t)
∥∥∥
Y

≤
∫ t

0

‖e−(t−s)A‖L(X,Y )

( =:Aτ (s)︷ ︸︸ ︷∥∥∥f((y + τη)(s)
)
− f(y(s))

τ
− f ′(y(s); η(s))

∥∥∥
X

+
∥∥∥f(yτ (s))− f

(
(y + τη)(s)

)
τ

∥∥∥
X︸ ︷︷ ︸

=:Bτ (s)

)
ds.

(3.7)

According to Lemma 3.1 there holds

Aτ
τ↘0−→ 0 in Lβ(]0, T [) for all β <∞. (3.8)

To estimate Bτ , first observe that Corollary 2.6 gives

‖yτ‖C(]0,T [;Y ) ≤ C(1 + ‖u+ τh‖Lr(]0,T [;U))

≤ C(1 + ‖u‖Lr(]0,T [;U) + ‖h‖Lr(]0,T [;U)) =: ρ.

By setting

M := max
{
ρ, ‖y‖C([0,T ];Y ) + ‖η‖C([0,T ];Y )

}
,

(2.1) gives

Bτ (t) ≤ L(M)
∥∥∥(yτ − y

τ
− η
)

(t)
∥∥∥
Y

(3.9)

for all t ∈ [0, T ]. Together with (3.7), Gronwall’s inequality, and Lemma 2.4, it follows
that ∥∥∥(yτ − y

τ
− η
)

(t)
∥∥∥
Y

≤ exp
(
L(M)

∫ t

0

‖e−(t−s)A‖L(X,Y )ds
)∫ T

0

‖e−(t−s)A‖L(X,Y )Aτ (s) ds

≤ c
∫ T

0

‖e−sA‖β
′

L(X,Y )ds
1/β′ ‖Aτ‖Lβ(]0,T [),

with β > 1/(1− θ) and θ from Assumption 2.1.4. Therefore, we conclude∥∥∥yτ − y
τ

− η
∥∥∥
C([0,T ];Y )

≤ c‖Aτ‖Lβ(]0,T [)
τ↘0−→ 0 (3.10)

giving the first assertion.
If A satisfies maximal parabolic regularity, then∥∥∥yτ − y

τ
− η
∥∥∥
Wr

0(D,X)

≤ ‖(∂t +A)−1‖L(Lr(]0,T [;X),Wr
0(D,X))

∥∥∥f(yτ )− f(y)

τ
− f ′(y; η)

∥∥∥
Lr(]0,T [;X)

≤ c
(∫ T

0

|Aτ (t)|r dt1/r +

∫ T

0

|Bτ (t)|r dt1/r
)

≤ c
(
‖Aτ‖Lr(]0,T [) + L(M)

∥∥∥yτ − y
τ

− η
∥∥∥
Lr(]0,T [;Y )

)
τ↘0−→ 0,

8



where we used (3.9), (3.8), and (3.10).

Remark 3.3. Since S is directionally differentiable and locally Lipschitz continuous,
it is Hadamard directionally differentiable, see e.g. [4, Proposition 2.49].

Next we turn to the linearized equation with right-hand sides in Lr(]0, T [;X), i.e.

η̇(t) +Aη(t) + f ′(y(t); η(t)) = ξ(t) in [0, T ]

η(0) = 0
(3.11)

with ξ ∈ Lr(]0, T [;X) and y = S(u). In view of (3.5) and (3.4), a straight forward
adaptation of the proof of Proposition 2.5 shows that this equation admits a unique
solution η for every ξ ∈ Lr(]0, T [;X). Moreover, if A satisfies maximal parabolic regu-
larity, then we can argue as in the proof of Proposition 2.8 to show that η ∈Wr

0(D, X).
We denote the associated solution operator by Su : Lr(]0, T [;X)→Wr

0(D, X). More-
over, similarly to part (iii) of the proof of Proposition 2.5 one shows that Su is globally
Lipschitz continuous. To see this, let ξ1, ξ2 ∈ Lr(]0, T [;X) and u ∈ BLr(]0,T [;U)(0, R)
be given. Then Corollary 2.6 implies for y = S(u) that

‖y‖C([0,T ];Y ) ≤ C(1 + ‖u‖Lr(]0,T [;U)) ≤ C(1 +R) =: MR,

and the integral equation associated with (3.11) in combination with (2.4) results in

‖η1(t)− η2(t)‖Y ≤
∫ T

0

‖e−sA‖r
′

L(X,Y ) ds
1/r′ ‖ξ1 − ξ2‖Lr(]0,T [;X)

+Q(MR)

∫ t

0

‖e−(t−s)A‖L(X,Y ))‖η1(s)− η2(s)‖Y ds,

cf. also (A.4). Then Gronwall’s inequality and Lemma 2.4 yields

‖η1(t)− η2(t)‖Y ≤ cQR ‖ξ1 − ξ2‖Lr(]0,T [;X)

with

QR := c exp
(
Q(MR)

∫ T

0

‖e−tA‖L(X,Y ))dt
)
.

The estimate w.r.t. the Wr
0(D, X) follows completely analogously to the end of the

proof of Proposition 2.8. The resulting estimate reads

‖η1 − η2‖Wr
0(D,X) ≤ c (1 +Q(MR)QR)‖ξ1 − ξ2‖Lr(]0,T [;X).

Note that the Lipschitz constant does only depend on R. We collect these results in
the following

Lemma 3.4. Let A satisfy maximal parabolic regularity and u ∈ Lr(]0, T [;U) be
arbitrary with assiciated state y = S(u). Then, for every ξ ∈ Lr(]0, T [;X), there
exists a unique solution η ∈Wr

0(D, X) of (3.11). The associated solution operator Su
is globally Lipschitz continuous in the following sense: For every R > 0 there exists
a constant Q(R) > 0 so that for every u ∈ Lr(]0, T [;U) with ‖u‖Lr(]0,T [;U) ≤ R the
following estimate

‖Su(ξ1)− Su(ξ2)‖Wr
0(D,X) ≤ Q(R) ‖ξ1 − ξ2‖Lr(]0,T [;X) ∀ ξ1, ξ2 ∈ Lr(]0, T [;X). (3.12)

holds true.
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4. Regularization. In the following section, we regularize the nonlinearity f in
(2.8) in order to obtain a Gâteaux-differentiable mapping, which enables us in turn to
derive first-order optimality conditions in a standard way by using an adjoint calculus.
Afterwards a limit analysis for vanishing regularization gives an optimality system for
the original non-smooth problem, which is of weak stationary type, see Theorem 4.15
below. For this purpose we have to require several additional assumptions listed in
the following.

Assumption 4.1 (Maximal parabolic regularity). For the rest of the paper we assume
that A satisfies maximal parabolic Lr(]0, T [;X)-regularity.

Assumption 4.2 (Regularization). For every ε > 0 there exists a function fε : Y →
X such that

1. For all y ∈ Y it holds

‖f(y)− fε(y)‖X → 0 as ε→ 0.

2. fε satisfies the same hypotheses as f in Assumption 2.1.4, i.e.

∀M > 0 ∃L(M) > 0 :

‖fε(x)− fε(y)‖X ≤ L(M) ‖x− y‖Y ∀x, y ∈ BY (0,M),
(4.1)

∃K > 0 : ‖fε(y)‖X ≤ K
(
1 + ‖y‖Y

)
∀ y ∈ Y, (4.2)

where L(.) and K are independent of ε.
3. fε : Y → X is Gâteaux differentiable. Similarly to Assumption 2.1.5, its

derivative is assumed to satisfy

∀M > 0 ∃K(M) > 0 such that

‖f ′ε(y)‖L(Y,X) ≤ K(M) ∀ y ∈ BY (0,M).
(4.3)

with K(.) independent of ε.

Remark 4.3. Note that, due to the linearity of the derivative, (4.3) is equivalent to
a Lipschitz and boundedness condition analogous to (2.5) and (2.4).

With a little abuse of notation the Lipschitz and boundedness constants in Assumption
4.2.2 and 4.2.3 are denoted by the same symbols as in Assumption 2.1, as all these
constants do not depend on ε. The same holds true for the Lipschitz and boundedness
constants in the sequel of this section.

Consider now the following regularized counterpart to (2.8)

ẏ(t) +Ay(t) + fε(y(t)) = B u(t) in ]0, T [

y(0) = 0.
(4.4)

Since fε satisfies the same conditions as f by Assumption 4.2.2, we immediately obtain
the following

Lemma 4.4. For every u ∈ Lr(]0, T [;U) the equation (4.4) admits a unique solu-
tion y ∈ Wr

0(D, X). The associated solution operator Sε : Lr(]0, T [;U) 3 u 7→ y ∈
Wr

0(D, X) is locally Lipschitz continuous in the sense of Proposition 2.5 and 2.8,
respectively, i.e., for every R > 0 there exists a constant L(R) so that

‖Sε(u1)− Sε(u2)‖Wr
0(D,X) ≤ L(R) ‖u1 − u2‖Lr(]0,T [;U) ∀u1, u2 ∈ BLr(]0,T [;U)(0, R).
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The Lipschitz constant L(.) does not depend on ε, since the constants in Assumption
4.2.2 do so.

In the sequel we will frequently use the following estimate

‖Sε(u)‖C([0,T ];Y ) ≤ C
(
1 + ‖u‖Lr(]0,T [;U)

)
, (4.5)

with a constant C > 0, which does not depend on ε, as K in (4.2) does not. This
estimate can be shown completely analogously to (A.1), and for simplicity we denote
the constants by the same symbol.

Lemma 4.5. The regularized solution mapping Sε : Lr(]0, T [;U) → Wr
0(D, X) is

Gâteaux differentiable. Its derivative at u ∈ Lr(]0, T [;U) in direction h ∈ Lr(]0, T [;U)
is given as the unique solution of

η̇(t) +Aη(t) + f ′ε(y(t))η(t) = B h(t) in ]0, T [

η(0) = 0.
(4.6)

Proof. The fact that Sε : Lr(]0, T [;U) → Wr
0(D, X) is directionally differentiable

follows with exactly the same arguments as in Theorem 3.2. The linearity of the
derivative follows from Assumption 4.2.3.

Based on Assumption 4.2.3 the following lemma can be proven in exactly the same
way as Lemma 3.4. Note that, in case of a linear operator, Lipschitz continuity is
equivalent to boundedness.

Lemma 4.6. For every u ∈ Lr(]0, T [;U) and every ξ ∈ Lr(]0, T [;X) the equation

η̇(t) +Aη(t) + f ′ε(y(t))η(t) = ξ(t) in ]0, T [

η(0) = 0
(4.7)

admits a unique solution η ∈ Wr
0(D, X). The associated linear solution operator is

denoted by Suε . Moreover, for every R > 0 there exists a constant K(R) such that

‖Suε ‖L(Lr(]0,T [;X),Wr
0(D,X)) ≤ K(R) ∀u ∈ BLr(]0,T [;U)(0, R). (4.8)

In view of Assumption 4.2.3 the constant K(.) does not depend on ε.

Lemma 4.7 (Convergence of the regularization). Let u ∈ Lr(]0, T [;U) be arbitrary.
Then

Sε(u)→ S(u) in Wr
0(D, X), as ε↘ 0. (4.9)

Proof. The proof is similar to the one of Theorem 3.2. From the integral equation we
get

y(t)− yε(t) =

∫ t

0

e−(t−s)A(f(y(s))− fε(yε(s))
)
ds. (4.10)

In view of Corollary 2.6 and (4.5) one has that

M := max{‖y‖C([0,T ];Y ), ‖yε‖C([0,T ];Y )}
11



is finite and independent of ε. Therefore, (4.10) together with the triangle inequality
and (4.1) leads to

‖y(t)− yε(t)‖Y

≤
∫ t

0

‖e−(t−s)A‖L(X,Y )

(
L(M)‖y(s)− yε(s)‖Y + ‖f(y(s))− fε(y(s)‖X︸ ︷︷ ︸

=:Aε(s)

)
ds.

Gronwall’s inequality and Lemma 2.4 then imply

‖y(t)− yε(t)‖Y

≤ exp
(
L(M)

∫ t

0

‖e−(t−s)A‖L(X,Y )ds
)∫ T

0

‖e−(t−s)A‖L(X,Y )Aε(s) ds

≤ c
∫ T

0

‖e−sA‖β
′

L(X,Y )ds
1/β′ ‖Aε‖Lβ(]0,T [)

with β ≥ r > 1/(1− θ). Thanks to (2.2), (4.2), and Corollary 2.6, it holds

Aε(t)→ 0 f.a.a. t ∈]0, T [

|Aε(t)| ≤ c(1 + ‖y(t)‖Y ) ≤ c(1 + ‖u‖Lr(]0,T [;U)) f.a.a. t ∈]0, T [.

and therefore, by Lebesgue’s dominated convergence theorem,

Aε = ‖f(y(.))− fε(y(.))‖X → 0 in Lβ(]0, T [) as ε↘ 0. (4.11)

Therefore we arrive at

‖y − yε‖C([0,T ];Y ) → 0. (4.12)

Using the fact that ∂t + A : Wr
0(D, X) → Lr(]0, T [;X) is continuously invertible by

Assumption 4.1, one obtains

‖y − yε‖Wr
0(D,X) ≤ ‖(∂t +A)−1‖L(Lr(]0,T ;X[);Wr

0(D,X))‖f(y)− fε(yε)‖Lr(]0,T [;X)

≤ c
(
L(M)‖yε − y‖Lr(]0,T [;Y ) + ‖Aε‖Lr(]0,T [)

)
→ 0,

where we used (4.11) and (4.12).

Corollary 4.8. If uε → u in Lr(]0, T [;U), then Sε(uε) → S(u) in Wr
0(D, X), as

ε↘ 0.

Proof. The triangle inequality yields

‖Sε(uε)− S(u)‖Wr
0(D,X) ≤ ‖Sε(uε)− Sε(u)‖Wr

0(D,X) + ‖Sε(u)− S(u)‖Wr
0(D,X).

While the second addend converges to zero thanks to Lemma 4.7, the first one can be
estimated with the help of the local Lipschitz continuity of Sε, see Lemma 4.4. Note
that ‖uε‖Lr(]0,T [;U) is uniformly bounded due to convergence.

Lemma 4.9. If uε ⇀ u in Lr(]0, T [;U), then Sε(uε) ⇀ S(u) in Wr
0(D, X), as ε↘ 0.

Proof. The proof follows the lines of the proof of Lemma 2.10. Thanks to (4.2) and
(4.5), one shows completely analogously that the sequence {yε} with yε := Sε(uε) is
bounded in Wr

0(D, X). Note in this context that the constant K in Assumption 4.2.2
does not depend on ε. Therefore there is a weakly converging subsequence, denoted
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by the same symbol, i.e., yε ⇀ y in Wr
0(D, X). As in the proof of Lemma 2.10, we

can pass to the limit in the linear parts of (4.4) by weak continuity. For the nonlinear
part, we obtain

‖fε(yε)− f(y)‖Lr(]0,T [;X) ≤ ‖fε(yε)− fε(y)‖Lr(]0,T [;X) + ‖fε(y)− f(y)‖Lr(]0,T [;X)

While the convergence of the second addend follows from (4.11), the first part con-
verges to zero due to the compact embedding Wr

0(D, X) ↪→↪→ Lr(]0, T [;Y ) and the
local Lipschitz continuity of fε in (4.1) with a constant independent of ε, see also
the argument at the end of the proof of Lemma 2.10. Therefore the weak limit sat-
isfies (2.8), and the uniqueness of the weak limit gives the convergence of the whole
sequence.
For the rest of this section let ū ∈ Lr(]0, T [;U) an arbitrary local minimizer of (P)
and consider the following regularization of (P):

min J(y, u) +
1

r
‖u− ū‖rLr(]0,T [;U)

s.t. ẏ(t) +Ay(t) + fε(y(t)) = B u(t) in ]0, T [

y(0) = 0.

 (Pε)

In order to derive necessary optimality conditions for (Pε) we need the following
Lemma 4.10 (Adjoint equation). Let u ∈ Lr(]0, T [;U) be arbitrary. Then for every
ν ∈ Lr′(]0, T [;D∗) there holds S′ε(u)∗ν = B∗pε, where

pε ∈Wr′

T (X∗,D∗) := {v ∈W 1,r′(]0, T [;D∗) ∩ Lr
′
(]0, T [;X∗) : v(T ) = 0}

is the solution of the following linear equation

− ṗε +A∗ pε + [f ′ε(yε)]
∗pε = ν, pε(T ) = 0. (4.13)

Proof. Since Sε is Gâteaux-differentiable, the assertion follows by standard adjoint
calculus. First note that

S′ε(u) = Suε B

with Suε as defined in Lemma 4.6, i.e.,

Suε = [∂t +A+ f ′ε(yε)]
−1 ∈ L(Lr(]0, T [;X),Wr

0(D, X)).

with yε = Sε(u). This means that theA+f ′ε(yε) satisfies maximal parabolic Lr(]0, T [;X)-
regularity and, by [16, Lemma 36], the adjoint A∗ + f ′ε(yε)

∗ thus satisfies maximal
parabolic Lr

′
(]0, T [;D∗)-regularity, giving in turn that, for every ν ∈ Lr′(]0, T [;D∗),

there is a unique solution in Wr′

T (X∗,D∗) of (4.13). Now let h ∈ Lr(]0, T [;U) be arbi-
trary and denote by η the solution of (4.6), i.e., η = S′ε(u)h. By applying the formula
of integration by parts from [2, Proposition 5.1] in combination with the initial and
final time conditions in (4.6) and (4.13), respectively, one shows that

〈B∗pε, h〉Lr(]0,T [;U) =

∫ T

0

〈pε, B h〉X dt

=

∫ T

0

〈pε, η̇ +Aη + f ′ε(yε)η〉X dt

=

∫ T

0

〈−ṗε +A∗pε + f ′ε(yε)
∗pε, η〉D dt

= 〈ν, S′ε(u)h〉Lr(]0,T [;D),

(4.14)
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cf. also [16, Appendix A.2]. Since h was arbitrary, this proves the claim.
Definition 4.11. Let ε > 0 be given. We define the reduced cost functionals of (P)
and (Pε), respectively, by

j : Lr(]0, T [;U) 3 u 7→ J(S(u), u) ∈ R, (4.15)

jε : Lr(]0, T [;U) 3 u 7→ J(Sε(u), u) +
1

r
‖u− ū‖rLr(]0,T [;U) ∈ R. (4.16)

Proposition 4.12 (Optimality system for the regularized problem). Every local
solution uε of (Pε) fulfills together with the state yε ∈ Wr

0(D, X) and the adjoint
state pε ∈Wr′

T (X∗,D∗) the following optimality system

ẏε +Ayε + fε(yε) = Buε, yε(0) = 0 (4.17a)
−ṗε +A∗ pε + [f ′ε(yε)]

∗pε = ∂yJ(yε, uε), pε(T ) = 0, (4.17b)
B∗pε + ∂uJ(yε, uε) + F ′(uε) = 0 (4.17c)

Proof. In view of Lemma 4.10 the arguments are standard. First note that uε is a
local solution of the free optimization problem

min
u∈Lr(]0,T [;U)

jε(u).

By the chain rule and Lemma C.1 in Appendix C, jε is Gâteaux-differentiable and
therefore

0 = j′ε(uε) = [S′ε(uε)]
∗∂yJ(yε, uε) + ∂uJ(yε, uε) + F ′(uε) in Lr

′
(]0, T [;U∗).

Note that the assumptions of Lemma C.1 are fulfilled due to Assumption 2.1.2.
Lemma 4.10 then gives the result.
Proposition 4.13 (Convergence of the minimizers). Let ū ∈ Lr(]0, T [;U) be a local
minimizer of (P). Then there exists a sequence {uε} of local minimizers of (Pε) such
that

uε → ū in Lr(]0, T [;U) as ε↘ 0. (4.18)

Moreover

Sε(uε)→ S(ū) in Wr
0(D, X). (4.19)

Proof. The arguments are standard and combine a technique used for instance in
[25] with a localization argument of [5]. For convenience of the reader we recall the
arguments.
Let B(ū, ρ) := BLr(]0,T [;U)(ū, ρ) be the ball of local optimality of ū, i.e.,

j(ū) ≤ j(u) ∀u ∈ B(ū, ρ). (4.20)

Then we consider the following auxiliary optimal control problem:

min jε(u)

s.t. u ∈ B(ū, ρ),

}
(Pρε)
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which coincides with (Pε) except for the additional constraints on u. The existence of
global minimizers for (Pρε) can be shown completely analogously to the proof of Propo-
sition 2.11 by standard arguments. Note that, this time, the radial unboundedness of
J is not needed, since the additional constraint u ∈ B(ū, ρ) ensures the boundedness
of minimizing sequences. Note further that B(ū, ρ) is convex and closed, thus weakly
closed, which gives the feasibility of the weak limit. In the sequel we denote by uε a
global minimizer of (Pρε).
Now let ε↘ 0. Then, due to {uε} ⊂ B(ū, ρ), and we can select a weakly convergent
subsequence, which we denote by the same symbol, i.e.,

uε ⇀ ũ in Lr(]0, T [;U). (4.21)

As ū is clearly feasible for (Pρε), one obtains by applying Lemma 4.7 that

J(Sε(uε), uε) ≤ jε(uε) ≤ jε(ū) = J(Sε(ū), ū)→ J(S(ū), ū) = j(ū). (4.22)

Thus we arrive at

j(ū) ≥ lim sup
ε→0

jε(uε) ≥ lim inf
ε→0

jε(uε)

= lim inf
ε→0

(
J(Sε(uε), uε) +

1

r
‖uε − ū‖rLr(]0,T [;U)

)
≥ J(S(ũ), ũ) +

1

r
‖ũ− ū‖rLr(]0,T [;U)

≥ j(ū) +
1

r
‖ũ− ū‖rLr(]0,T [;U)

(4.23)

The last two inequalities follow from the weak lower semicontinuity of the norm and
of J (by convexity), Lemma 4.9, and (4.20), respectively. Note that ũ ∈ B(ū, ρ), as
B(ū, ρ) is weakly closed. The first thing to note in (4.23) is that ũ = ū.
Furthermore, by applying the same arguments with the very left side of (4.22), it
follows

j(ū) ≥ lim sup
ε→0

J(Sε(uε), uε) ≥ lim inf
ε→0

J(Sε(uε), uε) ≥ J(S(ũ), ũ) ≥ j(ū).

Together with jε(uε)→ j(ū), which follows from (4.23), this yields

1

r
‖uε − ū‖rLr(]0,T [;U) = jε(uε)− J(Sε(uε), uε)→ 0, (4.24)

which shows (4.18). The convergence of the states in (4.19) is then an immediate
consequence of Corollary 4.8.
It remains to show that uε is a local minimizer of (Pε) for sufficiently small ε > 0. To
this end, let u ∈ BLr(]0,T [;U)(uε, ρ/2) be arbitrary. Then, for sufficiently small ε > 0,
(4.18) leads to

‖u− ū‖Lr(]0,T [;U) ≤ ‖uε − ū‖Lr(]0,T [;U) + ‖u− uε‖Lr(]0,T [;U) ≤
ρ

2
+
ρ

2
= ρ.

This yields u ∈ B(ū, ρ) and the global optimality of uε for (Pρε) implies jε(uε) ≤ jε(u).
Since u ∈ BLr(]0,T [;U)(uε, ρ/2) was arbitrary this gives the claim.
Lemma 4.14 (Boundedness of dual variables). Let {pε} be sequence of adjoint states
given by (4.27c) associated with the sequence of local solutions {uε} in Proposition
4.13. Define

λε := [f ′ε(yε)]
∗pε. (4.25)
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Then there exist constants C1, C2 > 0, independent of ε, such that

‖pε‖Wr′
T (X∗,D∗) ≤ C1, ‖λε‖Lr′ (]0,T [;Y ∗) ≤ C2

for all ε > 0.

Proof. We first address the boundedness of {pε} in Wr′

T (X∗,D∗). Since uε and yε con-
verge to ū and ȳ in Lr(]0, T [;U) and Wr

0(D, X), respectively, the continuous Fréchet-
differentiability of J implies that J ′(yε, uε) converges and is therefore bounded, i.e.,

‖J ′(yε, uε)‖(Lr(]0,T [;D))∗×(Lr(]0,T [;U))∗ ≤ c <∞ ∀ ε > 0. (4.26)

With regard to the adjoint equation in (4.27c) an integration by parts, completely
analogously to (4.14) yields

〈pε, ξ〉Lr(]0,T [;X) = 〈∂yJ(yε, uε), S
uε
ε ξ〉Lr(]0,T [;D)

≤ ‖∂yJ(yε, uε)‖(Lr(]0,T [;D))∗‖Suεε ‖L(Lr(]0,T [;X),Wr
0(D,X))‖ξ‖Lr(]0,T [;X)

≤ cK(R) ‖ξ‖Lr(]0,T [;X),

where we used (4.26), (4.8), and ‖uε‖Lr(]0,T [;U) ≤ R for the last estimate. Since X is
reflexive and separable and thus (Lr(]0, T [;X))∗ = Lr

′
(]0, T [;X∗), we obtain

‖pε‖Lr′ (]0,T [;X∗) = sup
ξ 6=0

〈pε, ξ〉Lr(]0,T [;X)

‖ξ‖Lr(]0,T [;X)
≤ c.

The maximal parabolic Lr
′
(]0, T [;D∗)-regularity of A∗, cf. [16, Lemma 36] and As-

sumption 4.2.3 together with the boundedness of {yε} in Wr
0(D, X) ↪→ C([0, T ];Y )

then yield

‖pε‖Wr′
T (X∗,D∗)

≤ ‖(−∂t +A∗)−1‖L(Lr′ (]0,T [;D∗),Wr′
T (X∗,D∗))‖∂yJ(yε, uε)− [f ′ε(yε)]

∗pε‖Lr′ (]0,T [;D∗)

≤ c
(
‖∂yJ(yε, uε)‖Lr′ (]0,T [;D∗)

+ ‖[f ′ε(yε)]‖L(Lr(]0,T [;Y ),Lr(]0,T [;X))‖pε‖Lr′ (]0,T [;X∗)

)
≤ c ∀ ε > 0.

For λε as defined in (4.25) one similarly obtains

‖λε‖Lr′ (]0,T [;Y ∗) = ‖[f ′ε(yε)]∗pε‖Lr′ (]0,T [;Y ∗)

≤ ‖[f ′ε(yε)]‖L(Lr(]0,T [;Y ),Lr(]0,T [;X))‖pε‖Lr′ (]0,T [;X∗) ≤ c <∞ ∀ ε > 0,

which finally proves the assertion.

Theorem 4.15 (Optimality system after passing to the limit). Let ū be a local
minimizer of (P) with associated state ȳ = S(ū) ∈ Wr

0(D, X). Then there exist
unique adjoint state p ∈Wr′

T (X∗,D∗) and λ ∈ Lr′(]0, T [;Y ∗) such that

˙̄y +A ȳ + f(ȳ) = Bū, ȳ(0) = 0 (4.27a)
−ṗ+A∗ p+ λ = ∂yJ(ȳ, ū), p(T ) = 0 (4.27b)

B∗p+ ∂uJ(ȳ, ū) = 0. (4.27c)
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Proof. Let {uε} be the sequence from Proposition 4.13. Thanks to Lemma 4.14 and
the reflexivity of Wr′

T (X∗,D∗), cf. , see [11, Thm. I.5.13], and Lr
′
(]0, T [;Y ∗), there

exist p and λ such that

pε ⇀ p in Wr′

T (X∗,D∗), λε ⇀ λ in Lr
′
(]0, T [;Y ∗). (4.28)

Therefore, in view of Lemma 4.14 and the weak continuity of−∂t+A∗ fromWr′

T (X∗,D∗)
to Lr

′
(]0, T [;D∗), passing to the limit in (4.17b) leads to

0 = −ṗε +A∗ pε + [f ′ε(yε)]
∗pε

= −ṗε +A∗ pε + λε ⇀ −ṗ+A∗ p+ λ in Lr
′
(]0, T [;D∗).

In view of p ∈Wr′

T (X∗,D∗), which implies p(T ) = 0, this is just (4.27b).

Next we pass to the limit in (4.17c). From the weak convergence of {pε} together
with the weak continuity of the linear operator B∗, Lemma C.1, the continuous dif-
ferentiability of J , and the strong convergence of {(yε, uε)}, it follows

B∗pε + ∂uJ(yε, uε) + F ′(uε) ⇀ B∗p+ ∂uJ(ȳ, ū) in Lr
′
(]0, T [;U∗) (4.29)

so that (4.17c) gives (4.27c).

It now remains to show the uniqueness of p. In view of (4.27b) this will also imply
the uniqueness of λ. Since Rg(B) is dense in X by Assumption 2.1.6, we obtain

ker(B∗) = Rg(B)⊥ = {0}

so that (4.27c), i.e.,

B∗p(t) = −∂uJ(ȳ, ū)(t) in U∗, f.a.a. t ∈]0, T [, (4.30)

gives the uniqueness of p.

Remark 4.16. Since the optimality system (4.27) does not contain any sign con-
dition, neither on p nor on λ, it can be seen as a weak stationarity condition. If
a concrete instance for the nonlinearity f is given, then it may be possible to derive
additional conditions when passing to the limit in the regularized optimality system
(4.17). We will demonstrate this in Section 6 below.

Note in this context that, in general, one cannot expect any regularization of f to
have better approximation properties than Assumption 4.2.1, in the sense that also
the directional derivative is approximated, even not in a weak sense. To see this,
assume that for some y ∈ Y , we have

lim
ε↘0
〈ξ, f ′ε(y)v〉X = 〈ξ, f ′(y; v)〉X ∀ v ∈ Y, ξ ∈ X∗

Then one easily deduces that f ′(y; .) is linear, and thus f is Gâteaux-differeniable
at y. It is therefore in general not possible to derive a precise characterization of
the weak limit λ in terms of the directional derivative of f by passing to the limit
in the regularized optimality system. Under further assumptions on fε however, sign
conditions for p and λ can be shown. This is for instance the case, if, for all ε > 0,
fε is the derivative of a convex potential as in case of the max-function in Section 6
below.
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5. Strong Stationarity. In this section we derive an optimality system, which
employs the particular structure of the optimal control problem under consideration.
The underlying analysis is based on the directional differentiability that was estab-
lished in Section 3. It turns out that the optimality system derived in this way is
significantly sharper compared to the one obtained via regularization in Section 4.
For convenience let us recall the optimal control problem:

min J(y, u)

s.t. ẏ(t) +Ay(t) + f(y(t)) = B u(t) in ]0, T [

y(0) = 0.

 (P)

Throughout this section we again assume that ū ∈ Lr(]0, T [;U) is locally optimal for
(P) with associated state ȳ = S(ū). As in Section 4 we suppose that A satisfies max-
imal parabolic Lr(]0, T [;X)-regularity. We start our analysis with a purely primal
optimality condition, which is an immediate consequence of the directional differen-
tiability of the control-to-state mappint S. In accordance with the notion known for
MPECs, we call this optimality condition Bouligand (B) stationarity.

Lemma 5.1 (B-stationarity). If ū ∈ Lr(]0, T [;U) is locally optimal for (P), then
there holds

∂yJ(ȳ, ū)S′(ū;h) + ∂uJ(ȳ, ū)h ≥ 0 ∀h ∈ Lr(]0, T [;U). (5.1)

Proof. According to Theorem 3.2 and [17, Lemma 3.9] the composite mapping
Lr(]0, T [;U) 3 u 7→ J(S(u), u) ∈ R is directionally differentiable with directional
derivative ∂yJ(ȳ, ū)S′(ū;h) + ∂uJ(ȳ, ū)h. The result then follows immediately from
the local optimality of ū.

Lemma 5.2. The set {S′(ū;h) : h ∈ Lr(]0, T [;U)} is dense in Wr
0(D, X).

Proof. Let η ∈Wr
0(D, X) be arbitrary and define

ξ := η̇(t) +Aη(t) + f ′(ȳ(t); η(t)) ∈ Lr(]0, T [;X).

With regard to Assumption 2.1.6 there exists a sequence {hn} ⊂ Lr(]0, T [;U) such
that

B hn → ξ in Lr(]0, T [;X).

This follows from Lemma B.1, which implies that Lr(]0, T [;Rg(B))
d
↪→ Lr(]0, T [;X).

The global Lipschitz continuity according to Lemma 3.4 gives

S′(ū;hn) = Sū(B hn)→ Sū(ξ) = η in Wr
0(D, X).

This completes the proof.

We are now in the position to state our main result:

Theorem 5.3 (Strong stationarity). Let ū ∈ Lr(]0, T [;U) be locally optimal with
associated state ȳ = S(ū). Then there exists a unique adjoint state

p ∈Wr′

T (X∗,D∗) = {v ∈W 1,r′(]0, T [;D∗) ∩ Lr
′
(]0, T [;X∗) : v(T ) = 0}
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and a unique multiplier λ ∈ Lr′(]0, T [;Y ∗) such that

−ṗ+A∗p+ λ = ∂yJ(ȳ, ū), p(T ) = 0 (5.2a)

〈λ(t), v〉D ≥ 〈p(t), f ′(ȳ(t); v)〉X ∀ v ∈ D, f.a.a. t ∈ ]0, T [ (5.2b)

B∗p(t) + ∂uJ(ȳ, ū)(t) = 0 a.e. in ]0, T [. (5.2c)

Proof. From Theorem 4.15 we know that there is a unique function p ∈Wr′

T (X∗,D∗)
such that

B∗p(t) + ∂uJ(ȳ, ū)(t) = 0 a.e. in ]0, T [. (5.3)

In the following let h ∈ Lr(]0, T [;U) be arbitrary. As p ∈Wr′

T (X∗,D∗) ↪→ Lr
′
(]0, T [;X∗),

we can test (3.3) with p to obtain∫ T

0

〈p(t), η̇(t) +Aη(t)〉X dt+

∫ T

0

〈p(t), f ′(ȳ(t); η(t))〉X dt

=

∫ T

0

〈p(t), B h(t)〉X dt.

Using the integration by parts formula in [2, Proposition 5.1], we deduce from this
that ∫ T

0

〈−ṗ(t) +A∗p(t), η(t)〉D dt+

∫ T

0

〈p(t), f ′(ȳ(t); η(t))〉X dt

=

∫ T

0

〈B∗p(t), h(t)〉U dt = −
∫ T

0

〈∂uJ(ȳ, ū)(t), h(t)〉U dt,

where we used (5.3) for the last equation. Inserting this into (5.1) gives∫ T

0

〈∂yJ(ȳ, ū)(t), η(t)〉D dt−
∫ T

0

〈−ṗ(t) +A∗p(t), η(t)〉D dt

≥
∫ T

0

〈p(t), f ′(ȳ(t); η(t))〉X dt.
(5.4)

Next let us define

λ := ṗ−A∗p+ ∂yJ(ȳ, ū) ∈ Lr
′
(]0, T [;D∗) (5.5)

so that (5.4) reads∫ T

0

〈λ(t), η(t)〉D dt ≥
∫ T

0

〈p(t), f ′(ȳ(t); η(t))〉X dt. (5.6)

Now let ζ ∈ Wr
0(D, X) be arbitrary. According to Lemma 5.2 there is a sequence

{hn} ⊂ Lr(]0, T [;U) such that S′(ū;hn) → ζ in Wr
0(D, X). Due to Wr

0(D, X) ↪→
C([0, T ];Y ), see Remark 2.9, it follows that S′(ū;hn) → ζ in C([0, T ];Y ) such that
(2.4) gives

f ′(ȳ;S′(ū;hn))→ f ′(ȳ; ζ) in Lr(]0, T [;X).
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Thus we are allowed to pass to the limit in (5.6) to obtain∫ T

0

〈λ(t), ζ(t)〉D dt ≥
∫ T

0

〈p(t), f ′(ȳ(t); ζ(t))〉X dt ∀ ζ ∈Wr
0(D, X). (5.7)

Now, let v ∈ D and ϕ ∈ C∞0 (]0, T [) with ϕ ≥ 0 be arbitary. Then ϕv ∈ Wr
0(D, X)

so that it can be chosen as test function in (5.7). Since the directional derivative
η 7→ f ′(ȳ; η) is positively homogeneous, this yields∫ T

0

〈λ(t), v〉D ϕ(t) dt ≥
∫ T

0

〈p(t), f ′(ȳ(t); v)〉X ϕ(t) dt ∀ v ∈ D, ϕ ∈ C∞0 (]0, T [).

The fundamental lemma of the calculus of variations then gives (5.2b). Together with
(5.3) and (5.5) this is the claimed optimality system.

It remains to prove the improved regularity of λ. By (5.2b) and (2.5) we find for all
v ∈ Lr(]0, T [;D) that∫ T

0

〈λ(t), v(t)〉D dt ≤
∫ T

0

∣∣〈p(t), f ′(ȳ(t);−v(t))〉X
∣∣ dt

≤ Ky

∫ T

0

‖v(t)‖Y ‖p(t)‖X∗ dt

≤ c ‖p(t)‖Lr′ (]0,T [;X∗) ‖v‖Lr(]0,T [;Y ).

Therefore, by the Hahn-Banach theorem, λ can be extended to a bounded linear func-
tional on Lr(]0, T [;Y ), which we denote by the same symbol for simplicity. Because of
(Lr(]0, T [, Y ))∗ = Lr

′
(]0, T [;Y ∗), see e.g. [11, Theorem IV.1.14], this gives the desired

regularity of λ.

Remark 5.4. If D is dense in Y , then (5.2b) clearly also holds for all v ∈ Y . This
will be the case in our concrete example in Section 6.

Remark 5.5. An inspection of the proof of Theorem 5.3 shows that the arguments
cannot be applied, if additional control constraints are given or if Rg(B) is not dense
in X. The same observation was made in [25], where strong stationarity for optimal
control of the obstacle problem is shown to be necessary for local optimality.

Remark 5.6. Let us compare the optimality system (5.2) with the one in (4.27)
obtained via regularization. Note first that the multiplier λ coincides with the weak
limit of {[f ′ε(yε)]∗pε}, which also implies its higher regularity, i.e., λ ∈ Lr′(]0, T [;Y ∗).
We further observe that the sign condition (5.2b) is missing in (4.27). As pointed out
in Remark 4.16, it is possible to refine the limit analysis for vanishing regularization,
if concrete instances for the nonlinearity f are under consideration. However, the
result of Theorem 5.3 is still sharper compared to the optimality systems derived in
this way, as we will see in Section 6.

To see that (5.2) is indeed a comparatively strong optimality condition, we prove the
following

Theorem 5.7 (Equivalence between B- and strong stationarity). Assume that ū ∈
Lr(]0, T [;U) together with its state ȳ ∈Wr

0(D, X), an adjoint state p ∈Wr′

T (X∗,D∗),
and a multiplier λ ∈ Lr′(]0, T [;Y ∗) satisfy the optimality system (5.2a)–(5.2c). Then
it also satisfies the variational inequality in (5.1).
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Proof. Let h ∈ Lr(]0, T [;U) be arbitrary and set η := S′(ū;h). Then we test (5.2c)
with h, insert (3.3), integrate by parts as in the proof of Theorem 5.3, insert (5.2a)
in the arising formula, and use (5.2b) to obtain

−∂uJ(ȳ, ū)h =

∫ T

0

〈p(t), B h(t)〉X dt

=

∫ T

0

〈p(t), η̇(t) +Aη(t) + f ′(ȳ(t); η(t))〉X dt

=

∫ T

0

(
〈∂yJ(ȳ, ū)(t)− λ(t), η(t)〉D + 〈p(t), f ′(ȳ(t); η(t))〉X

)
dt

≤ ∂yJ(ȳ, ū)η,

which is exactly (5.1).

Let us finally compare the assertion of Theorem 5.3 with the results known for optimal
control of ODEs. To this end set

D = X = Y = Rn, U = Rm, A = 0, J(y, u) =

∫ T

0

F (t, y(t), u(t)) dt,

where n,m ∈ N and F : R × Rn × Rm 7→ R is supposed to be smooth and convex
w.r.t. y and u. Then the strong stationarity conditions in Theorem 5.3 read

−ṗ+ λ = ∂yF (t, y(t), u(t)) in ]0, T [, p(T ) = 0 (5.8a)
〈λ(t), v〉 ≤ g′y(t, y(t); v) ∀ v ∈ Rn (5.8b)

B>p(t) + ∂uF (t, y(t), u(t)) = 0 a.e. in ]0, T [, (5.8c)

where g : R× Rn → R is defined by

g(t, y) := 〈p(t), f(y)〉Rn (5.9)

and g′y denotes the directional derivative of g w.r.t. y. It is easily verified that
g′y(t, y; v) = 〈p(t), f ′(y; v)〉Rn .
Next we apply [7, Theorem 5.2.1] to the above setting. For this purpose, define the
Hamiltonian by

H : R× Rn × Rn × Rm × R→ R,
H(t, y, p, u, µ) := 〈−p,Bu− f(y)〉Rn − µF (t, y, u)

Then [7, Theorem 5.2.1] yields the existence of a multiplier µ ∈ {0, 1} such that

ṗ(t) ∈ ∂yH(t, y(t), p(t), u(t), µ), a.e. in ]0, T [, p(T ) = 0, (5.10)

H(t, y(t), p(t), u(t), µ) = max
w∈Rn

{
H(t, y(t), p(t), w, µ)

}
a.e. in ]0, T [ (5.11)

and µ and p must not vanish at the same time. Herein, ∂yH denotes the partial
generalized gradient, cf. [7, Chapter 2]. If we define λ(t) := ṗ(t) +µ∂yF (t, y(t), u(t)),
then, thanks to the sum rule for generalized gradients, (5.10) can be rephrased by

λ(t) ∈ ∂y
(
〈−p(t), Bu(t)− f(y(t))〉

)
⇐⇒ 〈λ(t), v〉 ≤ g◦y(t, y(t); v) ∀ v ∈ Rn
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with g as defined in (5.9) and g◦y denoted the generalized directional derivative w.r.t.
y. Since F is convex, we obtain

(5.11) ⇐⇒ ∂uH(t, y(t), p(t), u(t), µ) = 0 a.e. in ]0, T [

⇐⇒ B>p(t) + µ∂uF (t, y(t), u(t)) = 0 a.e. in ]0, T [.

Altogether, we arrive at the following Fritz-John-type conditions:

−ṗ+ λ = µ∂yF (t, y(t), u(t)) in ]0, T [, p(T ) = 0 (5.12a)
〈λ(t), v〉 ≤ g◦y(t, y(t); v) ∀ v ∈ Rn (5.12b)

B>p(t) + µ∂uF (t, y(t), u(t)) = 0 a.e. in ]0, T [. (5.12c)

Because of

g◦y(t, y; v) = lim sup
z→y
τ↘0

g(t, z + τv)− g(z)

τ
≥ g′y(t, y; v),

we see that the conditions in (5.8) are indeed sharper compared to (5.12), even in
the qualified case µ = 1. We point out however that Clarke’s result covers a much
broader class of ODE-problems compared to the specific example considered here.

6. Application to a concrete setting. In this section we apply the results of
the previous sections to the following specific setting:

Let Ω be a bounded domain in Rn, n ∈ N. Then we set

X = H−1(Ω), D = H1
0 (Ω), U = Y = L2(Ω),

A = −4, f = −max, B = E : L2(Ω) ↪→ H−1(Ω),
(6.1)

where E denotes the embedding operator, i.e., 〈Eu, v〉 =
∫

Ω
u v dx. Moreover, with

a little abuse of notation, we denote by max : L2(Ω) → L2(Ω) ↪→ H−1(Ω) the
Nemytskii-operator associated with R 3 x 7→ max{0, x} ∈ R. Note that max{0, . }
satisfies the Carathéodory-condition and is globally Lipschitz with constant 1 so that
the associated Nemytskii-operator maps all of L2(Ω) into L2(Ω). In summary, the
optimal control problem, considered in this concrete example, reads as follows

min J(y, u)

s.t. ẏ(t)−4y(t)−max(y(t)) = u(t) in ]0, T [

y(0) = 0.

 (Pex)

We impose the following hypothesis on the objective in (Pex):

Assumption 6.1. The objective functional

J : Lr(]0, T [;H1
0 (Ω))× Lr(]0, T [;L2(Ω))→ R with r > 2 (6.2)

is assumed to be convex and continously differentiable.

A typical example, which also fulfills the additional assumptions of Proposition 2.11,
is

J(y, u) =
1

2

∫ T

0

∫
Ω

|∇y − z|2 dx dt+
α

r

∫ T

0

(∫
Ω

|u(x, t)|2 dx
)r/2

dt
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with a desired state gradient z ∈ L2(]0, T [;H1
0 (Ω)) and a Tikhonov parameter α > 0.

Lemma 6.2. Under Assumption 6.1, in particular r > 2, the setting in (6.1) fulfills
Assumption 2.1 for all θ ∈ ]1/2, (r − 1)/r[. Moreover, the Lipschitz and boundedness
conditions in (2.1), (3.4), and (3.5) are fulfilled with constants L, Q, and K inde-
pendent of M so that f = −max and its directional derivative are globally Lipschitz
continuous.
Furthermore, A = −4 satisfies maximal parabolic Lr(]0, T [;H−1(Ω))-regularity for
every r ∈ ]1,∞[.
Proof. As most of the assumptions are obvious to see, we concentrate on the non-
trivial conditions. We start with the assumptions on Y = L2(Ω). In view of [2, Sec.
1], [23, Lemma 3.7 i)], and [12, Lemma 3.4], it holds for all θ > 1/2 that

(H−1(Ω), H1
0 (Ω))θ,∞ ↪→ [H−1(Ω), H1

0 (Ω)] 1
2

= L2(Ω) = Y, (6.3)

which is the condition in Assumption 2.1.4. Herein, [X,D]1/2 denotes the complex
interpolation space, [31]. Note that, due to r > 2, the interval ]1/2, (r − 1)/r[ is
non-empty.
Moreover, R 3 x 7→ max{x, 0} ∈ R is clearly globally Lipschitz continuous with
constant 1 and satisfies |max{x, 0}| ≤ |x| for all x ∈ R. These properties readily
transfer to the associated Nemytskii-operator as a mapping from L2(Ω) to L2(Ω),
giving in turn that (2.1) and (2.2) are fulfilled. Due to global Lipschitz continuity, the
constant in (2.1) is independent of M in this example. As R 3 x 7→ max{x, 0} ∈ R is
directionally differentiable with

max ′(y; v) =


v, if y > 0

max{v, 0}, if y = 0

0, if y < 0

(6.4)

and there holds |max ′(y; v)| ≤ |v| for all v ∈ R, Lebesgue’s dominated convergence
theorem implies that the Nemytskii-operator max : L2(Ω) → L2(Ω) is directionally
differentiable, too. For convenience of the reader, we included the proof in Appendix
D. The directional derivative is given by (6.4) evaluated pointwise a.e. in Ω. Therefore,
it satisfies (3.4) and (3.5) globally, i.e., with constants Q and K independent of M .
Clearly, all these properties also hold, if max is considered as an operator with range
in X = H−1(Ω).
It is well known thatA = −4 satisfies maximal parabolic L2(]0, T [;H−1(Ω))-regularity,
see for instance [14]. Moreover, according to [8], if an operator satisfies maximal
parabolic L2(]0, T [;X)-regularity, then it also satisfies maximal parabolic Lr(]0, T [;X)-
regularity for every r ∈]1,∞[. Since −4 satisfies maximal parabolic regularity, it is
automatically a generator of an analytic semigroup, see e.g. [2, Rem. 3.1(b)]. As
Poincaré’s inequality yields 0 /∈ σ(−4), this gives that Assumption 2.1.3 is fulfilled,
too.
Finally, L2(Ω), equipped with its natural norm, i.e., ‖u‖L2(Ω) = (

∫
Ω
u2 dx)1/2, is (lo-

cally) uniformly convex, see Remark 2.2 and [29, Example 4.7.7], so that Assumption
2.1.2 is also satisfied.
Remark 6.3. One could also discuss (Pex) in another setting, where X = Y = L2(Ω).
According to [13, Thm. 7.2] the Laplacian satisfies maximal parabolic Lr(]0, T [;L2(Ω))-
regularity under mild assumptions on the boundary ∂Ω, even if mixed boundary con-
ditions are imposed. Then Assumption 2.1.4 is fulfilled by every θ > 0, which allows
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us to set r = 2, cf. (2.6), such that we obtain a Hilbert-space for the control. However,
the domain of A restricted to X = L2(Ω) is hard to characterize in general, especially
when the ∂Ω is non-smooth and a general divergence-type operator is considered in-
stead of the Laplacian. Therefore, we chose X = H−1(Ω) as the functional analytic
framework.

6.1. Regularization. First we apply Theorem 4.15 to our specific setting and
sharpen the result by employing the special structure of the example under consider-
ation. For this purpose, we need the following

Assumption 6.4 (Regularization of max). There exists a family of functions {max ε}ε>0,
max ε : R→ R, with the following properties:

1. For all ε > 0 it holds max ε ∈ C1(R) with max ε
′(x) ≥ 0 for all x ∈ R,

2. For all x ∈ R there holds max ε(x)→ max{0, x} for ε↘ 0,
3. There exist constants γ, β ≥ 0, independent of ε, such that the following

growth condition is fulfilled

|max ε(x)| ≤ γ + β|x| ∀x ∈ R, ε > 0. (6.5)

4. There is a constant κ > 0 such that |max ε
′(x)| ≤ κ for all x ∈ R.

There are numerous possibilities to construct a family of functions satisfying As-
sumption 6.4. We only refer to the regularized max-functions used in [25] and [28],
respectively, which are

max (1)
ε (x) :=


0, x ≤ 0,
1
2ε x

2, x ∈ ]0, ε[ ,

x− ε
2 , x ≥ ε,

max (2)
ε (x) :=

{
max{x, 0}, |x| ≥ ε,

1
16ε3 (x+ ε)3(3ε− x), |x| < ε.

It is easiliy seen that these functions satisfy the conditions in Assumption 6.4.

In the sequel, we again denote the Nemytskii-operator associated with max ε by the
same symbol. Similarly to the corresponding part of the proof of 6.2, one shows the
following

Lemma 6.5. Given Assumption 6.4, the Nemytskii-operator fε := −max ε : L2(Ω)→
L2(Ω) fulfills Assumption 4.2. The conditions (4.1) and (4.3) are satisfied with con-
stants independent of M .

Proof. By assumption max ε fulfills the Carathéodory condition and is globally Lip-
schitz continuous with constant κ so that the associated Nemytskii-operator is well
defined and globally Lipschitz continuous from L2(Ω) to L2(Ω). The boundedness
condition in (4.2) follows immediately from (6.5). The Gâteaux-differentiability can
be deduced completely analogously to the proof of Lemma D.1. The boundedness of
the Gâteaux-derivative in (4.3) is ensured by Assumption 6.4.4. Finally, Assumption
4.2.1 follows from Assumption 6.4.2 in combination with |max{0, x}| ≤ |x|, (6.5), and
Lebesgue’s dominated convergence theorem.

Theorem 6.6 (Optimality system after passing to the limit). Assume in addition
to Assumption 6.1 that r ∈ ]2, 4[, and let ū be a local solution of (Pex). Then
there exist unique ȳ ∈ Wr

0(H1
0 (Ω), H−1(Ω)), p ∈ Wr′

T (H1
0 (Ω), H−1(Ω)), and λ ∈
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Lr
′
(]0, T [;L2(Ω)) such that

˙̄y −4ȳ −max(ȳ) = ū, ȳ(0) = 0 (6.6a)
−ṗ−4p+ λ = ∂yJ(ȳ, ū), p(T ) = 0 (6.6b)

p(t, x) + ∂uJ(ȳ, ū)(t, x) = 0 a.e. in ]0, T [×Ω (6.6c)∫ T

0

∫
Ω

λ p dx dt ≤ 0. (6.6d)

Proof. From Theorem 4.15 we know that there exist unique ȳ ∈Wr
0(H1

0 (Ω), H−1(Ω)),
p ∈ Wr′

T (H1
0 (Ω), H−1(Ω)), and λ ∈ Lr

′
(]0, T [;L2(Ω)) such that (6.6a)–(6.6c) holds.

We have also seen that there exist sequences {λε} ⊂ Lr
′
(]0, T [;L2(Ω)) and {pε} ⊂

Wr′

T (H1
0 (Ω), H−1(Ω)) such that

λε = [f ′ε(yε)]
∗pε ⇀ λ in Lr

′
(]0, T [;L2(Ω)), (6.7)

pε ⇀ p in Wr′

T (H1
0 (Ω), H−1(Ω)), (6.8)

cf. Lemma 4.14 and (4.28). By [2, Eq. (1.2)], there holds

Wr′

T (H1
0 (Ω), H−1(Ω)) ↪→ Lq(]0, T [; (H−1(Ω), H1

0 (Ω))θ,1)

∀ q ∈ [1,∞] with 1/q > θ − 1/r > 0

and, due to the compactness of H1
0 (Ω) ↪→↪→ H−1(Ω), this embedding is compact

as well. Since r > 2 and θ > 1/2, see Lemma 6.2, the above sign condition re-
duces to θ < 1/q + 1/r, and the additional assumption r < 4 guarantees that
this inequality is satisfied for q = r, if we choose θ sufficiently close to 1/2. Since
(H−1(Ω), H1

0 (Ω))θ,1 ↪→ (H−1(Ω), H1
0 (Ω))θ,∞ ↪→ L2(Ω) for θ > 1/2, see [2, Eq. (1.1)]

and (6.3), Wr′

T (H1
0 (Ω), H−1(Ω)) is therefore compactly embedded in Lr(]0, T [;L2(Ω)

so that (6.8) yields

pε → p in Lr(]0, T [;L2(Ω)). (6.9)

Since in our concrete setting λε = [−max ε
′(yε)]

∗pε, the monotonicity of maxε by
Assumption 6.4.1 together with (6.7) and (6.9) implies

0 ≥ −
∫ T

0

∫
Ω

max ε
′(yε(x, t)) pε(x, t)

2 dx dt

= 〈λε, pε〉Lr(]0,T [;L2(Ω))
ε↘0−→ 〈λ, p〉Lr(]0,T [;L2(Ω)),

(6.10)

which is the desired sign condition in (6.6d).

Remark 6.7. As already indicated in Remark 4.16, the result of Theorem 6.6 is
indeed sharper than the general result of Theorem 4.15, as it additionally contains the
sign condition in (6.6d).

6.2. Strong Stationarity. In this section we apply Theorem 5.3 to our concrete
setting. Making use of the special structure of max the result of Theorem 5.3 can
significantly be sharpened, which is demonstrated in the following

Theorem 6.8 (Strong stationarity). Let ū ∈ Lr(]0, T [;L2(Ω)) be locally optimal with
associated state ȳ = S(ū). Then there exists a unique adjoint state p ∈Wr′

T (H1
0 (Ω), H−1(Ω))
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and a unique multiplier λ ∈ Lr′(]0, T [;L2(Ω)) such that

−ṗ−4p+ λ = ∂yJ(ȳ, ū), p(T ) = 0 (6.11a)

λ(t, x) = −p(t, x), if ȳ(t, x) > 0

−p(t, x) ≤ λ(t, x) ≤ 0, if ȳ(t, x) = 0

λ(t, x) = 0, if ȳ(t, x) < 0

 f.a.a. (t, x) ∈ ]0, T [×Ω (6.11b)

p(t, x) + ∂uJ(ȳ, ū)(t, x) = 0 a.e. in ]0, T [×Ω. (6.11c)

Proof. From Theorem 5.3 we know that there exists a unique adjoint state p ∈
Wr′

T (H1
0 (Ω), H−1(Ω)) and a unique multiplier λ ∈ Lr′(]0, T [;L2(Ω)) such that

−ṗ−4p+ λ = ∂yJ(ȳ, ū), p(T ) = 0 (6.12)

〈λ(t), v〉H1
0 (Ω) ≥ 〈−max ′(ȳ(t); v), p(t)〉H1

0 (Ω) ∀ v ∈ H1
0 (Ω), f.a.a. t ∈ ]0, T [ (6.13)

p(t, x) + ∂uJ(ȳ, ū)(t, x) = 0 a.e. in ]0, T [×Ω. (6.14)

It remains to show that (6.13) implies (6.11b). In view of λ(t),max′(ȳ(t); v) ∈ L2(Ω)
f.a.a. t ∈]0, T [, the density of H1

0 (Ω) in L2(Ω) yields

(λ(t), v)L2(Ω) ≥ (−max ′(ȳ(t); v), p(t))L2(Ω) ∀ v ∈ L2(Ω), f.a.a. t ∈ ]0, T [, (6.15)

where we used that L2(Ω) 3 v 7→ max′(ȳ(t); v) ∈ L2(Ω) is continuous, see also
Assumption 2.1.5. Next define for almost all t ∈]0, T [ the following sets (up to sets of
zero measure):

Ω−t := {x ∈ Ω : ȳ(t, x) < 0},
Ω0
t := {x ∈ Ω : ȳ(t, x) = 0},

Ω+
t := {x ∈ Ω : ȳ(t, x) > 0}.

(6.16)

Then (6.15) can be continued as

(λ(t), v)L2(Ω) ≥ (−χΩ+
t
v − χΩ0

t
max{v; 0}, p(t))L2(Ω) ∀ v ∈ L2(Ω), f.a.a. t ∈ ]0, T [.

Now let v ∈ L2(Ω) with v(x) ≥ 0 a.e. in Ω be arbitrary. Then testing with v and −v
leads to

(−χΩ+
t
v, p(t))L2(Ω) ≥ (λ(t), v)L2(Ω) ≥ (−χΩ+

t ∪Ω0
t
v, p(t))L2(Ω) f.a.a. t ∈ ]0, T [

and, since v ≥ 0 was arbitrary, the fundamental lemma of the calculus of variations
implies

−χΩ+
t ∪Ω0

t
(x) p(t, x) ≤ λ(t, x) ≤ −χΩ+

t
(x) p(t, x) f.a.a. (t, x) ∈ ]0, T [×Ω,

whence (6.11b).
Although we sharpened the limit analysis for vanishing regularization in Theorem
6.6, the result of the previous theorem is still more rigorous as the following corollary
shows.
Corollary 6.9. Let r ∈ ]2, 4[ and assume that ū ∈ Lr(]0, T [;L2(Ω)) together with
its state ȳ ∈ Wr

0(H1
0 (Ω), H−1(Ω)), an adjoint state p ∈ Wr′

T (H1
0 (Ω), H−1(Ω)), and a
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multiplier λ ∈ Lr′(]0, T [;L2(Ω)) satisfy the optimality system (6.11a)–(6.11c). Then
it also satisfies (6.6).

Proof. One just needs to show that (6.11b) implies (6.6d). This can be seen by
testing (6.11b) with p(t) ∈ L2(Ω) and integrating over Ω and ]0, T [. Note that p ∈
Lr(]0, T [;L2(Ω)) thanks to the embedding Wr′

T (H1
0 (Ω), H−1(Ω)) ↪→ Lr(]0, T [;L2(Ω))

for r ∈ ]2, 4[, see the proof of Theorem 6.6, λ ∈ Lr
′
(]0, T [;L2(Ω)) implies that the

product λ p is integrable over ]0, T [×Ω. Using the sign conditions in (6.11b) then
leads to (6.6d).

As in the general case the strong stationarity conditions in Theorem 6.8 are again
equivalent to B-stationarity, as the following result shows.

Theorem 6.10. Assume that ū ∈ Lr(]0, T [;L2(Ω)) together with its state ȳ ∈
Wr

0(H1
0 (Ω), H−1(Ω)), an adjoint state p ∈ Wr′

T (H1
0 (Ω), H−1(Ω)), and a multiplier

λ ∈ Lr′(]0, T [;L2(Ω)) satisfy the optimality system (6.11a)–(6.11c). Then it also sat-
isfies the variational inequality (6.17), i.e.,

∂yJ(ȳ, ū)S′(ū;h) + ∂uJ(ȳ, ū)h ≥ 0 ∀h ∈ Lr(]0, T [;L2(Ω)). (6.17)

Proof. In view of Theorem 5.7 we only need to show that (6.11b) implies

(λ(t), v)L2(Ω) ≥ (−max ′(ȳ(t); v), p(t))L2(Ω) ∀ v ∈ L2(Ω), f.a.a. t ∈ ]0, T [. (6.18)

For this purpose rewrite (6.11b) by means of the characteristic functions associated
with the sets in (6.16) to obtain

χΩ+
t

(x)λ(t, x) = −χΩ+
t

(x) p(t, x)

−χΩ0
t
(x) p(t, x) ≤ χΩ0

t
(x)λ(t, x) ≤ 0

χΩ−t
(x)λ(t, x) = 0

 f.a.a. (t, x) ∈ ]0, T [×Ω.

Multiplying with v ∈ L2(Ω), v ≥ 0 a.e. in Ω, and integrating over Ω leads to∫
Ω

χΩ+
t
λ(t) v dx =

∫
Ω

−χΩ+
t
p(t) v dx

−
∫

Ω

χΩ0
t
p(t) v dx ≤

∫
Ω

χΩ0
t
λ(t) v dx ≤ 0∫

Ω

χΩ−t
λ(t) v dx = 0


f.a.a. t ∈ ]0, T [.

Adding these inequalities gives

(−χΩ+
t
v, p(t))L2(Ω) ≥ (λ(t), v)L2(Ω) ≥ (−χΩ+

t ∪Ω0
t
v, p(t))L2(Ω) f.a.a. t ∈ ]0, T [. (6.19)

Now let w ∈ L2(Ω) be arbitrary, but fixed. We test the first inequality in (6.19) with
v = −min{0, w} and the second one with max{0, w}, respectively, to obtain

(−χΩ+
t

min{0, w}, p(t))L2(Ω) ≤ (λ(t),min{0, w})L2(Ω), (6.20)

(λ(t),max{0, w})L2(Ω) ≥ (−χΩ+
t ∪Ω0

t
max{0, w}, p(t))L2(Ω). (6.21)
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In view of w = min{0, w}+ max{0, w}, adding (6.20) and (6.21) yields

(λ(t), w)L2(Ω) ≥ (−χΩ+
t
w − χΩ0

t
max{w; 0}, p(t))L2(Ω), (6.22)

which, on account of (6.4) and (6.16), gives in turn (6.18).

Appendix A. Global Existence for the State Equation.

Proof of Proposition 2.5. (i) Existence for Lipschitz continuous right hand sides:
We first assume that u ∈ C0,1([0, T ];U) and apply [26, Ch. 6, Thm. 3.3]. To this end
we rewrite (2.8) as

ẏ(t) +Ay(t) = fu(t, y(t)), y(0) = 0

with fu(t, y) := Bu(t)− f(y). Then Assumption 2.1.4 gives for every M > 0 that

‖fu(t1, y1)− fu(t2, y2)‖X ≤ L(M)‖y1 − y2‖Y + ‖B‖L(U,X) Lu |t1 − t2|
≤ c

(
|t1 − t2|+ ‖y1 − y2‖D(Aθ)

)
for all t1, t2 ∈ R and all y1, y2 ∈ BY (0,M) ∩ D(Aθ). Herein Lu > 0 denotes the
Lipschitz constant of u. Moreover, Assumption 2.1.4 yields

‖fu(t, y)‖X ≤ K(1 + ‖y‖Y ) + ‖B‖L(U,X)‖u‖C([0,T ];U)

≤ c(1 + ‖y‖D(Aθ)) ∀ y ∈ D(Aθ).

Therefore, all assumptions of [26, Ch. 6, Thm. 3.3] are satisfied giving in turn the
existence of a unique (classical) solution y ∈ C([0, T ];X)∩C1(]0, T ];X) with y(t) ∈ D,
t ∈ [0, T ], of (2.8). It is well known that this solution also satisfies the integral equation
(2.9).

(ii) Boundedness and continuity of solutions:
Next we prove that y is uniformly bounded in Y with a bound depending on u. We
start with integral equation, which, for an arbitrary t ∈ [0, T ], results in

‖y(t)‖Y ≤
∫ t

0

∥∥e−(t−s)A(Bu(s)− f(y(s))
)∥∥
Y
ds

≤
∫ T

0

‖e−sA‖r
′

L(X,Y ) ds
1/r′ ‖B‖L(U,X) ‖u‖Lr(]0,T [;U)

+K

∫ T

0

‖e−sA‖L(X,Y ) ds+K

∫ t

0

‖e−(t−s)A‖L(X,Y ))‖y(s)‖Y ds,

where we used Assumption 2.1.4 for the last estimate. Note that r′ = r/(r−1) < θ−1

by (2.6). Thus Lemma 2.4 is applicable, which, together with Gronwall’s Lemma,
implies the existence of a constant C > 0 such that

‖y(t)‖Y ≤ C exp
(
K

∫ t

0

‖e−(t−s)A‖L(X,Y ) ds
)(

1 + ‖u‖Lr(]0,T [;U)

)
≤ C

(
1 + ‖u‖Lr(]0,T [;U)

) (A.1)

for all t ∈ [0, T ].
28



Now consider two arbitrary time points t1, t2 ∈ [0, T ] with t2 > t1. This time the
integral equation yields

‖y(t2)− y(t1)‖Y ≤
∫ t1

0

∥∥(e−(t2−t1)A − I
)
e−(t1−s)Ax(s)

∥∥
Y
ds

+

∫ t2

t1

∥∥e−(t2−s)Ax(s)
∥∥
Y
ds,

(A.2)

where we abbreviated x(s) := Bu(s)− f(y(s)) ∈ X. In view of

‖f(y(t))‖X ≤ K(1 + ‖y(t)‖Y ) ≤ K
(
1 + C(1 + ‖u‖Lr(]0,T [;U))

)
∀ t ∈ [0, T ] (A.3)

and Lemma 2.4, the second integrand in (A.2) an element of L1(]0, T [) and therefore
vanishes if t1 → t2. For the first integral we argue as follows: Since θ < 1 and r > 1

1−θ
there is an ε > 0 such that θ + ε < 1 and r′(θ + ε) < 1. Then an estimate analogous
to (2.7) and [26, Thm. 6.8(d) and Thm. 6.13(d)] yield∫ t1

0

∥∥(e−(t2−t1)A − I
)
e−(t1−s)Ax(s)

∥∥
Y
ds

≤ c
∫ t1

0

∥∥Aθ(e−(t2−t1)A − I
)
e−(t1−s)Ax(s)

∥∥
X
ds

≤ c
∫ t1

0

∥∥(e−(t2−t1)A − I
)
Aθ e−(t1−s)Ax(s)

∥∥
X
ds

≤ c(t2 − t1)ε
∫ t1

0

∥∥AεAθ︸ ︷︷ ︸
=Aθ+ε

e−(t1−s)Ax(s)
∥∥
X
ds

≤ c(t2 − t1)ε
∫ t1

0

(t1 − s)−θ−ε‖x(s)‖X ds

≤ c(t2 − t1)ε
(∫ t1

0

(t1 − s)−r
′(θ+ε) ds

) 1
r′ ‖x‖Lr(]0,T [;X) → 0 for t1 → t2.

In view of (A.2) this gives the desired continuity.

(iii) Local Lipschitz continuity in C([0, T ];Y ):
Let t ∈ [0, T ] and u1, u2 ∈ C0,1([0, T ];U) be arbitrary and denote the associated
solutions of (2.8) by y1, y2. Moreover, set R := maxj=1,2 ‖uj‖Lr(]0,T [;U). In view of
(A.1) we then have

‖yi(t)‖Y ≤ C(1 +R) =: MR, i = 1, 2.

Completely analogously to (ii), it follows from the integral equation that

‖y1(t)− y2(t)‖Y ≤
∫ T

0

‖e−sA‖r
′

L(X,Y ) ds
1/r′ ‖B‖L(U,X) ‖u1 − u2‖Lr(]0,T [;U)

+ L(MR)

∫ t

0

‖e−(t−s)A‖L(X,Y ))‖y1(s)− y2(s)‖Y ds,
(A.4)

where we used the local Lipschitz continuity of f according to Assumption 2.1.4.
Using again Lemma 2.4 and Gronwall’s lemma yields

‖y1(t)− y2(t)‖Y ≤ L(R) ‖u1 − u2‖Lr(]0,T [;U) (A.5)
29



with L(R) := c exp(L(MR)
∫ T

0
‖e−tA‖L(X,Y ))dt).

(iv) Existence for u ∈ Lr(]0, T [;U):
To finish the proof we now turn to non-smooth right hand sides. So let u ∈ Lr(]0, T [;U)
be arbitrary. Then, from Lemma B.1 we know that, there is a sequence {un} ⊂
C0,1([0, T ];U) such that un → u in Lr(]0, T [;U). Thus the sequence is bounded in
Lr(]0, T [;U) and hence the local Lipschitz continuity from (iii) yields that the asso-
ciated sequence of states {yn} is Cauchy in C([0, T ];Y ). As this space is complete,
it therefore converges to an element y ∈ C([0, T ];Y ). Due to Lemma 2.4 and the
local Lipschitz continuity of f , this allows to pass to the limit in the integral equation
(2.9) such that the limit y ∈ C([0, T ];Y ) is indeed the mild solution associated with
u ∈ Lr(]0, T [;U). Moreover, it is easily seen that the arguments leading to (A.5) also
apply to right hand sides in Lr(]0, T [;U). This finally ensures that the mild solution
associated with u ∈ Lr(]0, T [;U) is unique.

Appendix B. Density in Bochner spaces.

Lemma B.1. Let r ∈ [1,∞). Let U,X be normed spaces such that U
d
↪→ X. Then

C∞c ([0, T ];U)
d
↪→ Lr(]0, T [;X).

Proof. We show this by means of [21, Thm. 9.5]. For this purpose let f ∈ Lr′(]0, T [;X∗)
with

〈f, v〉Lr(]0,T [;X) = 0 ∀ v ∈ C∞c ([0, T ];U) (B.1)

be arbitrary. Now, test the above equation with v = ϕu with ϕ ∈ C∞c ([0, T ]) and
u ∈ U . Then we arrive at∫ T

0

ϕ(t)〈f(t), u〉X dt = 0 ∀ϕ ∈ C∞c ([0, T ]), u ∈ U,

and by means of Fundamental Lemma we have that for every u ∈ U it holds

〈f(t), u〉X = 0 f.a.a. t ∈]0, T [. (B.2)

Since U
d
↪→ X, (B.2) yields that for any x ∈ X it holds

〈f(t), x〉X = 0 f.a.a. t ∈]0, T [,

and therefore f = 0. Since this was followed from (B.1), [21, Thm. 9.5] gives the
assertion.

Appendix C. Differentiability of Powers of Norms.

Lemma C.1. Assume that U is reflexive, separable, and equipped with a norm such
that U and U∗ are locally uniformly convex. Let r ∈ (1,∞) and ū ∈ Lr(]0, T [;U).
Then the mapping

F : Lr(]0, T [;U) 3 u 7→ 1

r
‖u− ū‖rLr(]0,T [;U) ∈ R

is continuously Fréchet-differentiable. Moreover F ′(ū) = 0.

Proof. Let u ∈ Lr(]0, T [;U) be arbitrary. We distinguish between two cases:
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Case (i): u = ū
Straight-forward computation yields

|F (ū+ h)− F (ū)|
‖h‖Lr(]0,T [;U)

=
1

r
‖h‖r−1

Lr(]0,T [;U) → 0 as ‖h‖Lr(]0,T [;U) → 0,

hence the Fréchet-differentiability with

F ′(ū) = 0. (C.1)

Case (ii): u 6= ū
Note that F = g ◦ w, with g : R → R, g(x) := 1

r x
r, and w : Lr(]0, T [;U) → R,

w(u) := ‖u− ū‖Lr(]0,T [;U). Clearly, g is continuously Fréchet differentiable with

g′(x) = xr−1. (C.2)

Since U is reflexive and separable and r ∈ ]1,∞[, one has that Lr(]0, T [;U) is reflexive
with (Lr(]0, T [;U))∗ = Lr

′
(]0, T [;U∗), cf. [11, Theorem IV.1.14]. By [30, Theorem 2],

the locally uniform convexity of U∗ ensures that Lr
′
(]0, T [;U∗) is locally uniformly

convex. Therefore, one can apply [29, Prop. 4.7.10, 3.4.2] to see that w is continuously
Fréchet-differentiable at u. Moreover, [29, Prop. 4.7.1] gives

‖w′(u)‖Lr′ (]0,T [;U∗) = 1 ∀u 6= ū. (C.3)

Therefore, the chain rule implies that F = g ◦w is continuously Fréchet-differentiable
at u 6= ū, and in view of (C.2) it holds

F ′(u)h = ‖u− ū‖r−1
Lr(]0,T [;U)w

′(u)h ∀h ∈ Lr(]0, T [;U). (C.4)

It now remains to show that F is continuously Fréchet-differentiable at ū. Let un → ū
in Lr(]0, T [;U). Consider just those un with un 6= ū. Then in view of (C.1) and (C.4)

‖F ′(un)− F ′(ū)‖Lr′ (]0,T [;U∗) ≤ ‖un − ū‖
r−1
Lr(]0,T [;U)‖w

′(un)‖Lr′ (]0,T [;U∗)

= ‖un − ū‖r−1
Lr(]0,T [;U) → 0.

For the last equality we used (C.3).

Appendix D. Direction Differentiability of the max-Operator.
Lemma D.1. The max-operator, defined at the beginning of Section 6, is directionally
differentiable from L2(Ω) to L2(Ω).
Proof. Let y, h ∈ L2(Ω) be arbitrary. For simplicity, we denote the Nemytskii-operator
associated with (6.4) by the same symbol. Note that max′(y;h)(x) = max′(y(x);h(x))
a.e. in Ω. Since R 3 x 7→ max{x, 0} ∈ R is directionally differentiable, see (6.4), we
obtain the following pointwise convergence∣∣∣max(y(x) + τh(x))−max(y(x))

τ
−max ′(y(x);h(x))

∣∣∣→ 0 f.a.a. x ∈ Ω. (D.1)

Since |max′(y;h)| ≤ |h|, cf. (6.4), the global Lipschitz continuity of R 3 x 7→
max{x, 0} ∈ R with constant 1 implies that∣∣∣max(y(x) + τh(x))−max(y(x))

τ
−max ′(y(x);h(x))

∣∣∣ ≤ 2 |h(x)| f.a.a. x ∈ Ω. (D.2)

Now, in view of (D.1) and (D.2), Lebesgue’s dominated convergence theorem yields
the result.
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