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Abstract. The finite element discretization of a control constrained elliptic optimal control
problem is studied. Control and state are discretized by higher order finite elements. The inequal-
ity constraints are only posed in the Lagrange points. The computational effort is significantly
reduced by a new mass lumping strategy. The main contribution is the derivation of new a priori
error estimates up to order h4. Moreover, we propose a new algorithmic strategy to obtain such
highly accurate results. The theoretical findings are illustrated by numerical examples.
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1 Introduction

The discretization of optimal control problems by finite elements is nowadays a standard
tool. A series of papers investigates a priori discretization error estimates in particular
for control constrained problems. In this sense, the theory seems to be nearly completed.
A closer look shows that the known approaches are limited due to regularity issues. A
standard discretization with piecewise constant controls is limited to the rate of h, which
is the spatial discretization parameter, see Arada et al. [2002], Falk [1973], Geveci [1979].
Piecewise linear approximations are limited to h3/2, see Rösch [2006], Casas and Mateos
[2008]. The superconvergence approach yields a numerical approximation of order h2,
Meyer and Rösch [2004].
By using adaptive mesh refinement, the approximation order in two dimensions is

limited by N−3/2 (this corresponds to h3) because of the required number of cells close
to the kinks of the optimal control, see [Schneider and Wachsmuth, 2015, Eq. (4)] for
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a discussion of this limitation and Schneider and Wachsmuth [2016] for results showing
convergence of order N−3/2.
The only known (non-adaptive) approach where the accuracy is not limited by h2 is

the variational discretization by Hinze [2005]. Of course, higher order finite elements are
necessary to obtain such an accuracy. The main challenge is the numerical computation
of the optimal control and the evaluation of the scalar product of the optimal control with
a finite element function. This can be done exactly for piecewise linear finite elements,
but the usage of higher order finite elements is computationally challenging, see Sevilla
and Wachsmuth [2010].
This is the starting point of our new method which has convergence order up to h4.

We propose a new fully discrete approach with higher accuracy and low computational
effort. To this aim we consider the model problem

Minimize
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

s.t. −∆y + y = u in Ω

∂

∂n
y = 0 on ∂Ω

and ua ≤ u ≤ ub in Ω.

(P)

We assume that yd is continuous and sufficiently smooth. Moreover, we assume that the
domain Ω ⊂ R2 is convex and polygonal. For simplicity of the presentation, we further
assume ua, ub ∈ R.

2 Motivation

It is well-known that the (necessary and sufficient) optimality condition for (P) is given
by the projection formula

ū(x) = Proj[ua,ub]

p̄(x)

α
for a.a. x ∈ Ω, (1)

where p̄ is the (weak) solution of the adjoint equation

−∆p̄+ p̄ = yd − ȳ in Ω,

∂

∂n
p̄ = 0 on ∂Ω.

(2)

Now, we consider a discretized version of (P). Let T be a regular triangulation of Ω. We
will work with a finite element space

Vh = {vh ∈ C(Ω̄) : vh|T ∈ P(T ) ∀T ∈ T },

where P denotes a certain polynomial space of higher order. We will specify the details
later. In the sequel we will use the notation vh for the discretized function, i.e. vh ∈ Vh,
and also for the coefficient vector. Both are connected by a bijective mapping induced by
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the Lagrange interpolation. We denote by M and K the usual mass and stiffness matrix
associated with the inner products of L2(Ω) and H1(Ω), respectively. A possibility to
discretize the optimal control problem (P) would be

Minimize
1

2
‖yh − Ih yd‖2M +

α

2
‖u‖2M

s.t. K yh = M uh

and ua ≤ uh ≤ ub.

(P′h)

Since Vh consists of polynomials of higher order, only a coefficient-wise interpretation of
the control constraints is practicable from a computational point of view. That is, the
control constraint in (P′h) is to be understood as ua ≤ uh(xL) ≤ ub for all Lagrange-nodes
xL of the triangulation or, equivalently, as ua ≤ uih ≤ ub for all coefficients. Note that
such a discretization is not conforming if the polynomial degree is larger than one. The
operator Ih : C(Ω̄)→ Vh in (P′h) is the (usual) nodal Lagrange interpolation.
It is easy to see that the (necessary and sufficient) optimality condition of (P′h) can be

written as
ūh = ProjM[ua,ub]

p̄h
α
, (3)

where the discretized adjoint state p̄h is defined by the equations

K p̄h = M (Ih yd − ȳh), K ȳh = M ūh.

Note that we have to project with respect to the inner product generated by the mass
matrix M , i.e., the projection (3) is characterized by

(α ūh − p̄h)>M (uh − ūh) ≥ 0 ∀uh ∈ Vh : ua ≤ uh ≤ ub.

This projection can be evaluated coefficient-wise if and only if the mass matrix M is
diagonal, otherwise nonlocal effects appear.
The superconvergence approach introduced in Meyer and Rösch [2004] works with

different discrete spaces for state and control. In particular, the controls are discretized
by piecewise constant functions and, thus, the mass matrix becomes a diagonal matrix
which is heavily exploited in the derivation of the approximation results.
We will propose here a new approach with a mass matrix M and a diagonal lumped-

mass matrix ML. The mass matrix is used in the tracking term and the lumped-mass
matrix is used twice: in the right-hand side of the state equation and in the control cost
term in the objective.
Hence, we propose to use

Minimize
1

2
‖yh − Ih yd‖2M +

α

2
‖uh‖2ML

s.t. K yh = ML uh

and ua ≤ uh ≤ ub.

(Ph)

with a diagonal, positive semidefinite approximationML of the mass matrix. As in (P′h),
the control constraints are to be understood coefficient-wise.
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Mass lumping is a standard tool for the numerical solution of time dependent partial
differential equations. Until now, only a few papers are devoted to mass lumping in
optimal control. Mass lumping is used in the computation of an L1 term, see [Wachsmuth
and Wachsmuth, 2011, (4.13)] and to obtain a discrete projection formula, see [Casas
et al., 2012, Lemma 3.4]. However, only convergence of order h was proved. This was
improved by Pieper [2015], who also considered the lumped-mass matrix in the right-
hand side of the discrete PDE, see [Pieper, 2015, Section 4.5.4] and convergence of order
h2 for a piecewise linear discretization was obtained. Similar ideas are also used for the
control of ordinary differential equations, see for instance Alt et al. [2007].
It is easy to check, that the optimality conditions for (Ph) are given by

ūh = Proj[ua,ub]

p̄h
α
, (4a)

K p̄h = M (Ih yd − ȳh), (4b)
K ȳh = ML ūh. (4c)

If the diagonal ML is not strictly positive, the solution of (Ph) is not unique. Indeed,
entries of uh corresponding to a zero diagonal entry of ML do not enter the objective or
the state equation in (Ph). We fix these entries by the optimality condition (4a). We
emphasize that the projection in (4a) is to be understood coefficient-wise.
We mention that there are two possible interpretations of mass lumping. The first one

is from a linear algebra point-of-view and the lumped-mass matrix is understood as a
diagonal approximation of the mass matrix, by defining, e.g.,

(ML)ii =

N∑
j=1

Mij .

From a numerical analysis point-of-view, mass lumping can be understood as follows.
For the triangulation T we have the (global) Lagrange nodes xiL, i = 1, . . . , N and the
associated (global) basis functions φi satisfy φi(x

j
L) = δij . Then, we choose a quadrature

formula whose nodes are exactly the Lagrange nodes and the weights ωi are non-negative.
Now, we can define a lumped-mass matrix by approximating the L2(Ω) inner product by
the quadrature formula. Indeed,

(ML)ij =
N∑
k=1

φi(x
k
L)φj(x

k
L)ωk =

{
ωi if i = j,

0 else.

3 Basic error estimate for the control problem

In this section we will derive the basic error estimate. Here, we do not need a specific
form of the finite element space Vh. Only the following three properties are required:

• The coefficient vector uh corresponds to a nodal basis, i.e., for every coefficient uih
there is a Lagrange point xiL ∈ Ω with

uih = uh(xiL).
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Moreover, the interpolation operator Ih : C(Ω̄)→ Vh satisfies

(Ih v)i = v(xiL) ∀v ∈ C(Ω̄), i = 1, . . . , N.

• The control constraints in (Ph) are inequalities for single coefficients, i.e.,

ua ≤ uih ≤ ub

for all coefficients associated with the nodal basis.

• The lumped-mass matrix ML is diagonal and all entries are non-negative.

Lemma 3.1. Let us assume that the above assumptions are satisfied by the finite element
space Vh. Moreover, we assume ū, p̄ ∈ C(Ω̄). Then we have

α ‖Ih ū− ūh‖2ML
≤ (p̄h − Ih p̄, ūh − Ih ū)ML

, (5)

where ȳh, ūh, p̄h are the unique solution of the optimality system (4).

In (5), we used the usual notations

(a, b)ML
:= a>ML b and ‖a‖2ML

:= (a, a)ML
.

Proof. Together with (4a) the assumptions on Vh imply

[α ūh(xiL)− p̄h(xiL)] [v − ūh(xiL)] ≥ 0 ∀v ∈ [ua, ub].

We choose v = ū(xiL), which is possible due to ū ∈ C(Ω̄) and ua ≤ ū ≤ ub a.e. in Ω. This
yields

[α ūh(xiL)− p̄h(xiL)] [ū(xiL)− ūh(xiL)] ≥ 0.

Since ū and p̄ are continuous, the projection formula (1) holds everywhere, and we obtain

[α ū(xiL)− p̄(xiL)] [ūh(xiL)− ū(xiL)] ≥ 0,

since ūh(xiL) ∈ [ua, ub]. Now, we weight both inequalities by the i-th diagonal entry of
ML and sum over all indices i to obtain

(α Ih ū− α ūh + p̄h − Ih p̄)>ML (ūh − Ih ū) ≥ 0.

Here, we used (Ih ū)i = ū(xiL). This implies the assertion.

In the following theorem, we estimate the right-hand side of (5) by approximation
errors for the state and adjoint equation.

Theorem 3.2. Under the assumptions of Lemma 3.1, the error estimate

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ 1

2
‖Ih ȳ −K−1ML Ih ū‖2M +

1

2α
‖Ih p̄−K−1M (Ih yd − Ih ȳ)‖2ML

(6)

is valid.
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Proof. We start with the identity

1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

=
1

2
‖Ih ȳ −K−1ML Ih ū‖2M + (Ih ȳ − ȳh,K−1ML Ih ū− ȳh)M

=
1

2
‖Ih ȳ −K−1ML Ih ū‖2M + (Ih ȳ − ȳh,K−1ML Ih ū−K−1ML ūh)M

=
1

2
‖Ih ȳ −K−1ML Ih ū‖2M + (K−1M (Ih ȳ − ȳh), Ih ū− ūh)ML

=
1

2
‖Ih ȳ −K−1ML Ih ū‖2M + (K−1M (Ih ȳ − Ih yd) + p̄h, Ih ū− ūh)ML

.

Together with the inequality (5), we obtain

α ‖Ih ū− ūh‖2ML
+

1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ 1

2
‖Ih ȳ −K−1ML Ih ū‖2M + (Ih p̄−K−1M (Ih yd − Ih ȳ), Ih ū− ūh)ML

.

Finally, we use Young’s inequality to obtain

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ 1

2
‖Ih ȳ −K−1ML Ih ū‖2M +

1

2α
‖Ih p̄−K−1M (Ih yd − Ih ȳ)‖2ML

,

and this is the assertion.

In the next section we will estimate the two terms on the right-hand side of this
inequality. The first term describes the approximation error of the state equation caused
by discretization and mass lumping. The second term measures the discretization error
of the adjoint equation in the mass lumping norm.
We briefly interpret the terms on the left-hand side of (6). The first term is an error

estimate for the approximation of the control. However, since the lumped-mass matrix is
involved, only the error in the Lagrange nodes is measured. The second term is equal to
1
2 ‖Ih ȳ − ȳh‖

2
L2(Ω) and this is, up to the interpolation error, the L2(Ω)-error in the state

variable.

4 Error estimates for the equations

Let us now give a precise description of the discrete spaces Vh. We require the following
properties:

• The convex polygonal domain Ω is discretized exactly by the triangulation T , i.e.,
we have Ω = Ωh.
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• The elements of T are (shape) regular in the sense of [Brenner and Scott, 2008,
Definition (4.4.13)]. Hanging nodes are not allowed. There is no restriction on the
size hT of a single element T ∈ T . Later we will have the mild restriction (13). We
denote by h = maxT∈T hT the global mesh size.

• The discrete space Vh is generated by continuous and piecewise polynomial basis
functions φi, i = 1, . . . , N , corresponding to Lagrange nodes xiL ∈ Ω̄. We postulate
the following assumptions on the basis functions.

– We require φi(x
j
L) = δij , for 1 ≤ i, j ≤ N .

– All basis functions have nonnegative integrals, i.e.,
∫

Ω φi dx ≥ 0.

– The basis functions build a partition of unity, i.e.,
∑N

i=1 φi ≡ 1 on Ω̄.

– There exists two positive numbers k and k′ with Pk ⊂ Vh ⊂ Pk′ . Later, we
will need the inequalities k ≥ 2 and k′ ≤ k + 1. Here, Pk (Pk′) is the usual
space of continuous functions which are piecewise polynomials of degree at
most k (k′).

– The mass matrixM of the finite element space Vh and the lumped mass matrix
ML are connected by the relation

(ML)ii =

N∑
j=1

Mij .

– The quadrature rule corresponding with the lumped-mass matrix is exact for
(piecewise) polynomials of degree k + k′ − 2, that is∫

Ω
ϕdx =

N∑
i=1

ωi ϕ(xiL)

for all ϕ ∈ C(Ω̄) for which ϕ|T is a polynomial of degree at most k + k′ − 2
for all T ∈ T . Note that this directly implies∫

Ω
φi dx =

N∑
j=1

ωj φi(x
j
L) = ωi ≥ 0,

since the local degree of φi is at most k′ ≤ k + k′ − 2. Hence, the quadrature
weights ωi are uniquely determined by the Lagrange nodes xiL. Moreover, we
have

(ML)ii =
N∑
j=1

Mij =
N∑
j=1

∫
Ω
φi φj dx =

∫
Ω
φi

N∑
j=1

φj dx =

∫
Ω
φi dx = ωi.

In Section 7 we specify two finite element spaces which satisfy these assumptions.

We denote the space of continuous, piecewise linear functions by V (1)
h and by I(1)

h the
nodal interpolation operator to the space V (1)

h .
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4.1 Error estimates for the adjoint equation

In this section we will estimate the second term in (6). We start with an auxiliary result.

Lemma 4.1. Let vh ∈ Vh an arbitrary function. Then we have

‖vh‖2ML
≤ c ‖vh‖2M = c ‖vh‖2L2(Ω). (7)

Proof. The result follows from a simple transformation argument. Let us investigate the
norm on a single element T ∈ T . After transformation to the reference element we can
estimate the lumped-mass matrix semi-norm by the mass matrix norm. Retransformation
yields the assertion.

Lemma 4.2. The following estimate is valid

‖Ih p̄−K−1M (Ih yd− Ih ȳ)‖ML
≤ c (‖Ih p̄− p̄‖L2(Ω) + ‖p̄−K−1M (Ih yd− Ih ȳ)‖L2(Ω)).

(8)

Proof. We obtain the desired result immediately from the last lemma:

‖Ih p̄−K−1M (Ih yd − Ih ȳ)‖ML

≤ c (‖Ih p̄−K−1M (Ih yd − Ih ȳ)‖L2(Ω))

≤ c (‖Ih p̄− p̄‖L2(Ω) + ‖p̄−K−1M (Ih yd − Ih ȳ)‖L2(Ω)).

Let us remark that the second term on the right-hand side of this inequality is the
usual finite element error for the adjoint equation evaluated for the optimal state ȳ. The
first term represents an interpolation error.

4.2 Error estimates for the state equation

Next, we estimate the first term in (6). Let us introduce the notation

ỹ := K−1ML Ih ū.

This auxiliary discrete state is just the Galerkin solution of the state equation in which
the quadrature rule corresponding to the lumped-mass matrix is used to evaluate the
right-hand side ū. Indeed,

v>hK ỹ = v>hML Ih ū =
N∑
i=1

ωi vh(xiL) ū(xiL) ≈
∫

Ω
vh ūdx

for all vh ∈ Vh.
The first addend on the right-hand side of (6) can be estimated by the triangle in-

equality

‖Ih ȳ −K−1ML Ih ū‖M = ‖Ih ȳ −K−1ML Ih ū‖L2(Ω)

≤ ‖Ih ȳ − ȳ‖L2(Ω) + ‖ȳ −K−1ML Ih ū‖L2(Ω).

Owing to the regularity of ȳ, we can estimate the interpolation error ‖Ih ȳ− ȳ‖L2(Ω) and
the second term is addressed in the following lemma.
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Lemma 4.3. The following a priori error estimate holds

‖ȳ − ỹ‖L2(Ω) ≤ c h

(
‖ȳ − Ih ȳ‖H1(Ω) + sup

wh∈Vh\{0}

(wh, ū)L2(Ω) − w>hML Ih ū

‖wh‖H1(Ω)

)

+ c sup
wh∈V

(1)
h \{0}

(wh, ū)L2(Ω) − w>hML Ih ū

‖wh‖H1(Ω)
.

(9)

Proof. Using the first Lemma of Strang, see, e.g., [Ciarlet, 1978, Thm. 4.1.1], we obtain

‖ȳ − ỹ‖H1(Ω) ≤ c ‖ȳ − Ih ȳ‖H1(Ω) + c sup
wh∈Vh\{0}

(wh, ū)L2(Ω) − whML Ih ū

‖wh‖H1(Ω)
.

Now, we use the Nitsche trick to estimate ‖ȳ− ỹ‖L2(Ω). We define ϕ as the solution of
the dual problem with right-hand side ȳ − ỹ, i.e.

a(ϕ, v) = (ȳ − ỹ, v)L2(Ω) ∀ϕ ∈ H1(Ω).

Now, we find

‖ȳ − ỹ‖2L2(Ω) = a(ϕ, ȳ − ỹ)

= a(ϕ− I(1)
h ϕ, ȳ − ỹ) + a(I

(1)
h ϕ, ȳ − ỹ)

= a(ϕ− I(1)
h ϕ, ȳ − ỹ) + (I

(1)
h ϕ, ū)L2(Ω) − (I

(1)
h ϕ)>ML Ih ū

≤ ‖ϕ− I(1)
h ϕ‖H1(Ω) ‖ȳ − ỹ‖H1(Ω)

+ sup
wh∈V

(1)
h \{0}

(wh, ū)L2(Ω) − whML Ih ū

‖wh‖H1(Ω)
‖I(1)

h ϕ‖H1(Ω)

≤
(
h ‖ȳ − ỹ‖H1(Ω) + sup

wh∈V
(1)
h \{0}

(wh, ū)L2(Ω) − whML Ih ū

‖wh‖H1(Ω)

)
‖ϕ‖H2(Ω)

≤
(
h ‖ȳ − ỹ‖H1(Ω) + sup

wh∈V
(1)
h \{0}

(wh, ū)L2(Ω) − whML Ih ū

‖wh‖H1(Ω)

)
‖ȳ − ỹ‖L2(Ω).

Here, we used [Brenner and Scott, 2008, Theorem (4.4.4)] for the interpolation error and
the stability of the interpolation in H2(Ω). Together with the error estimate for the
energy norm we obtain the assertion.

This result is the key to estimate the first term in (6). Hence, the main contribution
to this error term is addressed in (9). We emphasize that the terms containing the sup
in (9) are just the (normalized) quadrature errors

(wh, ū)L2(Ω) − w>hML Ih ū =

∫
Ω
wh ūdx−

N∑
i=1

ωiwh(xiL) ū(xiL). (10)

It remains to estimate these quadrature errors. The global quadrature error can be split
into elementwise error contributions.
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4.3 Quadrature error on a single element

In this section we will study the error caused by the mass lumping. Let us define the
order r := k + k′ − 1. We are interested in two particular cases:

1. quadratic polynomials, i.e., k = k′ = 2, r = 3,

2. enriched cubic polynomials, i.e., k = 3, k′ = 4, r = 6.

In both cases mass lumping is known with a quadrature rule that is exact for polyno-
mials of degree up to order r− 1, see Section 7. Let us discuss a single triangle T of the
triangulation T . In the following discussions, c will denote a generic constant, which will
not depend on the triangle T , but only on its shape regularity.
To allow for a local analysis, the (global) quadrature formula with points xiL and

weights ωi is divided into quadrature formulas on each cell T ∈ T . In particular, we
denote the quadrature points and weights associated with the cell T ∈ T by yT,jL and
ωT
j , j = 1, . . . , NL. The relation with the global quadrature formula is given by the

requirement
N∑
i=1

v(xiL)ωi =
∑
T∈T

NL∑
j=1

v(yT,jL )ωT
j ∀v ∈ C(Ω̄). (11)

For φ ∈ C(T ) and vh ∈ Vh|T we define the quadrature error

ET (φ, vh) :=
∣∣∣ ∫

T
φ vh dx−

NL∑
j=1

φ(xT,jL ) vh(xT,jL )ωT
j

∣∣∣.
The sum over all elements yields the desired estimate, cf. (10) and (11).

Theorem 4.4. There exist a constant c such that for each cell T ∈ T , we have the
estimates

ET (φ, vh) ≤ c hk+1
T ‖φ‖Wk+1,2(T ) ‖vh‖W 2,2(T ) (12a)

ET (φ, vh) ≤ c h2
T ‖φ‖L∞(T ) ‖vh‖L∞(T ) (12b)

for φ ∈ C(T ) and vh ∈ Vh|T .

We emphasize that the constant c in Theorem 4.4 does not depend on the triangulation
T , but only on its shape regularity.

Proof. By standard arguments, we obtain the estimate

ET (φ, vh) ≤ c hrT
∣∣φ vh∣∣W r,1(T )

.

Next, we use the nodal interpolant Ihφ ∈ Vh|T . Of course we have φ(xiL) = (Ihφ)(xiL).
Hence, Ihφ − φ is zero in the Lagrange points and these are precisely the quadrature
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nodes xiL. Consequently, we find

ET (φ, vh) ≤ ET (φ− Ihφ, vh) + ET (Ihφ, vh)

=
∣∣∣ ∫

T
(φ− Ihφ) vh dx

∣∣∣+ ET (Ihφ, vh)

≤ c ‖φ− Ihφ‖L2(T ) ‖vh‖L2(T ) + c hrT
∣∣Ihφ vh∣∣W r,1(T )

,

which implies

ET (φ, vh) ≤ c ‖φ− Ihφ‖L2(T ) ‖vh‖L2(T ) + c hrT ‖Ihφ‖W r,2(T ) ‖vh‖W r,2(T ).

Since Ihφ, vh are polynomials of degree k′, all derivatives of order k′ + 1, . . . , r are zero.
Together with an inverse estimate (see [Brenner and Scott, 2008, Lemma (4.5.3)]) we
get

ET (φ, vh) ≤ c ‖φ− Ihφ‖L2(T ) ‖vh‖L2(T ) + c hrT ‖Ihφ‖Wk′,2(T ) ‖vh‖Wk′,2(T )

≤ c ‖φ− Ihφ‖L2(T ) ‖vh‖L2(T ) + c hk+1
T ‖Ihφ‖Wk′,2(T ) ‖vh‖W 2,2(T ).

Next we use the stability of the Lagrange interpolant, see [Brenner and Scott, 2008,
Theorem (4.4.4)] (note that this requires k′ ≤ k + 1), and the interpolation estimate
[Brenner and Scott, 2008, Theorem (4.4.4)] to obtain

ET (φ, vh) ≤ c ‖φ− Ihφ‖L2(T ) ‖vh‖L2(T ) + c hk+1
T ‖φ‖Wk′,2(T ) ‖vh‖W 2,2(T )

≤ c hk+1
T ‖φ‖Wk+1,2(T ) ‖vh‖L2(T ) + c hk+1

T ‖φ‖Wk′,2(T ) ‖vh‖W 2,2(T )

≤ c hk+1
T ‖φ‖Wk+1,2(T ) ‖vh‖W 2,2(T ).

This shows (12a). The estimate (12b) follows from

ET (φ, vh) ≤
(∫

T
1 dx+

N∑
i=1

ωi

)
‖φ‖L∞(T ) ‖vh‖L∞(T )

and the shape regularity of T .

4.4 Quadrature error on the whole mesh

Now, we use the estimate from Theorem 4.4 in order to bound the quadrature error term
in the estimate (9) for the state equation from Lemma 4.3.
Our idea is to work with two different mesh sizes hgood ≥ hbad with

| lnhgood| ∼ | lnhbad|. (13)

We will first derive an error estimate containing both mesh sizes. Later we will balance
the error terms.
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• Cells T with smooth behavior of the solution ū have a diameter less than hgood.
More precisely, we require that ū = p̄ or ū = ua or ū = ub hold on these cells. In
particular, this implies ū ∈ W k+1,2(T ) if p ∈ W k+1,2(T ). The set of all these cells
is denoted by Tgood.

• The remaining elements are denoted by Tbad and have a diameter less than hbad.
These are cells where the optimal control has a kink. By Nbad we denote the
numbers of cells in Tbad.

Theorem 4.5. We assume that the optimal adjoint state p̄ belongs to the space X =
W k+1,2(Ω). Together with the above assumptions, we have∑

T∈T
ET (ū, wh) ≤ cC

(
hk+1

good + (1 + |lnhgood|)1/2Nbad h
3
bad
)√∑

T∈T
‖wh‖2H2(T )

and ∑
T∈T

ET (ū, wh) ≤ cC
(
hkgood + (1 + |lnhgood|)1/2Nbad h

3
bad
)
‖wh‖H1(Ω),

where C = max
{
‖p̄‖X , |ua|, |ub|

}
.

Proof. On the cells belonging to Tgood we use (12a) and obtain∑
T∈Tgood

ET (ū, wh) ≤ c hkgood

∑
T∈Tgood

hT ‖ū‖Wk+1,2(T ) ‖wh‖W 2,2(T )

≤ c hkgood

√∑
T∈T
‖ū‖2

Wk+1,2(T )

√∑
T∈T

h2
T ‖wh‖2H2(T )

(14)

≤ c hk+1
good max

{
‖p̄‖X , |ua|, |ub|

}√∑
T∈T
‖wh‖2H2(T )

(15)

with X = W k+1,2(Ω).
Using an inverse estimate in (14), we find∑

T∈Tgood

ET (ū, wh) ≤ c hkgood max
{
‖p̄‖X , |ua|, |ub|

}
‖wh‖H1(Ω). (16)

Let us now investigate the second type of cells T ∈ Tbad. We start with the identity

ET (ū, wh) = α−1ET (p̄, wh) + ET (ū− α−1 p̄, wh).

The first term contains only smooth terms and can be estimated in the same way as on
the first type of cells. The crucial term is the second one where we use (12b) to obtain

ET (ū− α−1 p̄, wh) ≤ c h2
bad ‖ū− α−1 p̄‖L∞(T ) ‖wh‖L∞(T )

≤ c h3
bad ‖p̄‖W 1,∞(T )‖wh‖L∞(T ). (17)
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Here we used the Lipschitz continuity of ū, p̄ and the fact ū = α−1 p̄ for at least one
point in the element. This implies ‖ū − α−1 p̄‖L∞(T ) ≤ c hT ‖p̄‖W 1,∞(T ). Summing up
the error terms we find∑

T∈Tbad

ET (ū− α−1 p̄, wh) ≤ cNbad h
3
bad ‖p̄‖W 1,∞(Ω) ‖wh‖L∞(Ω)

≤ cNbad h
3
bad ‖p̄‖X ‖wh‖L∞(Ω),

where we used X ↪→ W 3,1(Ω) ↪→ W 1,∞(Ω). Since our mesh parameters hgood and hbad
satisfy (13), we can use [Brenner and Scott, 2008, Lemma (4.9.2)] and find the discrete
Sobolev embedding

‖wh‖L∞(Ω) ≤ c (1 + | lnhgood|)1/2‖wh‖H1(Ω).

This shows∑
T∈Tbad

ET (ū− α−1 p̄, wh) ≤ cNbad (1 + |lnhgood|)1/2 h3
bad ‖p̄‖X ‖wh‖H1(Ω).

Together with (15) and (16), we obtain the assertion.

Plugging these estimates into (9), we obtain the following corollary.

Corollary 4.6. Under the assumptions of Theorem 4.5, we have

‖ȳ − ỹ‖L2(Ω) ≤ c
(
hgood ‖ȳ − Ih ȳ‖H1(Ω) + hk+1

good +Nbad h
3
bad (1 + |lnhgood|)1/2

)
,

where the constant c depends on ‖p̄‖X .

Proof. The estimate follows from Lemma 4.3 and Theorem 4.5.

5 Error estimates for the optimal control problem

In this section we will combine the results of subsection 4.4 and our main estimate (6).
The number of refined cells Nbad plays a crucial role in Corollary 4.6. We will require

Nbad ≤ c h−1
bad,

which is reasonable if the kinks are a finite number of curves. A similar assumption is
commonly used for error estimates of control constrained problems, see Rösch [2006],
Pieper [2015].

Theorem 5.1. Let us assume p̄ ∈W k+1,2(Ω), Nbad ≤ c h−1
bad. Then the error estimate

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c
(
hk+1

good + (1 + |lnhgood|)1/2)h2
bad + hgood ‖ȳ − Ih ȳ‖H1(Ω)

)
(18)

is satisfied.
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This statement follows immediately from Corollary 4.6 combined with (6).

Corollary 5.2. The choice hbad = h2
good gives the estimate

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c (h3
good + hgood ‖ȳ − Ih ȳ‖H1(Ω)) (19)

in the case of P2-elements (k = k′ = 2) and

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c ((1 + |lnhgood|)1/2 h4
good + hgood ‖ȳ − Ih ȳ‖H1(Ω)) (20)

in the case of enriched P3-elements (k = 3, k′ = 4).

The logarithmic term in (19) can be dropped due to Corollary 4.6. Further, for the
verification of (19), hbad = h

3/2+ε
good , ε > 0, is enough, with ε = 0, one obtains an additional

logarithmic term.

Remark 5.3. Our assumption on the adjoint state p̄ is quite strong since one has to
expect corner singularities due to the polygonal domain. However, it is possible to combine
our approach with a mesh grading at the corners of the polygon. We refer to Apel [1999,
2004] for graded meshes in combination with higher order finite elements. The adjoint
state p̄ belongs to a corresponding weighted Sobolev space of higher order. The optimal
state ȳ has the same regularity if one stays away from the kinks of the optimal control ū.

Remark 5.4. Let us analyze the interpolation error ‖ȳ − Ih ȳ‖H1(Ω), which appears in
the different error estimates. Here two different effects are of interest. The first effect
is connected with possible corner singularities that reduce the order of the interpolation
error. This effect can be again compensated by mesh grading. The second effect is caused
by kinks in the optimal control. Then, the control belongs to H1.5−ε(Ω), for any ε > 0,
but not to H2(Ω). Hence, we can expect (up to corner singularities) H3.5−ε(Ω)-regularity
of the optimal state ȳ but not H4(Ω)-regularity.
Consequently, we have no restriction for P2-elements (k = k′ = 2) to obtain

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c h3
good (21)

The situation is more difficult for the enriched P3-elements (k = 3, k′ = 4). The elements
containing the kink have the smaller mesh size hbad. Consequently, in the regular case in
which

‖Ihȳ − ȳ‖H1(Ω) ≤ c h3
good

is satisfied, Corollary 5.2 leads to the error estimate

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c (1 + |lnhgood|)1/2 h4
good. (22)
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By standard arguments, we obtain the same rates for the approximation of the adjoint
states.

6 An algorithmic approach

In the last section we derived an optimal convergence order. However, it was assumed
that we know in advance where the kinks are located. If the location of the kinks is
unknown, there are at least two simple strategies available:
Algorithm 1

1. Compute a numerical solution for a quasi-uniform mesh with mesh size hgood.

2. Refine the mesh in the region where kinks of ū may occur with a mesh size hbad
and compute on the new mesh an improved numerical solution.

Algorithm 2

1. Compute a numerical solution for a quasi-uniform mesh with mesh size hgood.

2. Repeat as often it is necessary: Refine all elements which contain a kink of ūh and
possess a diameter larger then hbad.

Next we will analyze Algorithm 1 and the regular case addressed in Remark 5.4.
Algorithm 2 is rather heuristically and will not be analyzed. Let us define the family of
sets

K(ε) = {x ∈ Ω : |p̄− αua| ≤ ε or |p̄− αub| ≤ ε}.

for arbitrary ε > 0.
Let us denote the numerical solution of the first step with (ỹh, ũh, p̃h). Since the mesh

is quasi-uniform, we have hgood ∼ hbad. We can directly apply the error estimate (18) to
obtain

‖Ih ȳ − ỹh‖M = ‖Ih ȳ − ỹh‖L2(Ω) ≤ c (1 + |lnhgood|)1/2 h2
good.

From that we get easily

‖ȳ − ỹh‖L2(Ω) ≤ c (1 + |lnhgood|)1/2 h2
good.

The regularity of the optimal adjoint state and the above inequality imply

‖p̄− p̃h‖L∞(Ω) ≤ c (1 + |lnhgood|)1/2 h2
good.

The last estimate means that the kinks of the optimal control ū are contained in the set
K(c (1 + |lnhgood|)1/2 h2

good). Let us assume that the area of elements containing this set

TK =
⋃
T

{T ∩K(c (1 + |lnhgood|)1/2 h2
good) 6= ∅}

can be limited by
|TK | ≤ c γ (1 + |lnhgood|)1/2 h2

good)
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with a certain positive γ. We remark that the similar property |K(ε)| ≤ γ ε is frequently
used, in particular for the approximation of bang-bang controls, see Deckelnick and Hinze
[2012], Wachsmuth and Wachsmuth [2011].
This region is discretized in the second step with the mesh size hbad. The number of

elements needed is proportional to (1 + |lnhgood|)1/2 h2
good)/h2

bad. Hence, the number of
needed element is not essentially increasing if

(1 + |lnhgood|)1/2 h4
good ≤ c h2

bad.

For the quadratic finite elements we can choose hbad ∼ h
3/2
good. In the case of enriched

cubic elements we use hbad ∼ (1 + |lnhgood|)1/4 h2
good.

On the refined mesh, a new finite element solution (ȳh, ūh, p̄h) will be computed. We
can apply directly (21) and (22) to the new discrete solution to obtain

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c (1 + |lnhgood|)1/2h3
good (23)

in the case of P2-elements (k = k′ = 2) and

α

2
‖Ih ū− ūh‖2ML

+
1

2
‖Ih ȳ − ȳh‖2M +

1

2
‖K−1ML Ih ū− ȳh‖2M

≤ c (1 + |lnhgood|)h4
good (24)

in the case of enriched P3-elements (k = 3, k′ = 4).

7 Numerical experiments

In this section, we present a numerical example which illustrates the convergence results
(21) and (22).
On the unit square Ω = (0, 1)2 we consider the optimal control problem (P) with

α = 0.05, yd(x1, x2) = expx1 sin(x2) and ua = −1.5, ub = 1.0.
As described in Section 4.3, we are interested in two particular finite elements: stan-

dard P 2 elements and enriched P 3 elements as constructed in Cohen et al. [2001]. We
emphasize that the lumped mass matrix ML is singular for P 2 elements. This is not
a obstruction for the analysis, since we only required that ML is positive semidefinite.
To the contrary, this is beneficial for the numeric implementation, since (Ph) does not
depend on the vertex values of uh and, thus, we can work with less degrees of freedom
for uh.

The enriched P 3 elements consists of the standard cubic finite element space and
this space is enriched by all bubble functions of degree at most four. The associated
quadrature rule is exact for polynomials of degree at most 5 if the Lagrange nodes are
chosen suitably, cf. [Cohen et al., 2001, Lemma 4.3].
In the numerical implementation, we used an algorithm similar to Algorithm 2 in

Section 6 which is coupled with a nested iteration. We start with a coarse initial mesh
and perform the following in each step:
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• We set hgood = maxT∈T diam(T ) and hbad = h
3/2
good (P 2 elements) or hbad = h2

good
(P 3 elements).

• If there is any cell T with diam(T ) > hbad and on which Proj[ua,ub](p̄h/α) has a
kink, we refine all those cells (local refinement).

• Otherwise, we refine all cells T with diam(T ) > hgood/2 (global refinement).

This algorithm is implemented in the finite element toolbox FEniCS, cf. Alnæs et al.
[2015], by using the geometric multigrid implementation from Ospald [2012].
The computational results are shown in Figure 1 and Figure 2. Since an analytical
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10−2

hgood

‖ȳh − ȳh∗‖L2(Ω)

‖ūh − ūh∗‖L2(Ω)

‖ūh − Ihūh∗‖ML

h2.25

h3

Figure 1: Errors in the control and state for the discretization with P 2 elements.

solution for the problem under consideration is not known, we used a fine grid solution
as a reference for the computed errors. In fact, we used

ȳh∗ = ȳh′ and ūh∗ = Proj[ua,ub]

p̄h′

α
,

where (ūh′ , ȳh′ , p̄h′) is the solution of (Ph) on a finer grid. As predicted in (21) and (22),
we see convergence of order hk+1 for the errors

‖ȳh − ȳh∗‖L2(Ω) and ‖ūh − Ihūh∗‖ML
.

Note that the error of the control ‖ūh − ūh∗‖L2(Ω) converges significantly slower. For
quasiuniform meshes and P 1-elements one knows a convergence of order h3/2, cf. Rösch

17



10−2 10−1

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

hgood
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Figure 2: Errors in the control and state for the discretization with enriched P 3 elements.

[2006], Casas and Mateos [2008]. Clearly, these techniques can be extended to more
general meshes and larger classes of finite elements. However, the best approximation
on our mesh is of order h3/2

bad due to the presence of the kink. Exactly this order is
observed in our numerical tests. Because of the coupling of hgood and hbad, we obtain
h

3/2
bad = (h

3/2
good)3/2 = h2.25

good for the case of P 2 elements and h3/2
bad = (h2

good)3/2 = h3
good for

the case of enriched P 3 elements. This is essentially smaller as the convergence order of
our new method (3 respectively 4).

References

Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders
Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The
fenics project version 1.5. Archive of Numerical Software, 3(100), 2015. doi: 10.11588/
ans.2015.100.20553.

Walter Alt, Nils Bräutigam, and Arnd Rösch. Error estimates for finite element ap-
proximations of elliptic control problems. Discussiones Mathematicae. Differential
Inclusions, Control and Optimization, 27(1):7–22, 2007.

Th. Apel. Anisotropic finite elements: Local estimates and applications. Advances in
Numerical Mathematics. Teubner, Stuttgart, 1999.

18



Th. Apel. Interpolation in h-version finite element spaces. In E. Stein, R. de Borst,
and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 1
Fundamentals, pages 55–72. Wiley, Chichester, 2004.

N. Arada, E. Casas, and F. Tröltzsch. Error estimates for a semilinear elliptic optimal
control problem. Computional Optimization and Applications, 23:201–229, 2002.

S. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, New York, third edition, 2008.

Eduardo Casas and Mariano Mateos. Error estimates for the numerical approximation
of Neumann control problems. Computational Optimization and Applications, 39(3):
265–295, 2008.

Eduardo Casas, Roland Herzog, and Gerd Wachsmuth. Approximation of sparse controls
in semilinear equations by piecewise linear functions. Numerische Mathematik, 122(4):
645–669, 2012. ISSN 0029-599X. doi: 10.1007/s00211-012-0475-7.

Philippe G. Ciarlet. The finite element method for elliptic problems. North-Holland
Publishing Co., Amsterdam-New York-Oxford, 1978. ISBN 0-444-85028-7. Studies in
Mathematics and its Applications, Vol. 4.

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman. Higher order triangular finite elements
with mass lumping for the wave equation. SIAM Journal on Numerical Analysis, 38
(6):2047–2078, 2001. ISSN 0036-1429. doi: 10.1137/S0036142997329554.

Klaus Deckelnick and Michael Hinze. A note on the approximation of elliptic con-
trol problems with bang-bang controls. Computational Optimization and Appli-
cations. An International Journal, 51(2):931–939, 2012. ISSN 0926-6003. doi:
10.1007/s10589-010-9365-z.

R. Falk. Approximation of a class of optimal control problems with order of convergence
estimates. J. Math. Anal. Appl., 44:28–47, 1973.

T. Geveci. On the approximation of the solution of an optimal control problem governed
by an elliptic equation. R.A.I.R.O. Analyse numeriqué, 13:313–328, 1979.

Michael Hinze. A variational discretization concept in control constrained optimization:
the linear-quadratic case. Computational Optimization and Applications, 30(1):45–61,
2005.

Christian Meyer and Arnd Rösch. Superconvergence properties of optimal control prob-
lems. SIAM Journal on Control and Optimization, 43(3):970–985, 2004.

F. Ospald. Implementation of a geometric multigrid method for FEniCS and its appli-
cation. Diploma thesis, Technische Universität Chemnitz, Germany, 2012.

19



Konstantin Pieper. Finite element discretization and efficient numerical solution of ellip-
tic and parabolic sparse control problems. PhD thesis, Technische Universität München,
Germany, 2015.

A. Rösch. Error estimates for linear-quadratic control problems with control constraints.
Optimization Methods and Software, 21(1):121–134, 2006.

René Schneider and Gerd Wachsmuth. Achieving optimal convergence order for fem in
control constrained optimal control problems. Proceedings in Applied Mathematics and
Mechanics (PAMM), 15(1):731–734, 2015.

René Schneider and Gerd Wachsmuth. A-posteriori error estimation for control-
constrained, linear-quadratic optimal control problems. SIAM Journal on Numerical
Analysis, 54(2):1169–1192, 2016. doi: 10.1137/15M1020460.

D. Sevilla and D. Wachsmuth. Polynomial integration on regions defined by a triangle
and a conic. In ISSAC 2010—Proceedings of the 2010 International Symposium on
Symbolic and Algebraic Computation, pages 163–170. ACM, New York, 2010. doi:
10.1145/1837934.1837968.

Gerd Wachsmuth and Daniel Wachsmuth. Convergence and regularization results for
optimal control problems with sparsity functional. ESAIM. Control, Optimisation and
Calculus of Variations, 17(3):858–886, 2011. ISSN 1292-8119. doi: 10.1051/cocv/
2010027.

20


