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PARAMETRIC RAVIART-THOMAS ELEMENTS FOR MIXED
METHODS ON DOMAINS WITH CURVED SURFACES

FLEURIANNE BERTRAND∗ AND GERHARD STARKE∗

Abstract. The finite element approximation on curved boundaries using parametric Raviart-
Thomas spaces is studied in the context of the mixed formulation of Poisson’s equation as a saddle-
point system. It is shown that optimal order convergence is retained on domains with piecewise
Ck+2 boundary for the parametric Raviart-Thomas space of degree k ≥ 0 under the usual regularity
assumptions. This extends the analysis in [3] from the first-order system least squares formulation
to mixed approaches of saddle-point type. In addition, a detailed proof of the crucial estimate in
three dimensions is given which handles some complications not present in the two-dimensional case.
Moreover, the appropriate treatment of inhomogeneous flux boundary conditions is discussed. The
results are confirmed by computational results which also demonstrate that optimal order convergence
is not achieved, in general, if standard Raviart-Thomas elements are used instead of the parametric
spaces.
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finite elements
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1. Introduction. This paper continues our study of parametric Raviart-Thomas
finite elements for domains with curved boundaries which were studied in [3] in the
context of first-order system least squares methods. Parametric Raviart-Thomas ele-
ments are defined on the basis of the continuous piecewise polynomial mapping known
from the isoparametric finite element framework. In the context of mixed variational
formulations posed in H(div,Ω), they allow a more accurate resolution of flux bound-
ary conditions posed on curved boundary surfaces or curves. The purpose of this paper
is to provide a convergence analysis of parametric Raviart-Thomas finite elements on
curved domains in the context of the mixed formulation of Poisson’s equation. In
particular, it will be shown that under sufficient regularity assumptions, the optimal
order of convergence is retained on curved domains if a parametric version of Raviart-
Thomas elements based on a polynomial mapping is used near the boundary. In
the lowest-order case, this result establishes optimal order convergence if a piecewise
C2 boundary is interpolated by a polyhedral surface or polygonal curve and the flux
boundary conditions are appropriately prescribed on that boundary approximation.
Of course, the basis for parametric edge- and face-based elements are the well-known
transformation rules with respect to coordinate changes (see, e.g. [17, Sect. 3.9], [6,
Sect. 2.1.3]). We will also implicitly make use of connections to exact sequences of
parametric edge- and face-based finite element spaces (see e.g. [16]). The framework
for the implementation of parametric Raviart-Thomas elements provided in [18] is also
related to our work although their focus is on the case of a piecewise affine mapping.

The convergence analysis relies crucially on an estimate for the discrepancy of
the normal flux associated with the parametric Raviart-Thomas spaces on the curved
boundary if it is set to zero on its piecewise polynomial approximation. This esti-
mate was already proved in [3] for the two-dimensional situation (and even earlier in
[4] for the lowest-order case) and is extended here to three dimensions where some
additional complications occur. Additionally, the treatment of inhomogeneous flux
boundary conditions will be addressed based on a suitable interpolation operator for
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2 F. BERTRAND AND G. STARKE

the parametric Raviart-Thomas space. This issue should also be of much interest
in the context of reconstruction of fluxes or stresses in Raviart-Thomas spaces in
the presence of curved boundaries. To this end, the mapping techniques suggested
here can be combined with the popular reconstruction or equilibration approaches (cf.
[8, 13, 14, 10] and references therein). Due to the lack of optimal order approxima-
tion if standard Raviart-Thomas elements (of degree higher than 0) are used instead
of the parametric ones, the efficiency of a posteriori error estimators based on such
reconstructions is also expected to be deficient.

Clearly, the applicability of parametric Raviart-Thomas spaces is not restricted
to Poisson’s equation but can be adopted in a straightforward way, e.g., to stress-
based mixed methods in elasticity (cf. [6, Chp. 9]). Another important application
field is the area of interface problems where curved surfaces arise in a natural way. A
promising approach which works in the isoparametric framework for the primal for-
mulation and performs local modifications in the vicinity of the interface was recently
studied in [11] and may be worthwhile to pursue in the dual framework with para-
metric Raviart-Thomas elements. The definition of the parametric Raviart-Thomas
elements carries over to other simplicial H(div)-conforming spaces like those studied
in [6, Sect. 2.3]. For example, for the Brezzi-Douglas-Marini elements BDMk, k ≥ 1,
being a subset of the Raviart-Thomas space RTk, a similar estimate for the normal
flux on the curved boundary also holds true. On the other hand, Theorem 5 does not
hold if RTk is replaced by BDMk since the required approximation order for div u is
not valid in the polygonal case. We restrict our attention to the RT elements since
our focus lies on the optimal-order convergence in H(div) which can be achieved with
fewer degrees of freedom than for BDM elements. Parametric H(curl)-conforming
finite elements may also be examined using the covariant mapping instead of the con-
travariant one (cf. [6, Sect. 2.1.3], [16], [17, Sect. 3.9]) but the details will be different
from our approach, particularly for higher order elements. We also restrict ourselves
to simplicial elements since the quadrilateral case is more complicated even without
a higher-order parametric mapping (cf. [2]).

In the next section, the parametric Raviart-Thomas finite element spaces needed
to approximate fluxes in H(div,Ω) with sufficient accuracy will be introduced and its
properties, in particular, in connection to mixed methods of saddle-point type will
be studied. Section 3 contains an estimate for the normal flux associated with para-
metric Raviart-Thomas elements on interpolated boundaries which will be crucial for
our convergence results. All of this will be described for the three-dimensional case
in contrast to the presentation in [3] where a two-dimensional setting was assumed
for simplicity. An interpolation operator for parametric finite element spaces will be
introduced in Section 4 before all of this is put together to prove optimal order conver-
gence of the saddle-point type mixed method using the parametric Raviart-Thomas
spaces in Section 5. The practical issue of handling inhomogeneous flux boundary
conditions is treated in Section 6. Finally, computational results illustrating our the-
oretical findings and demonstrating the necessity of using the parametric variant of
the elements are presented.

2. Parametric Raviart-Thomas finite element spaces. Throughout this
paper, Ω ⊂ IRd (d = 2, 3) will be a bounded domain with Lipschitz continuous and
piecewise Ck+2 boundary Γ = ∂Ω for k ≥ 0. Optimal order approximation with
respect to H(div,Ω) is achieved by Raviart-Thomas finite elements on domains with
polygonal or polyhedral boundary (see, e.g. [6, Sect. 2.5]). On curved domains,
however, this is only true for the lowest-order elements and already fails to hold in
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the next-to-lowest-order case. This is similar to the situation with continuous finite
elements for H1(Ω) approximations where the isoparametric setting is needed if the
polynomial degree exceeds one. The same piecewise polynomial approximation of the
boundary will be used to define suitable parametric versions of the Raviart-Thomas
finite element spaces which retain the optimal order of approximation in the higher-
order case.

To this end, Ω is approximated by a domain Ωh which is the image of a polygonal
or polyhedral reference domain Ω̂h under a piecewise polynomial mapping of degree
k+ 1. In the lowest-order case, Ωh = Ω̂h and the standard finite element approach is
recovered. Associated with Ωh is a triangulation Th consisting of elements which are
the image of straight triangles or tetrahedra under a polynomial mapping of degree
k + 1. The boundaries of Ωh and Ω̂h will be denoted by Γh and Γ̂h, respectively.
Related to the triangulation Th of Ωh are triangulations T̃h and T̂h of Ω and Ω̂h,
respectively, which have all the vertices in common. For the finite element space Vh,
defined with respect to Th, the polynomial function vh ∈ Vh may be extended to
T̃ ∈ T̃h by using its polynomial representation on the corresponding element T ∈ Th.
However, Vh * HΓ(div,Ω) (which denotes the subspace of H(div,Ω) with vanishing
trace of n · v on Γ), in general, since n · vh does not vanish on Γ for vh ∈ Vh.
Instead, the condition nh ·vh = 0 on Γh is imposed on the space Vh, where nh is the
outward normal with respect to Γh. It is necessary to keep track of the effect that
this inexactness of the boundary condition has on the overall accuracy of our finite
element approximation.

For the sake of simplicity, the assumption is made that the triangulation T̃h of Ω
is such that each boundary side (edge or face, respectively, in two or three dimensions)

of elements in T̃h is completely contained in one of the Ck+2 patches of Γ. Moreover,
we restrict ourselves to the situation that each element T̃ ∈ T̃h has at most one curved
side. This assumption is also reasonable from a practical point of view and can always
be achieved by an additional refinement step.

The piecewise polynomial mapping of degree k + 1 from Ω̂h to Ωh is denoted by
Fh and coincides with the one used in the isoparametric finite element framework (see
e.g. [7, Sect. 10.4]). For k > 0, the piecewise polynomial mapping Fh differs from
the identity map only on triangles adjacent to curved boundary edges. Under our
assumptions on the smoothness of Γ, the distance between Γh = Fh(Γ̂h) and Γ = ∂Ω
is of the order hk+2 (see [7, Sect. 4.7]). Moreover, the Jacobian JFh

of the mapping
Fh satisfies ‖JFh

‖Wk+1
∞ (Ω̂h) ≤ C with a constant C which is independent of h. For

sufficiently small h, the mapping Fh is invertible and ‖J−1
Fh
‖Wk+1

∞ (Ωh) ≤ C holds for

the associated Jacobian (cf. [7, Sect. 4.7], [15]).
The standard Raviart-Thomas space of degree k ≥ 0 with respect to the triangu-

lation T̂h of a polyhedrally bounded domain Ω̂h is given by

(1) V̂k
h = {vh ∈ H(div, Ω̂h) : vh|T̂ =



pk(x̂)
qk(x̂)
rk(x̂)


+



x̂1

x̂2

x̂3


 sk(x̂)}

with polynomials pk, qk, rk and sk of degree k. Based on this, the parametric Raviart-
Thomas space is defined as

(2) Vk
h = {vh : Ωh → IR3 : vh(x) =

1

det JFh
(x̂)

JFh
(x̂)v̂h(x̂) with v̂h ∈ V̂k

h} ,

with x = Fh(x̂) where V̂k
h denotes the standard Raviart-Thomas finite element space.
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It is worth mentioning that the transformation in (2) is in fact the contravariant Piola
mapping for the transformation of vector fields (see e.g. [18], [6, Sect. 2.1.3]). We
also introduce the subspaces

V̂k
h,0 = {vh ∈ V̂k

h : n̂h · v̂h = 0 on Γ̂h} ,
Vk
h,0 = {vh ∈ Vk

h : nh · vh = 0 on Γh} .
(3)

This is motivated by the fact that V̂k
h,0 ⊂ HΓ̂h

(div, Ω̂h) ensures Vk
h,0 ⊂ HΓh

(div,Ωh)
(see [6, Sect. 2.1.3]). More precisely, (2) leads to

(4) (div vh)(Fh(x̂)) =
1

det JFh
(x̂)

(d̂iv v̂h)(x̂) for all x̂ ∈ Ω̂h

(where d̂iv denotes differentiation with respect to x̂) and that n̂h · v̂h = 0 on Γ̂h is

equivalent to nh · vh = 0 on Γh. Of course, V0
h = V̂0

h holds in the lowest-order case.
As approximation space for the pressure, the standard space of piecewise, possibly
discontinuous, polynomials of degree k, combined with the parametric mapping,

(5) Skh = {q̂h ◦ F−1
h : Ωh → IR3 : q̂h|T polynomial of degree k} ,

is used which may be regarded as a subspace of L2(Ωh), L2(Ω̂h) or L2(Ω).
Concerning the implementation of parametric Raviart-Thomas elements, some

remarks seem to be appropriate at this point. The usual way for setting up the vari-
ational problem in the discrete spaces consists in the use of quadrature rules which
are exact for all polynomials of a certain degree on the individual elements. For stan-
dard isoparametric finite elements that degree of exactness is then inherited simply
by appropriately mapping the quadrature points. This is not possible, however, for
the parametric Raviart-Thomas elements since the function JFh

(x̂)v̂h(x̂)/det JFh
(x̂)

on the reference element is no longer polynomial. On the other hand, JFh
is close to

the identity (cf. [7, Sect. 10.4] and [15, Prop. 2]) and therefore the quadrature error
is usually marginal under practical circumstances (cf. also [9, Sect. 4.4, particularly
Remark 4.4.3]). The effect of numerical quadrature on the finite element approxima-
tion can then be controlled in the usual way by viewing this as a variational crime
(see [9, Theorem 4.4.1]).

3. An estimate for the normal flux on interpolated boundaries. Through-
out this section, the subspace Vk

h,0 of parametric Raviart-Thomas elements on Th with

boundary conditions nh ·vh = 0 on Γh is considered. As already discussed, Vk
h,0 is not

a subspace of HΓ(div,Ω), in general, for a curved boundary Γ = ∂Ω. In other words,
the use of parametric Raviart-Thomas elements on a domain with curved boundary
constitutes a variational crime, in general, in analogy to the standard isoparametric
case [7, Sect. 10.4]. For the purpose of controlling the effect that the inexactness of
the boundary representation has on the error associated with the finite element ap-
proximation, an estimate for the approximated normal flux n·vh on Γ for vh ∈ Vk

h,0 is
needed. We will use the following common shorthand notation: a(ξ) & b(ξ) stands for
the existence of a constant C > 0 which is independent of the parameters involved (in
our case, the local or global mesh-size hT or h, respectively) such that a(ξ) ≥ Cb(ξ)
holds for all admissible ξ. Moreover, a(ξ) h b(ξ) stands for both a(ξ) & b(ξ) and
b(ξ) & a(ξ) to be satisfied. Norm estimates of the form

(6) ‖vh‖20,T & hT ‖vh‖20,∂T , ‖div vh‖20,T & hT ‖div vh‖20,∂T
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which hold for all vh ∈ Vk
h will be used repeatedly. Similarly, the norm equivalences

(7) ‖vh‖20,Ωh
h ‖vh‖20,Ω , ‖div vh‖20,Ωh

h ‖div vh‖20,Ω

hold for all vh ∈ Vk
h if Ωh is sufficiently close to Ω such that it admits an invertible

mapping between Ωh and Ω. Such a mapping will be introduced and used in the proof
of Theorem 5.1 in Section 4 and is a standard tool in the context of isoparametric
finite elements (cf. [7, Sect. 10.4] and [15]).

The following estimate lies at the heart of our convergence analysis of the para-
metric Raviart-Thomas method.

Theorem 1. Assume that Γ = ∂Ω is a piecewise Ck+2 boundary, k ≥ 0, and that
the triangulation Th is such that no boundary side of elements in Th belongs to more
than one of the Ck+2 patches of Γ. Then, for any α > 1/2,

(8) |〈n · vh, q〉0,Γ| . hk+1‖vh‖div,Ω‖q‖α,Γ

holds for all vh ∈ Vk
h,0 and q ∈ Hα(Γ).

In the two-dimensional case, one can actually set α = 1/2 in Theorem 1 as we
already proved in [3, Thm. 3.1]. However, for our purpose in Section 5, the above
statement suffices. In fact, we could even set α = 3/2 under our regularity assumptions
in Section 5. Since the three-dimensional case contains some additional complications,
we will present a complete proof below.

Proof. Let us consider a fixed curved boundary face ΓT ⊂ Γ and the adjacent
tetrahedron T̃ ∈ T̃h. By γ0T and γ0T̂ we denote the corresponding boundary faces
of T ∈ Th and T̂ ∈ T̂h, respectively. For the fixed curved boundary face ΓT ⊂ Γ with
adjacent tetrahedron T̃ ∈ T̃h, we need in addition the curved triangle Γ̂T = F−1

h (ΓT )

and adjacent tetrahedron T̆ = F−1
h (T̃ ). The corresponding parametric face γ0T ⊂ Γh

is, by definition, mapped onto the straight face γ0T̂ = F−1
h (γ0T ) with its adjacent

a

T̂

γ0T̂

Γ̂T

Fig. 1. Notations for curved surface triangles
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triangle T̂ = F−1(T ). The coordinate system may be shifted and rotated in such a

way that the straight face γ0T̂ is located on the (x1, x2)-plane and the longest edge

of γ0T̂ on the interval [0, hT ] of the x1 axis (see Figure 1). With respect to these

coordinates, Γ̂T may then be parametrized as

(9) Γ̂T =

{(
ξ

η(ξ)

)
: ξ ∈ γ0T̂

}
.

When it is convenient, we will also denote by ξ̃ the point on the surface parametrized
with ξ, i.e. ξ̃ = (ξ, η(ξ))>. Following the standard construction associated with
isoparametric finite elements (cf. [15]), we have that η(ξ) does in fact vanish for all
points in the set

(10) N = {(h j
k

+ P̆1
i

k
, P̆2

i

k
) : 0 ≤ j ≤ k − i, 0 ≤ i ≤ k)} ,

where (P̆1, P̆2) denotes the vertex of γ0T̂ opposite to the longest edge (located on the

x1-axis). This implies for all ξ ∈ γ0T̂ that

(11) |∇η(ξ)| . hk+1
T and |η(ξ)| . hk+2

T

holds. Since, by construction, n̂ · v̂h = 0 on γ0T̂ , the functions in the Raviart-Thomas
space of degree k are of the form

(12) v̂h(x̂) =

(
αk(x̂)

0

)
+

(
βk(x̂)
γk(x̂)

)
· x̂ =:

(
ŵh(x̂)
x̂3γk(x̂)

)

with a scalar polynomial γk and two-dimensional polynomials αk and βk of degree k.

This implies, that on Γ̂T (with normal direction n̂),

(13) n̂ · v̂h =
1

(1 + |∇η(ξ)|2)
1/2

(
−∇η(ξ) · ŵh(ξ̃) + γk(ξ̃)η(ξ)

)

holds which, for q ∈ L2(Γ̂T ), leads to

(14) 〈n̂ · v̂h, q〉0,Γ̂T
=

∫

γ0T̂

(
−∇η(ξ) · ŵh(ξ̃) + γk(ξ̃)η(ξ)

)
q(ξ̃) dξ .

From (v̂h)3(ξ̃) = η(ξ)γk(ξ̃) we deduce that

(15) ∂l+1
3 (v̂h)3(ξ, 0) = (l + 1)∂l3γk(ξ, 0) , l = 0, 1, ..., k .

and therefore

η(ξ)γk(ξ̃) = η(ξ)

k∑

l=0

∂l3γk(ξ, 0)

l!
(η(ξ))

l

=

k∑

l=0

∂l+1
3 (v̂h)3(ξ, 0)

(l + 1)!
(η(ξ))

l+1
=

k+1∑

l=1

∂l3(v̂h)3(ξ, 0)

l!
(η(ξ))

l
.

(16)
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Using the Cauchy-Schwarz inequality and (11), it follows from (14) that

〈n̂ · v̂h, q〉0,Γ̂T
≤

[(∫

γ0T̂

(
−∇η(ξ) · ŵh(ξ̃)

)2

dξ

)1/2

+

(∫

γ0T̂

γk(ξ̃)2η(ξ)2 dξ

)1/2
]

(∫

γ0T̂

q(ξ̃)2 dξ

)1/2

.

[
hk+1
T

(∫

γ0T̂

|ŵh(ξ̃)|2 dξ

)1/2

+

(∫

γ0T̂

k+1∑

l=1

(∂l3(v̂h)3(ξ, 0))2h
2l(k+2)
T dξ

)1/2

 ‖q‖0,Γ̂T

.

[
hk+1
T ‖ŵh‖0,Γ̂T

+

k+1∑

l=1

h
l(k+2)
T ‖∂l3(v̂h)3‖0,γ0T̂

]
‖q‖0,Γ̂T

holds. Using (6) and inverse estimates (cf. [7, Lem. 4.5.3]) this turns into

〈n̂ · v̂h, q〉0,Γ̂T
.
[
h
k+1/2
T

(
‖(v̂h)1‖0,T̂ + ‖(v̂h)2‖0,T̂

)

+

k+1∑

l=1

h
l(k+2)−1/2
T ‖∂l3(v̂h)3‖0,T̂

]
‖q‖0,Γ̂T

. h
k+1/2
T ‖v̂h‖0,T̂ ‖q‖0,Γ̂T

,

(17)

which etablishes the desired bound with respect to L2(Γ̂T ).
Starting again from (14) and integrating by parts,

〈n̂ · v̂h, q〉0,Γ̂T
=

∫

γ0T̂

(
−∇η(ξ) · ŵh(ξ̃)

)
q(ξ̃) + γk(ξ̃)η(ξ)q(ξ̃) dξ

=

∫

γ0T̂

η(ξ) div(ŵh(ξ̃)q(ξ̃)) + γk(ξ̃)η(ξ)q(ξ̃) dξ

−
∫

∂(γ0T̂ )

η(ξ)q(ξ̃)
(
nγ0T̂ · ŵh(ξ̃)

)
dξ

=

∫

γ0T̂

η(ξ)
(
q(ξ̃)

(
div ŵh(ξ̃) + γk(ξ̃)

)
+ ŵh(ξ̃) · ∇q(ξ̃)

)
dξ

−
∫

∂(γ0T̂ )

η(ξ)q(ξ̃)
(
nγ0T̂ · ŵh(ξ̃)

)
dξ

is obtained, from which by using the Cauchy-Schwarz inequality and (11),

〈n̂ · v̂h, q〉0,Γ̂T
≤
(∫

γ0T̂

η(ξ)2
(

div ŵh(ξ̃) + γk(ξ̃)
)2

dξ

)1/2

‖q‖0,Γ̂T

+

(∫

γ0T̂

η(ξ)2|ŵh(ξ̃)|2 dξ

)1/2

|q|1,Γ̂T

+

∣∣∣∣∣

∫

∂(γ0T̂ )

η(ξ)q(ξ̃)
(
nγ0T̂ · ŵh(ξ̃)

)
dξ

∣∣∣∣∣ .

(18)
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For the last term in (18) assuming, for some δ > 0, q ∈ H1+δ(Γ̂T ) which implies

q(ξ̃) ∈ H1/2+δ(∂(γ0T̂ )) and noting that |nγ0T̂ | = 1, we get
∣∣∣∣∣

∫

∂(γ0T̂ )

η(ξ)q(ξ̃)
(
nγ0T̂ · ŵh(ξ̃)

)
dξ

∣∣∣∣∣

≤ ‖q(ξ̃)‖L∞(∂(γ0T̂ ))

(∫

∂(γ0T̂ )

η(ξ)2dξ

)1/2(∫

∂(γ0T̂ )

∣∣∣ŵh(ξ̃)
∣∣∣
2

dξ

)1/2

. ‖q(ξ̃)‖1/2+δ,∂(γ0T̂ )h
k+5/2
T ‖ŵh(ξ̃)‖0,∂(γ0T̂ )

. hk+2
T ‖q‖1+δ,Γ̂T

‖ŵh‖0,Γ̂T
,

where we have used (the one-dimensional version of) the Sobolev imbedding theorem
(cf. [1, Thm. 4.12]) and the trace theorem (cf. [12, Thm. 1.5.1.2]). This allows us to
deduce from (18) that

〈n̂ · v̂h, q〉0,Γ̂T
. hk+2

T

(∫

γ0T̂

(
div ŵh(ξ̃) + γk(ξ̃)

)2

dξ

)1/2

‖q‖0,Γ̂T

+ hk+2
T

(∫

γ0T̂

|ŵh(ξ̃)|2 dξ

)1/2

|q|1,Γ̂T

+ hk+2
T

(∫

∂(γ0T̂ )

|ŵh(ξ̃)|2 dξ

)1/2

‖q‖1+δ,Γ̂T

(19)

holds. For the first term in (19) we have

div ŵh(ξ̃) + γk(ξ̃) = div ŵh(ξ, 0) +

k∑

l=1

∂l3div ŵh(ξ, 0)

l!
(η(ξ))l

+

k∑

l=0

∂l+1
3 (v̂h)3(ξ, 0)

(l + 1)!
(η(ξ))

l

and thus,
∫

γ0T̂

(
div ŵh(ξ̃) + γk(ξ̃)

)2

dξ . ‖div ŵh‖20,γ0T̂

+

∫

γ0T̂

(
(∂3(v̂h)3(ξ, 0))2 +

k∑

l=1

h
2l(k+2)
T

(
(∂l3div ŵh(ξ, 0))2 + (∂l+1

3 (v̂h)3(ξ, 0))2
)

dξ

)

. ‖div v̂h‖20,γ0T̂
+

k∑

l=1

h
2l(k+2)
T

(
‖∂l3div ŵh‖20,γ0T̂

+ ‖∂l+1
3 (v̂h)3‖20,γ0T̂

)

. ‖div v̂h‖20,γ0T̂
+

k∑

l=1

h
2l(k+1)−2
T ‖v̂h‖20,γ0T̂

. ‖div v̂h‖20,γ0T̂
+ h2k

T ‖v̂h‖20,γ0T̂
. h−1

T ‖div v̂h‖20,T̂ + h2k−1
T ‖v̂h‖20,T̂ ,

where inverse estimates (cf. [7, Lem. 4.5.3]) and (6) were used. For the second term
in (19) we obtain

∫

γ0T̂

ŵh(ξ̃)2 dξ ≤ ‖v̂h‖20,Γ̂T
. h−1

T ‖v̂h‖
2
0,T̂

.
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Combining all this leads to

(20) 〈n̂ · v̂h, q〉0,Γ̂T
. h

k+3/2
T

(
‖div v̂h‖20,T̂ + ‖v̂h‖20,T̂

)1/2

‖q‖1+δ,Γ̂T
.

Using the fact that, with α = (1 + δ)/2, Hα(Γ̂T ) is an interpolation space of type 1/2

between L2(Γ̂T ) and H1+δ(Γ̂T ) (cf. [1, Thm. 7.23]),

(21) 〈n̂ · v̂h, q〉0,Γ̂T
. hk+1

T

(
‖div v̂h‖20,T̂ + ‖v̂h‖20,T̂

)1/2

‖q‖α,Γ̂T

holds as a consequence of (17) and (20) for any α > 1/2.
Using the fact that the definition of the parametric Raviart-Thomas elements in

(2) implies that, for ΓT = Fh(Γ̂T ),

〈n · vh, q〉0,ΓT
= 〈n̂ · v̂h, q̂〉0,Γ̂T

holds with a suitably scaled q̂ = ωT (q ◦ Fh) (cf. [6, Lem. 2.1.6]), together with the
mapping properties of Fh, leads to

(22) 〈n · vh, q〉0,ΓT
. hk+1

T

(
‖div vh‖20,T + ‖vh‖20,T

)1/2 ‖q‖α,ΓT
.

Summing over all boundary faces,

(23) 〈n · vh, q〉0,Γ . hk+1
(
‖div vh‖20,Ωh

+ ‖vh‖20,Ωh

)1/2 ‖q‖α,Γ
is obtained and, finally, using (7), we end up with the desired estimate (8).

4. An interpolation operator for the parametric Raviart-Thomas finite
element space. We will now construct an interpolation operator for parametric
Raviart-Thomas elements which generalizes the one introduced in [3] to the case
of inhomogeneous boundary conditions. Moreover, the interpolation bound below
constitutes an improvement over the one in [3, Theorem 4.1] since it is stated on
Ω instead of Ωh. This is required for the refined convergence analysis in the later
sections.

Theorem 2. For the parametric Raviart-Thomas space Vk
h ⊂ H(div,Ωh), there

is an interpolation operator Rh : H(div,Ω) ∩ Ls(Ω) → Vk
h (with some s > 0, see [6,

Sect. 2.5]) satisfying {Rhv : v ∈ HΓ(div,Ω)} ⊂ Vk
h,0 such that

‖v −Rhv‖0,Ω . hk+1‖v‖k+1,Ω

‖div (v −Rhv)‖0,Ω . hk+1‖div v‖k+1,Ω

(24)

holds for all v ∈ Hk+1(Ω)d with div v ∈ Hk+1(Ω).

Before we turn to the proof of Theorem 2, we state and prove an auxiliary result
that we will repeatedly make use of. To this end, under the assumption from Theorem
1, a mapping F : Ω̂h → Ω exists which inherits the smoothness and approximation
properties of ∂Ω, in particular,

(25) ‖Fh − F‖L∞(Ω̂h) . hk+2 , ‖JFh
− JF ‖L∞(Ω̂h) . hk+1 ,

where Fh : Ω̂h → Ωh is the piecewise polynomial mapping introduced in Section 2.
Furthermore,

(26) ‖JF ‖Wk+1
∞ (Ω̂h) . 1 , ‖J−1

F ‖Wk+1
∞ (Ω) . 1

holds (see [7, Sect. 4.7], [15]).
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Lemma 3. Under the assumptions from Theorem 1 on ∂Ω,

(27) ‖qh ◦ Fh − qh ◦ F‖0,Ω̂h
. hk+1‖qh ◦ Fh‖0,Ω̂h

holds for all qh ∈ Slh (where the constant depends on l ∈ IN).

Proof. The decomposition of Ω̂h by the triangulation T̂h leads to

(28) ‖qh ◦ Fh − qh ◦ F‖0,Ω̂h
=


∑

T̂∈T̂h

‖qh ◦ Fh − qh ◦ F‖20,T̂




1/2

.

For any fixed element T̂ ∈ T̂h, we have, for all x̂ ∈ T̂ , that

|qh(Fh(x̂)) −qh(F (x̂))| =
∣∣∣∣
∫ 1

0

d

dt
qh(F (x̂) + t(Fh(x̂)− F (x̂))) dt

∣∣∣∣

≤
∫ 1

0

|∇qh(F (x̂) + t(Fh(x̂)− F (x̂)))| dt |Fh(x̂)− F (x̂)|

≤ |∇qh(F (x̂))| |Fh(x̂)− F (x̂)|+
∫ 1

0

t
∣∣∇2qh(x̆(t))

∣∣ dt |Fh(x̂)− F (x̂)|2

holds with x̆(t) ∈ conv(Fh(T̂ )∪F (T̂ )) for all t ∈ [0, 1]. Squaring and integrating leads
to

‖qh ◦ Fh − qh ◦ F‖0,T̂ . ‖(∇qh) ◦ F‖0,T̂ ‖Fh − F‖L∞(T̂ )

+ ‖∇2qh‖L∞(conv(Fh(T̂ )∪F (T̂ )))‖Fh − F‖L∞(T̂ )‖Fh − F‖0,T̂
. hk+2‖∇̂(qh ◦ Fh)‖0,T̂ + h2k+4+d/2‖∇̂2(qh ◦ Fh)‖L∞(T̂ ) . hk+1‖qh ◦ Fh‖0,T̂ ,

where inverse inequalities (see [7, Theorem 4.5.11]) were used in the form

‖∇̂q̂h‖0,T̂ . h−1‖q̂h‖0,T̂ and ‖∇̂
2
q̂h‖L∞(T̂ ) . h−2− d

2 ‖q̂h‖0,T̂

for the piecewise polynomial function q̂h = qh ◦ Fh. Summing over all triangles, we
get from (28) the desired estimate (27).

Proof of Theorem 2. The construction of Rh will be derived from the standard
interpolation operator R̂h : H(div, Ω̂h) ∩ Ls(Ω̂h) → V̂k

h on a polyhedral domain Ω̂h
(cf. [6, Sect. 2.5]). For v ∈ H(div,Ω), we define v̂ : Ω̂h → IRd by

(29) v̂(x̂) = (detJF (x̂)) JF (x̂)−1v(F (x̂))

and note that v̂ ∈ H(div, Ω̂h). With respect to boundary conditions, we also have

v̂ ∈ HΓ̂h
(div, Ω̂h) if v ∈ HΓ(div,Ω) (see [6, Sect. 2.1.3] for details). The interpolation

operator Rh may now be defined for x = Fh(x̂) ∈ Ωh by

(30) (Rhv)(Fh(x̂)) =
1

det JFh
(x̂)

JFh
(x̂)(R̂hv̂)(x̂)

and extended to Ω by the piecewise polynomial representation. Since v̂ ∈ HΓh
(div,Ωh)

implies R̂hv̂ ∈ V̂k
h,0, the same argument as above can be used to show that Rhv ∈

Vk
h,0 for v ∈ HΓ(div,Ω).
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For the first estimate in (24) we may use the mapping Φh = Fh ◦ F−1 from Ω to
Ωh (see [7, Sect. 10.4], [15]) and bound the two terms in

(31) ‖v −Rhv‖0,Ω ≤ ‖v − (Rhv) ◦ Φh‖0,Ω + ‖(Rhv) ◦ Φh −Rhv‖0,Ω

separately. For the first term in (31), the definitions (29) and (30) lead to

‖v − (Rhv) ◦ Φh‖0,Ω =

∥∥∥∥
(

1

det JF
JF v̂ − 1

det JFh

JFh
(R̂hv̂)

)
(det JF )1/2

∥∥∥∥
0,Ω̂h

=

∥∥∥∥
1

(det JF )1/2
JF

(
v̂ − 1

det JΦh

JΦh
(R̂hv̂)

)∥∥∥∥
0,Ω̂h

. ‖(det JΦh
)J−1

Φh
v̂ − R̂hv̂‖0,Ω̂h

.

Since ‖JΦh
− I‖L∞(Ω) . hk+1 (as a consequence of (25)), this implies

(32) ‖v − (Rhv) ◦ Φh‖0,Ω . hk+1‖v̂‖0,Ω̂h
+ ‖v̂ − R̂hv̂‖0,Ω . hk+1‖v̂‖k+1,Ω̂h

,

where the interpolation estimates for the standard Raviart-Thomas elements from [6,
Chp. 2.5] are used. For the second term in (31), Lemma 3 applied (component-wise)

to qh = (R̂hv̂) ◦ F−1
h together with (30) gives

‖(Rhv) ◦ Φh −Rhv‖0,Ω =

∥∥∥∥
1

det JFh

JFh

(
(R̂hv̂) ◦ F−1 − (R̂hv̂) ◦ F−1

h

)∥∥∥∥
0,Ω

.‖(R̂hv̂) ◦ F−1 − (R̂hv̂) ◦ F−1
h ‖0,Ω

=‖qh ◦ Fh ◦ F−1 − qh‖0,Ω . ‖qh ◦ Fh − qh ◦ F‖0,Ω̂h

.hk+1‖qh ◦ Fh‖0,Ω̂h
= hk+1‖R̂hv̂‖0,Ω̂h

. hk+1‖v̂‖1,Ω̂h
,

(33)

where the interpolation estimate for the standard Raviart-Thomas elements on Ω̂h
is used once more. The proof of the first inequality in (24) is completed by the
observation that

‖v̂‖k+1,Ω̂h
= ‖(det JF ) J−1

F (v ◦ F )‖k+1,Ω̂h
. ‖v‖k+1,Ω

holds due to the transformation rules and the properties of JF in (26).
For the second inequality in (24), we start from

‖div v − div (Rhv)‖0,Ω
≤ ‖div v − (div (Rhv)) ◦ Φh‖0,Ω + ‖(div (Rhv)) ◦ Φh − div (Rhv)‖0,Ω .

(34)

We may bound the first term in (34) using the relations

d̂iv v̂(x̂) = (det JF (x̂)) (div v)(F (x̂))

d̂iv (R̂hv̂)(x̂) = (det JFh
(x̂)) div (Rhv)(Fh(x̂))

which follow directly from (29) and (30), respectively (cf. [6, Sect. 2.1.3]), to obtain

‖div v−(div (Rhv)) ◦ Φh‖0,Ω . ‖(div v) ◦ F − (div (Rhv)) ◦ Fh‖0,Ω̂h

≤
∥∥∥∥
(

1

det JF
− 1

det JFh

)
d̂iv v̂

∥∥∥∥
0,Ω̂h

+

∥∥∥∥
1

det JFh

(
d̂iv v̂ − d̂iv (R̂hv̂)

)∥∥∥∥
0,Ω̂h

. hk+1‖d̂iv v̂‖0,Ω̂h
+ hk+1|d̂iv v̂|k+1,Ω̂h

. hk+1‖d̂iv v̂‖k+1,Ω̂h
.
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The second term in (34) can be treated in a similar way as in (33) using Lemma 3

with qh = d̂iv (R̂hv̂) ◦ F−1
h and (4) which gives

‖(div (Rhv))◦Φh − div (Rhv)‖0,Ω ≤ ‖div (Rhv)‖0,Ω‖Φh − id‖L∞(Ω)

=

∥∥∥∥
1

det JFh

(
d̂iv(R̂hv̂) ◦ F−1 − d̂iv(R̂hv̂) ◦ F−1

h

)∥∥∥∥
0,Ω

. ‖d̂iv(R̂hv̂) ◦ F−1 − d̂iv(R̂hv̂) ◦ F−1
h ‖0,Ω

= ‖qh ◦ Fh ◦ F−1 − qh‖0,Ω . ‖qh ◦ Fh − qh ◦ F‖0,Ω̂h

. hk+1‖qh ◦ Fh‖0,Ω̂h
. hk+1‖d̂iv(R̂hv̂)‖0,Ω̂h

. hk+1‖d̂iv v̂‖0,Ω̂h
,

(35)

where the well-known fact was used that d̂iv(R̂hv̂) = P̂h(d̂iv v̂) with P̂h being the

L2(Ω̂)-orthogonal projection onto Skh (cf. [6, Prop. 2.5.2]). The proof of the second
inequality in (24) is completed using the transformation rules again to obtain

‖d̂iv v̂‖k+1,Ω̂h
= ‖(det JF ) (div v) ◦ F‖k+1,Ω . ‖div v‖k+1,Ω .

2

Remark. The second inequality in (24) implies that the interpolation operator Rh
associated with the parametric Raviart-Thomas finite elements maps the divergence-
free subspace H0(div,Ω) into Vk,0

h := {vh ∈ Vk
h : div vh = 0}. Contrary to the

situation for the standard elements it is not possible to replace the norm on the right-
hand side in the second line of (24) by the semi-norm. Even if divv is indeed contained
in the space Skh defined in (5), then div (Rhv) /∈ Skh, in general.

For completeness, we also provide estimates for the projections associated with
the scalar finite element space Skh which will be needed in the later sections.

Theorem 4. Let the projection Ph : L2(Ω)→ Skh be defined by

(36) ((Php) ◦ Fh, qh ◦ Fh)0,Ω̂h
= ((det JΦh

)−1(p ◦ F ), qh ◦ Fh)0,Ω̂h

for all qh ∈ Skh. Then, if p ∈ Hk+1(Ω) is satisfied, the estimate

(37) ‖p− Php‖0,Ω . hk+1‖p‖k+1,Ω

holds true.

Proof. Noting that (36) implies

(Php) ◦ Fh = P̂h((det JΦh
)−1 (p ◦ F )) ,

we obtain

‖p− Php‖0,Ω . ‖(p− Php) ◦ F‖0,Ω̂h
≤
∥∥(1− (det JΦh

)−1
)

(p ◦ F )
∥∥

0,Ω̂h

+
∥∥∥(det JΦh

)−1 (p ◦ F )− P̂h
(
(det JΦh

)−1 (p ◦ F )
)∥∥∥

0,Ω̂h

+ ‖(Php) ◦ Fh − (Php) ◦ F‖0,Ω̂h

(38)

and may handle the three terms separately.
For the first term in (38), we immediately get

∥∥(1− (det JΦh
)−1
)

(p ◦ F )
∥∥

0,Ω̂h
. hk+1‖(p ◦ F )‖0,Ω̂h

. hk+1‖p‖0,Ω
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using the properties (25) and (26) of JF and JFh
. For the second term in (38),

the approximation property of the standard L2(Ω̂)-projection P̂h together with the
transformation rules and properties (26) leads to

‖(det JΦh
)−1(p ◦ F )− P̂h

(
(det JΦh

)−1(p ◦ F )
)
‖0,Ω̂h

.hk+1‖(det JΦh
)−1 (p ◦ F )‖k+1,Ω̂h

. hk+1‖p ◦ F‖k+1,Ω̂h
. hk+1‖p‖k+1,Ω .

Finally, for the third term in (38) we may use (27) which implies

‖(Php) ◦ Fh − (Php) ◦ F‖0,Ω̂h
. hk+1‖Php‖0,Ω̂h

. hk+1‖(Php) ◦ Fh‖0,Ω̂h

. hk+1‖P̂h ((det JF )(p ◦ F )) ‖0,Ω̂h
. hk+1‖(det JF )(p ◦ F )‖0,Ω̂h

. hk+1‖p ◦ F‖0,Ω̂h
. hk+1‖p‖0,Ω ,

where (26) was used repeatedly. Combining all of these estimates finishes the proof
of (37).

5. Saddle point mixed formulation with parametric Raviart-Thomas
elements. We consider the use of parametric Raviart-Thomas elements in a mixed
formulation of saddle point type for the Poisson equation: Find (u, p) ∈ HΓ(div,Ω)×
L̇2(Ω) such that

(u,v)0,Ω − (p, div v)0,Ω = 0

−(div u, q)0,Ω = −(f, q)0,Ω

(39)

is satisfied for all (v, q) ∈ HΓ(div,Ω) × L̇2(Ω), where the latter subspace is defined
as L̇2(Ω) = {q ∈ L2(Ω) : (q, 1)0,Ω = 0}. For the moment, it is sufficient to assume

that the right-hand side satisfies f ∈ L̇2(Ω). The discretized version of (39) reads as
follows: Find (uh, ph) ∈ Vk

h,0 × Ṡkh such that

(uh,vh)0,Ωh
− (ph,div vh)0,Ωh

= 0

−(div uh, qh)0,Ωh
= −(fh, qh)0,Ωh

(40)

holds for all (vh, qh) ∈ Vk
h,0 × Ṡkh with Ṡkh = Skh ∩ L̇2(Ωh). For the right-hand side

fh ∈ L̇2(Ωh), it is natural to use fh = (f ◦ Φ−1
h )/(det JΦh

) or a sufficiently good
approximation thereof. The difficulty associated with the investigation of the approx-
imation error of (40) with respect to the exact solution defined by (39) comes from
the non-conformity due to the different domains Ω and Ωh on which the variational
problems are posed. Using our estimate (8) for the normal flux in Theorem 1 allows
us to derive the following result.

Theorem 5. Assume that, for some k ≥ 0, the right-hand side in (39) satis-
fies f ∈ Hk+1(Ω) and that u ∈ Hk+1(Ω)d holds for the exact solution. Then, the
(parametric) mixed finite element approximation (uh, ph) ∈ Vk

h,0× Ṡkh defined by (40)
satisfies

(41) ‖u− uh‖div,Ω + ‖p− ph‖0,Ω . hk+1 (‖u‖k+1,Ω + ‖f‖k+1,Ω) .

Proof. We start with the observation that the solution (u, p) ∈ HΓ(div,Ω)×L̇2(Ω)
of (39) satisfies

(u,vh)0,Ω − (p,div vh)0,Ω = (u +∇p,vh)0,Ω − 〈p,n · vh〉Γ = −〈p,n · vh〉Γ
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for all vh ∈ Vk
h,0. With the interpolation operators Rh : HΓ(div,Ω) → Vk

h,0 and

Ph : L̇2(Ω)→ Ṡkh defined in section 4, this implies that we have

(42) (Rhu,vh)0,Ω − (Php, div vh)0,Ω = σ(vh) for all vh ∈ Vk
h,0

where the functional σ is given by

σ(vh) = (Rhu− u,vh)0,Ω − (Php− p, div vh)0,Ω − 〈p,n · vh〉Γ .

We may now switch from Ω to Ωh by re-writing (42) as

(43) (Rhu,vh)0,Ωh
− (Php, div vh)0,Ωh

= σ(vh) + ρ(vh) for all vh ∈ Vk
h,0

with

ρ(vh) = (Rhu,vh)0,Ω\Ωh
−(Rhu,vh)0,Ωh\Ω−(Php,divvh)0,Ω\Ωh

+(Php,divvh)0,Ωh\Ω.

Moreover, the definition of Rh in (30) implies

(44) (det JFh
) div (Rhu) ◦ Fh = d̂iv (R̂hû) = P̂h(d̂iv û) = P̂h((det JF )f ◦ F ) ,

where P̂h denotes again the orthogonal projection onto Skh with respect to L2(Ω̂h).
Combining this with (43) and (40) leads to the system

(Rhu− uh,vh)0,Ωh
− (Php− ph,div vh)0,Ωh

= σ(vh) + ρ(vh) ,

−(div (Rhu− uh), qh)0,Ωh
= 0

(45)

for all vh ∈ Vk
h,0 and qh ∈ Skh. The second equation in (45) is derived from (40) and

(44) leading to

(div uh − div (Rhu), qh)0,Ωh
= (fh −

1

det JFh

P̂h((det JF )f ◦ F ) ◦ F−1
h , qh)0,Ωh

=

(
1

det JFh

(
(det JF ) f ◦ F − P̂h((det JF ) f ◦ F )

)
◦ F−1

h , qh

)

0,Ωh

=
(

(det JF ) f ◦ F − P̂h((det JF ) f ◦ F ), q̂h

)
0,Ω̂h

= 0 .

(46)

The terms on the right-hand side of the first equation in (45) may be bounded in the
following way:

|σ(vh)| ≤ (‖u−Rhu‖0,Ω + ‖p− Ph‖0,Ω) ‖vh‖div,Ω + 〈p,n · vh〉
. hk+1

(
‖u‖k+1,Ω + ‖p‖k+1,Ω + ‖p‖3/2,Γ

)
‖vh‖div,Ω ,

where we have used (24), (37) and (8), and

|ρ(vh)| . |Ω\Ωh|+ |Ωh\Ω|
Ω

(‖Rhu‖0,Ω‖vh‖0,Ω + ‖Php‖0,Ω‖div vh‖0,Ω)

. hk+1 (‖u‖1,Ω + ‖p‖0,Ω) ‖vh‖div,Ω ,

where we have used (24). Using [6, Theorem 4.2.3] the above estimates imply

(47) ‖Rhu− uh‖div,Ω + ‖Php− ph‖0,Ω . hk+1
(
‖u‖k+1,Ω + ‖p‖k+1,Ω + ‖p‖3/2,Γ

)
.
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The proof is completed using

‖u− uh‖div,Ω + ‖p− ph‖0,Ω ≤ ‖u−Rhu‖div,Ω + ‖p− Php‖0,Ω
+ ‖Rhu− uh‖div,Ω + ‖Php− ph‖0,Ω

combined with (24) and (37) again and noting that, due to u = −∇p, p inherits the
necessary regularity from u.

Remark. From a theoretical point of view, using the space

S̆kh = { 1

det JFh

q̂h ◦ F−1
h : q̂h|T polynomial of degree k}

instead of Skh would be more satisfactory with respect to the conservation properties
(cf. [16]). Since both spaces possess almost identical approximation properties for
sufficiently small h, we work with the space Skh which is less costly to implement.

6. The treatment of inhomogeneous flux boundary conditions. So far,
we have restricted ourselves to homogeneous boundary conditions n · u = 0 on Γ
in this paper. The more general case n · u = g with g ∈ H−1/2(Γ) satisfying the
compatibility condition

〈g, 1〉Γ = (f, 1)0,Ω

may be treated in the following way. Construct uN ∈ H(div,Ω) such that n ·uN = g
and divuN = f is satisfied and set uNh = RhuN . Then (39) is replaced by the problem

of determining (u, p) = (uN + u◦, p) with u◦ ∈ HΓ(div,Ω) and p ∈ L̇2(Ω) such that

(u◦,v)0,Ω − (p, div v)0,Ω = −(uN ,v)0,Ω

−(div u, q)0,Ω = −(f − div uN , q)0,Ω

(48)

holds for all (v, q) ∈ HΓ(div,Ω)×L̇2(Ω). Similarly, the corresponding discrete problem
(39) consists in finding (uh, ph) = (uNh + u◦h, ph) with u◦h ∈ Vk

h,0 and ph ∈ Ṡkh such
that

(u◦h,vh)0,Ωh
− (ph,div vh)0,Ωh

= −(uNh ,vh)0,Ωh

−(div uh, qh)0,Ωh
= −(fh − div uNh , qh)0,Ωh

(49)

is satisfied for all (vh, qh) ∈ Vk
h,0 × Ṡkh.

An estimate for the approximation error which takes into account inhomogeneous
boundary data can be obtained in the following way. Starting from

‖u− uh‖div,Ω ≤ ‖uN − uNh ‖div,Ω + ‖u◦ − u◦h‖div,Ω

= ‖uN −RhuN‖div,Ω + ‖u◦ − u◦h‖div,Ω ,
(50)

we estimate the second part in a way similar to the proof of Theorem 5. Going through
the steps of the proof, one observes that (45) is replaced by

(Rhu◦ − u◦h,vh)0,Ωh
− (Php− ph,div vh)0,Ωh

= σ◦(vh) + ρ(vh) ,

−(div (Rhu− uh), qh)0,Ωh
= 0

(51)

to hold for all vh ∈ Vk
h,0 and qh ∈ Skh, where

σ◦(vh) = σ(vh)− (uN − uNh ,vh)0,Ω .
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The second equation in (51) follows from (46) with fh replaced by fh− div uNh and f
replaced by f − div uN . That indeed

(div uNh −
1

det JFh

P̂h((det JF )(div uN ) ◦ F ) ◦ F−1
h , qh)0,Ωh

=

(
1

det JFh

(
(det JFh

) div (RhuN )− P̂h((det JF ) (div uN ) ◦ F ) ◦ F−1
h

)
, qh

)

0,Ωh

=
(

d̂iv(R̂hûN )− P̂h(d̂iv ûN ), q̂h

)
0,Ω̂h

= 0

is fulfilled for all qh ∈ Skh (with ûN := (det JF )J−1
F (uN ◦F ) and q̂h := qh ◦Fh) follows

from the transformation rules (29) and (30) combined with the relation between the

interpolation operator R̂h and the L2(Ω̂h)-projection Ph.
All this means that an extra term needs to be added on the right-hand side of

(41) which bounds ‖uN −RhuN‖div,Ω. Theorem 2 implies

‖uN −RhuN‖div,Ω = ‖div uN − div(RhuN )‖0,Ω + ‖uN −RhuN‖0,Ω
. hk+1

(
‖f‖k+1,Ω + ‖uN‖k+1,Ω

)
,

(52)

which leads us to the following approximation result in the inhomogeneous case.

Theorem 6. Assume that, for some k ≥ 0, the right-hand side in (48) sat-
isfies f ∈ Hk+1(Ω), g ∈ Hk+1/2(Γ) is satisfied for the boundary data, and that
u ∈ Hk+1(Ω)d holds for the exact solution. Then, the (parametric) finite element
approximation (uh, ph) = (RhuN + u◦h, ph) with (u◦h, ph) ∈ Vk

h,0 × Ṡkh defined by (49)
satisfies

‖u− uh‖div,Ω + ‖p− ph‖0,Ω
. hk+1

(
‖u‖k+1,Ω + ‖f‖k+1,Ω + ‖g‖k+1/2,Γ

)
.

(53)

For the implementation of the method in the presence of inhomogeneous boundary
conditions, a function gh = uNh

∣∣
Γh

in the trace space of Vk
h has to be constructed in

such a way that it is consistent with uNh = RhuN . To this end, we perform the steps
given by (29) and (30) in the definition of the interpolation operator to the boundary
values g = n ·uN on Γ and n ·uNh on Γh. We will use the transformation rules for the
normal vectors

n ◦ F =
J−TF n̂

‖J−TF n̂‖
and n ◦ Fh =

J−TFh
n̂

‖J−TFh
n̂‖

on Γ and Γh, respectively (cf. [6, Sect. 2.1]), where n̂ denotes the (piecewise constant)

outward normal on Γ̂h. Based on the standard L2(Γ̂h)-orthogonal projection P̂ Γ̂
h onto

the piecewise polynomials of degree k on Γ̂h (the trace space of V̂k
h), we obtain

(54) gh =
1

(det JFh
)|J−TFh

n̂|
ĝh with ĝh = P̂ Γ̂

h ((det JF ) |J−TF n̂| g) .

Since the implementation of parametric elements is carried out on the polyhedral do-
main Ω̂h, ĝh is what actually needs to be computed. This involves the knowledge of
the mapping F at least to the extent that is needed for sufficiently accurate approx-

imation of the integrals involved in the computation of P̂ Γ̂
h . This information needs

to be extracted from the parametrization of the boundary Γ.
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Before we present our computational results in order to confirm the theory of
the previous sections, we need to discuss how to measure the approximation error
appropriately in the absence of an explicit analytical expression for the exact solution
of (39). There are several a posteriori error estimators available for this saddle point
formulation, see [19, Sect. 4.8] for an overview. However, these estimators were all
studied on polygonal meshes and it is beyond our scope here to investigate their
behavior for the parametric case on curved boundaries. Instead we take the following
more costly approach in order to assess the accuracy of our parametric finite element
approximation. It goes without saying that we do not want to advertise this approach
as a reasonable a posteriori error estimator to be used in practical computations.

Fig. 2. Reduction of least squares functional Gh(uh) for f(x1, x2) = sin x1

For measuring the approximation error, we use the functional

(55) Gh(uh) := inf
qh∈Ṡk

h

‖uh +∇qh‖20,Ωh
+ ‖div uh − fh‖20,Ωh

,

which involves the solution of the linear variational problem of finding ph ∈ Ṡkh such
that

(56) (∇ph,∇qh)0,Ωh
= (uh,∇qh)0,Ωh

for all qh ∈ Ṡkh
holds. That this functional does in fact constitute an estimator for the approximation
error of uh is the statement of Proposition 7 in the appendix. Proposition 7 also
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asserts that the optimal convergence order ‖u − uh‖div,Ω h hk+1 is reached if and
only if Gh(uh) h h2(k+1). A numerical comparison of the convergence behavior for the
functional and for the true error will also be presented for a simple radially symmetric
problem with prescribed analytical solution.

We will now study the convergence numerically based on this quantity in order to
confirm the theory presented in the previous sections. To this end, we consider (39)
on the unit disk Ω = {(x1, x2) : x2

1 + x2
2 < 1} with boundary conditions n · u = 0 on

∂Ω as in [3]. The right-hand side is chosen to be f(x1, x2) = sin(x1) which, due to its
symmetry, satisfies ∫

Ω

f dx = 0

and is therefore compatible with the boundary conditions. Alternatively, we may
consider the solution ũ with inhomogeneous boundary conditions n · ũ = x1 cos(x1)
on ∂Ω and right-hand side f̃(x1, x2) ≡ 0. It is easy to see that the solutions to these
two examples are related by ũ = uN + u with uN = ∇(sin(x1)).

Figure 2 shows the convergence behavior for mixed finite element approximations
of different polynomial degree in terms of the functional Gh(uh) vs. the number of
degrees of freedom N . The upper curve (with solid circles) illustrates a behavior of
Gh(uh) h N−1 for the lowest-order case. The middle curve (with diamonds) shows the
results for the combination of standard RT1 spaces with discontinuous piecewise linear
pressure on a polygonal approximation of Ω. Obviously, the order of convergence is
suboptimal in this case. Finally, the lower curve shows the optimal convergence
behavior of Gh(uh) h N−2 if parametric RT1 elements V1

h,0 are used instead in
accordance with Theorem 5.

Appendix. Equivalence of Functional and Error Norm.
We state and prove the proposition concerning the equivalence of the functional

(55) and the error norm.

Proposition 7. Assume that, for some k ≥ 0, the right-hand side in (39) satis-
fies f ∈ Hk+1(Ω) and that u ∈ Hk+1(Ω) holds for the exact solution. Then, for the
(parametric) mixed finite element approximation uh ∈ Vk

h,0 defined by (40),

(57) ‖u− uh‖2div,Ω . Gh(uh) + h2k+2‖f‖2k+1,Ω

and

(58) Gh(uh) . ‖u− uh‖2div,Ω + h2k+2
(
‖u‖2k+1,Ω + ‖f‖2k+1,Ω

)

holds.

Proof. Due to the finite dimensionality of Vk
h,0 × Ṡkh, we have that

(59) Gh(uh) h inf
qh∈Ṡk

h

‖uh +∇qh‖20,Ω + ‖div uh − fh‖20,Ω =: G(uh)

holds and we may therefore prove (57) and (58) for the functional G instead of Gh.
Inserting the exact solution and using the triangle inequality gives

G(uh) ≤ ‖u− uh‖20,Ω + inf
ph∈Ṡk

h

‖∇p−∇ph‖20,Ω + ‖f − fh‖20,Ω

. ‖u− uh‖2div,Ω + h2k+2
(
‖u‖k+1,Ω + ‖f‖2k+1,Ω

)(60)
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which proves the upper bound (58). The coercivity of the least-squares functional (cf.
[5, Sect. 5.5]) implies that, for any ph ∈ Ṡkh,

‖u− uh‖2div,Ω + ‖p− ph‖21,Ω . ‖u− uh +∇(p− ph)‖20,Ω + ‖div (u− uh)‖20,Ω
= ‖uh +∇ph‖20,Ω + ‖f − div uh‖20,Ω

(61)

holds. Inserting for ph ∈ Ṡkh the solution of

(∇ph,∇qh)0,Ω = (uh,∇qh)0,Ω for all qh ∈ Ṡkh ,

(61) becomes

‖u− uh‖2div,Ω ≤ ‖u− uh‖2div,Ω + ‖p− ph‖21,Ω
. G(uh) + ‖f − fh‖0,Ω . G(uh) + h2k+2‖f‖2k+1,Ω

(62)

which also finishes the proof of the lower bound (57).

Fig. 3. Error vs. functional for radially symmetric solution

In order to illustrate the closeness of the functional and the actual error norm, we
include a final example with a prescribed solution which we already considered in [4].
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Again on the unit disk with homogeneous Neumann boundary conditions n · u = 0
on ∂Ω, we choose f(x1, x2) = 8− 16(x2

1 + x2
2), leading to the exact solution

(63) u(x1, x2) =

(
4x1(1− x2

1 − x2
2)

4x2(1− x2
1 − x2

2)

)
, p(x1, x2) = (1− x2

1 − x2
2)2 − 1

3
.

Figure 3 shows that the functional Gh(uh) and the H(div) norm of the error u− uh
are very close, both for the standard and for the parametric finite elements. In the
standard case, the two lines are almost on top of each other. For such a radially
symmetric problem, the deviation from the optimal order of convergence is, however,
also rather hard to observe, as we have noticed before in [4] for first-order system
least squares. This is not so surprising if one keeps in mind that not only n ·u but the
entire u is set to zero on the boundary, therefore leaving much less room for effects
of the inexactness of the boundary conditions.
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