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Abstract

From the literature it is known that the LSSEM for the stationary
Stokes equations performs poorly with respect to mass conservation
but compensates this lack by a superior conservation of momentum.
Furthermore, it is known that the LSSCM leads to superior conserva-
tion of mass and momentum for the stationary Stokes equations. In
the present paper we consider mass and momentum conservation of
the LSSCM for time-dependent Stokes and Navier-Stokes equations.
We observe that the LSSCM leads to improved conservation of mass
(and momentum) for these problems. Furthermore, the LSSCM leads
to the well-known time-dependent profiles for the velocity and the
pressure profiles. To obtain these results we use only a few elements,
each with high polynomial degree, avoid normal equations for solv-
ing the overdetermined linear systems of equations and introduce the
Clenshaw-Curtis quadrature rule for imposing the average pressure to
be zero. Furthermore, we combined the transformation of Gordon and
Hall (transfinite mapping) with the least-squares spectral collocation
scheme to discretize the internal flow problems.

Keywords: incompressible Navier-Stokes equations, internal flow, spectral
collocation, least-squares, transfinite mapping, Clenshaw-Curtis quadrature,
QR, LSSCM

1 Introduction

Spectral methods (see, e.g., Canuto et al. [2], Gottlieb and Orszag [9, 26]
or Deville et.al. [5]) employ global polynomials for the numerical solution of
differential equations.
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Hence they give very accurate approximations for smooth solutions with
relatively few degrees of freedom. For sufficiently smooth data exponential
convergence can be achieved.
If one deals with problems with non-smooth solutions the usual (global)
spectral approach yields very poor approximation results. To avoid these
difficulties the original domain can be decomposed into several sub domains
and least-squares techniques can be applied, see e.g. [10, 12–15], [22–24],
[28–30] and [31–35]. Least-squares techniques for such problems offer theo-
retical and numerical advantages over the classical Galerkin type methods
which must fulfill the well-posedness (or stability) criterion, the so called
LBB condition. The advantage of least-squares techniques is that they lead
to positive definite algebraic systems which circumvent the LBB stability
condition, see, e.g. [1, 17–19, 21]. One very special least-squares tech-
nique is the least-squares spectral element method, see, e.g. [6, 16, 32–34].
These least-squares spectral element methods (see, e.g. [20]) for the Stokes
problem were first introduced by Gerritsma and Proot in [31, 32]. Spectral
least-squares for the Navier-Stokes equations were first presented by Pontaza
and Reddy in [28–30], followed by Gerritsma and Proot in [34]. Heinrichs
investigated least-squares spectral collocation schemes in [12–15] that lead
to symmetric and positive definite algebraic systems which circumvent the
LBB stability condition. Furthermore, Heinrichs and Kattelans presented
in [15, 23] least-squares spectral collocation schemes where they improved
the conditions numbers of the algebraic systems, considered different types
of decompositions of the domain and different interface conditions between
the elements for the Stokes and Navier-Stokes equations. In [24] they have
shown that the Least-Squares Spectral Collocation Method (LSSCM) leads
to improved conservation of mass and momentum for an internal flow prob-
lem for the stationary Stokes equations.

Here, we consider internal flow problems to investigate mass and momentum
conservation of the LSSCM for the time-dependent Stokes equations and for
the Navier-Stokes equations. A typical example of such a flow problem is a
small channel of width h in which a cylinder with diameter d moves along
the centerline of the channel, see e.g. [4, 24, 35].

In [4] it has been shown for the stationary Stokes equations that the Least-
Squares Finite Element Method (LSFEM) leads to an unsatisfactory velocity
profile along the smallest cross-section between the channel wall and the
cylinder. Using this calculated velocity profile to calculate the mass flow
through the cross-section it has been observed that the calculated mass flow
is significantly lower than the mass inflow into the channel.
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The important questions is:

Why are least-squares methods more susceptible to loss of mass con-
servation than, e.g., Galerkin-type methods?

The main reason why least-squares methods are more susceptible to loss of
mass conservation than Galerkin methods is that they are based on mini-
mization of a functional which includes the continuity equation. In contrast
to Galerkin-type methods the mass conservation, i.e. ∇ · u = 0 is a con-
straint. Because of this, the continuity equations play a different role in the
least-squares formulation from the role it plays in Galerkin. Thus, it is clear
why least-squares methods are more susceptible to loss of mass conservation
than ”direct methods”.

One way overcoming the problem of the LSFEM is using the so called re-
stricted LSFEM, see [4], which is based on the least-squares functional with
the extension of mass conservation ∇ · u = 0.
Proot and Gerritsma have shown in [33, 35] that the Least-Squares Spectral
Element Method (LSSEM) leads to good results for such flow problems, since
the LSSEM compensate the loss of mass conservation by a superior conser-
vation of the momentum equations for the stationary Stokes equations.
Kattelans and Heinrichs have shown for the stationary Stokes equations in
[24] that the LSSCM leads to improved conservation of mass and momentum
for internal flow problems. The main reasons for their improved results were
that the domain was decomposed into only a few elements, the transfinite
mapping of Gordon and Hall was used for discretization, the Clenshaw-Curtis
quadrature rule was used for the additional pressure integral condition and
the resulting overdetermined algebraic systems were solved by QR decompo-
sition.

In this paper we continue the study in [24] for the time-dependent Stokes
equations and for the Navier-Stokes equations and we will show that the
LSSCM leads to improved mass and momentum conservation for this equa-
tions, too.
Furthermore, our approach has the following advantages:

• equal order interpolation polynomials can be employed

• it is possible to vary the polynomial order from element to element

• improved stability properties for small perturbation parameters in sin-
gular perturbation problems, [10] and Stokes or Navier-Stokes equa-
tions [12–15, 23]
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• improved conservation of mass and momentum for the stationary Stokes
equations, [24]

• good performance in combination with domain decomposition tech-
niques

• direct and efficient iterative solvers for positive definite systems can be
used

• implementation is straightforward.

The paper is organized in the following way. In Section 2, the internal flow
problem is described. Section 3 introduces the first-order formulation of
the Stokes equations and the Navier-Stokes equations. The LSSCM and
the discretization are presented in Section 4. The numerical results of our
simulations are discussed in Section 5, where we present our results for the
time-dependent Stokes equations in Section 5.1 and for the Navier-Stokes
equations in Section 5.2. The Conclusion is presented in Section 6.

2 The problem set-up

In order to investigate the mass and momentum conservation of the LSSCM
we use the same test case as in [4, 24, 33, 35]. The flow problem is defined by
a cylinder of diameter d which moves at a speed of one along the centerline
of a channel of width h = 1.5, see Fig. 1.
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Figure 1: The problem set-up on Ω0.5
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The domain of the channel is defined as a rectangle and the center of the
cylinder is located at the origin, i.e. we solve the partial differential equations
on the domain

Ωr := Ωc\Kr,

where Ωc := [−1.5, 3]× [−0.75, 0.75] and Kr := {(x, y) ∈ R
2 : x2 + y2 < r2}.

The boundary conditions of the velocity are given by

u|∂Ω :=





[1, 0]T on ∂Ωc

[0, 0]T on ∂Kr

.

3 The Stokes and Navier-Stokes equations

In order to apply least-squares the Stokes and Navier-Stokes problems are
transformed into an equivalent first-order system of partial differential equa-
tions. This is accomplished by introducing the vorticity ω = ∇ × u as an
auxiliary variable. By using the identity

∇×∇× u = −∆u+∇(∇ · u)

and the incompressibility constraint ∇ · u = 0 we obtain

∂u

∂t
+ ν∇× ω +∇p = f in Ωr , t ∈ [0, tend] (1)

∇ · u = 0 in Ωr , t ∈ [0, tend] (2)

ω −∇× u = 0 in Ωr , t ∈ [0, tend] (3)

for the Stokes equations and for the Navier-Stokes equations we obtain

∂u

∂t
+ u · ∇u+ ν∇× ω +∇p = f in Ωr , t ∈ [0, tend] (4)

∇ · u = 0 in Ωr , t ∈ [0, tend] (5)

ω −∇× u = 0 in Ωr , t ∈ [0, tend] (6)

where uT = [u1, u2] denotes the velocity vector, p the pressure, fT = [f1, f2]
the forcing term and ν the kinematic viscosity. Here it is assumed that the
density equals unity. Since the pressure is through (1)-(3) or (4)-(6) only
determined up to a constant for the Stokes or Navier-Stokes equations we
have to introduce an additional condition for the pressure. One procedure is
to impose the pressure at an arbitrary point of the given domain. Another
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way of dealing with the pressure constant is imposing the average pressure
to be zero; i.e., ∫

Ωr

p dx = 0. (7)

3.1 The Stokes equations

For the Stokes equations we use for time integration a second-order BDF
scheme (see, e.g., [15]): If ∆t denotes the step size in t and the index n + 1
indicates that the functions are evaluated at the time step tn+1 = (n+1)∆t,
n = 0, 1, 2, . . ., the approximation of (∂u

∂t
)n+1 can be written as

3

2
un+1 − 2un + 1

2
un−1

∆t
. (8)

Now the complete system at time step tn+1 can explicitly be written as:




3

2∆t
0 ν

∂

∂x2

∂

∂x1

0
3

2∆t
−ν ∂

∂x1

∂

∂x2

∂

∂x2
− ∂

∂x1
1 0

∂

∂x1

∂

∂x2
0 0







un+1
1

un+1
2

ωn+1

pn+1




=




gn+1
1

gn+1
2

0

0




in Ωr, (9)

where

gn+1 = fn+1 +
2

∆t
un − 1

2∆t
un−1.

3.2 The Navier-Stokes equations

For the Navier-Stokes equations we use an implicit and explicit scheme.

3.2.1 Implicit scheme

As proposed in [15, 34], we apply a θ-integration scheme in time combined
with the Picard linearization to the momentum equations of the unsteady
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Navier-Stokes equations. The subscript ”0” corresponds to the results ob-
tained at a previous integration time step. Now the momentum equations
read as follows:

u− u0

∆t
+ θ(u0 · ∇u+∇p+ ν∇× ω − f) (10)

= (θ − 1)(u0 · ∇u0 +∇p0 + ν∇× ω0 − f0)

By taking θ = 1, the time integration is carried out by the backward Euler
method, which is only first-order accurate in time. The second-order time
integration of Crank-Nicolson can be obtained by setting θ = 1/2. Since the
Crank-Nicolson scheme has no damping, one often takes θ = 1/2 + O(∆t).
The temporal accuracy remains second-order, and adding the small factor ∆t
effectively damps the small waves in spectral element simulations. Hence, in
order to obtain time-accurate solutions, one should use θ = 1/2 + O(∆t).
The θ-scheme is unconditionally stable for 1/2 ≤ θ ≤ 1. Now the complete
system for each time step can explicitly be written as:

Az = r (11)

where

A =




1

∆t
+ θu1,0

∂

∂x1
+ θu2,0

∂

∂x2
0 θν

∂

∂x2
θ
∂

∂x1

0
1

∆t
+ θu1,0

∂

∂x1
+ θu2,0

∂

∂x2
−θν ∂

∂x1
θ
∂

∂x2

∂

∂x2
− ∂

∂x1
1 0

∂

∂x1

∂

∂x2
0 0




,

z = (u1, u2, ω, p)
T and

r =




f1 +
u1,0
∆t

+ (θ − 1)

[
u1,0

∂u1,0
∂x1

+ u2,0
∂u1,0
∂x2

+ ν
∂ω0

∂x2
+
∂p0
∂x1

]

f2 +
u2,0
∆t

+ (θ − 1)

[
u1,0

∂u2,0
∂x1

+ u2,0
∂u2,0
∂x2

+ ν
∂ω0

∂x1
+
∂p0
∂x2

]

0
0



.
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3.2.2 Explicit scheme

For time integration we also employ a semi-implicit scheme where the second
order backward differentiation scheme (8) for the viscous term is combined
with a second order Adams-Bashforth scheme for the convective term. Hence
the momentum equations (4) at time step tn+1 = (n + 1)∆t, n = 0, 1, 2, . . .
can be written as:

3

2∆t
un+1 + ν∇× ωn+1 +∇pn+1 = gn+1 (12)

where

gn+1 = fn+1 − 2Cn +Cn−1 +
2

∆t
un − 1

2∆t
un−1 (13)

with the convective term C = (u · ∇)u.
Now the complete system at time step tn+1 can explicitly be written as:




3

2∆t
0 ν

∂

∂x2

∂

∂x1

0
3

2∆t
−ν ∂

∂x1

∂

∂x2

∂

∂x2
− ∂

∂x1
1 0

∂

∂x1

∂

∂x2
0 0







un+1
1

un+1
2

ωn+1

pn+1




=




gn+1
1

gn+1
2

0

0




in Ωr. (14)

The big advantage of the explicit scheme is that the matrix has to be set
up once. During time integration we only have to compute matrix-vector
multiplications which are very fast. By numerical experiments we found out
that for a well balanced system it is recommended to scale the momentum
equations by ∆t, as in [12, 15, 23]. Then for the least-squares scheme the
incompressibility condition is well balanced against the momentum equa-
tions. In particular, we observed that without scaling the scheme becomes
divergent for increasing Reynolds numbers since the diagonal entries 3/2∆t
become large for decreasing step size, see, e.g. Figure 6 in [15].

4 The Least-Squares Spectral CollocationMethod

For the spectral approximation we introduce the polynomial subspace

PN = {Polynomials of degree ≤ N in both variables x1, x2}.
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Now all unknown functions are approximated by polynomials of the same
degree N , i.e., u1, u2, ω, p are approximated by interpolating polynomials
uN1 , u

N
2 , ω

N , pN ∈ PN . Furthermore, we have to introduce the standard
Chebyshev Gauss-Lobatto (CGL) collocation nodes which are explicitly given
by

(ξi, ηj) =

(
− cos

(
iπ

N

)
,− cos

(
jπ

N

))
, i, j = 0, . . . , N. (15)

In the following we write the spectral derivatives. First one has to introduce
the transformation matrices from physical space to coefficient space. Since
we employ a Chebyshev expansion we obtain the following matrix:

T = (ti,j) =

(
cos

(
j
(N − i)π

N

))
, i, j = 0, . . . , N.

Further, we need the differentiation matrix in the Chebyshev coefficient space
which is explicitly given by D̂ = (d̂i,j) ∈ R

N+1,N+1 with

d̂i,j =





2j

ci
, j = i+ 1, i+ 3, . . . , N

0 , else

and

ci =

{
2 , i = 0
1 , else.

Now we are able to write explicitly the spectral derivative matrix D for the
first derivative which is given by

D = TD̂T−1 ∈ R
N+1,N+1. (16)

The spectral operator can be efficiently evaluated by Fast Fourier Trans-
formations (FFTs) in O(N logN) arithmetic operations. We further intro-
duce the identity matrix I ∈ R

N+1,N+1. By tensor product representation
A⊗B = (Abi,j)i,j we are now able to write the spectral derivatives:

∂

∂x
∼= D1 := D ⊗ I ,

∂

∂y
∼= D2 := I ⊗D. (17)

Next we have to realize the discrete formulation of equation (7). This is
performed by the Clenshaw-Curtis quadrature rule (see, e.g. [27]):

∫

Ωs

p dx ∼=
N∑

i=0

N∑

j=0

ωiωjp(ξi, ηj)
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where Ωs := [−1, 1]2 denotes the standard domain, (ξi, ηj) the Chebyshev
Gauss-Lobatto nodes on Ωs and

ωi :=





1

N2 − 1
, i ∈ {0, N}

4

N

N

2∑

j=0

1

c̄j

cos
(
2πij

N

)

1− 4j2
, 1 ≤ i ≤ N − 1

with

c̄j :=

{
2 , j ∈ {0, N/2}
1 , 1 ≤ j ≤ N/2− 1

the integration weights.
We use the Clenshaw-Curtis quadrature rule since this is the appropriate
quadrature rule for the Chebyshev Gauss-Lobatto nodes.
One could also use Gauss Legendre or Gauss Lobatto-Legendre nodes. In
the numerical results there is no big difference, see, e.g. [37]. The advantage
of the Chebyshev nodes is the fact that they are explicitly given and fast
Fourier transforms (FFTs) are available.

Furthermore, we have to decompose the domain Ωr into quadrilaterals (some
with curved boundaries). Since we consider a smooth problem and for spec-
tral least-squares methods it is better to use only a few elements for such
problems, each with high polynomial degree (see, e.g. [24]), we here use only
12 elements, i.e.

Ωr =

12⋃

i=1

Ω̂i,

where Ω̂i, i = 1, . . . , 12 are defined as in Figure 2.
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Figure 2: Decomposition of Ω0.5 into 12 elements

For the other domains Ωr we use the similar decomposition.
In order to apply the least-squares spectral collocation scheme, we have to
define a transformed problem on the square. Instead of introducing polar
coordinates we prefer the transfinite mapping of Gordon and Hall, see, e.g.
[2, 7, 8, 11]. The advantage of the transfinite mapping of Gordon and Hall
is that it is a very simple transformation where no singularities (as by using
polar coordinates) occur, see, e.g. [11].
To construct the mapping Ψi of the square Ωs = [−1, 1]2 with boundaries

Γν into one of the quadrilaterals Ω̂i with (curved) boundaries Γ̂iν we use the
mappings

πiν : Γν −→ Γ̂iν , i = 1, . . . , 12 , ν = 1, . . . , 4.

As an example, in the following we write the functions π2
ν , ν = 1, . . . , 4, for
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element Ω̂2:

π2
1(ξ) =

(
1

2
[(−0.5 + 0.75)ξ − 0.75− 0.5]

0

)
,

π2
2(η) =

( −0.75
1

2
[(0 + 0.75)η − 0.75 + 0]

)
,

π2
3(ξ) =




1

2

[(
− 1

2
√
2
+ 0.75

)
ξ − 1

2
√
2
− 0.75

]

1

2

[(
− 1

2
√
2
+ 0.75

)
ξ − 1

2
√
2
− 0.75

]



,

π2
4(η) =




−

√

0.52 −
{
1

2

[(
0 +

1

2
√
2

)
η − 1

2
√
2
+ 0

]}2

1

2

[(
0 +

1

2
√
2

)
η − 1

2
√
2
+ 0

]



,

where (ξ, η) ∈ Ωs are the standard CGL nodes.

Following Gordon and Hall, the mapping Ψ2 : Ωs −→ Ω̂2 can be written
explicitly in terms of the π2

ν as:

Ψ2(ξ, η) =
1− η

2
π2
3(ξ) +

1 + η

2
π2
1(ξ)

+
1− ξ

2

[
π2
2(η)−

1 + η

2
π2
2(1)−

1− η

2
π2
2(−1)

]
(18)

+
1 + ξ

2

[
π2
4(η)−

1 + η

2
π2
4(1)−

1− η

2
π2
4(−1)

]
.

The whole discretization of Ω0.5 is shown in Figure 3.
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Figure 3: Discretization of Ω0.5, where polynomial degree N = 10 is used on
each element

Since we are interested in the solution of an first-order partial differential
equation we have to transform the first-order partial derivatives from the
coordinates (ξ, η) ∈ Ωs into the coordinates (x, y) ∈ Ω̂i, i = 1, . . . , 12. The

coordinates of Ω̂i are given as functions x = x(ξ, η) and y = y(ξ, η). Hence,
the transformation reads as follows:

(
ux
uy

)
=

1

xξyη − xηyξ

(
yη −yξ

−xη xξ

)(
uξ
uη

)
.

At the interfaces between the elements we enforce pointwise C0 interface
conditions of all functions, i.e. continuity of the velocity, continuity of the
vorticity and continuity of the pressure. One could also require (as Heinrichs
and Kattelans in [14, 15, 23]) continuity of both the functions and normal
derivatives of u1, u2 , continuity for p and no explicit interface condition
for ω. In the numerical results there are no nameable differences concerning
these two different types of interface conditions, see [23]. The reason, we here
use C0 interface conditions is, the resulting linear systems of equations have
lower condition numbers and the dimension of the matrices are smaller.

The corresponding discrete system of differential equations together with the
discrete boundary, the discrete interface conditions and the discrete version of

13



(7) are written into a matrix A and compiled into an overdetermined system
Az = r where the matrix A is given by

A =




A1

. . .

A12

MI

B
Mp




. (19)

Here Ai (dense matrix), i = 1, . . . , 12 denotes the discrete version of the

matrix in (9) and (14), respectively, on the corresponding element Ω̂i. The
matrix MI represents the discrete interface conditions, B the given discrete
boundary conditions for the velocity components u1 and u2 and Mp the ad-
ditional discrete pressure condition in (7). In [15] we have shown, that these
types of linear systems of equations are really overdetermined and it is better
to use QR decomposition for solving these systems instead of forming the
normal equations. The reason is, the normal equations square the condition
numbers of the algebraic systems and because of this the round-off errors
have a stronger influence. Hence, all overdetermined linear systems of equa-
tions in this paper are solved by QR decomposition. Another approach can
be found in [16].

5 Numerical simulations

For the numerical simulations we first define a smooth model problem to
verify the spectral accuracy of the proposed scheme. The velocity and the
pressure for the model problem are defined by

u1(x, y, t) := cos(γt) sin
(πx

2

)
cos
(πy

2

)
(20)

u2(x, y, t) := − cos(γt) cos
(πx

2

)
sin
(πy

2

)
(21)

p(x, y, t) :=
1

4
cos2(γt)(sin(πx) + sin(πy)) + 10(x+ y) cos(γt), (22)

where (x, y, t) ∈ Ωr × [0,∞). By choosing γ = 0 or γ 6= 0 we can change
between a steady or unsteady problem.

5.1 Unsteady Stokes equations

First, we consider the unsteady Stokes equations, where we consider the
smooth model problem followed by the simulations of the internal flow prob-
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lem. All simulations of the unsteady Stokes equations are performed on Ω0.5.

5.1.1 Smooth model problem

Now, we consider the unsteady Stokes equations on the channel Ω0.5. Since
we consider the unsteady Stokes equations we set γ = 5 in (20) – (22).
Verifying the stability of the proposed scheme, we first consider the smooth
model problem with small time step size and a long time interval. In Figures
4 and 5 we show the approximation errors of the velocity component u2 and
of the pressure for this long time integration. For velocity component u1 we
obtain similar results and so we do not show them here.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
x 10

−7

t

||u
2−

u 2N
|| H

1

Figure 4: The unsteady model problem for the Stokes equations on Ω0.5: Tem-
poral evolution of ||u2 − uN2 ||H1 for N = 16, ∆t = 1

1000
and ν = 1
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Figure 5: The unsteady model problem for the Stokes equations on Ω0.5: Tem-
poral evolution of ||p− pN ||L2 for N = 16, ∆t = 1

1000
and ν = 1

From Figures 4 and 5 we observe no enlargement of the oscillating errors in
time, expressing stability of the numerical solution.
In the Tables 1 – 3 we show the approximation errors for the unsteady Stokes
equations and we see the good performance of the here presented scheme for
time-dependent problems. We set

Eu1 := max{||u1 − uN1 ||H1 : t ∈ [0, 1]},
Eu2 := max{||u2 − uN2 ||H1 : t ∈ [0, 1]},
Ep := max{||p− pN ||L2 : t ∈ [0, 1]},

since Figures 4 and 5 show that the maximum errors are obtained in [0, 1].

∆t Eu1 ratio Eu2 ratio Ep ratio
1

10
1.040 · 10−2 — 6.955 · 10−3 — 1.880 · 10−1 —

1

20
2.642 · 10−3 3.936 1.768 · 10−3 3.934 4.767 · 10−2 3.944

1

40
6.630 · 10−4 3.985 4.436 · 10−4 3.986 1.195 · 10−2 3.989

1

80
1.659 · 10−4 3.996 1.110 · 10−4 3.996 2.992 · 10−3 3.994

1

160
4.148 · 10−5 4.000 2.775 · 10−5 4.000 7.482 · 10−4 3.999

1

320
1.037 · 10−5 4.000 6.938 · 10−6 4.000 1.871 · 10−4 3.999

Table 1: The unsteady model problem for the Stokes equations on Ω0.5: Eu1,
Eu2 and Ep for N = 18, ν = 1 and different ∆t
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∆t Eu1 ratio Eu2 ratio Ep ratio
1

10
3.197 · 10−1 — 1.829 · 10−1 — 1.726 · 10−1 —

1

20
8.543 · 10−2 3.742 4.875 · 10−2 3.752 4.378 · 10−2 3.942

1

40
2.164 · 10−2 3.948 1.239 · 10−2 3.935 1.097 · 10−2 3.991

1

80
5.429 · 10−3 3.986 3.108 · 10−3 3.986 2.750 · 10−3 3.989

1

160
1.359 · 10−3 3.995 7.780 · 10−4 3.995 6.877 · 10−4 3.999

Table 2: The unsteady model problem for the Stokes equations on Ω0.5: Eu1,
Eu2 and Ep for N = 18, ν = 1

100
and different ∆t

∆t Eu1 ratio Eu2 ratio Ep ratio
1

10
6.105 · 10−1 — 3.444 · 10−1 — 1.719 · 10−1 —

1

20
1.625 · 10−1 3.757 9.127 · 10−2 3.773 4.363 · 10−2 3.940

1

40
4.130 · 10−2 3.935 2.306 · 10−2 3.958 1.087 · 10−2 4.014

Table 3: The unsteady model problem for the Stokes equations on Ω0.5: Eu1,
Eu2 and Ep for N = 18, ν = 1

400
and different ∆t

Tables 1 – 3 present the good performance of the scheme. Furthermore, we
observe that the ratios converges to 4. Since we use a second order scheme
in time, the ratio of, e.g. Eu1 with time step size ∆t and Eu1 with time step
size ∆t/2 must approximate 2λ = 4, where λ = 2 denotes the order of the
time integration scheme.

5.1.2 Channel flow

Now, we consider the time-dependent Stokes equations to simulate the inter-
nal flow problem. Neither Chang and Nelson in [4] nor Gerritsma and Proot
in [33, 35] nor Heinrichs and Kattelans in [24] studied the time-dependent
Stokes flow. We declare the internal flow as an stationary problem and as-
sume that the steady state is reached if

ε :=
max |φn+1 − φn|
∆t ·max |φn+1| ≤ 10−8, (23)

where φ := (u1, u2)
T , is fulfilled. Here, | · | is the vector with the absolute

value of its components.
To simulate the internal flow problem for the time-dependent Stokes equa-
tions we set here N = 18 and ∆t = 1

10
. Furthermore, we consider the

unsteady Stokes equations for different viscosities to show the performance
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of the scheme for different test-cases. It is clear that the different viscosities
are not physically motivated but numerically.
In Figure 6 we show the temporal evolution of ε for different ν.
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Figure 6: Unsteady Stokes flow past the cylinder on Ω0.5: Temporal evolution
of ε for ν = 1 (upper left), ν = 1

100
(upper right), ν = 1

400
(lower left) and

ν = 1

1000
(lower right)

We see the well-known performance of the scheme that (23) is fulfilled later
for decreasing viscosity, i.e the increasing number of iterations for decreasing
viscosity. Furthermore, we observe the strictly monotonic decreasing of ε
during time integration. This again represents the stability of the proposed
numerical method.
Next, we study the loss of mass in the cross-section γ2, as in [24], which is
given by

M :=
1

2

∫

γ1

u1 ds−
∫

γ2

u1 ds, (24)

where

γ1 := {(−1.5, y) : −0.75 ≤ y ≤ 0.75} (25)

γ2 := {(0, y) : 0.5 ≤ y ≤ 0.75} (26)
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The line integrals in (24) are approximated by the Clenshaw-Curtis quadra-
ture rule, again. To avoid the influence of the quadrature rule to the ap-
proximations of M in (24) and thus the conclusions drawn from the date,
we use refined grids for the approximation of the integrals. Our simulations
have shown that the numerical integration on refined grids has no effect on
the conclusions, since the error between the first two computed values is less
than 10−10.
The percentaged loss of mass is denoted by M%. The temporal evolution of
|M| and of M% are shown in Figure 7.
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Figure 7: Unsteady Stokes flow past the cylinder on Ω0.5: Temporal evolution
of |M| (left) and M% (right) for ν = 1 (first row), ν = 1

100
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ν = 1

400
(third row) and ν = 1
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(fourth row)
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We observe that the LSSCM leads to improved conservation of mass in the
cross-section for all here considered viscosities. The oscillating of the values
at the beginning of time integration is clear, since we use a second-order BDF
scheme and set uT = [0, 0] for t = 0 and for t = ∆t. Because of this, the
LSSCM first has to overcome the problem with the wrong initial values for
the time integration scheme. When this is compensated our computations
show the same value during time integration. Furthermore, we observe that
mass is conserved better for decreasing viscosity. To understand this perfor-
mance of the proposed scheme, we first look at Figure 8. There we discuss
this phenomenon in detail. In Figure 8 we show the conservation of mass and
momentum in the whole domain Ω0.5 during time integration. For conserva-
tion of momentum we consider the left hand side of the partial differential
equation in (1), i.e. we consider

L(Un+1) :=
3

2
un+1 − 2un + 1

2
un−1

∆t
+ ν∇× ωn+1 +∇pn+1,

where Un+1 = (un+1
1 , un+1

2 , ωn+1, pn+1).
Here, we use in each time step the computed solution (on CGL nodes) and
evaluate it on CG nodes to obtain the real conservation properties. Since
we collocate on CGL nodes, we verify the conservation of mass and momen-
tum on Chebyshev Gauss (CG) nodes. Using CGL nodes to verify mass
and momentum conservation is not the right way, since then one only stud-
ies the least-squares errors of the scheme and not the ”really” conservation
properties. The CG nodes on the standard domain Ωs are explicitly given by

(ξCGi , ηCGj ) =

(
− cos

(
(2i+ 1)π

2N + 2

)
,− cos

(
(2j + 1)π

2N + 2

))
, i, j = 0, . . . , N.(27)

The corresponding transformation matrix between physical and coefficient
space is given by

TCG = (tCGi,j ) = cos

(
j
2(N − i) + 1

2N + 2
π

)
, i, j = 0, . . . , N. (28)

Evaluating the divergence of the velocity field and the momentum equations
on CG nodes we use the computed (on CGL nodes) solutions of u, ω and
p and evaluate them on CG nodes. Hence, we need the matrix for the first
derivative, which is given by

DCG = TCGD̂T−1 ∈ R
N+1,N+1,

where D̂ and T are given as in (16). Transformations to obtain the CG nodes

and the derivative matrices on the corresponding element Ω̂i, i = 1, . . . , 12
of Ωr are performed as described in Section 4, again.
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Figure 8: Unsteady Stokes flow past the cylinder on Ω0.5: Mass and momen-
tum conservation in the whole domain during time integation, ||∇·u||L2 (left)
and ||L(U)||L2 (right) for ν = 1 (first row), ν = 1

100
(second row), ν = 1

400

(third row) and ν = 1

1000
(fourth row)
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Again, we observe the improved conservation properties of the LSSCM. In
the whole domain we see an similar performance during time integration as
within the cross-section, i.e. at the beginning of time integration the values
oscillate slightly and after that the values are constant. The reasons are
described above. Furthermore, we observe from Figure 8 that ||∇ · u||L2

decreases for decreasing viscosity. The reason of this behaviour is that for
smaller viscosities the influence of the momentum equations to the whole
system becomes less and because of this the continuity equation is stronger
weighted in the overdetermined system. This means that the scheme leads
to a “natural weighting” of the continuity equation for the time-dependent
Stokes flow around the cylinder. These insights are the key to understand
the analog performance of the scheme, concerning better mass conservation
along the cross-section γ2 for decreasing ν, as shown in Figure 7.
For the momentum equations we see approximately the same conservation
properties of the proposed scheme for the different viscosities in Figure 8.
The numerical values of ||∇ ·u||L2, ||L(U)||L2 and χ in the last time step are
presented in Table 4, where

χ := max{u1(0, y) : 0.5 ≤ y ≤ 0.75}

for different viscosities. Furthermore, in Table 4 we present the required
number of iterations and the time tmax when the steady state is reached,
i.e. when (23) is fulfilled. We present the numerical values of ||∇ · u||L2,
||L(U)||L2 and χ in the last time step since we have seen in Figure 8 that
the temporal evolution is constant when the oscillations at the beginning are
overcome.

ν ||∇ · u||L2 ||L(U)||L2 χ tmax # iterations

1 4.063 · 10−8 5.418 · 10−7 4.2036 1.80 16
1

100
1.543 · 10−8 4.323 · 10−7 4.2036 33.80 336

1

400
3.912 · 10−9 2.997 · 10−7 4.2036 120.60 1204

1

1000
1.602 · 10−9 1.771 · 10−7 4.2036 278.60 2784

Table 4: Unsteady Stokes flow past the cylinder on Ω0.5: Conservation values
and maximum velocity along γ2 in the last time step, tmax and number of
iterations for different viscosities

From Table 4 we observe that we reach a slightly better conservation of mo-
mentum for decreasing viscosity. But these improvements are only marginal.
This performance is again caused by a “natural weighting” within the mo-
mentum equations. For smaller viscosities, the gradient of the pressure has
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a stronger influence compared to ∇ × ω in momentum equation. This dis-
advantage for the vorticity (defined by ω − ∇ × u = 0) is compensated by
the stronger influence of the continuity equation ∇ · u = 0. Because of this,
mass and momentum is conserved better for decreasing ν.
In Figure 9 we show the profile of u1 along the cross-section in the last time
step tmax.
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0.5
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y

Figure 9: Unsteady Stokes flow past the cylinder on Ω0.5: u1 along γ2 in the
last time step

For all considered viscosities ν ∈ {1, 1

100
, 1

400
, 1

1000
} we obtain the same plots,

since the different viscosities do not influence the results for the Stokes equa-
tions. Comparing this plot with the one of the steady Stokes flow in [24], we
see the good performance of the proposed scheme for time-dependent Stokes
flows, again.

In Figure 10 we show the profile of u1 and the velocity profile in the whole
domain Ω0.5. Again, we obtain for all considered viscosities the same results,
as expected.
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Figure 10: Unsteady Stokes flow past the cylinder on Ω0.5: Profile of u1 (left)
and velocity profile u (right)

Comparing the plots of Figure 10 with the one of the steady Stokes flow
in [24], we see that the LSSCM is able to resolve the velocity in the whole
domain for the unsteady Stokes flow very well, too.
In Figure 11 we show the pressure in the whole domain.

Figure 11: Unsteady Stokes flow past the cylinder on Ω0.5: Pressure profile
ν = 1 (upper left), ν = 1

100
(upper right), ν = 1

400
(lower left) and ν = 1

1000

(lower right)

As for the steady Stokes flows we see here the good performance for the
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unsteady case, too. Because of the different viscosities it is clear that we get
different maximum and minimum values for the pressure. Furthermore, we
observe that for all considered viscosities we obtain analog pressure profile,
as expected.

5.2 Navier-Stokes equations

Next, we consider the Navier-Stokes flow around the cylinder. To verify the
proposed scheme, we first consider the smooth steady example on Ω0.5 (i.e.
(20)–(22) with γ = 0) followed by a smooth unsteady example on Ω0.5 (i.e.
(20)–(22) with γ = 5). Hereafter, we simulate the flow around a cylinder
on Ω0.125 for different Reynolds numbers. The reason we consider Ω0.125 for
the flow problem is to see the properties of the flow for different Reynolds
numbers. Using the test cases with larger cylinder we can not observe the
performance from the plots in the best way.
For all computations we use the explicit scheme (with ∆t-scaled momentum
equations), where we combine the second order BDF scheme for the viscous
term with the second order Adams-Bashforth scheme for the convective term.
Our simulations have shown that using the implicit scheme requires a much
larger among of CPU-time. The reason is that within the implicit scheme in
each time step the algebraic systems must be solved several times. Using the
explicit scheme, the QR decomposition of the overdetermined algebraic sys-
tems must be solved only once. Hereafter, only matrix vector multiplications
must be carry out, which are very fast. In [15] we studied the performance of
explicit versus implicit scheme. The result was, that both of the schemes lead
to analog results, where the implicit scheme requires a much larger amount
of CPU-time.

5.2.1 Steady model problem

For the steady model problem we set γ = 0 in (20) – (22) on Ω0.5 to verify
the spectral convergence of the proposed scheme. In Table 5 we show the
numerical results.

26



N ||u1 − uN1 ||H1 ||u2 − uN2 ||H1 ||p− pN ||L2 ||∇ · u||L2

2 3.848 · 10−1 4.425 · 10−1 1.016 · 100 8.017 · 10−2

4 1.104 · 10−1 1.032 · 10−1 4.714 · 10−1 3.591 · 10−3

6 1.645 · 10−2 1.226 · 10−2 8.348 · 10−2 2.501 · 10−4

8 6.563 · 10−4 5.765 · 10−4 1.133 · 10−3 1.285 · 10−5

10 2.428 · 10−5 2.478 · 10−5 2.444 · 10−5 4.013 · 10−7

12 8.546 · 10−7 8.775 · 10−7 8.525 · 10−7 1.118 · 10−8

14 4.972 · 10−8 5.022 · 10−8 5.722 · 10−8 6.277 · 10−10

16 4.128 · 10−9 4.182 · 10−9 3.598 · 10−9 5.230 · 10−11

18 4.596 · 10−10 4.623 · 10−10 3.154 · 10−10 4.448 · 10−12

Table 5: The steady model problem for the Navier-Stokes equations on Ω0.5:
Approximation errors for ∆t = 1

10
and ν = 1

As we observe from Table 5 the LSSCM leads to the high spectral accuracy for
the velocity, the pressure and the divergence of the velocity field. Especially
for larger polynomial degrees we observe the fast convergence of the proposed
scheme.

5.2.2 Unsteady model problem

For the unsteady model problem we set γ = 5 in (20) – (22) on Ω0.5. For
time integration we use the second order BDF scheme combined with the
Adams-Bashforth scheme of order 2 for the convective term.
In Table 6 we show the results for ν = 1. We set tend = 1, since we have seen
that the maximum error is obtained in [0, 1].

∆t Eu1 ratio Eu2 ratio Ep ratio
1

10
1.041 · 10−2 — 6.961 · 10−3 — 2.166 · 10−1 —

1

20
2.636 · 10−3 3.949 1.763 · 10−3 3.948 5.550 · 10−2 3.903

1

40
6.641 · 10−4 3.969 4.448 · 10−4 3.964 1.395 · 10−2 3.978

1

80
1.661 · 10−4 3.998 1.112 · 10−4 4.000 3.503 · 10−3 3.982

1

160
4.152 · 10−5 4.000 2.780 · 10−5 4.000 8.761 · 10−4 3.998

1

320
1.038 · 10−5 4.000 6.949 · 10−6 4.001 2.191 · 10−4 3.999

Table 6: The unsteady model problem for the Navier-Stokes equations on
Ω0.5: Approximation errors for ν = 1, N = 18 and tend = 1

From Table 6 we observe again, that the proposed scheme is of order 2, since
the ratios of the errors converges to 4 when the time step size is halved.
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Next, we consider the LSSCM for ν = 1

1000
. The results are presented in

Table 7.

∆t Eu1 ratio Eu2 ratio Ep ratio
1

1600
9.746 · 10−5 — 5.951 · 10−5 — 8.435 · 10−6 —

1

3200
2.550 · 10−5 3.822 1.461 · 10−5 4.073 2.062 · 10−6 4.091

1

6400
6.594 · 10−6 3.867 3.608 · 10−6 4.049 5.114 · 10−7 4.032

1

12800
1.684 · 10−6 3.916 8.952 · 10−7 4.030 1.277 · 10−7 4.005

Table 7: The unsteady model problem for the Navier-Stokes equations on
Ω0.5: Approximation errors for ν = 1

1000
, N = 18 and tend = 1

Again, we observe that the LSSCM is second order, since the ratios of the
errors converges to 4, see Table 7. It is clear that we have to use smaller
time steps since the convective part becomes more dominant for decreasing
ν. Our simulations have shown that using larger time step sizes ∆t, the
LSSCM becomes divergent.

5.2.3 Channel flow

Next, we consider the flow around the cylinder for the Navier-Stokes equa-
tions on Ω0,125. We simulate the channel flow for ν = 1 and ν = 1

400
.

We choose ν = 1

400
as the smallest viscosity since then we reach a similar

Reynolds number as in the DFG priority research program “Flow Simulation
with High-Performance Computers II”, see, e.g. [36]. For ν = 1 we obtain
a stationary flow. For ν = 1

400
we obtain a unsteady flow (oscillating) where

the well-known “Von Karman Effect” occurs, i.e. vortices occur that move
in the stream of the obstacle.
Again, we study the mass and momentum conservation of the proposed
scheme and present the velocity and pressure profiles. To obtain the real
conservation of mass and momentum we evaluate the numerical solution on
CG nodes. Furthermore, we compute the loss of mass in the cross-section
which is given by

Mψ :=

∫

γ1

ψ ds−
∫

Γ2

ψ ds,

where γ1 given in (25) and Γ2 is defined as the union of the lines between
’(0,−0.75) and (0,−0.125)’ and ’(0, 0.125) and (0, 0.75)’, see Figure 12.
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Figure 12: Definition of γ1 and Γ2

Here, we consider ψ = u1, ψ = u2 and ψ = u1+u2 to see the influence of the
different velocity components to the loss of mass within the cross-section. To
verify the conservation of momentum, we consider the left hand side of (4)
and define now

L(Un+1) :=
3

2
un+1 − 2un + 1

2
un−1

∆t
+ 2Cn+1 −Cn+1 + ν∇× ωn+1 +∇pn+1.

That means, we use the computed solution (where we solve the system with
the ∆t-scaled momentum equations) and insert this one in the unscaled equa-
tions. Thus, we obtain the real conservation of momentum for the Navier-
Stokes equations. For all computations in this section, we set N = 16.

5.2.4 Navier-Stokes equations with ν = 1

First, we consider the Navier-Stokes equations with ν = 1 and set ∆t = 1

10
.

In Figure 13 we show the loss of mass along the cross-section Γ2 for the
different ψ during time integration.
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Figure 13: Navier-Stokes flow past the cylinder on Ω0.125: Loss of mass along
the cross-section Γ2 during time integration for ν = 1 and ∆t = 1

10
, where

ψ = u1, ψ = u1 + u2 and ψ = u2

From Figure 13 we observe that for ν = 1 the influence of velocity component
u2 to the loss of mass is negligible. Furthermore, our numerical solution shows
a very good performance, since |Mu2| ≈ 10−7 and |Mu1| ≈ |Mu1+u2 | ≈ 10−4.
In Figure 14 we show ||∇ · u||L2 in the whole domain Ω0.125 during time
integration. We observe that the divergence of the velocity field is about
7.5 · 10−5. Thus, the proposed scheme is not only able to conserve mass
within the cross-section but even in the whole domain.
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Figure 14: Navier-Stokes flow past the cylinder on Ω0.125: ||∇ · u||L2 in the
whole domain during time integration for ν = 1 and ∆t = 1
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Figure 15 shows the momentum conservation during time integration.
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Figure 15: Navier-Stokes flow past the cylinder on Ω0.125: Momentum con-
servation in the whole domain during time integration for ν = 1 and ∆t = 1
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We show the conservation of both momentum components and of the whole
momentum separately, i.e. ||L1(U)||L2 , ||L2(U)||L2 and ||L(U)||L2. We ob-
serve that both of the components of the momentum are conserved approx-
imately with the same accuracy (∼ 10−4). The whole momentum L(U) is
conserved up to ∼ 10−3. Again, we see that the proposed scheme leads to
very good conservation of mass and momentum in the whole domain Ω0.125,
see Figures 14 and 15.
In Figure 16 we show the profile of velocity component u1 at different times
during time integration. Since the problem with ν = 1 leads to a stationary
solution, we show only a few profiles. From the plots we observe that we
obtain the same profiles during time integration, as expected.

Figure 16: Navier-Stokes flow past the cylinder on
Ω0.125: Profile of u1 at different times for ν = 1
and ∆t = 1
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t = 8

To show the convergence process of our computed solution we show in Figure
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17 the temporal evolution of

ε :=
max |φn+1 − φn|
∆t ·max |φn+1| ,

where φT := [u1, u2] and the superscript n and n + 1, respectively indicates
to which time step the solution belongs. Again, | · | is the vector with the
absolute value of its components. The oscillations in ε for t ≥ 3 are caused
by the influence of the round-off errors.
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Figure 17: Navier-Stokes flow past the cylinder on Ω0.125: ε during time
integration for ν = 1 and ∆t = 1

10

From Figure 17 we observe again that the computed solution converges to a
stationary solution.
In Figure 18 we show the profile of the pressure at different times during
time integration.
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Figure 18: Navier-Stokes flow past the cylinder on
Ω0.125: Profile of p at different times for ν = 1 and
∆t = 1

10

t = 1

t = 2
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t = 8

Again, we observe from Figure 18 the steady state.

5.2.5 Navier-Stokes equations with ν = 1

400

For the next simulations we set ν = 1

400
and use ∆t = 1

700
. Our computations

have shown that the LSSCM becomes divergent for larger time step sizes. In
Figure 19 we show the loss of mass along the cross-section Γ2 for the different
ψ during time integration.
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Figure 19: Navier-Stokes flow past the cylinder on Ω0.125: Loss of mass along
the cross-section Γ2 for ν = 1

400
and ∆t = 1

700
, where ψ = u1, ψ = u2 and

ψ = u1 + u2

We observe the typical oscillation of |Mu2| during time integration. Since
the collocation nodes are placed much closer in direction of the y-axis and
because of the problem set-up it its clear that |Mu2| is much closer to 0 than
|Mu1| and |Mu1+u2|, respectively. Our computations have shown, that there
is now blow-up of |Mψ| for ψ = u2 during time-integration. In Figure 20 we
show the results for ν = 1

600
, where it is obvious that there is now blow-up,

even for larger Reynolds numbers.
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Figure 20: Navier-Stokes flow past the cylinder on Ω0.125: Loss of mass along
the cross-section Γ2 for ν = 1

600
and ∆t = 1

1100
, where ψ = u1, ψ = u2 and

ψ = u1 + u2

To show the slight difference between |Mu1| and |Mu1+u2 | for ν = 1

400
in

Figure 19 we show in Figure 21 only these two values. Here, it becomes more
clear that mass is conserved up to ∼ 10−2.
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Figure 21: Navier-Stokes flow past the cylinder on Ω0.125: Loss of mass along
the cross-section Γ2 for ν = 1

400
and ∆t = 1

700
, where ψ = u1 and ψ = u1+u2

Again, we observe from Figures 19 and 21 the oscillation at the beginning
of time integration, caused by the start conditions for the second order BDF
scheme and Adam-Bashforth scheme, respectively. The oscillation at the end
of time integration is caused by the starting of the “Von Karman effect”.
In Figure 22 we present ||∇ · u||L2 in the whole domain Ω0.125 during time
integration. Again, we observe the good performance of the proposed scheme
and the“Von Karman effect”. Nevertheless, the LSSCM shows a very good
conservation of mass in the whole domain for larger Reynolds numbers and
smaller viscosities, respectively.
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Figure 22: Navier-Stokes flow past the cylinder on Ω0.125: ||∇ · u||L2 in the
whole domain during time integration for ν = 1

400
and ∆t = 1

700

In Figure 23 we present the conservation of momentum in the whole domain
Ω0.125 during time integration. Again, we show ||L1(U)||L2, ||L2(U)||L2 and
||L(U)||L2 to see the influence of the different components.
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Figure 23: Navier-Stokes flow past the cylinder on Ω0.125: Momentum conser-
vation in the whole domain during time integration for ν = 1

400
and ∆t = 1

700

All of the three values show an analog performance, as we see in Figure 23.
The values increase slightly for t > 4 since the “Von Karman Effect” occurs
(see, e.g. Figure 24) and therefore it is much harder to approximate the
functions.
In Figure 24 we show the profile of velocity component u1 at different times
during time integration. From the different plots we observe the well-known
periodic time-dependent profiles for the velocity.

39



Figure 24: Navier-Stokes flow past the cylinder on
Ω0.125: Profile of u1 at different times for ν = 1

400

and ∆t = 1

700

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8
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From the results of our simulations (see Figures 19 - 24) for ν = 1

400
we

observe that the LSSCM leads to good results concerning conservation of
mass and momentum, respectively, and to the well-known performance for
the channel flow problem. Furthermore, we observe the well-known profiles
for the velocity, representing the good performance of the LSSCM.

6 Conclusion

We investigated mass and momentum conservation of the LSSCM for the
time-dependent Stokes and for the Navier-Stokes equations. We used as test-
problems internal flow problems, as in [3, 4] for LSFEM, in [33, 35] for LSSEM
and as in [24] for LSSCM. For each of this methods only the stationary Stokes
equations have been considered. Here, we continued the research in [24] for
time-dependent problems. We observed that the LSSCM leads to very good
results for this problems, too. The reasons that the LSSCM leads to good
conservation can be found in:

1. We use only a few elements, each with a high polynomial degree.

2. We use a direct solver (QR decomposition) to solve the linear systems
of equations. Avoiding solving by normal equations leads to algebraic
systems with reduced condition numbers. Because of this we have less
influence of round-off errors, see [15, 23, 24].

3. We did not set the pressure in one point, since we have shown in [15, 24]
that the better way to avoid the natural mode is using the additional
pressure condition in (7). Because of this we again reduced the condi-
tion numbers of the algebraic systems and this leads to a more stable
scheme, see [15, 23–25].

4. We used the transfinite mapping of Gordon and Hall to discretize the
internal flow problem. This leads to a high order approximation of the
curved boundaries.

The main reason of the improved results can be found in using only a few
elements with high-order approximation. The other improvements are only
marginally, see [24]. All results are computed with the explicit scheme. We
could also use the implicit scheme, but then the required CPU times are
much higher, since the algebraic systems must be solved in each time step
several times. Using the implicit scheme, we can use larger time step sizes
compared to the explicit scheme. But since we here consider time-dependent
problems we want to use small time steps.
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