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Solution Theory and Functional A Posteriori Error Estimates
for General First Order Systems with Applications to Electro-Magneto-Statics

DIRK PAULY

ABSTRACT. We prove a solution theory and functional a posteriori error estimates for general linear first
order systems of type
Agz=f, Alz=g
for two densely defined and closed (possibly unbounded) linear operators A; and As. As a prototypical
application we will discuss the system of electro-magneto statics with mixed tangential and normal
boundary conditions
rot £ = F), —diveE = g.
Second order systems of type
AyAsz = f, Alz=g
will be considered as well.
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1. INTRODUCTION
For £ =0,...,4 let Hy be Hilbert spaces and for £ =0,...,3 let
Ay D(Ag) CHy— Hg+1

be densely defined and closed (possibly unbounded) linear operators. Here, D(A) denotes the domain of
definition of a linear operator A and we introduce by N(A) and R(A) its kernel and range, respectively.
Inner product, norm, orthogonality, orthogonal sum and difference of (or in) an Hilbert space H will be
denoted by (-, )u, | - |n, LH, and ®u, Op, respectively. We note that D(A), equipped with the graph
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inner product, is a Hilbert space itself. Moreover, we assume that the operators A, satisfy the sequence
or complex property, this is for £ =0,...,2

(1.1) R(A¢) € N(Ags1)
or equivalently Ayiq Ay C 0. For £=0,...,3 the (Hilbert space) adjoint operators
Ay : D(A)) C Heyq — Hy

defined by the relation

Vo e D(A) WYyeD(AD)  (Ava, s, = (oAl yu,
satisfy the sequence or complex property
(12) R(AZ+1) CN(AZ)’ €:05a2a
or equivalently AZ AZ+1 C 0. We note (AZ)* =A;=Ay ie., (A, AZ) is a dual pair. For £ =1,...,3 the
complex
(1.3) D(Ap1) 2515 D(A)) —205 Hey

is called closed, if the ranges R(Ay.1) and R(Ay) are closed, and called exact, if R(Ay1) = N(Ay). By
the closed range theorem, (1.3) is closed resp. exact, if and only if the adjoint complex

(14) Hep ¢ D(AL,) «—t— D(A))
is closed resp. exact.

The aim of this paper is to prove functional a posteriori error estimates in the spirit of Sergey Repin,
see, e.g., [3, 2, 8], for the linear system

Agx = f,
(1.5) Az =g,
mr =k

with z € Dy, where we define for / =1,...,3
D;:=D(A)ND(A,,), K;:=N(A)NN(A,,)

and 7y : Hy — K, denotes the orthonormal projector onto the cohomology group, i.e., the kernel K.
Obviously, f € R(Az), g € R(A]), and k € K, are necessary for solvability of (1.5) and there exists
at most one solution to (1.5). A proper solution theory for (1.5), i.e., existence of a solution of (1.5)
depending continuously on the data, will be given in the next section.

Let & € Hy be a possibly non-conforming' “approximation” for the exact solution

i«
x € Dy = D(Ay) N D(A])
of (1.5). Proving functional a posteriori error estimates for the linear problem (1.5) means, that we will
present two-sided estimates for the error
e:=x—12€Hy
with the following properties:
@ There exist two functionals M=, a lower and an upper bound, such that

(16) \V/Zi,yj M—(Zlv"'vzf;i‘vag7k)é|6|H2 SM+(y17--~7yJ;1~77f7gak)v

were the z; and the y; belong to some suitable Hilbert spaces. The functionals M+ are guaranteed
lower and upper bounds for the norm of the error |e|n, and explicitly computable as long as at
least upper bounds for the natural Friedrichs/Poincaré type constants for the operators A; and
Ay are known'. The bounds Mz do not depend on the possibly unknown exact solution x, but
only on the data, the approximation &, and the “free” vectors z;, y;.

A conforming “approximation” Z belongs to Da.
"Just needed for the upper bound M.
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@ The lower and upper bound M= are sharp, i.e.,
(1.7) max M_(z1,...,21;%, f,9,k) = |eln, = ymir;u My, -y 2, fr9, k).
FETER

214321
® The minimization over z; and y; is “simple”, typically a minimization of quadratic functionals.

We will also present functional a posteriori error estimates for linear second order systems such as

AyAsw = f,
(1.8) Alz =g,
mor =k

with @ € Dy such that Ay x € D(A}), i.e., € D(A]) N D(A3 Ay). These will follow immediately by the
theory developed for the first order system (1.5), since the pair (z,y) € (D(As2) N D(A])) x (D(A3) N
D(A3)) defined by y := Az € D(A3) N R(A») solves the system

A233:Z/7 A3y:Oa
Az =g, Ay =1,
mox =k, w3y = 0.

Analogously, we can treat problems such as

A;A2(E:fa
7T2(E:k

as well, related to the generalized Hodge-Helmholtz decomposition of f + g + k € Hs.
Our main applications will be the linear systems of electro-magneto statics as well as related rot rot
systems and, as a simple example, the Laplacian.

2. FuncTiONAL ANALYSIS TooL Box
Let £ € {0,...,3} resp. £ € {1,...,4}. By the projection theorem, the Helmholtz type decompositions
(2.1) Hy = N(Ar) @n, R(Ay) = R(Arr) @n, N(Apy)
hold. The complex properties (1.1)-(1.2) yield

N(A¢) = R(Ar) ©n, Kp, N(Apy) = Ke @, R(A}),  Ki=N(A)NN(A,,).
Therefore, we get the refined Helmholtz type decomposition

(2.2) He = R(Ary) @n, Ko ®u, R(Ay).
Using the Helmholtz type decompositions (2.1) we define the reduced operators
Ar = A¢lpzy s D(A) © R(Ay) = R(Ar),  D(A) = D(A¢) N R(A;) = D(Ar) N N(Ag)*,

A; = A [y DAY € R(AD) = R(A;),  D(A;) = D(A;) N R(A7) = D(A]) N N(A]) s,

which are also densely defined and closed linear operators. We note that A, and AZ are indeed adjoint
to each other, i.e., (A, .AZ) is a dual pair as well. Now the inverse operators

(Ae) ™" R(A0) = D(Ag),  (A) 7" R(Ay) = D(Ay)

exist, since A, and AZ are injective by definition, and they are bijective, as, e.g., for x € D(Ay) and
y = Ayx € R(Ay) we get (Ay) "'y = z by the injectivity of Ay. Furthermore, by the Helmholtz type
decompositions (2.1) we have

(2.3) D(A¢) = N(Ay) @n, D(A), D(A}) = N(A)) @, D(A))
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and thus we obtain for the ranges

(2.4) R(A¢) = R(A), R(A;) = R(A).
By the closed range and closed graph theorems we get immediately the following lemma.

Lemma 2.1. Let £ € {0,...,3}. The following assertions are equivalent:
(i) dep € (0,00) VIED(.AK) ‘;E|HZ SC@|A[I|H2+1
(i) 3¢ € (0,00)  Vye D(A) YlHen < il Acyln,
(ii) R(A¢) = R(Ay) is closed in Hyy.
(ii*) R(A,) = R(A}) is closed in H,.
(iii) (Ae)~™': R(Ay) — D(A) is continuous and bijective with norm bounded by (1 + c2)"/.
(iii*) (A,)~': R(A,) — D(A,) is continuous and bijective with norm bounded by (1 + c;2)"/2.
Proof. Note that by the closed range theorem (ii) < (ii*) holds. Hence, by symmetry it is sufficient to
show (i) < (ii) < (iii).

(i)=(ii) Pick a sequence (y,) C R(A;) converging to y € Heq1 in Hepq. By (2.4) there exists a sequence
(xn) C D(Ap) with y, = Ay . (i) implies that (x,,) is a Cauchy sequence in Hy and hence there
exists some x € He with z, — 2 in Hy. As Ay is closed, we get © € D(Ay) and Ayz =y € R(Ay).

(ii)=-(iii) Note that (A,)~' : R(A;) — D(A;) is a densely defined and closed linear operator By (i), R(Ay)

is closed and hence itself a Hilbert space. By the closed graph theorem (.AQ is continuous.
(iii)=>(i) For x € D(Af) let y := Agx € R(Ay). Then z = (A;) "'y as Ay is injective™. Therefore,

|x|Hz = ‘(Af y|He = | -AZ 1‘R(A[),R(A2)|y|Hf+1 = C€|A€m|Hz+1
with ¢, := |(‘AZ)71|R(A4),R(AZ)'
If (i) holds we have for y € R(A,) and z := (Ay) "ty € D(Ay)

|(~Af y‘H < cf|AZx|He+1 = Cf|y|He+1

and hence
[(Ae)~ y|H
(At W= sup ————=~ <g¢y,
‘ |R(Ae),R(A£) otveR(A) VMo
(A)~ty (Ao) "My, + Lyl
|(Ae)*1’;<m) DA~ SUP —| b = sup | |H T < g g,
’ 0#£y€ER(Ap) |Z/|HH1 0£yeR(Ay) MHM
finishing the proof. (|

From now on we assume that we always choose the best Friedrichs/Poincaré type constants ¢y, ¢}, if
they exist in (0, 00), i.e., ¢, and ¢, are given by the Rayleigh quotients

1 Arx 1 A,
1 Al L A yln,
ce 0#zED(A) ||, 5 0yen(AD) [YlHe,
Moreover, we see
o, (A", =
cg= sup o= sup ——=|(A) .
0#2eD(A) | AeTlHepy  oyerany  [YlHe = [rao s

as 0 # 2 € D(Ay) implies 0 # Ay z and for y := Ay 2z with = € D(Ay) we have (Ay) "'y = z, both by the
injectivity of A4,. Analogously, we get

*
(A)) '
C}c _ sup |y|Hz+1 _ sup | ‘H[+1

= |(A4;)~
0#yeD(A) | A YlH,  ozaeRr(AD) |z [H,

1
¢ ’R(AZ),R(AK)'

"It holds Ay (z — (A¢)~'y) = 0 and thus z = (A) ™!
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Lemma 2.2. Let ¢ € {0,...,3}. Assume that ¢; € (0,00) or ¢; € (0,00) exists. Then ¢, = cj.
We note that also in the case ¢, = 0o or ¢; = 0o we have ¢, = ¢j = o0.

Proof. Let, e.g., ¢, exist in (0,00). By Lemma 2.1 also ¢, exists in (0, 00) and the ranges R(A;) = R(Ay)
and R(A;) = R(A,) are closed. Then for 2 € D(As) = D(A;) N R(A}) there is y € D(A,) with z = A y.
More precisely, y := (A,) "'z € D(A,) is uniquely determined and we have [Y[Hey < € A, yln,. But
then

213, = (2, A% 90, = (Ao, sy < | Araligy uliess < cF Al | AL s
yielding |z|y, < ¢j| A¢x|y,,,. Therefore, ¢, < ¢j and by symmetry we obtain ¢, = cj. O

A standard indirect argument shows the following lemma.

Lemma 2.3. Let £ € {0,...,3} and let D(A;) = D(Ay) N R(A,) < Hy be compact. Then the assertions
of Lemma 2.1 and Lemma 2.2 hold. Moreover, the inverse operators

At R(Ay) = R(AY), (A)7':R(A)) — R(Ag)
| (A,

are compact with norms |A[ Co.

1 ‘ = )71| =
R(A¢),R(A}) R(A}),R(Ag)

Proof. If, e.g., Lemma 2.1 (i) was wrong, there exists a sequence (x,) C D(A) with |z,|ny, = 1 and
Ajz, — 0. As (x,) is bounded in D(Ay) we can extract a subsequence, again denoted by (x,), with
x, — x € Hy in Hy. Since Ay is closed, we have © € D(Ay) and Ayz = 0. Hence z € N(A;). On the
other hand, (z,) € D(A;) € R(A,) = N(Ag)* implies € N(Ag)L. Thus = = 0, in contradiction to
1= |xn|H£ — ‘a’:||-|Z =0. (Il

Lemma 2.4. Let £ € {0,...,3}. The embedding D(Ay) < Hy is compact, if and only if the embedding
D(AZ) — Heg1 is compact. In this case all assertions of Lemma 2.1 and Lemma 2.2 are valid.

Proof. By symmetry it is enough to show one direction. Let, e.g., the embedding D(A;) < H,; be
compact. By Lemma 2.1 and Lemma 2.3, especially R(A;) = R(A;) and R(A,) = R(A}) are closed. Let
(yn) € D(A,) = D(A,) N R(A) be a D(A})-bounded sequence. We pick a sequence (z,,) C D(A) with
Yn = Mgy, ie., 2 = (Ag) tyn. As (A)~1: R(Ay) — D(Ay) is continuous, (x,,) is bounded in D(Ay)
and thus contains a subsequence, again denoted by (z,,), converging in Hy to some x € H,;. Now

|yn - /!/77"L||2—|£_*_1 = <yn - ym;AZ(:En - xm)> = <AZ(yn - ym)amn - $m>H[ < C|37n - mm‘HZ

Hepq

as (yn) is D(A,)-bounded. Finally, we see that (y,) is a Cauchy sequence in Hyy ;. O

Let us summarize:

Corollary 2.5. Let £ €{0,...,3} and, e.g., let R(Ay) be closed. Then

1 = inf 7‘ A2l = inf 7| AZ Yl
e 0£2€D(A)  |2lm, veD(A) [YlHes
exists in (0,00). Furthermore:
(1) The Poincaré type estimates
Vz € D(Ay) |z|n, < col Apzln,,,,
Vy € D(Ay) (Yl < cel Ay yln,

hold.
(i) The ranges R(A¢) = R(A;) and R(A,) = R(A,) are closed. Moreover, D(A;) = D(Ag) N R(A})
and D(A;) = D(A;) N R(A,) with

Ag: D(Ay) C R(A)) — R(Ay), A, :D(A,) C R(Ay) — R(Ay).
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(iii) The Helmholtz type decompositions
H, = N(Af) DH, R(AZ)V H4+1 = N(AZ) EBHe-H R(Ae)’
D(A¢) = N(Ag) @n, D(Ay), D(Ay) = N(Ay) @n,,, D(A)
hold.
(iv) The inverse operators
Al R(Ag) = D(Ar), (A" R(A)) = D(A)

are continuous and bijective with norms |(Ag)~! = I(AZY (1+c2)"?

and |(Ay) = |(Ap)~

1
’R(Az),D(Az) |R(AZ),D(AL7)

= Cy.

-1 1
|R(Az)7R(AZ) |R(AZ)7R(A2)

Corollary 2.6. Let ¢ € {0,...,3} and, e.g., let D(A;) < Hg be compact. Then R(Ay) is closed and the
assertions of Corollary 2.5 hold. Moreover, the inverse operators

At R(A) = R(Ay),  (A)7": R(Ay) = R(A)
are compact.

So far, we did not use the complex property (1.1) except of proving the refined Helmholtz type
decomposition (2.2), which we did not need until now. Hence Lemma 2.1, Lemma 2.2, Lemma 2.3,
Lemma 2.4, and Corollary 2.5, Corollary 2.6 hold without the complex property (1.1). On the other
hand, using (1.1) we obtain the following result:

Lemma 2.7. Let £ € {1,...,3}. Then the refined Helmholtz type decompositions

= R(Agy) ©n, Ko ©n, R(A)), Ky =N(A)NN(Ay,),
N(Ar) = R(Acy) @, Ko, N(A7,) = K¢ @n, R(A7),
R(A) = R(Ar1) = N(Ar) en, Ko, R(A7) = R(A7) = N(A7,) On, Ko,
D(A¢) = R(Ary) @n, Ko &1, D(Ay), D(Ay,) = D(Ay,) @n, K¢ &, R(A),
Dy = D(Ay,) ®u, K¢ ®n, D(Ar), Dy =D(A))ND(A,)

hold. If the range R(Ay.1) or R(Ay) is closed, the respective closure bars can be dropped and the assertions
of Corollary 2.5 are valid. Especially, if R(As1) and R(Ay) are closed, the assertions of Corollary 2.5
and the refined Helmholtz type decompositions

He = R(Ar1) ®n, Ko ®n, R(A), Ky =N(A)NN(A,),
N(A¢) = R(Ar1) ©n, Ko, N(Ay,) = K; @n, R(A),
R(Ap1) = R(Ap1) = N(Ar) ©n, Ko, R(A;) = R(A;) = N(Ay,) &n, Ko,
D(A ) = R(A1) On, Ko ®n, D(Ay), D(Ayy) = D(Apy) @n, Ko @n, R(A),
= D(Ay,) ©n, K¢ ©n, D(Ay), Dy = D(A;) N D(Ay,)

hold.
Observe that
D(A¢) = D(A)) N R(A,) € D(Ay) N N(As,) € D(Ay) N D(A),) = Dy,
D(Az-l) = D(AL) NR(Ap) C D(AL) NN(Ag) C D(AL) N D(A) =

Lemma 2.8. Let ¢ € {1,...,3}. The embeddings D(A;) — Hy, D(Ap1) — Heq, and Ky — Hy are
compact, if and only if the embedding Dy — Hy is compact. In this case, K, has finite dimension.

(2.5)

Proof. Note that, by Lemma 2.4, D(Ag1) < He is compact, if and only if D(Aj_,) < Hy is compact.
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=: Let (z,) C Dy be a Dy-bounded sequence. By the refined Helmholtz type decomposition of
Lemma 2.7 we decompose

Tn = ap, +kn +an € D(AZ-l) ©SH, K¢ ©n, D(Ay).

with Ay, = Aga, and A, x, = A, a’. Hence (a,) is bounded in D(A) and (a¥) is bounded
in D(A, ;) and we can extract Hy-converging subsequences of (a,), (%), and (k).
<: If Dy < Hy is compact, so is Ky < Hy. Moreover, by (2.5)

D(Ay) C Dy < Hy, D(A;,) C Dy < Hy.

Finally, if K, — H; is compact, the unit ball in K, is compact, showing that K, has finite dimension. [J

Lemma 2.8 implies immediately the following result.

Corollary 2.9. Let ¢ € {1,...,3} and let Dy — H; be compact. Then R(A,1) and R(Ay) are closed,
and, besides the assertions of Corollary 2.6, the refined Helmholtz type decompositions of Lemma 2.7 hold
and the cohomology group K, is finite dimensional.

Remark 2.10. Let ¢ € {1,...,3}. Under the assumption that the embedding Dy — Hy is compact, all
the assertions of this section hold. Especially, the complex

D(Az_l) L) D(Ag) L Heq1

together with its adjoint complex

*

* Al *
Hey e D(Agy) +—— D(A)
is closed. These complexes are even exact, if additionally K, = {0}.

Defining and recalling the orthonormal projectors

(2.6) TAer = TRia,) - He = R(Apq), TA; = TRGE ¢ H, — R(A}), e : He = Ko,

we have mp =1 —ma,, — T as well as

Tapy He =7, D(A¢) = ma,, N(Ar) = R(Ar1) = R(Ap1),
Tar He = WA;D(AZJ) = WAZN(AZJ) = R(A;) = R(Ay)

and
ma, D(Ap,) = ma,, Dy = D(A, ), s D(Ag) = w5 Dy = D(Ay).
Moreover
V&eD(Ay) A€ € D(Ary) A Apima & =47 ¢,
V¢ € D(Ay) FA;CED(AE) A Agﬂ‘AZc:AgC.

We also introduce the orthogonal projectors onto the kernels

ﬂ-N(AZ»l) =1 TAp, - Hg — N(Az_l), TN(Ap) *= 1-— 7TAZ : He — N(Ag)

3. SOLUTION THEORY
From now on and throughout this paper we suppose the following.
General Assumption 3.1. R(A1) and R(As) are closed and Ky is finite dimensional.

Remark 3.2. The General Assumption 3.1 is satisfied, if, e.g., Do < Hq is compact. The finite dimen-
sion of the cohomology group Ko may be dropped.
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3.1. First Order Systems. We recall the linear first order system (1.5) from the introduction: Find
& € Dy = D(Ay) N D(A]) such that

A2$:f7
(3.1) Ajz =g,
’/TQZL':k.

Theorem 3.3. (3.1) is uniquely solvable in Do, if and only if f € R(As), g € R(A]), and k € Ky. The
unique solution x € Do is given by

z:=z5+x5+ke D(A) Bn, D(Ai) ®H, Ko = Do,
5= (A2)7'f € D(Ap),
zq = (A]) g € D(A))

and depends continuously on the data, i.e., |x|n, < ca|flns + c1l9ln, + |klHy, as

|z flHe < c2l flHy |ZglH, < c1]gln,-
It holds
T =wn Tae=ag,  me=k ey, = laglR, + el + kR,
The partial solutions x5 and x4 can be found by the following two variational formulations: There exist
unique potentials y; € D(Ay) and z, € D(A1), such that

(3.2) V¢ € D(A;) (A3ys A5 Oy = (f2 Db,
(3.3) Ve D(A) (A1 29, A1 O)H, = (9, ©)H, -

Moreover, (3.2) and (3.3) even hold for all € D(A3) and for all ¢ € D(A,), respectively, as f € R(A3)
and g € R(A]). Hence we have Ayy; € D(Ag) N R(A;) = D(A2) with Ay Ajyr = f as well as
Ay z, € D(A))NR(A)) = D(A]) with A} Ay zg = g, yielding

A;yf:xf, Alzg:a:g.

Proof. As pointed out in the introduction, we just need to show existence. We use the results of Section
2. Let f € R(As), g € R(A]), k € Ky and define z, xy, and z, according to the theorem. For the
orthogonality we refer to Lemma 2.7. Moreover, x¢, x4, and k solve the linear systems

AQ.Z‘f:f, Agxg:O, AQk:O,
Aixf:O, Ax{mg:g, Aszo,
myxy =0, maxg =0, Tk =k.

Thus  solves (3.1) and we have by Corollary 2.5 |zf|n, < c2|f|n, and |zg|n, < c1|g|n,, which completes
the solution theory. To find the variational formulation for z; € D(As) = D(Az) N R(Ay), we observe
xp = Ayyy with yp = (Ay) oy € D(A3) and

(3.4) Vo eD(A)  (Asyr, Aoy = (Tp, Ay Bhny = (Asxp, O)ny = (f, O)ha-

Using Corollary 2.5 (iii) or Lemma 2.7 we can split any ¢ € D(A3) = N(A})@n, D(A5) into ¢ = ¢y +ér
(null space and range) with ¢y € N(A}), ¢r € D(A3), and Ay ¢ = A ¢r. Utilizing (3.4) for ¢ and
orthogonality, i.e., f € R(As) = N(Ay)*s, we get

<A; yf7A; ¢>H2 = <A; yf7A; ¢R>H2 = <f7 ¢R>H3 = <f7 ¢>H3

Therefore, (3.4) holds for all ¢ € D(A}). On the other hand, (3.4) is coercive over D(A;) by the
Friedrichs/Poincaré type estimate of Corollary 2.5 (i) and hence a unique y; € D(A,) exists by Riesz’
representation theorem (or Lax-Milgram’s lemma) solving (3.4). But then (3.4) holds for all ¢ € D(A3)
as well, yielding 7, := A5y € D(Ag) with Ay 7 = f. Since &y € D(A2) N R(A3) = D(Az) C R(A}) we
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have &y = (A2) "' f = 2 and especially Aj Zy = 0 and mp Ty = 0. Analogously, we obtain a variational
formulation for x4 as well. O

Remark 3.4. By orthogonality and with Ao x = Asxy = f and AT T = AT g = g we even have
@l = |25 [, + ool + kR, < SBIFR, + lald, + kR,
@b, = [osl, + 1R, + |2l + olE, + kR, < (4 IR, + 0+ Dlglf, + k1,
Note that
yr = (A)lap = (A) TN (Ao) I € D(AL), 2= (A1) ey = (An)TH(A) g € D(AY)

holds with Ay A5 yr = f and A; Ay zy =g. Hence x¢, x4, k, and y¢, z4 solve the first resp. second order
systems

Asay = f, Az, =0, Ak =0, AsAyyr = f, ATA zy =g,
Alzy =0, Az, =g, Alk=0, Aszy; =0, Agz, =0,
moxy =0, ma g = 0, mo k =k, m3yfr =0, m 2 = 0.

We also emphasize that the variational formulations (3.2)-(3.3) have a saddle point structure. We have
already seen that, provided f € R(Ay) and g € R(A]), the formulations (3.2)-(3.3) are equivalent to the
following two problems: Find y; € D(A,) and z, € D(A;), such that

(35) Y € D(Ay) Asyp Ay O)n, = (f.0)n,,

(3.6) Vo e D(Ay) Ay zg, AL O)n, = (9, O)H, -

Moreover, y; € D(Ay) = D(A3) N R(Ay) if and only if y; € D(A}) and y; Ly, N(A3) as well as
zg € D(A1) = D(A1) N R(AY) if and only if 2z, € D(A;) and 2,1, N(A1). Therefore, the variational
formulations (3.5)-(3.6) are equivalent to the following two saddle point problems: Find y; € D(A}) and
zg € D(A4), such that

(B7)  YoEeDMA;)  (AyypAdm, =(fidm, A VOEN(A;)  (yp0)m, =0,

(38) Vo e D(Al) <A1 ZgaAl Q0>H2 = <9790>H1 A Vi e N(Al) <Zg71/)>H1 =0.
Remark 3.5. The finite dimensionality of Ko may be dropped. Then all other assertions of Theorem 3.3

and all variational and saddle point formulations remain valid. Note that R(A1) and R(A3) are closed,
if D(A1) — Hy and D(A3) < Hy are compact.

{
{

3.1.1. Trivial Cohomology Groups. By Lemma 2.7 it holds

N(A1) = R(Ao) ®n, K1, N(A,) = R(A}) @, K.
In the special case, that R(Ag) and R(A3) are closed and additionally
Ky =A{0},  Ks3={0},

we see that the two saddle point problems (3.7)-(3.8) are equivalent to: Find y; € D(A;) and z, € D(A4),
such that

(39)  VeeDAy)  (Asyp Asdm, = (o, A VIEDAY)  (yr, Azd)u, =0,
(310) VQD € D(Al) <A1 Zg,Al SD>H2 = <g,<p>H1 A VT S D(Ao) <Zg,A0 ’7'>|-|1 = 0
Let us consider the following modified system: Find

(yr,vs) € D(AY) x D(A3), (29, w,4) € D(A1) x D(Ap),
such that
(3.11)  V(¢,0) € D(A3) x D(Ay)  (Azys, Ay d)m, + (&, Az vp)uy = (fs O)ng
(312) V(QO,T) € D(Al) X D(AO) <A1 ZgaAl 90>H2 + <<)0,A0 wg>H1 - <9790>H1

(ys, Ay O, =0,

N
AN <Zg,A0’T>H1 =0
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The unique solutions yys, z4 of (3.9)-(3.10) yield solutions (y¢,0), (z4,0) of (3.11)-(3.12). On the other
hand, for any solutions (ys,vy), (24, w,) of (3.11)-(3.12) we get Azv; = 0 and Agw, = 0 by testing
with ¢ = Azv; € R(A;) = N(A3) C D(A3) and ¢ := Agw, € R(Ag) = N(A;) C D(A;) since
f € R(A2) Lu,N(A3) and g € R(A})Ln, N(A}), respectively. Hence, as v; € D(Aj3) and w, € D(Ag)
we see vy = 0 and wy = 0. Thus, y¢, 2, are the unique solutions of (3.9)-(3.10). The latter arguments
show that (3.9)-(3.10) and (3.11)-(3.12) are equivalent and both are uniquely solvable. Furthermore, the
saddle point formulations (3.11)-(3.12) are accessible by the standard inf-sup-theory: The bilinear forms
(A - A5 n, and (A; -, Ay -)p, are coercive over the respective kernels, which are N(A3) = R(A,) and
N(A}) = R(A}), i.e., over D(A3) and D(A,), and satisfy the inf-sup-conditions'™

<¢)7 A; 19>H3 > inf | Ag’lg‘l'H

> =G+
?lpanldlpan — orvencas) [Wpas) °

inf sup
0#DED(A3) 0£p€ D(AL)

inf <<)07A0 7->H1 > inf ‘AOT‘Hl

0£TED(A0) 0£peD(A1) [PID(ANTID(Ag) — 0£7€D(A0) |T|D(Ay)

which follows immediately by choosing ¢ := A39 € R(A3) = N(A3) and ¢ := Ag7 € R(Ag) = N(Ay).
Now, if D(A;) and D(Ap) are still not suitable and provided that the respective cohomology groups are
trivial, we can repeat the procedure to obtain additional saddle point formulations for vy and w,. Note

that (3.11)-(3.12) is equivalent to find (yy, vy, 24, w,) € D(A3) x D(A3) x D(Ay) x D(Ay), such that for
all (¢, 9, ¢, 7) € D(A3) x D(A3) x D(A1) x D(Ap)
(Ao, As O)n, + (6, Az vp)n, + (W, Az Dmy + (A1 25, A1 @)n, + (0, Ao wgdm, + (29, Ao T)h,
= (f,0)n; + (g P, -
3.2. Second Order Systems. We recall the linear second order system (1.8), i.e., find"
x€Dy:={£€Dy : Ay € D(A})} ={€ € D(A2) N D(A]) : Ax€ € D(A})} = D(A2) N D(A; Ay)
such that

= (g +1)7"2,

(3.13)

A;AQx = f7
(3.14) Alz =g,
T2 X = k.

Theorem 3.6. (3.14) is uniquely solvable in Dy, if and only if f € R(A3), g € R(A}), and k € K. The

untique solution x € Dy is given by
x:=xf+a,+k € (D(A2) Bu, D(AY) @, K2) N Dy = Dy,
= (A2) "1 (Ay) "L f € D(A2) N Do,
2y = (A})"'g € D(A}) N Dy

and depends continuously on the data, i.e., |z|n, < c3|fln, + c1lgln, + |kln,, as

25l < Sl flha lzglhy < ctlglh,.
It holds
mar=os, o=z, mo=k ol = ol el + kR,
VNote that
IR AR, AL
0£9€D(A}) Iﬁlfj(A;) ozveD(Ay) [OF, +1A3 913, 0£0€D(AL) | A3 918, 2+ 1’
i | Ao 7’|E|1 _ n | Ao 7'|a1 B ( |T\a0 + ] Ao 7'|a1 )_1 1
0£7TED(A0) |TI3, 5,y 0#£TED(A0) TR +1AoTl},  Nogrenag)  1A0TIR, TR+l
hold.

VWe generally define Dy := {£ €Dy : Ap€e D(Az)} =D(Ay)N D(AZ Ay) fort=1,...,3.
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The partial solutions x5 and x4 can be found by the following two variational formulations: There exist
unique potentials 5 € D(Az) and z4 € D( A1), such that

(3.15) V& e D(Az) (A2 Zp, Az ny = ([, e,
(3.16) Vo € D(A) (A12g, A1 o)n, = (9, 9)n,
Moreover, (3.15) and (3.16) even hold for all £ € D(A3) and for all p € D(Al), respectively. Hence
Ay @p € D(A}) N R(Ay) = D(Ay) with AyAs@; = f and Ayz, € D(A]) N R(A1) = D(A;) with
AT Ay zg = g, yielding
Ty =uxy, Ay zg = x4,
Proof. The necessary conditions are clear. To show uniqueness, let 2 € Dy solve
ASAyz =0, Alz=0, mox = 0.

Hence 2 € N(A]) N K, ™ and also 2 € N(As) as Aoz € D(A}) and

| A ffy, = (2,A3 As)n, = 0,

yielding z € Ko N KJ'H2 = {0}. To prove existence, let f € R(A;), g € R(A]), k € K> and define z, z,
and z, according to the theorem. Again the orthogonality follows directly by Lemma 2.7. Moreover, ¢,
Zg, and k solve the linear systems

Ay Asxy = f, Arzy =0, Ay k=0,
Aixf:(), Alz, =g, Al k=0,
’/TQIZ’f:O, 7T2$g:0, ng:k.

Thus z solves (3.14) and we have by Corollary 2.5 |z¢|n, < co| Az fln, < 3| fln, and |zgln, < cilglm,,
completing the solution theory. That the partial solutions can be obtained by the described variational
formulations is clear resp. follows analogously to the proof of Theorem 3.3. O

Remark 3.7. By orthogonality and with Ay x = (A;)’lf, AsAsz = f, and A} x = g we even have
2 2
ol = bl + bl + 1, < AR, + ol + 41
2 _ 2 2 2 2 2 2
|$|D2 = |“’”J"}H2 + |A2:‘C|H3 +1flq, + |x9‘H2 + lgli, + [kla,
< (14 +a)Ifl, + A+ eDlgla, + kR,

Remark 3.8. Since the second order system (3.14) decomposes into the two first order systems of shape
(1.5) resp. (3.1), i.e.,

A2l":y7 A3y:Oa
Az =g, Ay =f,
mox =k, msy =0

for the pair (z,y) € Dy x Ds with y := Ayz € D(A;) N R(Ay) = D(A,), the solution theory follows
directly by Theorem 3.3 as well. One just has to solve and set

y = (A;)"'f € D(A;) C R(As),
= () ly + (A)) g+ k € (D(A2) @, D(AL) @n, Ko) N Do = Do
Note that
Fr=ap=(A) (AT FED(A),  zg= (A1) mg = (A1) (A) g € D(AY)

holds with A; Ay zy = f and AT A, zg = g. Hence xy, x4, k, and z4 solve the first resp. second order
systems

Agzp = (Ay) 7L, Ay, =0, Ask =0, Ay Mgz = f, AT Az, =g,



12 DIRK PAULY

Aixf:(), Ai:cg:g, Atk:(), Aixf:O, Agzg:O,
maxy =0, moxg =0, m k =k, maxs =0, m1 29 = 0.

As before we emphasize that the variational formulations (3.15)-(3.16) have again saddle point structure.
Provided f € R(A3) and g € R(A]) the formulations (3.15)-(3.16) are equivalent to the following two
problems: Find z; € D(Az) and z, € D(A;), such that

(3.17) V€ D(Ag) (Apzp, Ar E)ny = (f, Ens

(3.18) Vg e D(A) (A 20, A1 P, = (9> P,

Moreover, similar to the first order case, z; € D(As) = D(A3) N R(A}) if and only if 2y € D(A) and
zp Ly, N(As) as well as z, € D(A;) = D(A;) N R(A]) if and only if 2, € D(A;) and z, Ly, N(Ay).
Therefore, the variational formulations (3.17)-(3.18) are equivalent to the following two saddle point
problems: Find 2y € D(Az) and z, € D(A;), such that

(3.19) Vf c D(Ag) <A2 a’,‘f,Ag £>H3 = <f, 5>H2 A VC € N(Ag) <vac>H2 =0,
(3.20) Vo € D(A1) (A1 29, A1 @)n, = (9,001, A Vi € N(Aq) (2g:¥)n, = 0.

We emphasize that the considerations leading to (3.9)-(3.10) and (3.11)-(3.12) can be repeated here,
giving similar saddle point formulations as well.

Remark 3.9. Remark 3.5 holds word by word also for Theorem 3.6.

4. FUNCTIONAL A POSTERIORI ERROR ESTIMATES
Having establishes a solution theory including suitable variational formulations, we now turn to the

so-called functional a posteriori error estimates. Note that General Assumption 3.1 is supposed to hold.

4.1. First Order Systems. Let € D, be the exact solution of (3.1) and & € Hs, which may be
considered as a non-conforming approximation of x. Utilizing the notations from Theorem 3.3 we define
and decompose the error

Hyoe:=2 -7 =en, +ex, +e5: € R(A1) Bh, K2 On, R(A3),
ea, :=Ta e =T, — A, T € R(Ay),
(41) 1 g 1 ) ( 1)
(:’A; = 71'A;6 =Tf— WA;.CL' S R(AQ),
€K, ;=Tae=k—maZ € Ky
using the Helmholtz type decompositions of Lemma 2.7. By orthogonality it holds
(42) |e|az = |6A1‘|2’|2 + |6K2|a2 + |6A;|I2-|2'
4.1.1. Upper Bounds. Testing (4.1) with A; ¢ for ¢ € D(A;) we get for all ¢ € D(A]) by orthogonality
and Corollary 2.5 (i)

= (e, A1 )n, = (AT, 0)n, — (& — C+ (A1 @hm,
= (9= AT, — (Ta, (E = ), Ar o)y,

<19 — AL Clny lelhy + |7, (@ = Oy, [ A1 el

< (Cl|g — A Cln, + |ma, (@ — C)\H2)|A1 ®lH,-

As ea, € R(A1) = R(A;), we have ex, = Aj . with ¢, := (A1) tea, € D(A;). Choosing ¢ := ¢, in
(4.3) we obtain

(44) VCGD(AT) |6A1|H2 Scl‘g_AT §|H1 +’7TA1(‘%_<)|H2 Scl‘g_A; C|H1 +|j_C‘H2

<6A1 s Aq <P>H2

(4.3)
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Analogously, testing with A ¢ for ¢ € D(A;) we get for all £ € D(As) by orthogonality and Corollary
2.5 (i)

= (e, A3 D), = (A2 2, O, — (T — E+ & A D),
= (f = A2 &, D)y — (maz (F =€), Ay )y,

<|f = As€lngldlhy + [maz (3 — )|, | Az Bl

< (calf = Azl + [ may (@ = )], )| A3 Sl

Aseyr € R(A}) = R(A3), we have ear = A5 ¢ with ¢, := (A;)fleA; € D(A3). Choosing ¢ := ¢, in
(4.5) we obtain

<6A’2‘7A; ¢>H2 <
(
(4.5)

(4.6) VEE D(Az)  lepzlny S colf = Aoéln, + |mpz(@ =€)y, < 2l f — Az€lny + 1T — s
Finally, for all ¢ € D(A;) and all ¢ € D(A}) we get by orthogonality

(4.7) lex,|fi, = (exs kb — M@+ A1+ Ay @)n, = (e, kb — + A1 o + Ay d)n,

and thus

(4.8) Vo eD(A) VoeDA)  lerulny < [k =T+ Arp+ A B,

Let us summarize:

Theorem 4.1. Let x € Do be the exact solution of (3.1) and & € Ha. Then the following estimates hold
for the error e = x — & defined in (4.1):

(1) The error decomposes according to (4.1)-(4.2), i.e.,

€=ea, +eK, + eA; € R(Al) DH, Ky DH, R(A;)v |€‘|2_|2 = ‘6A1|E|2 + ‘6K2‘|2-|2 + |€A;‘I2-|2'
(ii) The projection en, = ma, e = x4 — A, & € R(A1) satisfies
|6A1 |H2 = min* (Cl| A>1k C - g|H1 + |< - i'|H2)
CeD(AY)

and the minimum is attained at
Cimea, +i=mre+i=—(1—mp)ed+z= —TN@ane T E D(A))

since Ay (= Az =g.
(iii) The projection ey: = Tpze = x5 —m\=T € R(A) satisfies
= min (co|A2§— +E—2
Ho feD(AQ)( 2| 2§ f|H3 |§ ‘Hz)

and the minimum is attained at

{i=eps +T=mpre+@=—(1-mpr)et+a=—myn@,e+z € D(Az)

|6A;

since Ao & = Aoz = .
(iv) The projection ex, = moe =k — o & € Ko satisfies

lex,|H, = min  min k7i+A1<P+A;¢|H2

pED(A1) peD(A3)

and the minimum s attained at
pi= (A1) 'ma,Z € D(A),  ¢:=(Ay)'mprd € D(Ay)
since Ay ¢ + Ay d = (ma, + Tar)T = (1 —m2)2.
For conforming approximations we get:

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied.
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(i) If & € D(A}), then e € D(A}) and hence ex, = mwa,e € D(A;) with A} ex, = A} e and
|6A1|H2 < 61|Aii' - g|H1 = Cl|A>1k 6|H1

by setting ¢ := &, which also follows directly by the Friedrichs/Poincaré type estimate.
(ii) If & € D(Az), then e € D(Az) and hence epr = my-e € D(Az) with Ayeyr = Aze and

\eA; Hy, < 2| Ao @ — flny, = co| Az eln,

by setting & := &, which also follows directly by the Friedrichs/Poincaré type estimate.
(iii) If ¥ € Dy, then e € Dy and

|e|2D2 = ‘6A1||2'|2 + ‘eK2‘|2'|2 + |€A; |2'|2 + |‘A2 e||2'|3 + |A1 e||2'|1
< leralit, + (1 +c)| Azeliy, + (1+ ) Ay elf,
with
e, =k —m &, Aje=f—AyE  Ale=g—AlZ,

which again also follows immediately by the Friedrichs/Poincaré type estimates.
Remark 4.3. Corollary 4.2 (iii) shows, that for very conforming & € Ds the weighted least squares
functional

F(@) =k = m2 2}, + 1+ )| A2 @ — fla, + (1+c])| A1 2 — glf,
is equivalent to the conforming error, i.e.,
le[p, < F(@) < (1 + max{cr, e2}?)lelD,-
Recalling the variational resp. saddle point formulations (3.5)-(3.6) resp. (3.7)-(3.8) and that the
partial solutions are given by
xf:A;nyD(AQ), ‘rg:AldeD(Ai)a

a possible numerical method, using these variational formulations in some finite dimensional subspaces
to find gy € D(A3) and 2, € D(A,), such as the finite element method, will always ensure

iy = Ay fr € R(Ay) = N(A2)™2 C N(A]), #:=A1%, € R(A;) = N(A))* C N(Ay)
and thus N
Ty + Ty € R(A,) ®n, R(A1) = K3,
but maybe not #; € D(Ag) or &, € D(A]). Therefore, a reasonable assumption for our non-conforming
approximations is

ii'J_:

~ ~ 1
T, +k, $L€K2H2,

T
with ex, =me=my(z — %) = —mez, =0.

Corollary 4.4. Let x € Dy be the exact solution of (3.1) and & := k+ &, with some &, € KQLHQ. Then
for the error e defined in (4.1) it holds:
(1) According to (4.1)-(4.2) the error decomposes, i.e.,

- - * €L
e=x—I=x5+xg—TL=e€a ey € R(A1) @, R(A;) = Ky ™, er, =0,

and |effy, = lea, |7, + leas &, Hence there is no error in the “kernel” part.
(ii) The projection ex, = ma,e =g — TA, & =g — A, Z1 € R(A1) satisfies

. * ~
lea,ln, = min_ (1] Ay ¢ —glw, +1¢ — lny)
CED(AY)

1

= min_(c1|A]¢—glu, +1¢—Filn,)
CeD(Ay)

(exchanging ¢ by ¢ + k) and the minima are attained at
Ci=ea, +Z=mae+i=—(1—ma)e+a= —Tnane T T € D(A)),

i :=6A1—|—fl=7TA16+J~CLZ—(1—7TA1)8—|-$—/€=—WN(AT)B—FQE—]GED(AD
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since AL =A(=Alz=g.
(iii) The projection eyr = Tpre =y — Tp:T =Tp — Tp2T1 € R(AY) satisfies

— mi A€ — flu, + 1€ — @
Ha 561}31%1&2)(02| 26— fluy + 1€ — Tlh,)

— mi As€— flu, + 16— 7
561})1}22)(02| 26— fluy + 16— T1ln,)

|€A;

(exchanging & by £ + k) and the minima are attained at
£:= ear tT=mpretT=—(1-my:)e+x=—Tnu,e+z € D(Az),
£ =eprt L =mpyret+ T =—(1-myr)etx—k=—Tnm,e+a—k € D(Ay)
since Ag{l =A2€:A2x:f.
4.1.2. Lower Bounds. In any Hilbert space H we have

(4.9) YheH  [hlf = max (2(h, hju — |hl3)
and the maximum is attained at h. We recall (4.1) and (4.2), especially

lelis, = leay [&, + lexclf, + leas [,
Using (4.9) for H = R(A;) and orthogonality we get

‘eAlmz = max (2<6A1’A1 ()0>H2 - |A1 90|I%|2)

pED(A1)

- 2%e. A — | Ay |}
¢£%§1)< (e, Aron, — [ A olid,)

= 2 — {22+ A A
goé%?fl)( (g, 0)m, — (2% + A, A1 p)n,)

and the maximum is attained at ¢ € D(A;) with A; ¢ = ex,. Analogously for H = R(A3)

‘eA*|a2 = max* (2<f7¢>H3 - <21’+A; d)vA; ¢>H2)
2 $€D(A,)

and the maximum is attained at ¢ € D(A3) with A b=c¢ AL Finally for H = K3 and by orthogonality
2 2 -
lexali, = max (2ers, O)na — [01R,) = max (2(k — ) = 0,0),,,
and the maximum is attained at 6 = e, .

Theorem 4.5. Let x € Do be the exact solution of (3.1) and & € Ha. Then the following estimates hold
for the error e = x — I defined in (4.1):

(i) The error decomposes according to (4.1)-(4.2), i.e.,

€e=ea, ter, + eA; € R(Al) DH, Ko DH, R(A;)’ |6‘|%|2 = ‘6A1|a2 + ‘eKz‘laz + |6A3 I%|2'
(ii) The projection en, = ma, e = x4 — A, & € R(A1) satisfies

2 ~
= max (2(g,Q)n, — (28 + A1 @, A1 OV,
|‘3A1|H2 @eD(il)( (9, 9)n (27 10, A1 o) )

and the mazimum is attained at, e.g., ¢ := (A1) tea, € D(A;).
(iii) The projection e = mpre = x5 —Tp2T € R(A}) satisfies

leasld, = max_ (2(f, d)u, — (22 + A3 6, Aj D))
2 ¢eD(A)

and the mazimum is attained at, e.g., ¢ = (A;)’leA; € D(A).
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(iv) The projection ex, = moe =k — o & € Ko satisfies

lenalf, = max (2(k —7) = 0,6),,,

and the mazimum is attained at § := ex, € Ko.

If 2 := k+ 2, with some 2, € K;'H2, see Corollary 4.4, then ex, = 0, and in (ii) and (iii) & can be
replaced by &1 as k Ln, R(A1) ®n, R(AY).

4.1.3. Two-Sided Bounds. We summarize our results from the latter sections.

Corollary 4.6. Let x € Dy be the exact solution of (3.1) and & € Hy. Then the following estimates hold
for the error e = x — & defined in (4.1):

(i) The error decomposes according to (4.1)-(4.2), i.e.,
e=ep, +ek, + eA; € R(Al) DH, K, DH, R(A;)’ |6‘I%|2 = ‘6A1|a2 + ‘eKz‘laz + |6A3‘E|2'

(ii) The projection en, = ma, € = x4 — A, & € R(A1) satisfies

. * - 2
|6A1|a2 = mn, (Cl|A1C79|H1 + ‘C7x|H2)
¢CeD(A])
_ 2 — 25+ A0 A
goé%?fl)( (9. 0)H, — (2T + A1 0, AL @)n,)

and the minimum resp. maximum is attained at

C:=ea, +Z€DA)),  ¢:= (A1) tea, € D(A)
with A} = Az =g.
(iii) The projection ep: = Tpze =2y — Tx=T € R(A3) satisfies

2 ; Pln.)’
= A - -
M2 = ecD(An) (cal Az & = flug + 1€ = Zln.)

= max_ (2(f,0)n, — (22 + A5 d, Ay O)n,)
peD(A})

\GA;

and the minimum resp. maximum is attained at

Ei=ey:+TE€D(Ay),  §i=(Ay) ey € D(A)

with Ay € = Agx = f.
(iv) The projection eg, = moe =k — my & € Ko satisfies

lex,|h, = min  min kfiJrAl(erA;d)rfb

PED(A1) peD(A3)

= max (2(k — ) — 079>H2

and the minimum resp. maximum is attained at
¢ = (A1) 'ma, & € D(Ay), ¢ = (.A;)_lﬂ'A;i‘ € D(A;), 0:=eg, € Ky
with Ay @+ AL ¢ = (ma, +7y:)F = (1 —m)i.

If & := k+ &, with some T, € K;Hz, see Corollary 4.4, then ex, = 0, and in (ii) and (iii) T can be
replaced by x, . In this case, for the attaining minima it holds

(Li=ea, +EL€D(A]),  {Li=ey: +31 € D(Ag).
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4.2. Second Order Systems. Let z € Dy be the exact solution of (3.14). Recalling Remark 3.8 we
introduce the additional quantity y := Asx € D(Ay). Then (3.14) decomposes into two first order
systems of shape (1.5) resp. (3.1), i.e.,

A2m:y7 A3y:0a
Az =g, Ay =,
mox =k, msy =0

for the pair (z,y) € D2 x D3. Hence, we can immediately apply our results for the first order systems. Let
Z € Hy and § € Hs, which may be considered as non-conforming approximations of x and y, respectively.
Utilizing the notations from Theorem 3.6 we define and decompose the errors

HySe:=x— T =ea, +ex, +ep: € R(A1) On, Ko B, R(A}),

(4.10) ~ *
H3 3 h:=y—§=ha, + hi, + hy: € R(A2) ®n, K3 ©n, R(A3),
CAy = TA €= Tg — ’/TAlf S R(Al)7 hA2 = 7TA2h =y — 7TA2:Z7 S R(Az),
Cpp = MpzE =Ty — TprT € R(A), hap=mpsh=—my: € R(A3),
ex, =mae=k—m € K, hig, :=m3e=—m3y € K3

using the Helmholtz type decompositions of Lemma 2.7 and noting ma,y = y as y € R(A3z). By orthogo-
nality it holds

(4.11) el = lear By + lexalR, + leaz By W[, = Voas By + [y By + Lhas

Therefore, the results of the latter section can be applied to ea,, ex,, NS hay, hig, hAg. Especially, by
Corollary 4.6 we obtain

* 2
4.12 2 = mi A ¢ — -7 = 2(g, — 224+ A1 ¢, A
(4.12) e, iy, i (c1l Ay ¢ = glmy + ¢ = Zln,) x| (2(9, ), — (22 + A1 o, AL o)n,)
and the minimum resp. maximum is attained at { = ex, +& € D(A]) and ¢ = (A;) 'ea, € D(A;) with
Aj{=Alz=y,

e geIBi(R : (cal A2 € — yln, + € — 57|H2)2 = max_ (2(y,¢)n, — (2T +A50, A, D)H,)

4.13 epr
(413) ey, o

and the minimum resp. maximum is attained at & = ear +& € D(Az) and ¢= (A;)’leA; € D(A;) with
A, é =Ayr = Y,

(4.14) lex, |, = min  min

k—%+ A @+ Ay ¢l3 = max (2(k— %) — 6,0
@GD(Al)qﬁeD(A;) T 1¥ 2¢|H2 9€K2< ( ) >H2

and the minimum resp. maximum is attained at ¢ = (A;)"‘ma, @ € D(A;), ¢ = (A;)flwA;i € D(A),

and 0 = ex, € K WithA1¢+A;q3:(ﬂAl—|—7TA;)5c=(1—7r2)9E. Ifx=k+2, Withsomech_GKleﬂ

then ek, = 0, and Z can be replaced by Z . If the General Assumption 3.1 holds also for Ag, i.e., R(A3)
is closed and (not neccessarily) K is finite dimensional, we get the corresponding results for ha,, hi,,
h A @S well. Replacing A; by As and As by Ag, Corollary 4.6 yields

. * ~ 2 ~
(415)  |haylf, = min_ (c2] AgC— flu, +1¢ = lns)” = max  (2(f, ©hn, — (2 + Az 0, Ay O)n,)
CED(A}) pED(Az)

and the minimum resp. maximum is attained at ¢ = ha, +§ € D(A5) and ¢ = (Ay) " 'ha, € D(Az) with

4.16 hatl2 = mi A 1=, = — (254 AL ¢, A
(4.16) hoazlh, = min (esl As s + 1€ = Flna) ¢€H[1)6(L§;)( (20 + A3 6, A5 )n,)
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and the minimum resp. maximum is attained at = hay +9 € D(A3) and ¢ = (A;)’lhAg € D(A3) with
A3é: A3y = 07 i'e'v é € N(A3)7

4.17 hi.|%. = min min | —§+Asp+ As ¢4 = max (— (25 +6,0
( ) s [, #ED(As) e D(AL) Y 2% 3 Pli, QEK);( (2y >H3)
and the minimum resp. maximum is attained at ¢ = (A) " 'wa,j € D(Az), ¢ = (A;)_lﬂ'A;g € D(A3),

and 0 = hr, € K3 with Ag @+ A5 d = (wa, +m52)j = (1—7m3)j. 1§ =1 € K3™, then hy, =0, and
Hs in (4.16) equals

7 can be replaced by ¢, . The upper bound for |hkA;

Hs 266%1(%3) |£_Q|H3 = |£_Q|H3a é-:hA; —I—QE N(A3)7

lhax

and so the constant ¢z does not play a role. In (4.13) the unknown exact solution y still appears in the
upper and in the lower bound. The term As & —y € R(A3) of the upper bound in (4.13) can be handled
as an error he =y — Je with g¢ = Ao . As he = ma, he = he A, We get by (4.15)

| A2 = ylu, = |heln, = min_ (2l A5 ¢ — flu, + 1 — Ao éln,)-
CED(A3)

Another option to compute an upper bound in (4.13) is the following one: As y € D(A;) we observe

Ayé —y e D(Ay) if € € D(A5Ay). The minimum in (4.13) is attained at £ = ear + & € D(Az) with

Asé=Ayz=vy. Since £ € D(A; Ay) and A} Ay é= A5y = f we obtain

Hy = mll*l (CQ|A2£_3/|H3+|§_‘%‘H2> = mlI*l (cg‘A;AQE_f|H2+|§_j|H2)7
¢eD(A} As) ¢eD(AL Az)

|€A;

where the latter equality follows by the Friedrichs/Poincaré inequality. To get a lower bound for |e AL
in (4.13) we observe e,x € R(A3) = R(A3 Ay) and derive

2 =  max 2en, Ay A — | A Ay @2

o= e (2en; AL A0, — A3 A2 0fF)

= max (2(e, Ay A28)m, — A3 A2 417,)
$ED(AS Az)

= max (2(f,0)n, — (28 + A3 A2, A5 Ao B)n,).
pED(A; A)

2
Ha

|€A;

We summarize the two sided bounds:

Theorem 4.7. Additionally to the General Assumption 3.1, suppose that R(As) is closed. Let x € D,
be the exact solution of (3.14), y:= Asx, and let (Z,7) € Ha x Hs. Then the following estimates hold for
the errors e = x — & and h =y — § defined in (4.10):

(i) The errors decompose, i.e.,

2
Ha»

h=ha, + hic, + ha: € R(Az) &, K3 @u, R(A3), Pl = has By + [Py [y + [Baz [y -

e=ep, +eK, + eA; € R(Al) DH, K> DH, R(A;)’ |€‘a2 = ‘6A1|212 + ‘6K2‘a2 + |6A;

ii) The projection ex, = ma,e = x4 — A, T € R(A1) satisfies
1 1 g 1

. * ~ 2
|€A1|a2 = mn, (Cl|A1<7g|H1 + ‘C*‘T|H2)
€D(A)

= 2 — 22+ A A
gaG%%il)( (9,00, — (2T + A1 0, A1 0)n,)

and the minimum resp. maximum is attained at
(i=ea, +3€DA]),  ¢:= (A1) "ea, € D(A)
with AJC=Alz =g.
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(iii) The projection ey: = Tpze =z, — TA=T € R(A,) satisfies

2 . . 2 * ~ 2
= min min (c5| A, ¢ — + el — A + -2z
Hy EED(Az)(eD(A;)( 2| 2< f|H2 2|< 2£|H3 |€ |H2)

. * vt 2
= min (B3lA3 A6 — flu, + 1€ — F|n,)
£eD(A; Ag)

|6A;

= maz( (2<f7 ¢>H2 - <2£+A; A2 ¢7A; A2 ¢>H2)
$€D(A, Az)

and the minima resp. maximum are attained at
fi=ep +FE€D(AyAs), Ci=he+ A =yeD(A;), ¢:=(A) " (A) "en: € D(A; Ay)
with As€ = Asz =y andA;AgézA;yz f as well as A;f:A;y: f-
(iv) The projection ex, = moe =k — mo & € Ky satisfies

k—7+Ap+ AL 03,

\6K2||2_|2 = min min
©€D(A1) eD(A3)

= max (2(k —2) -9, 9>H2

and the minimum resp. maximum is attained at
@ = (Al)ilﬂ-Ar’i S D(A1)7 (;AS = (A;)ilﬂ-A;‘f € D(A;)7 é = 6K2 € K2

with Ay @+ A5 ¢ = (7a, +7p:)E = (1 —m)i.
(v) The projection ha, = ma,h =y — wa, 7 € R(A2) satisfies

. * ~ 2
|hA2|a3 = mn. (02|A2<_f|H2 +|C_y|H3)
CED(A3)

= 2 — 20+ A A )
cpEHIlDE%Xz)( (fsP)hs — (20 + Ao 0, Ag O)y)

and the minimum resp. maximum is attained at
C:=ha, +§€D(Ay),  ¢:=(A2) "ha, € D(A2)
with A5 =Ayy=f.
(vi) The projection hyx =my-h = —T+jj € R(A}) satisfies

Rx 2 — : A + — 7l 2 — : o~ 12
(ol =  uin (c3l As &luy + 1€ = Flny) (i 1€~ gk,
= max (— <2Q+A; o, A; ¢>H3)

$ED(A3)
and the minimum resp. maximum is attained at
§i=hy:+TEN(Ag),  ¢:=(A3) 'hy: € D(A)

(vii) The projection hx, = m3e = — w3y € K3 satisfies

hi.l2. = min min | — 4§+ Ay + A 2
| 3|Hd weD(A2)¢eD(A;)| Yy 2@ 3¢|H3

— gé%é ( — <2y + 0, 9>H3)
and the minimum resp. maximum is attained at
¢ i=(As) 'ma, i € D(A2), = (Ay) 'marii€ D(Ay),  0:=hg, € Ks
with Ay @ + A3 b = (ma, + Tas)Y = (1 —m3)7.

If £ = k+ 2, with some T, € K;'HQ, then ex, = 0, and in (i) and (iii) & can be replaced by T .

J=171L € K;‘HS, then hi, =0, and in (v) and (vi) § can be replaced by ¥, .

19

If
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Remark 4.8. A reasonable assumption provided by standard numerical methods is § € R(Ag). Hence it
often holds hyx = hr, = 0.

4.3. Computing the Error Functionals. We propose a suitable way to compute the most important
error functionals in Theorem 4.1, Corollary 4.4, and Corollary 4.6. Let us discuss, e.g.,

4.18 “lp, = i A€ — —F % € Ho .
(4.18) ez I Eerggz)(m 26— flus + €= Eln,), T EH

As for all £ € D(Ag) and all t > 0
e S+ G A6 = [l + (L4 D18 = alf, = F@:61),

|€A;

we have for £ = é from Theorem 4.1, Corollary 4.4 or Corollary 4.6

leas lih, < ot il F@EY < nf F(#&,1) = ot (L tlen; b = leas lf-
Thus
(4.19) easlit, = min F@&0 = min (L4 A2~ STk, + L+ 0lE -3,
£€D(As) §€D(A2)

and the minimum is attained at (¢,£) = (0,€). For fixed & € D(Ay) the minimal te € 0, 00] is given by

|A2& — fln, . .
i~ ~ ) f )
T L L e

00 yif € =12.

We note that the case t¢ = oo can only happen if £ € D(A3). In any case, inserting t¢ into (4.19) we get
back (4.18), i.e.,

. . 2
az < min : (02|A2§— flus + 1€ —$|H2) = |€A; |2'|2.

T ¢eD(Ax
On the other hand, for fixed ¢ > 0 the minimization of F(§) := F(&;&,t) over £ € D(As) is equivalent to
find & € D(Az), such that

|€A;

(120)  VEe D(Ay) L PE)E) = (Asl— f As B, + {6 — T, = 0.

2¢3(1+ 1) 2
Especially Ay & — f € D(AS) with Aj(Ax & — f) = L4 (& — &) and hence (4.20) is the standard weak

formulation of the coercive problem (in formally strong form) (A5 Ay +5)& = A, f + L7, ie.,
2 2

t t .
(421) VfGD(Ag) <A2€t,A2€>H3+cﬁ<£tv£>H2 = <f7A2§>H3+07<x7£>H2'
2 2
The strong form holds rigorously if f € R(Ay) N D(A}) = D(A,). Moreover, as f € R(Ay) we even have
* ) « t .
A.2 ft — f S D(AQ) with A2(A2 ft - f) = C—Z(x — ft)
2

Inserting &; into (4.19) and using the Friedrichs/Poincaré type estimate shows

leasli, < gin (L4676 A2&e — fli + (L+0)16 — 2,
. _ * 2 ~
(4.22) < min ((L+t7) e | Ax(Ae & = Ny, + A+ 0)l6 — &)
= ten[f(l)igo](l + )26 — 2R, = 16 — Zf,-

A suitable algorithm for computing a good pair (¢, £) for approximately minimizing (4.19) is the following:

Algorithm 4.9. Computing (t,§) in (4.19), i.e., an upper bound for |e -
e initialization: Set n := 0. Pick & € D(Az) with & # T.

Hy -
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|A2&n 1 — fln,
|€n—1 — T,
V& € D(Ag) (A2 &y Ao Oy + 1 (Ens by = 3 (f A2 1y + tn (T, E) iy
Compute }—A; (T;6n,tn) = (1 +t;1) C% | As & — f‘aB + (1 +t0)[6n — me
e stop z'ffA;(i;fn,tn) —fA;(i‘;fn_l,tn_l) is small.

e loop: Set n:=n+1. Compute t, = cy and then &, by solving (4.21), i.e.,

Similarly we propose the following algorithm:

Algorithm 4.10. Computing an upper bound for |ea,|n,:

e initialization: Set n := 0. Pick ¢y € D(A]) with (s # .
| AT Cn—1— g|H1
[Cn—1 — Z[m,

VCEDAY) AT G AT Oy + tn(Gos Oy = (g, AT Oy + tn(, Onty.-
Compute Fa, (T;Cn,tn) = (1 + t;zl) C% | AT Gn — g|2H1 + (L +t0)[Cn — 53“242
o stop if Fa,(Z;Cnytn) — Fa, (T;Cn1, tn—1) is small.

e loop: Set n:=n+ 1. Compute t, = 1 and then ¢, by solving

5. APPLICATIONS

5.1. Prototype First Order System: Electro-Magneto Statics. As a prototypical example for a
first order system we will discuss the system of electro-magneto statics with mixed boundary conditions.
Let © C R? be a bounded weak Lipschitz domain, see [1, Definition 2.3], and let I' := 9Q denote
its boundary (Lipschitz manifold), which is supposed to be decomposed into two relatively open weak
Lipschitz subdomains (Lipschitz submanifolds) Ty and T, := I'\ T} see [1, Definition 2.5]. Let us consider
the linear first order system (in classical strong formulation) for a vector field E : Q — R3

rot E = F in Q, nxFE=0 at Ty,
(5.1) —diveE =g in Q, n-eE=0 at I'y,
n,E=H in Q.

Here, € : Q — R3%3 is a symmetric, uniformly positive definite L*°-matrix field and n denotes the outer
unit normal at T'. Let us put g := ¢!, The usual Lebesgue and Sobolev (Hilbert) spaces will be denoted

by L2(2), HY(), ¢ € Ny, and (in the distributional sense) we introduce
R(Q) :={E€L*Q) : rot E € L>(Q)}, D(Q):={E € L*(Q) : divE € L*(Q)}.
With the test functions or test vector fields
0 (Q) = {<p|Q € C°°(R3), supp ¢ compact in R3, dist(supp ¢, I't) > 0}, Cr(Q) = C>*(Q),

we define as closures of test functions resp. test fields

L HY(9) R(©) D(©)
Hr, (Q) == C(Q) , Rr, (Q2) :== C(Q) , Dr, (©2) == C&(Q) ,

generalizing homogeneous scalar, tangential, and normal traces on I'y and I'y, respectively. Moreover, we
introduce the closed subspaces

Ry(Q) :={E € R(Q) : rot E = 0}, Dy(2) :={E €D(Q) : divE =0},
Rr,0(€2) :== Rp, () N Ry (), Dr., 0(2) := Dr, (€2) N Dy (),
and the Dirichlet-Neumann fields including the corresponding orthonormal projector
Hone () i= Re o) Mg o), 7y ¢ L2(Q) = Hune ().
Here, L2() denotes L2(2) equipped with the inner product (-, ~)Lg(9) = (e, ->L2(Q). Let Hy := L%(Q),
Hy := L%(Q) (both scalar valued) and Hg := L2(Q), Hs := L%(Q) (both vector valued) as well as
Ay = gradp, : D(A;) == Hp () C L*(Q) — L2(Q),
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Ay :=rotr, : D(As) := Ry (Q) C L2(Q) — L*(Q),
Az :=divr, : D(A3) := Dp () C L*(Q) — L*(Q).
In [1] it has been shown that the adjoints are
A = gradf, = —divp, e : D(A]) = uDyp (Q) C L2(Q) — L*(Q),
A; =rot}, = protr, : D(A3) = Ry (Q) € L3(Q) — L2(Q),
Ay =divi, = —gradp, : D(A;) = HL. (Q) C L2(Q) — L*(Q).

For the kernels we have

0 ) if Ft @7 *
N(A;) = {I{R} if T, i@ N(A;) = puDr, (%),
N(A2) = th,o(Q)a N(A;) = an,o(Q)7
. 0} ,if Ty #T,
N(As) = Dr. o(®), N(AY) = {]% PR

As Ay, Ay, Az define a well known complex, see, e.g., [1, Lemma 2.2], so do their adjoints, i.e., for"!

0#£Ty#T

Aj=grad =ro =div
{O} 0 Hll—‘t(Q) 1=8 I't RFL(Q) Ao tre DFt(Q) Az=divr, LQ(Q) 0 {0}7
*—_ div - AL=—grad
{0} PR L2(Q) M 1Dp (Q) M Rp, () 3=~ 8radr, HIL"(Q) l0 {o}.

Using the latter operators Ay and Aj, the linear first order system (5.1) (in weak formulation) has the
form of (1.5) resp. (3.1), i.e., find a vector field

E € Dy = D(A3) N D(A) = Ry () N uDp, (),

such that
I‘Ot]"t E = F,
(5.2) —divp, eE =g,
m, B =H,

where Ko = Hy (). In [1, Theorem 5.1] the embedding Dy < Ha, i.e.,
Rr, () N D, (@) = L2(),

was shown to be compact. Hence also the embedding D3 = D(A3) N D(A3) < Hs, i.e.,
Dr, (€2) N Ry, (2) = L*(Q),

is compact. Thus, by the results of the functional analysis toolbox Section 2, all occurring ranges are
closed, certain Helmholtz type decompositions hold, corresponding Friedrichs/Poincaré type estimates

ViFor I'y = 0 we have

Aj=grad Ag=rot Ag=div

R —%— HY(Q) L2(Q) —2— {0},

*

A;=—divre

R(©)

D(Q)

A;:u rotp =—gradp

A
R 2 — L3(Q) 1D () Rp(Q) < HL(©Q) «—— {0},
which also shows the case I't = I' by interchanging I't and I’y and shifting e. More precisely, for I't = I'' it holds

{0} 0 Hll—‘(Q) Aq=gradp RF(Q) Ag=rotp DF (Q) Ag=divp LQ(Q) TR R,

A; =— grad

AT =—div Ar=pro v
(0} « 2 12() &5 E pre) S22 Reo) HI(Q) + % R
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are valid, and the respective inverse operators are continuous resp. compact. Especially, the reduced
operators are

Ay = g?a/drt : D(Ar) = Hp, (2) N L*(Q) € L*(Q) — grad Hp, (),
Ay = rotr, : D(As) = Ry ( () C prot Ry, (2) — 1ot Ry, (2),
(

Q) N prot Ry
As = divr, : D(A3) = D (Q) N grad HE: (Q) C grad HE: (Q) — L2(Q),

where grad Hp, (€2) and prot Ry (€2) have to be understood as closed subspaces of L(£2), and L*(Q2) has
to be replaced by L2 () :=L*(Q) N RT2@ i Ay, if Ty = 0, and in As, if 'y = I, with adjoints
A} = grady, = —divr,e : D(A]) = 1Dy, () N grad HE (Q) C grad HE (Q) — L2(),
Ay = 1oty = protr, : D(A3) = Ry (2) Nrot Ry, () C rot Ry, (2) — urot Ry (),
Aj = divy, = —grady, : D(A3) = HE () NL%(Q) C L*(Q) — grad HE (©),

where L2(£2) has to be replaced by L2 (Q) in A}, if Iy = ), and in Aj, if Ty = I'. Note that the reduced
operators possess bounded resp. compact inverse operators. For the ranges we have

R(A}) = R(A)) C N(Ay), i.e., grad H}. (Q) = grad (H], () N L3()) C Ry (),

R(A2) = R(Ay) C N(A3), ie., rot Ry (€2) = rot (Rr, (2) N prot Ry () € Dr, (),
R(A3) = R(A), i.e., div Dp, () = div (D, () N grad Hf, (),

R(A]) = R(A)), ie., div Dy (Q) = div ( () Negrad HE (Q)),

R(A3) = R(A;) C N(A)), ie, prot Ry, () = prot (Rp, (©) Nrot Ry, (2)) C 1D, (),
R(A3) = R(A;) C N(A)), ie., grad H. (Q) = grad (HE (2) NL2(Q)) C Ry, (),

where L2(£2) has to be replaced by L2 (Q2) for Ty = @) resp. Iy = I'. Note that the assertions of R(Aj3),
R(A3), R(A3) are already included in those of R(A1), R(As), R(A]) by interchanging T and T', and
setting € := id. Furthermore, the following Friedrichs/Poincaré type estimates hold:

Yu € D(A;) = H ()N L2(Q) \u|L2(Q) < ¢ |gradu\|_g(m,
VE € D(A;) = uDr, (Q) Ngrad H}, (Q), B2y < o | diveE] 5 g,
¥ E € D(As) = Rp, (2) N prot Ry, (£2), 1Bl 2y < el 106 Bl (g
VE € D(A;) = Ry, () Nrot Ry, (), |Bli2q) < cm| 10t B3 g,
VE € D(A3) = D, () Ngrad Hf. (), |E|L2(Q) < &g | div E|L2(Q),
Vue D(A;) = H}n Q) NLAQ) \u|L2(Q) < G |gradu\|_2(m,

where the Friedrichs/Poincaré and Maxwell constants cfp, ¢m, €fp, are given by the respective Raleigh

quotients, and L2(£2) has to be replaced by L2 () for I'y = @) resp. I'y = I'. Again note that the latter
two assertions are already included in the first two inequalities by interchanging I'y and I'y and setting
= id. Finally, the following Helmholtz decompositions hold:

. 0} ,ifT #0
Hy = L2(Q) = div Dy (Q { ’ ’
1= L) = divDr, (2) &2 g {R Jif Ty = 0,
H2 = L?(Q) = grad Hll"t(Q) @LE(Q) H DI‘",O(Q)

= Rp, 0(Q) D2 () HTOb Rr,(2)

= grad H%t(Q) L2(Q) Ht n a( ) Lg(Q) MI‘Ot RF,, (Q)v
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Ha = L*(Q) = grad H, () &2 Dr, 0(Q)

L2(2)
= RFH,O(Q) @L2(Q) rot RFt(Q)

= grad Hr, (Q) @2 ) Hnt(Q) B2 10t RE (), Hae(R) = Ry, (€2) N Dr, o(4),

{0} ,if Ty #T,

H4 — LQ(Q) = div DFt(Q) 69L2(Q) {]R ifIy ="
) t—

The latter two decompositions are already given by the first two ones by interchanging I'; and I",, and
setting € := id. Especially, it holds
grad Hll"t(Q> = Rl"t,O(Q) @LE(Q) %t,n,e(Q)a prrot Rl"n (Q) =H DFH,O(Q) eL’;’(Q) Ht,n,s(Q)v
grad H11~n () =Rp, o() Si2(0) Ha (), rot Ry (€2) = D, o(£2) O12(0) Hnt(€2).
If I't =T and I' is connected, then the Dirichlet fields are trivial, i.e.,
Hene(€2) = Rp o(Q) N Dy (2) = {0}
If Iy = () and Q is simply connected, then the Neumann fields are trivial, i.e.,
Ht,n,e(Q) =Ry(Q) Nu DF,O(Q) = {0}.
Now we can apply the general results of Theorem 3.3 and Corollary 4.6.
Theorem 5.1. (5.1) resp. (5.2) is uniquely solvable, if and only if
F € rot Ry, () = Dr, ¢(©2) Sp2(q) Hor(Q), gel?(Q), He Hene (),
where L*(Q) has to be replaced by L3 (Q) if Ty = 0. The unique solution E € Ry, (2) N Dy (Q) is given
by
E:=Ep+ Ey+ H € (Rp, () N prot Ry, (Q)) &2 () (1 Dr, (2) N grad Hy, (Q)) &2 o) Heno(2)

:RF( )QMDF( )s
)

Ep = (rotr,) "' F € Ry, () N 1ot Ry, (2) = Rp, (Q) N 1 Dr, o(Q) N Hene ()12,

E, = —(divr,e)'g € uDr, () N grad HE (Q) = 1Dp, () N Ry, o(2) N Hep o(2) 2

and depends continuously on the data, i.e., |E|L2(Q) < Cm |F|L2(Q) + cpp \g\LZ(Q) + |H|L2(Q), as
|EF‘|_2(Q) < Cm |F|L2(Q)7 |E9|L§(Q) < chp |g‘L2(Q)

Moreover, \E|L2(Q) \EF|I_2(Q + | Eg |L2(Q) |H LQ(Q)

The partial solutions Er and E,, solving

rotr, Ep = F, rotr, By = 0,
—divp, eEr =0, —divp, eEy =g,
WHEF = 07 ﬂ-HEg = 0,

can be found and computed by the following two variational formulations: There exist unique potentials
Ur € Ry () Nrot Ry, () and uy € HE, (), where Hf, (€2) has to be replaced by H' () N L% (Q), if [y = 0,
such that

(5.3) V& e Ry () (rot Up, rot @) = (F, D)

L2(Q) L2(Q)
(5.4) Ve € HE () (grad ug, grad @)

It holds

L2Q) — <g,90>|_2(9)~

protUp = Ep, gradug = Fy.
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Moreover, the variational formulation (5.3) is equivalent to the following saddle point problem: Find
Ur € Ry, (£2), such that

(5.5) V®ERp(Q) (rot Up,rot ®) F,®),, A VU ERp o(Q)  (Up, W)

(@)

Hn +(Q) we may specify: In the special case
Hat(2) = {0},

the saddle point problem (5.5) is equivalent to: Find Ur € Ry (), such that

(5.6) V®eRp (Q) (rot Up,rot @) =(F,®),q N VY€ HL (Q) (Ur,grad ) 5 ) = 0.

Following the procedure leading to (3.11)-(3.12) we observe that (5.6) is equivalent to the following saddle
point formulation: Find (Up,ur) € Ry () x Hp (Q), such that for all (®,4) € Ry (€2) x Hf ()

(5.7) (rot Up, rot (I)>|_i(g) + (@, grad U‘F>|_2(Q) = (F,®) L2(Q) A (Ur,grad ¢>L2(Q) =0,

=0.

L2(Q) — ( L2(Q)

As Ry, o(©) = grad HE ()

L2(2)

where Hf. (©2) has to be replaced by H'(Q2) NL% (Q), if Ty = I'. Every solution of (5.7) satisfies up = 0
and the inf-sup-condition reads
(P, grad ), , | grad 9|, ,
inf sup L@ > in - U® _ (E?p + 1),
0£pEHL () 0£PERL (Q) |(I)‘RF"(Q)‘7’ZJ|H}H(Q) 0#£yeHL (Q) |¢|H;" )

Note that in Hf, (Q) resp. H'(Q) N L% (€2) we can also use the H'-half norm | -
yielding

y = | grad -

b, (@ 20

inf <¢)’grad’(/}>|_2(9)
in sup

> 1.
0#¢eHE, (D) 0zdeR,, (2) ‘¢|an(sz)|¢|H;n(Q)

Remark 5.2. We emphasize that in [5], see also [4, 6], the following has been proved: If Ty = 0 or
It =T, and Q is convex, then

_ _diamQ
cm <ECp <E )
0
where the Poincaré constant c, and € are given by
1 | grad ¢| 1 ||
= inf S TH@  C S
Cp 0#pEHT()NLS () |<P|Lz(m € 0APEL2(Q) |‘I’\Lg(g)
Moreover, for Ty = 0 and convex Q we have
1
—Cp < Cfp < ECp, éfp = ¢t < Cp,
€
where the Friedrichs constant cs and € are given by
1 . \gradcp||_2(m 1 nf |(I)||_g(Q)
— = in _ —:= in .
Ct 0#peHL () |90‘|_2(Q) = 0#PeL2(Q) |q>||_2(Q)
For Ty =T and convex Q2 it holds
1
=cr < cfp < gcx, cr < Cp = Chp-
€

We can apply the main functional a posteriori error estimate Corollary 4.6 to (5.1) resp. (5.2).

Theorem 5.3. Let E € Ry () N uDy () be the exact solution of (5.1) resp. (5.2) and E € L2(Q).
Then the following estimates hold for the error e = E — E defined in (4.1):
(i) The error decomposes, i.e., e = €grad +€,, +erot € grad Hll“t(Q)EBLg(Q) ’Ht}n,g(ﬂ)@l_g(murot Rr, (22)
and

2 _ 2 2 2
ez ) = learaaliz o) + 1nclzgq) F lerorlyy o)
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(ii) The projection egrad = Tgrade = Eg — wgradE € grad H%t(Q) satisfies

. . ~ 2
= min (Cfp|leE(I)+g|L2(Q) + |<I>—E|L§(Q))

|egrad|iz(9)
€ QenDy ()

= max (2(g,9) s — (2F + gradp,grad ¢),, o))
pEHL, () c
and the minimum resp. maximum is attained at
(i) ‘= €grad + E SN DFH(Q>7 (,5 = (g/r\a?ift)_legrad S Hll“t(Q)
with —dive ® = —dive E = g, where HL. (Q) has to be replaced by H'(Q) N L3 (), if [y = 0.
(iii) The projection eror = Tote = EF — Tt F € prot Ry (§2) satisfies

. ~ 2
min (cm|rot<b—F|L2(m +|(I)_E||_2(Q))
PERL () c

= max (2(F, )
TER,, ()

erotlis ) =

L2@) (2E + prot W, purot \I/)Lg(ﬂ))

and the minimum resp. maximum is attained at
d:=e +Ec Rr, (9), U := (urotr,) Lepo € Rr, (©2) Nrot Ry ()

with tot ® =rot E = F.

(iv) The projection e,, = 7, e = H — WHE € Hen(Q) satisfies

2

min min |H—E’—|—grad<p—|—,ur0t<1>|L2<Q>

lex ‘32(9) =
c e (Q) PER,. ()

= 20H—FE)—U. ¥
\pegiif(n)<( ) ) >Lg(Q)

and the minimum resp. maximum is attained at

¢ := (gradp ) "' Tgraa B € HE (), & := (urotr,) Mot B € Ry, (Q) Nrot Ry ()

resp. V= ey, € Hin(Q) with grad @ + (1ot ¢ = (Tgraa + Mrot) E = (1 — WH)E, where HE, ()
has to be replaced by H () NL2 (), if Ty = 0.
If E:= H+ E, with some E, € thn,s(Q)LL?m), then e,, =0, and in (i) and (iii) E can be replaced by
E\ . In this case, for the attaining minima it holds
(i)J_ = egrad+EJ_€ﬂDFn(Q), i)J_ = erot+ELERFt(Q)~
Remark 5.4. For conforming approzimations Corollary 4.2 and Remark 4.3 yield the following:
(i) If E € uDy (), then e € pDy. (Q) and
‘egmdhg(a) < el dive E + g|L2(Q) = Cpl diV€6|L2(Q).
(ii) If E € Ry (Q), then e € Ry (Q) and
|erot|L§(Q) < ¢m|rOt B — F|L2(Q) = Cm|rOt e|L2(Q).
(iii) IfE € R, () NuDr (), then e € Ry ()N u Dy, () and this very conforming error is equivalent
to the weighted least squares functional

F(E):=|H - WHE@(Q) + (14 c&)|rot E — F|ﬁ2(m +(1+cd)|dive E+ g|f2(9),

. 2 - 2Y|0[2
i.e., |e|th(9)ﬂ#Drn(Q) < F(E) < (1 4+ max{crp, cm}?)|e Ry, (2) N Dy ()



GENERAL FIRST ORDER SYSTEMS 27

5.2. Prototype Second Order Systems: Laplacian and rotrot. As prototypical examples for second
order systems we will discuss the Laplacian and the rot rot-system, both with mixed boundary conditions.
Suppose the assumptions of Section 5.1 are valid and recall the notations. For simplicity and to avoid
case studies we assume @) # 'y # T.

5.2.1. The Laplacian. Suppose g € L%(€2). Let us consider the linear second order equation (in classical
strong formulation) of the perturbed negative Laplacian with mixed boundary conditions for a function
u:Q—R

(5.8) —divegradu = g in §, u=0 at I, n-egradu =0 at I',,.

The corresponding variational formulation, which is uniquely solvable by Lax-Milgram’s lemma, is the
following: Find u € H, (), such that

Vo e HL(Q)  (gradu, grad o) 5 o) = (9, )12 ()

Then, by definition and the results of [1], we get e gradu € Dy (Q) with —divegradu = g. Hence, by
setting

E :=gradu € uDr, () N grad H: () = gDy, () N Ry o(2) N He o () 12
we see that the pair (u, E) solves the linear first order system (in classical strong formulation) of electro-
magneto statics type with mixed boundary conditions

gradu = F, rot E =0 in Q, u =0, nx E=0 at I'y,
(5.9) —diveE =g in Q, n-eE=0 at Ty,
T, =0 in Q.

Similar to the latter subsection we define the operators Aj, Ay, A3z and also Ay, Ay together with the
respective adjoints and reduced operators by the complexes

_ Aji=grad =T s=div _
{0y 2= K@) —T Ry (@) 2T by @) BT 12(0) A2 (o),
*_ *—_div * TO An=— grad *_
{0} &0 () ST (@) ST R (@) ST | ) D (o),

As before, all basic Hilbert spaces are L2(€2) except of Hy = L2(Q2). Then (5.8) turns to
AT Alu=yg,
Aju=0u=0,
mu="mu=0

and this system is (again) uniquely solvable by Theorem 3.6 as g € L*(Q) = R(A]) with solution u
depending continuously on the data. (5.9) reads

Aju=gradp u=FE, Ay F =rotr, E =0,
Aju=0u=0, AlE=—divp,e E=g,
T u = moyu =0, m b =mn,E=0.

We can apply the main functional a posteriori error estimates from Theorem 4.7.

Theorem 5.5. Let u € Hy, () be the exact solution of (5.8), E := gradu, and (i, E) € L2(Q) x L2(Q).
Then the following estimates hold for the errors e, :=u— 4 and eg := F — E:
(i) The error egy decomposes, i.e.,
€E = €Bgrad T €p 4 + €Brot € grad HE, () B2 (o) Hine(Q) B2 (q) 1O Rp (Q)
and

2 _ 2 2 2
leElzq) = lemmaaliag) Flenalis o) Tlerrotla )



28 DIRK PAULY
(ii) e, = maiveu € divDp (Q) = L2(Q) and

2 . . 21 1s ~ 2
€u = min min g ldive® + g + ¢ | — grad +lp—1u
el g o) DD () (k| Iz () + o a0y + 10 = liz )

. : . 2
= min (c?p|d1v5grad<p+g|l_2(m + |g0—u|L2(Q))
P€eHL (),
grad p€pDr ()

— max (2(g, ¢>L2(Q) + (24 — dive grad ¢, div e grad ¢>L2(Q))
$EeHL (2),

grad ¢€p Dy ()
and the minima resp. mazximum are attained at

¢ =e,+aeHL(Q), d:=FEecuDp (), ¢:=/(gradp ) (~divr,e)"! € HE: (Q)

with grad ¢, grad ¢ € pDrp () and grad$ = gradu = E and —divegrad¢ = —dive E = g as
well as —dive® = —dive E = g.
(iii) The projection eg grad = Tgrader = B — Tgraa B € grad Hllat(Q) satisfies

2 . . ad 2
. _ > o F
len.gradlls g @ep%fm) (crpl dive @+ gl 5 ) + | l2(@)

= max (2(g,9) s — (2E + gradp,grad¢),, o)
el (@) :

and the minimum resp. maximum is attained at

® = €E grad + E SN DF,\(Q)a 95 = (grfa/dl“t)ileE,grad € Hll"t(Q)
with —dive ® = —dive E = g.

(iv) The projection eg rot, = Trot€E = — Mot € pirot Rr, (Q2) satisfies
2 o . _F 2 . . P2
|6E',rot‘|_§(9) = EISHEQ) (lerOt (I)||_2(Q) +[® E‘LE(Q)) = @elgrpnrs(ﬂ) | E‘Lg(Q)

= max (- (2E+ prot¥,purot V)

VERL (Q) Lg(m)

and the minimum resp. maximum is attained at
o= €E rot T E e RFMO(Q), U= (1 f(\)/tpn)_leE’rot € Rp, () Nrot Ry (2)

with tot ® = rot E = 0.

(v) The projection ey, ,, =7, €p = —WHE € Hine(2) satisfies
2

2
€palia o)

= min min |7E~+grad<p+,ur0t<I>|L2(Q)

pEHL (Q) BERL. ()

= geax (= QE+T,T)q)
and the minimum resp. maximum is attained at

¢ := (gradr,) " mgraa B € HE (), & := (urotr,) 'morE € Ry, () Nrot Ry, ()
resp. W = €pa € Hine () with grad ¢ + urotgi; = (Tgrad + Wrot)E =(1- WH)E
If E := E, with some E, € Ht,me(Q)lL?(“’, then e

E . In this case, for the attaining minima it holds

gy =0, and in (iii) and (iv) E can be replaced by

(i)J_ ‘= €E,grad T EJ_ € FLDF"(Q)’ (i)J_ = €eg ot E~|J_ € RI\,O(Q)'
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For conforming approximations E € grad H%t(Q) we have eg rot = 0 and eg = €g grad-

= CEu
Especially, if @ € Hf, (Q) and E := grad @ with a conforming approximation @ € HE, (€), the estimates
of the latter theorem simplify. More precisely, (i) turns to the following result: If @ € Hp, (2), then
eu € HE, (Q) and we can choose, e.g., ¢ := @ yielding, e.g.,
|eu|L2(Q) < . min  (cf,|dive ® + g|L2(Q) + ¢ |P — gradﬂ|Lg(Q)),
€n Dr‘n (Q)

which might not be sharp anymore. Similarly, the results of (iii) read as follows: If & belongs to H%t(Q),
then E := grada € grad HL, (Q) and grad(u — @) = eg = g grad € grad Hf, () as well as

. . N 2
lesl?, oo = min  (cp|dive® + gl o + P — grad | , )
2O T gerp @) @) ()
(5.10) : )
= max (2(9, @>L2(Q) — (grad(2a@ + ¢), grad @)LQ(Q))
peHl () 2

and the minimum resp. maximum is attained at

®:=ep +gradi = gradu € pDr, (£2), Q= (g}\z;ipt)*leE € HL ()
with —dive ® = —dive E = ¢. Note that (5.10) are the well known functional a posteriori error estimates
for the energy norm associated to the Laplacian, see, e.g., [8].

5.2.2. The rot rot-operator. Suppose F' € rot Ry (2) = D, ((€2) N Hn,t(Q)l@(Q) and g € L2(Q) as well as
H € Hn+(92). Let us consider the linear second order equation (in classical strong formulation) of the
perturbed rot rot-operator with mixed boundary conditions for a vector field B :  — R3

rot prot B =F in €, nxB=0 at Iy,
(5.11) divvB =g in Q, n-vB =0, nXx urot B=0 at Iy,
n B =H in Q.

Here g : L2(Q) — Ha+(2) and for simplicity we set v := id for the matrix field v. The partial solution
B, can be computed by solving a Laplace problem. The corresponding variational formulation, which is
uniquely solvable by Lax-Milgram’s lemma, to find the partial solution Bg of

rot prot Bp = F in Q, nXxX Bp=0 at ['y,
divBr =0 in €, n-Brp =0, n X prot Bp =0 at I'y,
7'(7:[BF=0 in Q,

is the following: Find Br € Ry, (€2) Nrot Ry (), such thatVli

(5.12) V& € Ry () (rot Bp,rot @) F, D)

L2(Q) — { L2(Q)"

Then, by definition and the results of [1], we get urot B € Ry (Q2) with rot urot Br = F. Hence, by
setting
E = prot Br € Ry () N prot Ry, (2) = Ry () N Dy, o(Q) N Hin o (2) 2

we see that the pair (B, F) solves the linear first order system (in classical strong formulation) of electro-
magneto statics type with mixed boundary conditions

purot B = prot Bp = F, rot FE =F in Q, nx B =0, n-el=0 at Ty,
. i =9 i = i ’ : =Y = ts
(5.13) divB=g diveE=0 in n-B=0 nxE=0 at I
;B =H, T, B =0 in Q.

ViiNote that (5.12) holds for all ® € Rp, (€2) Nrot Ry, (Q) if and only if it holds for all ® € R, (€2) since F' € rot Ry, (£2).
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Let us define operators T, To, T3 using Ay, Ay, A3 together with the respective adjoints and reduced
operators by the complexes

Th:=A;=grad *i=As=ro Ti=Az=div
{0y —2 M (@) T Ry () EERT b () SERERT 1200y s oy,
3:=AT=—div =A-=uro T1:=A.=— grad
0«2 12() Jo=h=—dive, e 5Dr. (2) Jzi=As=protr, Ry, () LT ReT T eradn, HL () «2 o

As before, all basic Hilbert spaces are L2(€2) except of Hy = L2(Q), corresponding to the domain of
definition of T5. Then (5.11) turns to

T3 To B = rotr, proty, B = F,
T! B = divp, B = g,
7T2B = ﬂ-’f:tB =H

and this system is uniquely solvable by Theorem 3.6 as F' € R(T3), g € R(T7), and H € K5 with solution
B depending continuously on the data. (5.13) reads

To B = protr, B=F, Ts EF=—divr,e E =0,
Ti B =divp, B=gy, T3 E =rotp, E = F,
mB=m;B=H, m3 B =m, E=0.

Again, we can apply the main functional a posteriori error estimates from Theorem 4.7.

Theorem 5.6. Let B € Ry () N Dy () be the exact solution of (5.11), E := prot B € Ry (), and
(B,E) € L2(Q) x L2(Q). Then the following estimates hold for the errors ep := B — B and ep :== E — E:

(i) The errors ep and eg decompose, i.e.,
e = eB,grad —+ eBJ:[ =+ 637r0t (S grad H%‘n (Q) @Lz(ﬂ) Hn,t(Q) @LQ(Q) rot RFt(Q)?
€E = €Bgrad T €p 45 + €Brot € grad HE, () Dy2(q) Hen () Dy2(q) HTOt R, Q)
and

|€B|32(Q) = |€B,grad‘i2(9) + ‘eB,’}:Lﬁz(Q) + |eB7r0t|32(Q)7

2

2 2 2
el ) = lemaradlisy o) Tlen i) T lemrtli o)

(ii) The projection ep grad = TgradeB = By — Wgradé € grad H%n (Q) satisfies

. ~ . ~ 2
|eB,grad‘i2(Q) = (Cfp| div® — 9||_2(Q) +|® - B|L2(Q))
Tt

= max (2<g, <p>L2(Q) + (23 — grad ¢, grad 90>L2(Q))
EHL (Q)

and the minimum resp. maximum is attained at

®:=epgraa+ BEDR(Q),  ¢:=—(gradp,) " ep graa € HE (Q)
with div® = divB = g.
(iii) The projection ep ot = Troten = Br — Mot B € rOt th(Q) satisfies

~ 2
|eB,mt|2 = min min (% |rot ® — F| + cm|® — prot | +|¥ — B|
@) " g (Q)@eRFt(Q)( m L2y T Om L2(@) (o)

min (cz.l|r0t,ur0t\II—F|L2(Q)+|\II—B‘L2(Q))2
VeRr, (),
prot YERL ()
= max (2<F, 0)
O€R, (),
prot ©€Rr, (2)

L2(q) ~ (2F + rot prot ©, rot purot @>L2(Q))
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and the minima resp. maximum is attained at
U:=epo + BER(Q), &:=FecRp(Q),

and © = (urotr,)  (rotr,) " ep ot € Rp, (©2) Nrot Ry () with prot W, urot O, € Rp, () and
urot\i/ =purot B=FE and roturot\il =r1ot E = I as well as rot® = rot £ = F.
(iv) The projection ey 5 = mep = H — g B € Hn(Q) satisfies

ley 4|2 = min min |H — B — grad ¢ + rot ®|?
BH L2(©2) <P€H11ﬂn @) @GRFt(Q) L2(Q)

= 20H—-B)—VU. ¥
xpe%ifi(ﬂ)<( ) ’ >'-2(9)

and the minimum resp. maximum is attained at

Q= —(g&irn)—lwgmdé € Hf (), ® := (rotr,) Mot B € Ry () N ot Ry (Q)

resp. U= ep s € Hn () with —grad ¢ + roté = (Tgrad + Wrot)é =(1- 71'7;[)3.

(v) The projection eg grad = Tgrad€E = —ﬂgde € grad H%t(Q) satisfies
2 _ . . ~ 2 . 12
|€E,grad|Lg(Q) _ée;%m(m (Cfp|d1va<1>||_2(m + |(I)_E|Lg(§2)) =  min |<IJ—E|L2(Q)
I

®epDy, ()

= max (- 2B+ gradg,gradg),, o)
@€EHE () ’

and the minimum resp. maximum is attained at

d = €E, grad + E S 18 DFn,O(Q)a Qb = (gfr\a;il‘t)ileE,grad S Hll"t(Q)

with —dive ® = —dive E = 0. )
(vi) The projection eg rot = Troter = E — Mot B € prot Rr, () satisfies

2 _ . ~ 2
|eE,rot‘Lg(Q) = @erlglrlrts)) (cm|TOt ® — F|L2(Q) +|P— E‘Lg(ﬂ))

= max (2(F, )

L2(q) ~ (2F + prot U, irot )
VER ()

Lg(ﬂ))
and the minimum resp. maximum is attained at

d:=epror + E€Rp(Q),  V:i=(urotr,) 'ep ot € Ry (Q) Nrot Ry, ()
with rot ® =rot E = F.

(vii) The projection ey, , =T, ep = 77THE~' € Hin(Q) satisfies
len . |?,, .. = min min | — E + grad ¢ + prot ®|?
PR et (@) aery, (2) L2(©)

= max ( — <2E + U, ‘IJ>

VEH p.- () L?<Q>)

and the minimum resp. maximum is attained at

¢ = (gradp,) 'mgaaE € HL(Q), @ := (urotr,) 'meE € Ry, (Q) Nrot Ry ()

resp. U = €pqy € Hine(Q) with grad ¢ + ,urotq% = (Tgrad + Wrot)E =(1- WH)E.
If B= H + B, with some B, € ’Hn,t(Q)L@(m, then e 7 =0, and in (ii) and (iii) B can be replaced by

B,. If E = E, with some E, € ’Ht,n’g(Q)LL?(Q), then ey, ., =0, and in (v) and (vi) E can be replaced
by E~|J_.
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A reasonable assumption is, that we have conforming approximations
By € gradHf, (Q) =R, o(Q) NHae(N),  Br € Ry, (Q)
of By € Dy, () Ngrad H{, (€2) and Bp € Ry, (€2) Nrot Ry, (©2) and hence a conforming approximation
E := prot Bp € prot Rr (Q)

of £ € th(Q) N prot Ry (£2), which implies eg = eg ror € prot Ry (Q2) and eg graa = =0 as well as

oK)
B—H=Br+B,¢c Rp,(©2) and ep € Ry (©2). In this case the estimates of the latter theorem simplify.
More precisely, e.g., (iii) turns to the following result: If BF,Bg € Ry (), then B,ep € Rr, (2) and we
can choose, e.g., ¥ := B yielding, e.g.,
|eB,rot\L2(Q) < min (caq\ rot ® — F|L2(Q) + ¢em|® — prot Bng(Q))’
PER, ()

which might not be sharp anymore. Similarly, the results of (vi) read as follows: If By € Rr, (2), then
E = [rot Bp € prot Ry (2) and prot(B — BF) =eg = egrot € pTot R () as well as

] ~ 2
€Iy =, 0in  (eml 106 ® = Flyaq [ = purot Brly )
(5.14) K 7
- \yeHleiQ) (AE W) 2 ) = (urot(2Bp + 0), prot V) 5 )

and the minimum resp. maximum is attained at
d:=ep+ prot By € Rr, (), U := (urotr,) tep € Rr, (€2) Nrot Ry (€2)

with rot ® = rot E = F. Note that (5.14) are in principle the functional a posteriori error estimates for
the energy norm associated to the rot rot-operator, which have been proved in [7].

5.3. More Applications. There are a lot more applications. If we denote the exterior derivative and the
co-derivative associated with some compact Riemannian manifold by d and §, we can discuss problems
like

dE =F, 0dE =F, 0dE =F,
deFE = G, deE = G, déeFE =G,
mE=H, nE =H, 7E=H

for mixed tangential and normal boundary conditions for some differential form E. Moreover, problems
in linear elasticity, Stokes equations, biharmonic theory, rot rot rot rot-operators, ... fit into our general
framework. Note that all these problems feature the underlying complexes (1.3)-(1.4), such as

HE (@) 5 Ry (@) T b (o) BT 12(q),
12(0) ST py () ST R () ST q)
for electro-magnetics,
D, () == DE,(9) == D} (@) == 123(9),
L20(0) &7 AL () &7 A2 () AT A3 (@)

for generalized electro-magnetics (differential forms),

A1=Grad gradFt Az=Rotg,r, Az=Divr,p,
_— _— _—

HE, (©) R, (€4 S) Dr, (€ T) L2(),

AI =div Divs r, A;:sym Rotr 1, A;:— dev Gradr,

L2(€) DD, (8) R 0 T) H, (2)

sym,Fn(
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for biharmonic and Stokes problems, and

Ao :RotRot;Ft
_—

HE (@) S, RRT () Dy (;5) 2200 12(Q),
¥ _Dive AL =RotRot. »=— sym Gra
L2() &P b () SR RRT () AR ()
for linear elasticity.
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