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The Maxwell Compactness Property
for Bounded Weak Lipschitz Domains with Mixed Boundary Conditions in ND

SEBASTIAN BAUER, DIRK PAULY, AND MICHAEL SCHOMBURG

Abstract. It is proved that the space of differential q-forms with weak exterior- and co-derivative,

is compactly embedded into the space of square integrable q-forms. Mixed boundary conditions on

weak Lipschitz domains are considered. Furthermore, canonical applications such as Maxwell estimates,
Helmholtz decompositions and a static solution theory are proved.
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1. Introduction

The aim of this contribution is to prove a compact embedding, so called Weck’s selection theorem
[12, 13] or (generalized) Maxwell compactness property [12, 13, 10], of differential q-forms with weak
exterior- and co-derivative into the space of square integrable q-forms, i.e.

D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) ↪→ L2,q(Ω)

subject to mixed boundary conditions on bounded weak Lipschitz domains Ω ⊂ RN . This generalises the
results from [1], where bounded weak Lipschitz domains in the classical setting of R3 were considered.
The essential ingredient for its prove is Theorem 4.2. Similar results for strong Lipschitz domains can
be found in [4, 2]. For a historical overview of the mathematical treatment of Weck’s selection theorem
(Maxwell compactness property) see [1, 6]. The central role of a compact embedding of this type can for
example be seen in connection with Hilbert space complexes, where the embedding immediately provides
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closed ranges, solution theories by continuous inverses, Poincaré-type estimates, and access to Hodge-
Helmholtz-type decompositions, Fredholm theory, div-curl-type lemmas, and a-posteriori error estimation
see, [7, 8]. We elaborate on some of these applications in our Section 5. Finally we note that by the same
arguments as in [10] our results extend to Riemannian manifolds.

2. Notation, preliminaries and outline of the proof

Let Ω ⊂ RN be a bounded weak Lipschitz domain. For a precise definition of weak Lipschitz domains,

see Definitions 2.1 and 2.3. In short, Ω is an N -dimensional C0,1-submanifold of RN with boundary,
i.e. a manifold with Lipschitz atlas. Let Γ := ∂Ω, which is itself an (N − 1)-dimensional Lipschitz-
manifold without boundary, consist of two relatively open subsets Γτ and Γν such that Γτ ∪ Γν = Γ and
Γτ ∩ Γν = ∅. The separating set Γτ ∩ Γν will be assumed to be a, not necessarily connected, (N − 2)-
dimensional Lipschitz-submanifold of Γ. We will call (Ω,Γτ ) a weak Lipschitz pair. The vector space

C̊∞,q(Ω) is defined as the subset of C∞,q(Ω), the set of smooth alternating differential forms of rank q,
having compact support in Ω. Together with the inner product

〈E,H〉L2,q(Ω) :=

∫
Ω

E ∧ ?H

it is an inner product space1. We may then define L2,q(Ω) as the completion of C̊∞,q(Ω) with respect to
the corresponding norm. L2,q(Ω) can be identified with those q-forms having L2-coefficients with respect
to any coordinate system. Using the weak version of Stokes’ theorem

〈dE,H〉L2,q+1(Ω) = −〈E, δ H〉L2,q(Ω), E ∈ C̊∞,q(Ω), H ∈ C̊∞,q+1(Ω),(1)

weak versions of the exterior derivative and co-derivative can be defined. Here d is the exterior derivative,
δ = (−1)N(q−1)?d ? the co-derivative and ? the Hodge-star-operator on Ω. We thus introduce the Sobolev
(Hilbert) spaces (equipped with their natural graph norms)

Dq(Ω) :=
{
E ∈ L2,q(Ω) : dE ∈ L2,q+1(Ω)

}
, ∆q(Ω) :=

{
E ∈ L2,q(Ω) : δ E ∈ L2,q−1(Ω)

}
in the distributional sense. It holds

?Dq(Ω) = ∆N−q(Ω), ?∆q(Ω) = DN−q(Ω).

We further define the test forms

C̊∞,qΓτ
(Ω) := {ϕ ∈ C̊∞,q(RN ), dist(suppϕ,Γτ ) > 0}

and note that C̊∞,q∅ (Ω) = C∞,q(Ω). We now define boundary conditions. First let

D̊qΓτ (Ω) := C̊∞,qΓτ
(Ω)

Dq(Ω)

, ∆̊q
Γν

(Ω) := C̊∞,qΓν
(Ω)

∆q(Ω)

(2)

as closures of test forms. For the full boundary case Γτ = Γ (resp. Γν = Γ) we set

D̊q(Ω) := D̊qΓτ (Ω), ∆̊q(Ω) := ∆̊q
Γν

(Ω).

Furthermore, we introduce the weak spaces

D̊q
Γτ

(Ω) :=
{
E ∈ Dq(Ω) : 〈E, δ ϕ〉L2,q(Ω) = −〈dE,ϕ〉L2,q+1(Ω) for all ϕ ∈ C̊∞,q+1

Γν
(Ω)
}
,

∆̊q
Γν

(Ω) :=
{
H ∈ ∆q(Ω) : 〈H,dϕ〉L2,q(Ω) = −〈δ H, ϕ〉L2,q−1(Ω) for all ϕ ∈ C̊∞,q−1

Γτ
(Ω)
}
,

(3)

and again for Γτ = Γ (resp. Γν = Γ) we set

D̊q(Ω) := D̊q
Γτ

(Ω), ∆̊q(Ω) := ∆̊q
Γν

(Ω).

We note that in definitions (1) and (2) the smooth test forms can by mollification be replaced by their

respective Lipschitz continuous counterpart, e.g. C̊∞,qΓτ
(Ω) can be replaced by C̊0,1,q

Γτ
(Ω). Similarly, in

definition (3) the smooth test forms can by completion be replaced by their respective closures, i.e.

C̊∞,q+1
Γν

(Ω) and C̊∞,q−1
Γτ

(Ω) can be replaced by ∆̊q+1
Γν

(Ω) and D̊q−1
Γτ

(Ω), respectively. In (2) and (3) homo-
geneous tangential and normal traces on Γτ , respectively Γν , are generalised. Clearly

D̊qΓτ (Ω) ⊂ D̊q
Γτ

(Ω), ∆̊q
Γν

(Ω) ⊂ ∆̊q
Γν

(Ω)

and it will later be shown that in fact equality holds under our regularity assumption on the boundary.
In case of full boundary conditions the equality even holds without any assumptions on the regularity of

1For simplicity we work in a real Hilbert space setting.
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Figure 1. Mappings φk and ψk between a ball Uk and the cube B.

the boundary, as can be seen by a short functional analytic argument, see [1], but which is unavailable
for the mixed boundary case. We define the closed subspaces

Dq0(Ω) :=
{
E ∈ Dq(Ω) : dE = 0

}
, ∆q

0(Ω) :=
{
E ∈ ∆q(Ω) : δ E = 0

}
as well as D̊qΓτ ,0(Ω) := D̊qΓτ (Ω) ∩ Dq0(Ω) and ∆̊q

Γν ,0
(Ω) := ∆̊q

Γν
(Ω) ∩ ∆q

0(Ω). Analogously for the weak
spaces

D̊q
Γτ ,0

(Ω) := D̊q
Γτ

(Ω) ∩ Dq0(Ω), ∆̊q
Γν ,0

(Ω) := ∆̊q
Γν

(Ω) ∩∆q
0(Ω).

Note that by switching Γτ and Γν we can define the respective boundary conditions on the other part of the
boundary as well. Furthermore, let ε be a bounded, symmetric, uniformly positive definite transformation
on L2,q-forms. Transformations of this type will from now on be called admissible.

2.1. Lipschitz domains. Let Ω ⊂ RN be a bounded domain with boundary Γ := ∂Ω. We introduce the
setting we will be working in. Define (cf. Figure 2)

B := (−1, 1)N ⊂ RN , B± := {x ∈ B : ±xN > 0}, B0 := {x ∈ B : xN = 0},
B0,± := {x ∈ B0 : ±x1 > 0}, B0,0 := {x ∈ B0 : x1 = 0}.

Definition 2.1. Ω is called weak Lipschitz, if the boundary Γ is a Lipschitz submanifold, i.e., if there is
a finite open covering U1, . . . , UK ⊂ RN of Γ and vector fields φk : Uk → B, such that for k = 1, . . . ,K

(i) φk ∈ C0,1(Uk, B) is bijective and ψk := φ−1
k ∈ C0,1(B,Uk),

(ii) φk(Uk ∩ Ω) = B−

hold.

Remark 2.2. For k = 1, . . . ,K we have φk(Uk \ Ω) = B+ and φk(Uk ∩ Γ) = B0.

Definition 2.3. Let Ω be weak Lipschitz. A relatively open subset Γτ of Γ is called weak Lipschitz, if Γτ
is a Lipschitz submanifold of Γ, i.e., there is an open covering U1, . . . , UK ⊂ RN of Γ and vector fields
φk := Uk → B, such that for k = 1, . . . ,K and in addition to (i), (ii) in Definition 2.1 one of

(iii) Uk ∩ Γτ = ∅,
(iii′) Uk ∩ Γτ = Uk ∩ Γ ⇒ φk(Uk ∩ Γτ ) = B0,
(iii′′) ∅ 6= Uk ∩ Γτ 6= Uk ∩ Γ ⇒ φk(Uk ∩ Γτ ) = B0,−

holds. We define Γν := Γ \ Γτ to be the relatively open complement of Γτ .

Definition 2.4. A pair (Ω,Γτ ) conforming to Definitions 2.1 and 2.3 will be called weak Lipschitz.

If (Ω,Γτ ) is weak Lipschitz so is (Ω,Γν).

Remark 2.5. For the cases (iii), (iii′) and (iii′′)in Definition 2.3 we further have

(iii) Uk ∩ Γτ = ∅ ⇒ Uk ∩ Γν = Uk ∩ Γ ⇒ φk(Uk ∩ Γν) = B0,
(iii′) Uk ∩ Γτ = Uk ∩ Γ ⇒ Uk ∩ Γν = ∅,
(iii′′) ∅ 6= Uk∩Γτ 6= Uk∩Γ ⇒ ∅ 6= Uk∩Γν 6= Uk∩Γ ⇒ φk(Uk∩Γν) = B0,+ and φk(Uk∩Γτ∩Γν) = B0,0.
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In the literature a bounded domain Ω ⊂ RN is called (strong) Lipschitz, if there are an open covering
U1, . . . , UK ⊂ RN and rigid body motions Rk = Ak + ak, Ak orthogonal, ak ∈ RN , k = 1, . . . ,K, such

that with ξk ∈ C0,1(IN−1, I), k = 1, . . . ,K, and I = (−1, 1)

Rk(Uk ∩ Ω) = {x ∈ B : xN < ξk(x′)}, x′ = (x1, x2, ..., xN−1),

holds. Then Rk(Uk ∩ Γ) = {x ∈ B : xN = ξk(x′)}. A relatively open subset Γτ ⊂ Γ is called (strong)

Lipschitz, if with ζk ∈ C0,1(IN−2, I)

∅ 6= Uk ∩ Γτ 6= Uk ∩ Γ ⇒ Rk(Uk ∩ Γτ ) = {x ∈ B : xN = ξk(x′), x1 < ζk(x2, ..., xN−1)}

holds.With this Rk(Uk \ Ω) = {x ∈ B : xN > ξk(x′)} and for ∅ 6= Uk ∩ Γτ 6= Uk ∩ Γ

Rk(Uk ∩ Γν) = {x ∈ B : xN = ξk(x′), x1 > ζk(x2, ..., xN−1)},
Rk(Uk ∩ Γτ ∩ Γν) = {x ∈ B : xN = ξk(x′), x1 = ζk(x2, ..., xN−1)}.

Clearly it holds

• Ω strong Lipschitz ⇒ Ω weak Lipschitz,
• Ω strong Lipschitz and Γτ strong Lipschitz ⇒ (Ω,Γτ ) weak Lipschitz pair.

For later purposes we introduce special notations for the half-cube domain

Ξ := B−, γ := ∂ Ξ(4)

and its relatively open boundary parts γτ and γν := γ \ γτ . We will only consider the cases

γν = ∅, γν = B0, γν = B0,+(5)

and we note that Ξ and γτ are strong Lipschitz.

2.2. Outline of the proof. Let (Ω,Γτ ) be a weak Lipschitz pair for a bounded domain Ω ⊂ RN .

• As a first step, we observe H̊1,q
Γτ

(Ω) = H̊1,q
Γτ

(Ω), i.e., for the H1,q-spaces the strong and weak
definitions of the boundary conditions coincide.

• In the second and essential step, we construct various H1,q-potentials on simple domains, mainly
for the half-cube Ξ from (4) with the special boundary constellations (5), i.e.,

D̊q
Γν ,0

(Ξ) = D̊qγν ,0(Ξ) = d H̊1,q−1
γν (Ξ), ∆̊q

Γν ,0
(Ξ) = ∆̊q

Γν ,0
(Ξ) = δ H̊1,q+1

γν (Ξ).

Potentials of this type are called regular potentials.
• In the third step it is shown that the strong and weak definitions of the boundary conditions

coincide on the half-cube Ξ from (4) with the special boundary constellation (5), i.e.,

D̊qΓν (Ξ) = D̊q
Γν

(Ξ), ∆̊q
Γν

(Ξ) = ∆̊q
Γν

(Ξ).(6)

• The fourth step proves the compact embedding on the half-cube Ξ from (4) with the special
boundary constellations (5), i.e.,

D̊qΓτ (Ξ) ∩ ε−1∆̊q
Γν

(Ξ) ↪→ L2,q(Ξ)(7)

is compact.
• In the fifth step, (6) is established for weak Lipschitz domains, i.e.

D̊qΓτ (Ω) = D̊q
Γτ

(Ω), ∆̊q
Γν

(Ω) = ∆̊q
Γν

(Ω).

• In the last step, we finally prove the compact embedding (7) for weak Lipschitz pairs, i.e.,

D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) ↪→ L2,q(Ω)

is compact.
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3. Regular potentials

In this section the compact embedding is proved on the half-cube Ξ ⊂ RN . This will be achieved by

constructing H1-potentials for d-free and δ-free L2,q-forms, which will enable us to use Rellich’s selection
theorem. The special domain Ξ, together with the global identity chart, is an N -dimensional manifold.
Hence q-forms E ∈ L2,q(Ξ) can be represented in cartesian coordinates by their components EI , i.e. (using
summation convention) E = EIdx

I . Here we use the ordered multi index notation dxI = dxi1 ∧· · ·∧dxiq

for I = (i1, ..., iq) ∈ {1, ..., N}q. The inner product for E,H ∈ L2,q(Ξ) is, using their representations
E = EIdxI and H = HJdxJ , given by

〈E,H〉L2,q(Ξ) =

∫
Ξ

E ∧ ?H =
∑
I

∫
Ξ

EIHI =
∑
I

〈EI , HI〉L2(Ξ) = 〈 ~E, ~H〉L2(Ξ)

where we introduce the vector proxy notation

~E = [EI ]I ∈ L2(Ξ;RNq ), Nq :=

(
N

q

)
.

We can now define the Sobolev space Hk,q(Ξ) as the subset of L2,q(Ξ) having each component EI in Hk.
In these cases, we have for |α| ≤ k

∂αE =
∑
I

∂αEIdx
I and 〈E,H〉

Hk,q(Ξ)
:=

∑
0≤|α|≤k

〈∂αE, ∂αH〉L2,q(Ξ)

and we use the vector proxy notation also for the gradient, i.e.

∇ ~E = [∂nEI ]n,I = [...∇EI ...]I ∈ L2(Ξ;RN×Nq ).

Hence, for E,H ∈ H1,q(Ξ)

〈E,H〉
H1,q(Ξ)

= 〈E,H〉L2,q(Ξ) +

N∑
n=1

〈∂nE, ∂nH〉L2,q(Ξ) =
∑
I

( ∫
Ξ

EIHI +
∑
n

∫
Ξ

∂nEI∂nHI

)
=
∑
I

(〈EI , HI〉L2(Ξ) + 〈∇EI ,∇HI〉L2(Ξ)) = 〈 ~E, ~H〉L2(Ξ) + 〈∇ ~E,∇ ~H〉L2(Ξ) = 〈 ~E, ~H〉
H1(Ξ)

.

Boundary conditions for H1,q-forms can again be defined strongly and weakly, i.e., by closure

H̊1,q
Γτ

(Ξ) := C̊∞,qγτ (Ξ)
H1,q

and by partial integration

H̊1,q
Γτ

(Ξ) :=
{
E ∈ H1,q(Ξ) : 〈 ~E,div ~φ〉L2(Ξ) = −〈∇ ~E, ~φ〉L2(Ξ) for all φ ∈ C̊∞,qΓν

(Ξ)
}
.

We also introduce the following spaces

Dk,q(Ξ) : =
{
E ∈ Hk,q(Ξ) : dE ∈ Hk,q+1(Ξ)

}
,

∆k,q(Ξ) : =
{
E ∈ Hk,q(Ξ) : δ E ∈ Hk,q−1(Ξ)

}
.

One of the main tools in the following arguments is a universal extension operator for the Sobolev spaces

Dk,q given in [3], which is based on the universal extension operator for standard Sobolev spaces Hk

introduced by E.M. Stein in [11]. ”Universality” in this context means that the operator, which is given
by a single formula, is able to extend all orders of Sobolev spaces. More precisely the following theorem,
which is taken from [3, Theorem 3.6], holds

Theorem 3.1. Let Ω ⊂ RN be a bounded strong Lipschitz domain, k ∈ N0 and 0 ≤ q ≤ N . Then there
exists a universal extension operator with the following properties:

E : Dk,q(Ω)→ Dk,q(RN )

satisfying

(i) EE = E a.e. in Ω.
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(ii) The extension operator E is continuous, i.e.

∃c > 0 ∀E ∈ Dk,q(Ω) |EE|
Dk,q(Ω)

≤ c |E|
Dk,q(RN )

.

Note that c depends on Ω, N, k, and q, but not on E.

We start out with a density result for H1,q-forms, i.e., the strong and weak definitions of the boundary

conditions coincide for H1,q-forms. This is an immediate consequence of the corresponding scalar result,
whose proof can be found in [4, Lemma 2, Lemma 3] and with a simplified proof in [1, Lemma 3.1].

Lemma 3.2. Let Ω ⊂ RN be a bounded domain and (Ω,Γτ ) be a weak Lipschitz pair as well as

H̊
˜

1,q
Γτ

(Ω) :=
{
u ∈ H1,q(Ω) : u|Γτ = 0

}
.

Then H̊1,q
Γτ

(Ω) = H̊
˜

1,q
Γτ

(Ω) = H̊1,q
Γτ

(Ω).

3.1. H1,q-potentials without boundary conditions. The next two lemmas ensure the existence of

H1,q-potentials without boundary conditions.

Lemma 3.3. Let Ω ⊂ RN be a bounded strong Lipschitz domain. Then there exists a continuous linear
operator

Td : L2,q(Ω)→ H1,q−1(RN ) ∩∆q−1
0 (RN ),

such that for all E ∈ Dq0(Ω) ∩HqN (Ω)⊥

d(TdE) = E in Ω.

Especially Dq0(Ω) = dH1,q−1(Ω) = d
(
H1,q−1(Ω) ∩∆q−1

0 (Ω)
)

and the ‘regular’ potential depends continu-

ously on the data. Particularly, these are closed subspaces of L2,q(Ω) and Td is a right inverse to d.

Here HqN (Ω) := Dq0(Ω) ∩ ∆̊q
0(Ω) are the harmonic Neumann forms and ·⊥ denotes orthogonality with

respect to the L2,q(Ω) scalar product.

Proof. Suppose E ∈ Dq0(Ω) ∩HqN (Ω)⊥(Ω). As Ω is bounded and strong Lipschitz, we have by Helmholtz
decomposition and with closed subspaces (see [9, Lemma 1, Lemma 3 and Korollar 3.2])

L2,q(Ω) = dDq−1(Ω)⊕ ∆̊q
0(Ω) = Dq0(Ω)⊕ δ ∆̊q+1(Ω)

= dDq−1(Ω)⊕HqN (Ω)⊕ δ ∆̊q+1(Ω),
(8)

where ⊕ denotes the orthogonal sum in L2,q(Ω). Hence there exists an H ∈ Dq−1(Ω) with dH = E in

Ω. Let πΩ be the Helmholtz projector onto δ ∆̊q(Ω). Then we have πΩH ∈ Dq−1(Ω) ∩ δ ∆̊q(Ω) with
dπΩH = dH = E and by the Friedrichs-Poincaré-type estimate, see [9, Lemma 2]

|πΩH|L2,q−1(Ω) ≤ c |dπΩH|L2,q(Ω) = c |E|L2,q(Ω) .

Let E : Dq−1(Ω) → Dq−1(RN ) be the Stein extension operator from [3], i.e., E(πΩH) ∈ Dq−1(RN ) with

compact support. Projecting again, now onto ∆q−1
0 (RN ), we obtain a form

πRNE(πΩH) ∈ Dq−1(RN ) ∩∆q−1
0 (RN ).

Using regularity in the whole space, see [5], we conclude

πRNE(πΩH) ∈ H1,q−1(RN ) ∩∆q−1
0 (RN )

and dπRNE(πΩH) = d E(πΩH) = dπΩH = dH = E in Ω. �

By Hodge-?-duality we get a corresponding result for the δ-operator.

Lemma 3.4. Let Ω ⊂ RN be a bounded strong Lipschitz domain. Then there exists a continuous linear
operator

Tδ : L2,q(Ω)→ H1,q+1(RN ) ∩ Dq+1
0 (RN ),

such that for all H ∈ ∆q
0(Ω) ∩HD(Ω)⊥

δ(TdH) = H in Ω.

Especially ∆q
0(Ω) = δH1,q+1(Ω) = δ

(
H1,q+1(Ω) ∩ Dq+1

0 (Ω)
)

and the ‘regular ’potential depends continu-

ously on the data. In particular these are closed subspaces of L2,q(Ω) and Tδ is a right inverse to δ.

Here HqD(Ω) := D̊q0(Ω) ∩∆q
0(Ω) are the harmonic Dirichlet forms.
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x1
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x3

Ξ̂

Ξ

B0

x1

x2

x3

Ξ̂

Ξ

B0,+

Figure 2. The half-cube Ξ = B−, extended by Ξ̂ to the polygonal domain Ξ̃, and the rectangles γν = B0 and
γν = B0,+.

3.2. H1,q-potentials with boundary conditions on the half cube. Now we start constructing H1,q-
potentials on Ξ with boundary conditions. Let us recall our special setting on the half-cube

Ξ = B− and γν = ∅, γν = B0 or γν = B0,+.

Furthermore, cf. Figure 2, we extend Ξ over γν by

Ξ̃ = int(Ξ ∪ Ξ̂), Ξ̂ :=

{
{x ∈ B : xN > 0} = B+ , if γν = B0,

{x ∈ B : xN > 0, x1 > 0} = {x ∈ B+ : x1 > 0} =: B+,+ , if γν = B0,+.

Theorem 3.5. There exists a continuous linear operator

Sd : D̊q
γν ,0

(Ξ)→ H1,q−1(R3) ∩ H̊1,q−1
γν (Ξ),

such that for all H ∈ D̊q
γν ,0

(Ξ)

d(SdH) = H in Ξ.

Especially D̊q
γν ,0

(Ξ) = D̊qγν ,0(Ξ) = d H̊1,q−1
γν (Ξ) = d D̊q−1

γν (Ξ) = d D̊q−1
γν and the ‘regular’ H̊1,q−1

γν (Ξ)-potential

depends continuously on the data. In particular these are closed subspaces of L2,q(Ξ) and Sd is a right
inverse to d.

Proof. The case γν = ∅ is done in Lemma 3.3. Hence let γν = B0 or γν = B0,+. Suppose H ∈ D̊q
γν ,0

(Ξ)

and define H̃ ∈ L2,q(Ξ̃) by

H̃ :=

{
H in Ξ,

0 in Ξ̂.
(9)

It follows d H̃ = 0 in Ξ̃, i.e. H̃ ∈ Dq0(Ξ̃). Because Ξ̃ is topologically trivial, Lemma 3.3 yields E = TdH̃ ∈
H1,q−1(RN ) ∩ Dq−1

0 (RN ) with dE = H̃ in Ξ̃. In particular E ∈ H1,q−1(Ξ̂) and dE = 0 in Ξ̂. Using

Lemma 3.3 again, we obtain F ∈ H1,q−2(Ξ̂) with

dF = E in Ξ̂.

Since E ∈ H1,q−1(Ξ̂) we have F ∈ D1,q−2(Ξ̂). Let E : D1,q−2(Ξ̂) → D1,q−2(RN ) again be the Stein
extension operator. Then

Sd : D̊q
γν ,0

(Ξ) −→ H1,q−1(RN )
H 7−→ E − d(EF )

is linear and continuous. Since SdH = 0 in Ξ̂, we have SdH|γν = 0, which means SdH ∈ H̊
˜

1,q−1
γν (Ξ).

Hence SdH ∈ H̊1,q−1
γν (Ξ) ⊂ D̊q−1

γν (Ξ) ⊂ D̊q−1
γν (Ξ) by Lemma 3.2. Moreover

d(SdH) = H in Ξ,
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and we immediately see

d H̊1,q−1
γν (Ξ) ⊂ d D̊q−1

γν (Ξ) ⊂ D̊qγν ,0(Ξ) ⊂ D̊q
γν ,0

(Ξ) ⊂ d H̊1,q−1
γν (Ξ),

completing the proof. �

Again by Hodge-?-duality, the following theorem follows.

Theorem 3.6. There exists a continuous linear operator

Sδ : ∆̊q
γν ,0

(Ξ)→ H1,q+1(RN ) ∩ H̊1,q+1
γν (Ξ),

such that for all H ∈ ∆̊q
γν ,0

(Ξ)

δ(SδH) = H in Ξ.

Especially ∆̊q
γν ,0

(Ξ) = ∆̊q
γν ,0

(Ξ) = δ H̊1,q+1
γν (Ξ) = δ ∆̊q+1

γν (Ξ) = δ ∆̊q+1
γν and the ‘regular’ H̊1,q+1

γν (Ξ)-

potential depends continuously on the data. In particular these are closed subspaces of L2,q(Ξ) and Sδ is
a right inverse to δ.

Remark 3.7. Inspection of the above proof shows that the latter theorem holds for more general domains.

Let Ω ⊂ RN be a bounded strong Lipschitz domain, such that RN \Ω is connected, and let Γν =
⋃K
k=1 Γν,k,

K ∈ N, with disjoint, relatively open and simply connected strong Lipschitz surface patches Γν,k ⊂ Γ,

where dist(Γν,k,Γν,`) > 0 for all 1 ≤ k 6= ` ≤ K. Now extend Ω over Γν,k by Ω̂k, let Ω̃ denote the

interior of Ω ∪ Ω̂1 ∪ · · · ∪ Ω̂K and define H̃ like in (9). Then H̃ ∈ Dq0(Ω̃). Lemma 3.3 yields TdH̃ ∈
H1,q−1(RN )∩∆q−1

0 (RN ) with d(TdH̃) = H̃ in Ω̃. Again d(TdH̃) = 0 in Ω̂k for k = 1, . . . ,K. Continuing

analogously and since the Ω̂k are simply connected, there exist unique potentials F1, . . . , FK ∈ H1,q−2(Ω̂k)

with TdH̃ = dFk in Ω̂k. As before Fk ∈ D1,q−2(Ω̂k). Let Ek : D1,q−2(Ω̂k) → D1,q−2(RN ), k = 1, . . . ,K,

be Stein extension operators. By cutting off appropriately it can be arranged that supp(Ekϕk) ∩ Ω̂` = ∅
for all 1 ≤ k 6= ` ≤ K. We define

SdH := TdH̃ −
K∑
k=1

d(EkFk) ∈ H1,q−1(RN ).

Again from SdH = 0 in Ω̂k, k = 1, . . . ,K, SdH|Γν = 0 follows, which means SdH ∈ H̊
˜

1,q−1
Γν

(Ω) and

therefore

SdH ∈ H̊1,q−1
Γν

(Ω) ⊂ D̊q−1
Γν

(Ω) ⊂ D̊q−1
Γν

(Ω).

Moreover d(SdH) = H in Ω, as d(SdH) = d(TdH̃) = H̃ even in Ω̃.

3.3. Weak equals strong for the half-cube in terms of boundary conditions. Now the two main

density results immediately follow. We note that this has already been proved for the H1,q(Ω)-spaces in

Lemma 3.2, i.e., H̊1,q
Γτ

(Ω) = H̊1,q
Γτ

(Ω).

Theorem 3.8. D̊q
γν (Ξ) = D̊qγν (Ξ) and ∆̊q

γν (Ξ) = ∆̊q
γν (Ξ).

Proof. Suppose E ∈ D̊q
γν (Ξ) and thus dE ∈ D̊q+1

γν ,0
(Ξ). By Theorem 3.5 there exists H = Sd dE ∈ H̊1,q

γν (Ξ)

with dH = dE. By Theorem 3.5 we get E −H ∈ D̊q
γν ,0

(Ξ) = D̊qγν ,0(Ξ) and hence E ∈ D̊qγν (Ξ). �

4. The compact embedding

4.1. Compact embedding on the half-cube. First we show the main result on the half-cube Ξ = B−
with the special boundary patch

γν = ∅, γν = B0 or γν = B0,+

from the latter section. To this end we consider the densely defined and closed unbounded linear operator

d := dq−1
τ : D̊q−1

γτ (Ξ) ⊂ L2,q−1(Ξ)→ L2,q
ε (Ξ)

and its adjoint

− δ∗ := − δqν = (dq−1
τ )∗ : ε−1∆̊q

γν (Ξ) ⊂ L2,q
ε (Ξ)→ L2,q−1(Ξ).

Note that by Theorem 3.8 we have ∆̊q
γν (Ξ) = ∆̊q

γν (Ξ). Here, L2,q
ε (Ξ) denotes L2,q(Ξ) equipped with

the inner product 〈 · , · 〉L2,q
ε (Ω) = 〈 ε· , · 〉L2,q(Ω). Let ⊕ε denote the orthogonal sum with respect to the

L2,q
ε -scalar product. The projection theorem yields
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Lemma 4.1. L2,q(Ξ) = d D̊q−1
γτ (Ξ) ⊕ε ε−1∆̊q

γν ,0
(Ξ) = d H̊1,q−1

γτ (Ξ) ⊕ε ε−1 δ H̊1,q+1
γν (Ξ)

Proof. By the projection theorem

L2,q(Ξ) = d D̊q−1
γτ (Ξ)⊕ε ε−1∆̊q

γν ,0
(Ξ).

It holds d D̊q−1
γτ (Ξ) = d D̊q−1

γτ (Ξ) = d H̊1,q−1
γτ (Ξ) by Theorem 3.5 and ∆̊q

γν ,0
(Ξ) = ∆̊q

γν ,0
(Ξ) = δ H̊1,q+1

γν (Ξ)
by Theorem 3.6. �

Theorem 4.2. The embedding D̊qγτ (Ξ) ∩ ε−1∆̊q
γν (Ξ) ↪→ L2,q(Ξ) is compact.

Proof. Let (Hn)n∈N be a bounded sequence in D̊qγτ (Ξ) ∩ ε−1∆̊q
γν (Ξ). By Lemma 4.1 we can decompose

Hn = Hd
n +Hδ

n = dEd
n + ε−1 δ Eδn ∈

(
d H̊1,q−1

γτ (Ξ) ∩ ε−1∆̊q
γν (Ξ)

)
⊕ε
(
ε−1 δ H̊1,q+1

γν (Ξ) ∩ D̊qγτ (Ξ)
)
,

with dHδ
n = dHn and δ εHd

n = δ εHn. Furthermore, we can estimate∣∣Ed
n

∣∣
H1,q−1(Ξ)

≤ c
∣∣Hd

n

∣∣
L2,q(Ξ)

≤ c |Hn|L2,q(Ξ) ,∣∣Eδn∣∣H1,q+1(Ξ)
≤ c

∣∣Hδ
n

∣∣
L2,q(Ξ)

≤ c |Hn|L2,q(Ξ) .

By Rellich’s selection theorem (Ed
n) and (Eδn) w.l.o.g. converge in L2,q−1(Ξ) and L2,q+1(Ξ) respectively

and ∣∣Hd
n −Hd

m

∣∣2
L2,q
ε (Ξ)

= 〈Hd
n −Hd

m,d(Ed
n − Ed

m)〉L2,q
ε (Ξ)

= −〈δ ε(Hd
n −Hd

m), Ed
n − Ed

m〉L2,q−1(Ξ) ≤ c
∣∣Ed

n − Ed
m

∣∣
L2,q−1(Ξ)

.

Thus (Hd
n) converges in L2,q(Ξ) and an analogous computation shows the convergence of (Hδ

n). Altogether
(Hn) converges in L2,q(Ξ). �

Remark 4.3. The use of Helmholtz decompositions and regular potentials in the proof of Theorem 4.2
demonstrates the main idea behind an elegant proof of a compact embedding. This general idea carries
over to proofs of compact embeddings related to other kinds of Hilbert complexes as well.

4.2. The compact embedding for weak Lipschitz domains. The aim of this section is to transfer
Theorem 4.2 to arbitrary weak Lipschitz pairs (Ω,Γτ ). To this end we will employ a technical lemma,
whose proof is sketched in [10, Section 3] and [14, Remark 2]. We give a detailed proof in the appendix.

Let us consider the following situation: Let Θ, Θ̃ be two domains in RN with boundaries Υ := ∂Θ,
Υ̃ := ∂ Θ̃ and Υ0 ⊂ Υ relatively open. Moreover, let

φ : Θ→ Θ̃, ψ := φ−1 : Θ̃→ Θ

be Lipschitz diffeomorphisms, this is, φ ∈ C0,1(Θ, Θ̃) and ψ = φ−1 ∈ C0,1(Θ̃,Θ). Then Θ̃ = φ(Θ),

Υ̃ = φ(Υ) and we define Υ̃0 := φ(Υ0).

Lemma 4.4. Let E ∈ D̊q
Υ0

(Θ) resp. E ∈ D̊qΥ0
(Θ) and H ∈ ε−1∆̊q

Υ0
(Θ) resp. H ∈ ε−1∆̊q

Υ0
(Θ). Then

ψ∗E ∈ D̊q

Υ̃0
(Θ̃) resp. D̊q

Υ̃0
(Θ̃) and dψ∗E = ψ∗ dE,

ψ∗H ∈ µ−1∆̊q

Υ̃0
(Θ̃) resp. µ−1∆̊q

Υ̃0
(Θ̃) and δ µψ∗H = ± ? dψ∗ ? εH = ± ? ψ∗ ? δ εH,

where µ := (−1)qN−1?ψ∗?εφ∗ is an admissible transformation. Moreover, there exists c > 0, independent
of E and H, such that

|ψ∗E|
Dq(Θ̃)

≤ c |E|
Dq(Θ)

, |ψ∗H|
µ−1∆q(Θ̃)

≤ c |H|
ε−1∆q(Θ)

.

From now on we make the following

General Assumption: Let (Ω,Γτ ) be a weak Lipschitz pair as in Definitions 2.1 and 2.3. In particular,
Ω is bounded.

We adjust Lemma 4.4 to our situation: Let U1, . . . , UK be an open covering of Γ according to Definitions

2.1 and 2.3 and set U0 := Ω. Therefore U0, . . . , UK is an open covering of Ω. Moreover let χk ∈ C̊∞(Uk),
k ∈ {0, . . . ,K}, be a partition of unity subordinate to the open covering U0, . . . , UK . Now suppose
k ∈ {1, . . . ,K}. We define

Ωk := Uk ∩ Ω, Γk := Uk ∩ Γ, Γτ,k := Uk ∩ Γτ , Γν,k := Uk ∩ Γν ,
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Γ̂k := ∂ Ωk, Σk := Γ̂k \ Γ, Γ̂τ,k := int(Γτ,k ∪ Σk), Γ̂ν,k := int(Γν,k ∪ Σk),

σ := γ \B0, γ̂τ := int(γτ ∪ σ), γ̂ν := int(γν ∪ σ).

Lemma 4.4 will from now on be used with

Θ := Ωk, Θ̃ := Ξ, φ := φk : Ωk → Ξ, ψ := ψk : Ξ→ Ωk

and with one of the following cases

Υ0 := Γτ,k, Υ0 := Γ̂τ,k, Υ0 := Γν,k or Υ0 := Γ̂ν,k.

Then Υ = Γ̂k and Υ̃ = φk(Γ̂k) = γ as well as (depending on the respective case)

Υ̃0 = φk(Γτ,k) = γτ , Υ̃0 = φk(Γ̂τ,k) = γ̂τ , γτ ∈ {∅, B0, B0,−}, γν = γ \ γτ ,

Υ̃0 = φk(Γν,k) = γν , Υ̃0 = φk(Γ̂ν,k) = γ̂ν , γν ∈ {∅, B0, B0,+}, γτ = γ \ γν .

Remark 4.5. Theorems 3.5, 3.6, Remark 3.7, as well as Theorems 3.8, 4.2 hold for γν = B0,− without
any (substantial) modification as well.

It is straightforward to show

Lemma 4.6. Let k ∈ {1, . . . ,K}. For E ∈ D̊q
Γτ

(Ω) and H ∈ ∆̊q
Γν

(Ω) we have

E ∈ D̊q
Γτ,k

(Ωk), χkE ∈ D̊q

Γ̂τ,k
(Ωk), H ∈ ∆̊q

Γν,k
(Ωk), χkH ∈ ∆̊q

Γ̂ν.k
(Ωk).

Theorem 4.7. D̊q
Γτ

(Ω) = D̊qΓτ (Ω) and ∆̊q
Γν

(Ω) = ∆̊q
Γν

(Ω).

Proof. Suppose E ∈ D̊q
Γτ

(Ω). Then χ0E ∈ D̊q(Ω) ⊂ D̊qΓτ (Ω) by mollification. Let k ∈ {1, . . . ,K}. Then

E ∈ D̊q
Γτ,k

(Ωk) by Lemma 4.6. Lemma 4.4, Theorem 3.8 (with γν := γτ ) and Remark 4.5 yield

ψ∗kE ∈ D̊q
γτ (Ξ) = D̊qγτ (Ξ), γτ = φk(Γτ,k) ∈ {∅, B0, B0,−}.

Then E = φ∗kψ
∗
kE ∈ D̊qΓτ,k(Ωk) and thus χkE ∈ D̊q

Γ̂τ,k
(Ωk) ⊂ D̊qΓτ (Ω).

Hence E =
∑
k χkE ∈ D̊qΓτ (Ω). ∆̊q

Γν
(Ω) = ∆̊q

Γν
(Ω) follows analogously or by Hodge-?-duality. �

Remark 4.8. By Theorem 4.7, Lemma 4.6 also holds for the spaces D̊qΓτ (Ω) and ∆̊q
Γν

(Ω). More precisely,

for E ∈ D̊qΓτ (Ω) and H ∈ ∆̊q
Γν

(Ω) we have for k ∈ {1, . . . ,K}

E ∈ D̊qΓτ,k(Ωk), χkE ∈ D̊q
Γ̂τ,k

(Ωk), H ∈ ∆̊q
Γν,k

(Ωk), χkH ∈ ∆̊q

Γ̂ν,k
(Ωk).

Now the compact embedding for weak Lipschitz pairs (Ω,Γτ ) can be proved.

Theorem 4.9. Let ε ∈ L∞(Ω) be an admissible transformation on q-forms. Then the embedding

D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) ↪→ L2,q(Ω)

is compact.

Proof. Suppose (En) is a bounded sequence in D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω). Then by mollification

E0,n := χ0En ∈ D̊q(Ω) ∩ ε−1∆̊q(Ω),

E0,n even has compact support in Ω, and by classical results (E0,n), see [12, 13, 10], contains an L2,q(Ω)-

converging subsequence, again denoted by (E0,n). Hence E0,n → E0 in L2,q(Ω) with some E0 ∈ L2,q(Ω).
Let k ∈ {1, . . . ,K}. By Lemma 4.6 and Remark 4.8

Ek,n := χkEn ∈ D̊q
Γ̂τ,k

(Ωk), εEk,n ∈ ∆̊q

Γ̂ν,k
(Ωk)

and the sequence (Ek,n) is bounded in D̊q
Γ̂τ,k

(Ωk) ∩ ε−1∆̊q

Γ̂ν,k
(Ωk) by the product rule. By Lemma 4.4

|ψ∗kEk,n|Dq(Ξ)
≤ c |Ek,n|Dq(Ωk)

,

showing that (ψ∗kEk,n) is bounded in D̊qγ̂τ (Ξ). Analogously, (ψ∗kEk,n) is bounded in µ−1
k ∆̊q

γ̂ν
(Ξ) with the

admissible transformation µk := (−1)qN−1 ? ψ∗k ? εφ
∗
k. Thus (ψ∗kEk,n) is bounded in

D̊qγ̂τ (Ξ) ∩ µ−1
k ∆̊q

γ̂ν
(Ξ) ⊂ D̊qγ̂τ (Ξ) ∩ µ−1

k ∆̊q
γν (Ξ), γν ∈ {∅, B0, B0,+}, γ̂τ = γ \ γν .
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Therefore, w.l.o.g. ψ∗kEk,n
n→∞−−−−→ Êk in L2,q(Ξ) with some Êk ∈ L2,q(Ξ) by Theorem 4.2. Now

Ek,n ∈ L2,q(Ωk), Ek := φ∗kÊk ∈ L2(Ωk)

and Lemma 4.4 yields

|Ek,n − Ek|L2,q(Ωk) ≤ c
∣∣∣ψ∗kEk,n − Êk∣∣∣

L2,q(Ξ)
.

Hence Ek,n
n→∞−−−−→ Ek in L2,q(Ωk) and Ek,n

n→∞−−−−→ Ek in L2,q(Ω) for their extensions by zero to Ω. Finally

En =
∑
k χkEn =

∑
k Ek,n

n→∞−−−−→
∑
k Ek in L2,q(Ω). �

5. Applications

From now on let Ω ⊂ RN be a bounded domain and let (Ω,Γτ ) be a weak Lipschitz pair as well as
ε : L2,q(Ω) → L2,q(Ω) be admissible. This sections’ results immediately follow in the framework of a
general functional analytic toolbox, see [7, 8].

5.1. The Maxwell estimate. A first consequence of the compact embedding Theorem 4.9, i.e.,

D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) ↪→ L2,q(Ω)

is that the space of so-called ‘Dirichlet-Neumann forms’

Hqε(Ω) := D̊qΓτ ,0(Ω) ∩ ε−1∆̊q
Γν ,0

(Ω)

is finite dimensional because the unit ball inHqε(Ω) is compact. By a standard indirect argument Theorem
4.9 immediately implies the so-called Maxwell estimate:

Theorem 5.1. There exists a constant cm > 0, such that for all E ∈ D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) ∩Hqε(Ω)⊥ε

|E|L2,q
ε (Ω) ≤ cm

(
|dE|2L2,q+1(Ω) + |δ(εE)|2L2,q−1(Ω)

)1/2
.

Here we denote by ·⊥ε orthogonality with respect to L2,q
ε (Ω)-scalar product.

5.2. Helmholtz decompositions. Applying the projection theorem to the densely defined and closed
unbounded linear operators

d := dq−1
τ : D̊q−1

Γτ
(Ω) ⊂ L2,q−1(Ω)→ L2,q

ε (Ω)

with adjoint, see Theorem 4.7,

− δ∗ := − δqν = (dq−1
τ )∗ : ε−1∆̊q

Γν
(Ω) ⊂ L2,q

ε (Ω)→ L2,q−1(Ω)

and
ε−1 δ := ε−1 δq+1

ν : ε−1∆̊q+1
Γν

(Ω) ⊂ L2,q+1(Ω)→ L2,q
ε (Ω)

with adjoint

−d := −dqτ = (ε−1 δq+1
ν )∗ : D̊qΓτ (Ω) ⊂ L2,q

ε (Ω)→ L2,q+1(Ω)

we obtain

L2,q(Ω) = d D̊q−1
Γτ

(Ω)⊕ε ε−1∆̊q
Γν ,0

(Ω)

and

L2,q(Ω) = D̊qΓτ ,0(Ω)⊕ε ε−1 δ ∆̊q+1
Γν

(Ω).

Hence D̊qΓτ ,0(Ω) = d D̊q−1
Γτ

(Ω)⊕ε Hqε(Ω), where Hqε(Ω) = D̊qΓτ ,0(Ω) ∩ ε−1∆̊q
Γν ,0

(Ω). Altogether

L2,q(Ω) = d D̊q−1
Γτ

(Ω)⊕ε Hqε(Ω)⊕ε ε−1 δ ∆̊q+1
Γν

(Ω).

We arrive at

Theorem 5.2. The following orthogonal decompositions hold:

L2,q(Ω) = d D̊q−1
Γτ

(Ω)⊕ε ε−1∆̊q
Γν ,0

(Ω) = D̊qΓτ ,0(Ω)⊕ε ε−1 δ ∆̊q+1
Γν

(Ω)

= d D̊q−1
Γτ

(Ω)⊕ε Hqε(Ω)⊕ε ε−1 δ ∆̊q+1
Γν

(Ω).

Furthermore

d D̊qΓτ (Ω) = d
(
D̊qΓτ (Ω) ∩ ε−1 δ ∆̊q+1

Γν
(Ω)
)

= d
(
D̊qΓτ (Ω) ∩ ε−1∆̊q

Γν ,0
(Ω) ∩Hqε(Ω)⊥ε

)
,

δ ∆̊q
Γν

(Ω) = δ
(
∆̊q

Γν
(Ω) ∩ εd D̊q−1

Γτ
(Ω)
)

= δ
(

∆̊q
Γν

(Ω) ∩ ε
(
D̊qΓτ ,0(Ω) ∩Hqε(Ω)⊥ε

))
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and

d D̊q−1
Γτ

(Ω) = D̊qΓτ ,0(Ω) ∩Hqε(Ω)⊥ε , δ ∆̊q+1
Γν

(Ω) = ∆̊q
Γν ,0

(Ω) ∩Hqε(Ω)⊥.

The ranges d D̊q−1
Γτ

(Ω) and δ ∆̊q+1
Γν

(Ω) are closed subspaces of L2,q(Ω). Moreover, the d- resp. δ-potentials

are uniquely determined in D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν ,0

(Ω) ∩ Hqε(Ω)⊥ε and ∆̊q
Γν

(Ω) ∩ ε
(
D̊qΓτ ,0(Ω) ∩ Hqε(Ω)⊥ε

)
,

respectively, and depend continuously on their respective images.

Proof. Theorem 5.1 implies closedness of the ranges and continuity of the potentials. �

5.3. Static solution theory. As a further application we turn to the boundary value problem of gen-
eralized electro- and magnetostatics with mixed boundary values: Let F ∈ L2,q+1(Ω), G ∈ L2,q−1(Ω),

Eτ ∈ Dq(Ω), Eν ∈ ε−1∆q(Ω) and ε be admissible. Find E ∈ Dq(Ω) ∩ ε−1∆q(Ω) with

dE = F,

δ εE = G,

E − Eτ ∈ D̊qΓτ (Ω),

ε(E − Eν) ∈ ∆̊q
Γν

(Ω).

(10)

For uniqueness, we require the additional conditions

〈εE,D`〉L2,q(Ω) = α` ∈ R, ` = 1, . . . , d,(11)

where d is the dimension and {D`} an ε-orthonormal basis of Hqε(Ω). The boundary values on Γτ and
Γν , respectively, are realized by the given forms Eτ and Eν , respectively.

Theorem 5.3. (10) admits a solution, if and only if

Eτ ∈ Dq(Ω), Eν ∈ ε−1∆q(Ω),

and

F − dEτ ⊥ ∆̊q+1
Γν ,0

(Ω), G− δ εEν ⊥ D̊q−1
Γτ ,0

(Ω).(12)

The solution E ∈ Dq(Ω) ∩ ε−1∆q(Ω) can be chosen in a way such that condition (11) with α ∈ Rd
is fulfilled, which then uniquely determines the solution. Furthermore the solution depends linearly and
continuously on the data.

Note that (12) is equivalent to F − dEτ ∈ d D̊qΓτ (Ω) and G − δ εEν ∈ δ ∆̊q
Γν

(Ω). For homogeneous
boundary data, i.e., Eτ = Eν = 0, the theorem immediately follows from a functional analytic toolbox,
which even states a sharper result: The linear static Maxwell-operator

M : D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) −→ d D̊qΓτ (Ω)× δ ∆̊q
Γν

(Ω)× Rd
E 7−→

(
dE, δ εE, (〈εE,D`〉L2,q(Ω))

d
`=1

)
is a topological isomorphism. Its inverse M−1 maps not only continuously onto D̊qΓτ (Ω) ∩ ε−1∆̊q

Γν
(Ω),

but also compactly into L2,q(Ω) by Theorem 4.9. For homogeneous kernel data, i.e., for

M0 : D̊qΓτ (Ω) ∩ ε−1∆̊q
Γν

(Ω) ∩Hqε(Ω)⊥ε −→ d D̊qΓτ (Ω)× δ ∆̊q
Γν

(Ω)
E 7−→ (dE, δ εE)

we have ||M−1
0 || ≤ (c2m + 1)1/2.

Appendix A. Proof of Lemma 4.4

We start out by proving the assertions for the exterior derivative.

A.1. Without Boundary Conditions. Let E =
∑
I EI dxI ∈ Dq(Θ). We have to prove ψ∗E ∈ Dq(Θ̃)

with dψ∗E = ψ∗ dE.

(i) Let us first assume Φ ∈ C0,1,q(Θ), i.e., ΦI ∈ C0,1(Θ) for all I. In the following we denote by ·̃ the
composition with ψ. We have

dψj =
∑
i

∂iψj dxi, ψ∗Φ =
∑
I

Φ̃Iψ
∗ dxi =

∑
I

Φ̃I(dψi1) ∧ · · · ∧ (dψiq ),

d Φ =
∑
I,j

∂jΦI(dxj) ∧ (dxI).
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By Rademacher’s theorem we know that Φ̃I = ΦI ◦ ψ and ψj belong to C0,1(Θ̃) ⊂ H1(Θ̃) and

that the chainrule holds, i.e., ∂iΦ̃I =
∑
j ∂̃jΦI∂iψj . As ψj ∈ H1(Θ̃) we get dψj ∈ D1

0(Θ̃) by

〈dψj , δ ϕ〉L2,1(Θ̃) = −〈ψj , δ δ ϕ〉L2,0(Θ̃) = 0

for all ϕ ∈ C̊∞,2(Θ̃). Thus by definition we see

dψ∗Φ =
∑
I

(d Φ̃I) ∧ (dψi1) ∧ · · · ∧ (dψiq ) =
∑
I,i

∂iΦ̃I(dx
i) ∧ (dψi1) ∧ · · · ∧ (dψiq )

=
∑
I,i,j

∂̃jΦI∂iψj(dx
i) ∧ (dψi1) ∧ · · · ∧ (dψiq ) =

∑
I,j

∂̃jΦI(dψj) ∧ (dψi1) ∧ · · · ∧ (dψiq ).

On the other hand it holds

ψ∗ d Φ =
∑
I,j

∂̃jΦI(ψ
∗ dxj) ∧ (ψ∗ dxI) =

∑
I,j

∂̃jΦI(dψj) ∧ (dψi1) ∧ · · · ∧ (dψiq ).

Therefore, ψ∗Φ ∈ Dq(Θ̃) and dψ∗Φ = ψ∗ d Φ.

(ii) For general E ∈ Dq(Θ) we pick Φ ∈ C̊∞,q+1(Θ̃). Note supp Φ ⊂⊂ Θ̃ = φ(Θ). Replacing ψ by φ

in (i) we have φ∗ ? Φ ∈ DN−q−1(Θ) with dφ∗ ? Φ = φ∗ d ?Φ and since φ∗ ? Φ =
∑
I

˜(?Φ)Iφ
∗ dxI

holds, suppφ∗ ? Φ ⊂⊂ Θ. By standard mollification we obtain a sequence (Ψn) ⊂ C̊∞,N−q−1(Θ)

with Ψn → φ∗ ? Φ in DN−q−1(Θ). Furthermore ?Ψn ∈ C̊∞,q+1(Θ). Then

〈ψ∗E, δΦ〉L2,q(Ξ) =

∫
Θ̃

ψ∗E ∧ ? δΦ = ±
∫

Θ̃

ψ∗E ∧ ψ∗φ∗ d ?Φ = ±
∫

Θ̃

ψ∗(E ∧ φ∗ d ?Φ)

= ±
∫

Θ

E ∧ φ∗ d ?Φ = ±
∫

Θ

E ∧ dφ∗ ? Φ← ±
∫

Θ

E ∧ d Ψn

= ±
∫

Θ

E ∧ ? ? d ? ?Ψn = ±〈E, δ ?Ψn〉L2,q(Θ)

= ±〈dE, ?Ψn〉L2,q+1(Θ) → ±〈dE, ?φ∗ ? Φ〉L2,q+1(Θ) = ±
∫

Θ

dE ∧ φ∗ ? Φ

= ±
∫

Θ̃

ψ∗(dE ∧ φ∗ ? Φ) = ±
∫

Θ̃

(ψ∗ dE) ∧ ?Φ = −〈ψ∗ dE,Φ〉L2,q+1(Θ̃)

and hence ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE.

(iii) Let E ∈ Dq(Θ). By (ii) we know ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE. Hence

|ψ∗E|2L2,q(Θ̃) =

∫
Θ̃

ψ∗E ∧ ?ψ∗E =

∫
Θ

φ∗ψ∗E ∧ φ∗ ? ψ∗E

= ±
∫

Θ

E ∧ ?(?φ∗ ? ψ∗)E ≤ c |E|2L2,q(Θ) ,

and

|dψ∗E|L2,q+1(Θ̃) = |ψ∗ dE|L2,q+1(Θ̃) ≤ c |dE|L2,q+1(Θ) .

A.2. With Strong Boundary Condition. Let E ∈ D̊qΥ0
(Θ) and (En) ⊂ C̊∞,qΥ0

(Θ) with En → E

in Dq(Θ). By Appendix A.1 (ii) we know ψ∗E,ψ∗En ∈ Dq(Θ̃) with dψ∗En = ψ∗ dEn as well as

dψ∗E = ψ∗ dE. Furthermore, ψ∗En has compact support away from Υ̃0. By standard mollification we

see ψ∗En ∈ D̊q
Υ̃0

(Θ̃). Moreover, by A.1 (iii) ψ∗En → ψ∗E in Dq(Θ̃). Therefore ψ∗E ∈ D̊q
Υ̃0

(Θ̃) with

dψ∗E = ψ∗ dE.

A.3. With Weak Boundary Condition. Let E ∈ D̊q
Υ0

(Θ) and Φ ∈ C̊∞,q+1

Υ̃1
(Θ̃), where Υ1 = Υ \ Υ0.

By Appendix A.1 (ii) we again know ψ∗E ∈ Dq(Θ̃) with dψ∗E = ψ∗ dE. Moreover by Appendix A.2

φ∗ ?Φ ∈ D̊N−q−1
Υ1

(Θ) and hence ?φ∗ ?Φ ∈ ∆̊q+1
Υ1

(Θ). We repeat the calculation from Appendix A.1 (ii) to
arrive at

〈ψ∗E, δΦ〉L2,q(Θ̃) =

∫
Θ̃

ψ∗E ∧ ? δΦ = ±〈E, ?φ∗ d ?Φ〉L2,q(Θ)

= ±〈E, ? dφ∗ ? Φ〉L2,q(Θ) = ±〈E, δ ?φ∗ ? Φ〉L2,q(Θ)

= ±〈dE, ?φ∗ ? Φ〉L2,q+1(Θ) = −〈ψ∗ dE,Φ〉L2,q+1(Θ̃) = −〈dψ∗E,Φ〉L2,q+1(Θ̃)
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and therefore ψ∗E ∈ D̊q

Υ̃0
(Θ̃).

A.4. Assertions for the co-derivative. It holds by Appendix A.1 (ii)

εH ∈ ∆q(Θ) ⇔ ?εH ∈ DN−q(Θ) ⇔ ψ∗ ? εφ∗ψ∗H ∈ DN−q(Θ̃) ⇔ µψ∗H ∈ ∆q(Θ̃).

Moreover, using Appendix A.1 (iii) µ is admissible since for all H ∈ L2,q(Θ̃)

〈µH,H〉L2,q(Θ̃) = ±〈?ψ∗ ? εφ∗H,H〉L2,q(Θ̃) = ±〈ψ∗ ? εφ∗H, ?H〉L2,N−q(Θ̃)

= ±
∫

Θ̃

ψ∗ ? εφ∗H ∧H = ±
∫

Θ

?εφ∗H ∧ ? ? φ∗H

= ±〈εφ∗H,φ∗H〉L2,q(Θ) ≥ c |φ∗H|
2
L2,q(Θ) ≥ c |H|

2
L2,q(Θ̃) .

Furthermore

δ µψ∗H = ± ? dψ∗ ? εH = ± ? ψ∗ ? δ εH.
The remaining assertions now follow by Appendix A.1 - A.3 and Hodge-?-duality.
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