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Abstract

We formulate a relaxed linear elastic micromorphic continuum model with symmetric Cauchy force-
stresses and curvature contribution depending only on the micro-dislocation tensor. Our relaxed model is still
able to fully describe rotation of the microstructure and to predict non-polar size-effects. It is intended for the
homogenized description of highly heterogeneous, but non polar materials with microstructure liable to slip
and fracture. In contrast to classical linear micromorphic models our free energy is not uniformly pointwise
positive definite in the control of the independent constitutive variables. The new relaxed micromorphic
model supports well-posedness results for the dynamic and static case. There, decisive use is made of new
coercive inequalities recently proved by Neff, Pauly and Witsch and by Bauer, Neff, Pauly and Starke. The
new relaxed micromorphic formulation can be related to dislocation dynamics, gradient plasticity and seismic
processes of earthquakes. It unifies and simplifies the understanding of the linear micromorphic models.
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1 Introduction

1.1 Motivation

Microstructural motions are observed to produce new effects that cannot be accounted for by classical translatory
degrees of freedom (dof) used to formulate conventional theories. For instance, plane waves in an unbounded
elastic medium propagate without dispersion, i.e. the wave speed is independent of the frequency. However,
experiments with real solids disclose dispersive wave propagation. In order to incorporate the microstructure of
the matter into the classical theory, generalized continuum models may be used. Among the various extended
continuum theories we mention the higher gradient elasticity theories [109, 111, 132, 83, 3] and micromorphic
models [48, 120, 102, 101, 100, 160].

General continuum models involving independent rotations have been introduced by the Cosserat brothers
[35] at the beginning of the last century. A material point carrying three deformable directors introduces
nine extra degrees of freedom besides the translational degrees of freedom from the classical theory. Many
developments have been reported since the seminal work of the Cosserat brothers. The derived generalized
theories are called polar, micropolar, micro-elastic, micromorphic, Cosserat, multipolar, oriented, complex, etc.,
according to the specifically considered kinematical variables and to the choice of the set of constitutive variables.
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All materials, whether natural or synthetic, possess microstructures if one considers sufficiently small scales.
Viewed first as a formal theoretical investigation, the micromorphic models (12 dof) derived by Eringen and
Suhubi [50], Mindlin [112, 107, 108, 110] and Toupin [165, 166] are justified recently as more realistic continuum
models based on molecular dynamics and ensemble averaging [26, 27, 97, 169, 171].

A large class of engineering materials, porous solids with deformable grains and pores, composites, polymers
with deformable molecules, crystals, solids with microcracks, dislocations and disclinations [106, 8], and biolog-
ical tissues like “bones and muscles” may be modeled more realistically by means of the theory of micromorphic
materials. This is the reason why micromorphic mechanics is a dynamic field of research both from a theoretical
and practical point of view.

Considerations of the format of balance laws in geometrically nonlinear micromorphic elasticity have been
undertaken in [24, 101, 25, 37, 170]. The only known existence results for the static geometrically nonlinear
formulation are due to Neff [122] and to Mariano and Modica [101]. In fact, Mariano and Modica [94] treat
general microstructures described by manifold-valued variables, even if they discuss essentially what is called by
Neff in [122] macro-stability (two other cases are treated in [122], one leads to fractures - a situation excluded in
[101] - the other is left open). When the energy analyzed by Mariano and Modica is reduced to micromorphic
materials in the splitted version considered by Neff [101], their coercivity assumptions result are more stringent
than Neff’s ones (the blow up of the determinant of detF a part), so they restrict the material response.
However, the direct comparison of the two existence results is not completely straightforward. As for the
numerical implementation, see [102] and the development in [84]. In [84] the original problem is decoupled
into two separate problems. Corresponding domain-decomposition techniques for the subproblem related to
balance of forces are investigated in [84]. The size effects involved in a natural way in the micromorphic
models (see e.g. [157]) have recently received much attention in conjuction with nano-devices and foam-like
structures. A geometrically nonlinear generalized continuum of micromorphic type in the sense of Eringen for
the phenomenological description of metallic foams is given by Neff and Forest [128]. Moreover, in [128] the
authors proved the existence of minimizers and they identified the relevant effective material parameters.

A comparison of the geometrically nonlinear elastic micromorphic theories with affine microstructure with
the intrinsically linear models of Mindlin and Eringen is given in [120, 128]. In the present paper, a useful
decomposition (mixed variant) of the constitutive choice for the strain energy density is presented for the
classical linear-elastic micromorphic media of Mindlin-Eringen type. This decomposition allows to individuate,
in the isotropic case, a unique parameter µc (called Cosserat couple modulus) which governs the asymmetry of
the force stresses and which is strongly related to penalty formulations without intrinsic physical significance.
This parameter is not included in the relaxed model we introduce in the second part of the present paper.
In the following, we refer to the classical micromorphic model, relaxed model etc. according to the following
understanding

• classical: Dirichlet boundary condition for P , the energy density is similar to

µe ∥ sym(∇u− P )∥2 + µc ∥ skew(∇u− P )∥2 + µh ∥ symP∥2 + ∥∇P∥2 ;

• relaxed: tangential boundary condition for P , the energy density is similar to

µe∥ sym(∇u− P )∥2 + µh∥ symP∥2 + ∥CurlP∥2 ;

• mixed variant: tangential boundary condition for P , the energy density is similar to

µe∥ sym(∇u− P )∥2 + µc ∥ skew(∇u− P )∥2 + µh∥ symP∥2 + ∥CurlP∥2 ,

where u is the displacement and P is the micro-distortion. The precise definitions will be given in the Subsections
2.1 and 2.2.

In contrast to the Mindlin and Eringen models, we avoid the presence of the only one parameter in the
force stress response which can not be directly related to simple experiments. However, the presence of the
parameter µc may be necessary to completely describe the mechanical behavior of artificial metamaterials in
which strong contrasts of the elastic properties are present at the microscopic level. This necessity is evident
when studying e.g. phononic crystals which are especially designed to exhibit frequency band-gaps. This

3



means that such metamaterials are conceived to block wave propagation in precise frequency ranges. As far
as standard heterogeneous materials (natural and artificial) are concerned, our reduced model with symmetric
stress is sufficient to fully describe their mechanical behavior. The new well-posedness results for the relaxed
model include the well-posedness results for the classical model.

1.2 Historical perspective

The capability of continuum theories to describe the time evolution and the deformation of the micro-structure
of complex mechanical systems was recognized in the very first formulations of continuum mechanics (see
the pioneering work by Piola [149]). Piola was led by stringent physical considerations to consider gradients
of displacement field higher than the first as needed independent variables in the constitutive equation for the
deformation energy of continuous media (for a modern presentation of this subject see e.g. [43, 158, 42, 132, 160]).

However, more or less in the same period in which Piola was producing his papers, Cauchy and Poisson
managed to determine a very elegant and effective format for continuum mechanics in which:

i) the only kinematical descriptor is the displacement from a reference configuration,
ii) the crucial conceptual tool is the symmetric Cauchy force stress tensor σ = C.ε which is constitutively

related only to the symmetrized gradient of displacement ε = sym∇u,
iii) the crucial postulates are those concerning balance of mass, linear and angular momentum and (eventu-

ally) energy.
The Cauchy and Poisson format is very effective to describe the mechanical behavior of a very wide class of

natural and also artificial materials. Nevertheless, when considering materials with well-organized microstruc-
tures subjected to particular loads and/or boundary conditions, a Cauchy continuum theory may fail to give
accurate results. This is the case for some engineering materials showing high contrast of material properties
(see e.g. [145, 21, 52]) or for some natural materials which show highly heterogeneous hierarchical microstruc-
tures (see e.g. [22]). In all these cases, the introduction of more sophisticated models becomes mandatory if one
wants to catch all features of the mechanical behavior of such complex materials.

About fifty years later, Piola’s ideas were developed by the Cosserat brothers, who were among the first
authors who complemented the standard kinematics constituted by a placement field with additional indepen-
dent kinematical fields. In their case, these suitable fields are given by rigid rotations of the microstructure
with respect to the macroscopic continuum displacement. This introduces three additional dof into the theory.
Cosserat contributions [35] were underestimated for another fifty years and only starting from 1960 a group
constituted by relevant scientific personalities as Mindlin1 [111, 108, 109], Green and Rivlin [71, 73, 70, 72],
Toupin [165, 166], Eringen [48, 50, 51] and Germain [62, 63] managed to establish (with still some resistances)
the formal validity of Cosserat’s point of view.

Actually, the Cosserat’s approach must be further generalized as not only micro-rotations should be included
in a macroscopic modelling picture, but also micro-stretches, micro-strains, micro-shear or concentrated micro-
distortions. This can be done by introducing the so-called micro-structured or micromorphic continuum models,
which are suitably formulated by means of a postulation process based on the principle of least action (see e.g.
[4]) or on the principle of virtual works (see the beautiful works [85, 103, 106, 105, 170, 25]) even if later on the
alternative postulation procedure based on “generalized balance laws” has been also attempted (see [48, 50, 51]).

Indeed, as already remarked in [149], when starting from a discrete system characterized by a micro-structure
spanning several length scales and strong contrast of the elastic properties it is rather unlikely to get as a suitable
macroscopic model the simple standard Cauchy continuum. Whether the force stresses remain symmetric in
such homogenization procedure is open [11, 145].

In addition, the evolution of non purely mechanical phenomena can be described within the framework of
micromorphic continua theory: in this context we refer for instance to those observed in nematic liquid crystals
(see e.g. [167]) where also electromagnetic descriptors need to be introduced to characterize completely the
kinematics of the system. In such a case we speak of polar materials in which the force stress may clearly
become non-symmetric.

It has to be explicitly remarked that Piola’s and Cosserat’s models can be reconciled by means of the
introduction of suitable “internal constraints” and “Lagrange multipliers” as clearly stated e.g. in [19]. Actually
one can get Piola’s deformation energies depending on higher gradients of displacement as a limit of many

1R.D. Mindlin, 17.09.1906–22.11.1987, abandoned microstructure theory when he found that the systems did not mirror physical
reality if compared with the ionic lattice theory.
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different (and physically non-equivalent) more detailed micromorphic models. If in the classical micromorphic

model, in the formal limits, we assume e.g. that the coefficients Ĉ → ∞ then this leads to the free energy (2.10)
for the gradient elasticity model [130, 132]. On the other hand, we can always relax Piola’s gradient material
into suitable micromorphic models.

1.3 Approach in this work

In the present paper we re-investigate the general micromorphic model with a focus on heterogeneous, but non-
polar materials. More particularly, we start by recalling the classical Mindlin-Eringen model for micromorphic
media with intrinsically non-symmetric force stresses. As our contribution, we propose a relaxed linear micro-
morphic model with symmetric Cauchy force stresses and curvature response only due to dislocation energy,
and we formulate the initial–boundary value problems. We prove that this new model is still well-posed [67], i.e.
we study the continuous dependence of solution with respect to the initial data and supply terms and existence
and uniqueness of the solution. The main point in establishing the existence, uniqueness and continuous de-
pendence results [67] is represented by the new coercive inequalities recently proved by Neff, Pauly and Witsch
[136, 137, 138] and by Bauer, Neff, Pauly and Starke [6, 5, 7] (see also [67, 89]).

This relaxed formulation of micromorphic elasticity has some similarities to recently studied models of
gradient plasticity [46, 127, 140, 141, 34]. Indeed, in the static case, the micromorphic relaxed minimization
problem has the same stored elastic energy. In gradient plasticity, however, the plastic distortion/micromorphic
distortion is determined not by energy minimization, but instead by a flow rule. Our new approach, in sharp
contrast to classical micromorphic models, features a symmetric force stress tensor, which we call Cauchy stress.
Teisseyre [162, 163] in his model for the description of seismic wave propagation phenomena [45, 118, 119] also
used a symmetric force stress tensor. In fact, Teisseyre’s model is a fully symmetric model and it is a particular
case of the dislocation dynamics theory proposed by Eringen and Claus [32, 49, 33], where the relative force-
stress is considered to be non-symmetric. The model of Eringen and Claus [32, 49, 33] contains the linear
Cosserat model [121, 129, 82, 131] with asymmetric force stresses upon suitable restriction. This is a situation
we avoid in the proposed relaxed micromorphic approach (see in Subsection 4.1 the motivation given by Kröner
for symmetric force stresses in dislocation dynamics). In fact, it turns out (to our surprise) that our relaxed
model is the Eringen-Claus model [32, 49, 33], albeit with symmetric Cauchy stresses and absent mixed coupling
terms. In Section 4 we disclose the relation of our new relaxed model to the existing models in more detail.
Our critical remarks concerning the linear Cosserat model leave open the possible usefulness of a geometrically
nonlinear Cosserat model [121, 116] with symmetric Cauchy stresses. In contrast with the models considered
until now, our free energy of the relaxed model is not uniformly pointwise positive definite in the control of the
constitutive variables.

The proposed relaxed micromorphic model with symmetric force-stress may be thought to fully describe
the mechanical behaviour of a great variety of natural and artificial microscopically heterogeneous materials.
Granular assemblies are also a field of application of micromorphic models. The possible non-symmetry of
the force stress tensor in such models has been discussed e.g. in [69] and it is proved that in the absence of
intergranular contact moments the grain rotation makes no direct contribution to quasi-static contact work,
and that the widely accepted formula based on volume averaging yields a symmetric Cauchy stress. On the
other hand, we are aware of the possible usefulness of Cosserat model for what concerns the modeling of
artificial engineering metamaterials with strong contrast at the microscopic level. The results established in
our paper can be extended to theories which include electromagnetic and thermal interactions [61, 60, 74, 104].
For isotropic materials, the models presented in this paper involve only a reduced number of constitutive
parameters. This fact will allow us to find exact solutions for wave propagation problems using analog methods
as in [81, 30, 28, 29] and we may also compare the analytical solutions with experiments in order to identify the
fewer relaxed constitutive coefficients.

It is known since the pionering works of Mindlin [108] that two types of waves can propagate in a micro-
morphic continuum: acoustic waves, i.e. waves for which the frequency vanishes for vanishing wavenumbers
(wavelength which tends to infinity), and optic waves, i.e. waves which have non-vanishing, finite frequency
corresponding to vanishing wavenumbers (space independent oscillations). It can be shown that, for particular
frequency ranges, also a third type of waves may exist in our relaxed micromorphic media, namely so-called
standing waves, i.e. waves which do not propagate inside the medium but keep oscillating in a given region of
space. These waves are impossible in the classical micromorphic model. Wave propagation in the considered
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relaxed micromorphic model and the precise effect of the considered elastic parameters will be carefully studied
in a forthcoming paper to show the interest of using our model to proceed towards innovative technological
applications. The paper [155] gives a rich reference list on the wave propagation in second-gradient materials
and on generalized media, in general. Moreover, we will deal with the static model and consider the elliptic
regularity question. The numerical treatment of our new model needs FEM-discretisations in H(curl; Ω), see
[68]. This will be left for future work.

1.4 Notation

For a, b ∈ R3 we let ⟨a, b⟩R3 denote the scalar product on R3 with associated vector norm ∥a∥2R3 = ⟨a, a⟩R3 .
We denote by R3×3 the set of real 3 × 3 second order tensors, written with capital letters. The standard
Euclidean scalar product on R3×3 is given by ⟨X,Y ⟩R3×3 = tr(XY T ), and thus the Frobenius tensor norm
is ∥X∥2 = ⟨X,X⟩R3×3 . In the following we omit the index R3,R3×3. The identity tensor on R3×3 will be
denoted by 11, so that tr(X) = ⟨X, 11⟩. We let Sym denote the set of symmetric tensors. We adopt the usual
abbreviations of Lie-algebra theory, i.e., so(3) := {X ∈ R3×3 |XT = −X} is the Lie-algebra of skew symmetric
tensors and sl(3) := {X ∈ R3×3 |tr(X) = 0} is the Lie-algebra of traceless tensors. For all vectors ξ, η ∈ R3 we
have the tensor product (ξ⊗ η)ij = ξi ηj and ϵijk is the Levi-Civita symbol, also called the permutation symbol
or antisymmetric symbol, given by

ϵijk =

 1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise.

(1.1)

For all X ∈ R3×3 we set symX = 1
2 (X

T +X) ∈ Sym, skewX = 1
2 (X −XT ) ∈ so(3) and the deviatoric part

devX = X − 1
3 trX 11 ∈ sl(3) and we have the orthogonal Cartan-decomposition of the Lie-algebra gl(3)

gl(3) = {sl(3) ∩ Sym(3)} ⊕ so(3)⊕ R·11,

X = dev symX + skewX +
1

3
tr(X)·11 . (1.2)

By C∞
0 (Ω) we denote infinitely differentiable functions with compact support in Ω. We employ the standard

notation of Sobolev spaces, i.e. L2(Ω),H1,2(Ω),H1,2
0 (Ω), which we use indifferently for scalar-valued functions

as well as for vector-valued and tensor-valued functions. Throughout this paper (when we do not specify else)
Latin subscripts take the values 1, 2, 3. Typical conventions for differential operations are implied such as comma
followed by a subscript to denote the partial derivative with respect to the corresponding cartesian coordinate,
while t after a comma denotes the partial derivative with respect to the time. The usual Lebesgue spaces of
square integrable functions, vector or tensor fields on Ω with values in R, R3 or R3×3, respectively will be
denoted by L2(Ω). Moreover, we introduce the standard Sobolev spaces [1, 68, 98]

H1(Ω) = {u ∈ L2(Ω) | gradu ∈ L2(Ω)}, grad = ∇ ,

∥u∥2H1(Ω) := ∥u∥2L2(Ω) + ∥gradu∥2L2(Ω) ,

H(curl; Ω) = {v ∈ L2(Ω) | curl v ∈ L2(Ω)}, curl = ∇× , (1.3)

∥v∥2H(curl;Ω) := ∥v∥2L2(Ω) + ∥curl v∥2L2(Ω) ,

H(div; Ω) = {v ∈ L2(Ω) | div v ∈ L2(Ω)}, div = ∇· ,
∥v∥2H(div;Ω) := ∥v∥2L2(Ω) + ∥div v∥2L2(Ω) ,

of functions u or vector fields v, respectively.
Furthermore, we introduce their closed subspaces H1

0 (Ω), and H0(curl; Ω) as completion under the respective
graph norms of the scalar valued space C∞

0 (Ω), the set of smooth functions with compact support in Ω. Roughly
speaking, H1

0 (Ω) is the subspace of functions u ∈ H1(Ω) which are zero on ∂Ω, while H0(curl; Ω) is the subspace
of vectors v ∈ H(curl; Ω) which are normal at ∂Ω (see [136, 137, 138]). For vector fields v with components in
H1(Ω) and tensor fields P with rows in H(curl ; Ω), resp. H(div ; Ω), i.e.,

v =

 v1
v2
v3

 , vi ∈ H1(Ω), P =

 PT
1

PT
2

PT
3

 Pi ∈ H(curl ; Ω) resp. Pi ∈ H(div ; Ω) (1.4)
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we define

Grad v =

 gradT v1
gradT v2
gradT v3

 , CurlP =

 curlT P1

curlT P2

curlT P3

 , DivP =

 divP1

divP2

divP3

 . (1.5)

We note that v is a vector field, whereas P , CurlP and Grad v are second order tensor fields. The corre-
sponding Sobolev spaces will be denoted by

H(Grad ;Ω) and H(Curl ; Ω) . (1.6)

Furthermore, if T is a third order tensor then we define

Div T := (Div T1,Div T2,Div T3)
T , (1.7)

where Tk = (Tijk) ∈ R3×3 are second order tensors. We recall that if C is a fourth order tensor and X ∈ R3×3,
then C.X ∈ R3×3 with the components

(C.X)ij =
3∑

k=1

3∑
l=1

CijklXkl , (1.8)

and CT .X ∈ R3×3 with the components

(CT .X)kl =
3∑

i=1

3∑
j=1

CijklXij . (1.9)

If G is a fifth order tensor and L a sixth order tensor , then

G. Y ∈ R3×3×3 for all Y ∈ R3×3, (G. Y )ijk =
3∑

m=1

3∑
n=1

GmnijkXmn, (1.10)

and

L.Z ∈ R3×3×3 for all Z ∈ R3×3×3, (L.Z)ijk =

3∑
m=1

3∑
n=1

3∑
p=1

LijkmnpZmnp . (1.11)

2 Formulation of the problem. Preliminaries

We consider a micromorphic continuum which occupies a bounded domain Ω and is bounded by the piecewise
smooth surface ∂Ω. Let T > 0 be a given time. The motion of the body is referred to a fixed system of
rectangular Cartesian axes Oxi, (i = 1, 2, 3).

2.1 Eringen’s linear asymmetric micromorphic elastodynamics revisited

In this subsection, we present the initial-boundary value problem of the linear asymmetric micromorphic theory
introduced by Eringen [48], which is basically identical to Mindlin’s theory of elasticity with microstructure
[108]. The micro-distortion (plastic distortion) P = (Pij) : Ω× [0, T ] → R3×3 describes the substructure of the
material which can rotate, stretch, shear and shrink, while u = (ui) : Ω× [0, T ] → R3 is the displacement of the
macroscopic material points. In this dynamic micromorphic theory, the basic equations in strong form consist
of the equations of motion

ϱ u,tt = Div σ̂ + f, (2.1)

ϱ I. P,tt = Div m̂+ σ̂ − s+M, in Ω× [0, T ],
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the constitutive equations

σ̂ = Ĉ. e+ Ê. εp + F̂. γ,

s = ÊT . e+H. εp + Ĝ. γ, (2.2)

m̂ = F̂. e+ Ĝ. εp + L̂. γ, in Ω× [0, T ],

exclusively depending on the set of independent constitutive variables

e := ∇u− P, εp := symP, γ := ∇P, in Ω× [0, T ]. (2.3)

The symmetric part of e corresponds to the difference of material strain ε and microstrain εp, whereas its
skew-symmetric part accounts for the relative rotation of the material with respect to the substructure. Various
strain measures for the Cosserat continuum have been extensively discussed in [146, 147]. Using the assumption
of small strains and assuming skew-symmetry of P the strain measures (2.3) coincide with the natural Cosserat
strain measures which are non-symmetric, in general.

The quantities involved in the above system of equations have the following physical signification:

• (u, P ) are the kinematical variables,

• ϱ is the reference mass density,

• I is the microinertia tensor (second order),

• σ̂ is the force-stress tensor (second order, in general non-symmetric),

• s is the microstress tensor (second order, symmetric),

• m̂ is the moment stress tensor (micro-hyperstress tensor, third order, in general non-symmetric),

• u is the displacement vector (translational degrees of freedom),

• P is the micro-distortion tensor (“plastic distortion”, second order, non-symmetric),

• f is the body force,

• M is the body moment tensor (second order, non-symmetric),

• e := ∇u− P is the elastic distortion (relative distortion, second order, non-symmetric),

• εe := sym e = sym(∇u− P ) is the elastic strain tensor (second order, symmetric),

• ε := sym∇u is the total strain tensor (material strain tensor, second order, symmetric),

• εp := symP is the micro-strain tensor (“plastic strain”, second order, symmetric),

• γ := ∇P ∈ R27 is the micro-curvature tensor (third order),

• Ĉ = (Ĉijmn), H = (Hijmn), Ê = (Êijmn), F̂ = (F̂ijmnp) and Ĝ = (Ĝijmnp) are tensors determining the
constitutive coefficients which satisfy the symmetry relations

Ĉijmn = Ĉmnij ,

Hijmn = Hmnij = Hjimn, Êmnij = Êmnji, Ĝijmnp = Ĝjimnp, (2.4)

• The tensor L̂ determines various characteristic length scales in the model, its unit is [MPa · m2] and it
satisfies the symmetry relations

L̂ijkmnp = L̂mnpijk . (2.5)
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The symmetries of Ê and Ĝ imply that Ê, Ĝ : R3×3 → Sym(3). Thus, the microstress tensor s is always

symmetric. In contrast, the symmetries of Ĉ do not imply that Ĉ maps symmetric matrices into symmetric
matrices, while H : Sym(3) → Sym(3) has this property, as the classical elasticity tensor. For micro-isotropic
materials the microinertia tensor is given by I = 1

3J · 11, where J is a known scalar function on Ω.
Using the micro-strain tensor εp = symP instead of P itself in the list of independent constitutive variables

(2.3) is mandatory for frame-indifference. The above equations lead to a system of 12 linear partial differential
equations of Lamé type for the functions u and P . In order to study the existence of solution of the resulting
system, Hlaváček [75], Ieşan and Nappa [77] and Ieşan [78] considered null boundary conditions, i.e.

u(x, t) = 0 and the strong anchoring condition P (x, t) = 0, on ∂Ω× (0, T ). (2.6)

We adjoin the initial conditions

u(x, 0) = u0(x), P (x, 0) = P 0(x), u̇(x, 0) = u̇0(x), Ṗ (x, 0) = Ṗ 0(x), on Ω, (2.7)

where the quantities on the right-hand sides are prescribed, satisfying u0(x) = 0 and P 0(x) = 0 on ∂Ω.
The system of governing equations (2.1) is derived from the following elastic free energy

2E(e, εp, γ) = ⟨Ĉ. (∇u− P ), (∇u− P )⟩+ ⟨H. symP, symP ⟩+ ⟨L̂.∇P,∇P ⟩ (2.8)

+ 2⟨Ê. symP, (∇u− P )⟩+ 2⟨F̂.∇P, (∇u− P )⟩+ 2⟨Ĝ.∇P, symP ⟩ ,
σ̂ = De E(e, εp, γ) ∈ R3×3, s = Dεp E(e, εp, γ) ∈ Sym(3), m̂ = Dγ E(e, εp, γ) ∈ R3×3×3.

Since the elastic distortion e := ∇u − P is in general non-symmetric, in this model the relative force-stress
tensor σ̂ is also non-symmetric. In case that P is assumed to be purely skew-symmetric, this model turns
into the linear Cosserat model after orthogonal projection of the equation for the micro-distortion to the skew-
symmetric subspace (see the Subsection 4.4). The status of the linear Cosserat model as a useful description
of real material behaviour is still doubtful2 [121, 129] as far its application to classical heterogeneous materials
is concerned even if the asymmetry of the stress tensor may be of use for some suitably conceived engineering
metamaterials as e.g. phonon crystals. The existence results from [75, 77, 78] are established assuming that the
energy E is a pointwise positive definite quadratic form in terms of the independent constitutive variables e, εp
and γ, i.e. there is a positive constant c+ such that

Ê(∇u− P, symP,∇P ) ≥ c+
(
∥∇u− P∥2 + ∥ symP∥2 + ∥∇P∥2

)
. (2.9)

A general feature of the asymmetric micromorphic model is its regularizing influence on the solution when
coupled with other effects, e.g. incompressible plasticity is regularized by adding Cosserat effects, see [124,

125, 126, 135, 133, 117, 34]. When the body possesses a center of symmetry, the tensors F̂ and Ĝ have to

vanish. Thus, for centro-symmetric elastic materials the two mixed terms ⟨F̂.∇P,∇u−P ⟩ and ⟨Ĝ.∇P, symP ⟩
are absent. The centro-symmetry of the material does not imply that Ê vanishes [48]. In the following we omit

for simplicity the mixed term ⟨Ê. symP,∇u− P ⟩ in the energy since on the one hand its physical significance
is unclear and it would induce nonzero relative stress σ̂ for zero elastic distortion e = ∇u − P = 0. Moreover,
we show in the Subsections 4.4, 4.7 and 4.8 how our energy without any mixed terms leads, in principle, to
complete equations for the Cosserat model, the microstretch model and the microvoids model in dislocation
format. This is a consequence of our choice of the independent constitutive variables3. However, mixed terms
may appear if homogenization techniques are used, see [53, 54, 58]. Our mathematical analysis can be extended
in a straightforward manner to the case when the mixed terms are also present in the total energy.

If in the classical asymmetric micromorphic model, in the formal limits, we assume that the coefficients
Ĉ → ∞ then this leads to the free energy from the gradient elasticity model [130, 132] in which we do not have
mixed terms either. Indeed, in this case P = ∇u and in consequence, for centro-symmetric materials, the free

2for more details the reader may consult: http://www.uni-due.de/mathematik/ag neff/neff elastizitaetstheorie.
3For instance in the microvoids theory proposed by Cowin and Nunziato [142, 36] and by Ieşan [76] the presence of such mixed

terms is mandatory because their absence leads to uncoupled equations, and thus to the incapability to take into account the
microstructure effects. The same remark applies to the Eringen-Claus isotropic model for dislocation dynamics [49]. This effect is
due to an unfavourable choice of the set of independent constitutive variables.
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energy will reduce to

2E(sym∇u,∇(∇u)) = ⟨H. sym∇u, sym∇u⟩+ ⟨L̂.∇(∇u),∇(∇u)⟩ (2.10)

= ⟨H. sym∇u, sym∇u⟩+ ⟨L̂. D2u,D2u⟩ .

Hitherto, the asymmetric micromorphic model has best been seen and motivated as a higher gradient elasticity
model, in which the second derivatives have been replaced by a gradient of a new field [158, 38, 40, 43, 39]. A
distinctive feature of such a second gradient elasticity model is that the local force stresses always remain sym-
metric [42, 161] and are characterized by the two classical Lamé constants µ, λ in the isotropic case. Therefore,
the close connection between the classical micromorphic model and the gradient elasticity model is apparent.
In many cases, the classical micromorphic model is thus used as a “cheap” 2nd order numerical replacement
for the “expensive” 4th order model [130, 132, 139, 34]. Let us remark that if in the free energy from isotropic
strain gradient elasticity we replace the terms

E(∇u,∇(sym∇u)) = µ ∥ sym∇u∥2 + λ

2
[tr(∇u)]2 + µL2

c ∥∇(sym∇u)∥2, (2.11)

with

E(∇u, P,∇P ) = µ ∥ sym∇u∥2 + λ

2
[tr(∇u)]2 + κ+µ ∥ sym∇u− symP∥2 + µL2

c ∥∇(symP )∥2, (2.12)

where κ+ is a dimensionless penalty coefficient, then Forest’s microstrain theory (3+6 parameter theory) [56]
(see Subsection 4.2) is nothing else but a penalyzed strain gradient elasticity formulation. In the case of a strain
gradient material both, the local force stresses and the total force stresses are symmetric, see the discussion from
Subsection 4.9.

Therefore, the asymmetry of the force stress tensor in a continuum theory is not a consequence of the
presence of microstructure in the body, it is rather a constitutive assumption [20]. Moreover, for an isotropic
strain gradient material it is easy to see that both, the local force stresses and the nonlocal force stresses can be
chosen symmetric, see Subsection 4.9. We will deal with the complete modeling issue in another contribution.

2.2 The relaxed micromorphic continuum model

The ultimate goal of science is the reduction to a minimum of necessary complexity in the description of nature.
In the classical asymmetric micromorphic theory there are involved more than 1000 constitutive coefficients in
the general anisotropic case, and even for isotropic materials the constitutive equations contain a great number of
material constants (7+11 parameters in Mindlin’s and Eringen’s theory [50, 108, 51]). Unfortunately, this makes
the general micromorphic model suitable for anything and nothing and has severely hindered the application of
micromorphic models.

We consider here a relaxed version of the classical micromorphic model with symmetric Cauchy-stresses σ
and drastically reduced numbers of constitutive coefficients. More precisely, our model is a subset of the classical
model in which we allow the elasticity tensors Ĉ and L̂ to become positive-semidefinite only. The proof of the
well-posedness of this model [67] necessitates the application of new mathematical tools [136, 137, 138, 6, 5, 7, 89].
The curvature dependence is reduced to a dependence only on the micro-dislocation tensor α := Curl e =
−CurlP ∈ R3×3 instead of γ = ∇P ∈ R27 = R3×3×3 and the local response is reduced to a dependence on
the symmetric part of the elastic distortion (relative distortion) εe = sym e = sym(∇u − P ), while the full
kinematical degrees of freedom for u and P are kept, notably rotation of the microstructure remains possible.

Our new set of independent constitutive variables for the relaxed micromorphic model is thus

εe = sym(∇u− P ), εp = symP, α = −CurlP. (2.13)

The stretch strain tensor defined in (2.13)1 is symmetric. For simplicity, the following systems of partial
differential equations are considered in a normalized form, i.e. the left hand sides of the equations are not
multiplied with ϱ or ϱ I, respectively.

We consider the following system of partial differential equations which corresponds to this special linear
anisotropic micromorphic continuum

u,tt = Div[C. sym(∇u− P )] + f , (2.14)

P,tt = −Curl[Lc.CurlP ] + C. sym(∇u− P )−H. symP +M in Ω× [0, T ],
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where f : Ω × [0, T ] → R3 describes the body force and M : Ω × [0, T ] → R3×3 describes the external body
moment, C :Ω → L(R3×3,R3×3), Lc :Ω → L(R3×3,R3×3) and H :Ω → L(R3×3,R3×3) are fourth order elasticity
tensors, positive definite and functions of class C1(Ω).

For the rest of the paper we assume that the constitutive coefficients have the following symmetries

Cijrs = Crsij = Cjirs, Hijrs = Hrsij = Hjirs, (Lc)ijrs = (Lc)rsij . (2.15)

The system (2.14) is derived from the following free energy

2 E(εe, εp, α) = ⟨C. εe, εe⟩+ ⟨H. εp, εp⟩+ ⟨Lc. α, α⟩ (2.16)

= ⟨C. sym(∇u− P ), sym(∇u− P )⟩︸ ︷︷ ︸
elastic energy

+ ⟨H. symP, symP ⟩︸ ︷︷ ︸
microstrain self-energy

4

+ ⟨Lc. CurlP,CurlP ⟩︸ ︷︷ ︸
dislocation energy

,

σ = Dεe E(εe, εp, α) ∈ Sym(3), s = Dεp E(εe, εp, α),∈ Sym(3), m = Dα E(εe, εp, α) ∈ R3×3.

Note again that in this theory, the elastic distortion e = ∇u−P may still be non-symmetric but the possible
asymmetry of e does not produce a related asymmetric stress contribution. The comparison with the classical
Eringen’s equations (2.1)–(2.3) is achieved through observing again that

⟨Ĉ.X,X⟩R3×3 := ⟨C. symX, symX⟩R3×3 , (2.17)

⟨L̂.∇P,∇P ⟩R3×3×3 := ⟨Lc.CurlP,CurlP ⟩R3×3

define only positive semi-definite tensors Ĉ and L̂ in terms of positive definite tensors C and Lc acting on linear
subspaces of gl(3) ∼= R3×3. More precisely

Ĉ : R3×3 → R3×3, L̂ : R3×3×3 → R3×3×3, (2.18)

while

C : Sym(3) → Sym(3), Lc : R3×3 → R3×3. (2.19)

We assume that the new fourth order elasticity tensors C, Lc and H are positive definite. Then, there are
positive numbers cM , cm (the maximum and minimum elastic moduli for C), (Lc)M ,(Lc)m (the maximum and
minimum moduli for Lc) and hM , hm (the maximum and minimum moduli for H) such that

cm∥X∥2 ≤ ⟨C.X,X⟩ ≤ cM∥X∥2 for all X ∈ Sym(3),

(Lc)m∥X∥2 ≤ ⟨Lc.X,X⟩ ≤ (Lc)M∥X∥2 for all X ∈ R3×3, (2.20)

hm∥X∥2 ≤ ⟨H.X,X⟩ ≤ hM∥X∥2 for all X ∈ Sym(3).

Further we assume, without loss of generality, that cM , cm, (Lc)M , hM , hm and (Lc)m are constants.
Our new approach, in marked contrast to classical asymmetric micromorphic models, features a symmetric

Cauchy stress tensor σ = C. sym(∇u− P ). Therefore, the linear Cosserat approach ([121]: µc > 0) is excluded
here. Compared with Forest’s microstrain theory [56], the local force stress is similar, however, the micromorphic
distortion P in our new model is not necessarily symmetric but endowed with a weakest curvature response
defined in terms of the micro-dislocation tensor α = −CurlP . The skew symmetric part is uniquely determined
by the solution P of the boundary value problem.

The relaxed formulation proposed in the present paper still shows size effects and smaller samples are
relatively stiffer. It is clear to us that for this reduced model of relaxed micromorphic elasticity unphysical effects
of singular stiffening behaviour for small sample sizes (”bounded stiffness”, see [82]) cannot appear. In case of the
isotropic Cosserat model this is only true for a reduced curvature energy depending only on ∥dev symCurlP∥2,
see the discussion in [82, 131]. Remarkably, the necessary property of bounded stiffness is impossible to obtain

4In gradient plasticity theory, this term introduces linear kinematic hardening [161, 127, 123, 115, 57, 140, 141], hence our
notation H. Kinematic hardening changes the state of the material, therefore, in a purely elastic setting, and in the interpretation
provided by the elastic gauge theory of dislocations [151, 153, 152, 95, 96], such a term may not appear.
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for the indeterminate couple stress model (elastic energy ∼ ∥ sym∇u∥2+∥∇ skew∇u∥2, [82]). Whether bounded
stiffness is true for the general strain gradient model (elastic energy ∼ ∥ sym∇u∥2 + ∥∇ sym∇u∥2, [82]) or the
general gradient elasticity model (elastic energy ∼ ∥ sym∇u∥2 + ∥D2u∥2) is unclear.

The model introduced by Teisseyre [163] for the study of seismic wave propagation due to earthquake
processes [45, 118, 119, 129] is also taking a symmetric relative stress tensor (see [163], p. 204 and 208) and in
fact it is a particular case of the micromorphic approach to dislocation theory proposed by Eringen and Claus
[32, 49, 33]. However, Teisseyre [163, 45, 118, 119] fails in choosing a positive definite dislocation energy, see
Subsection 4.6.

To our system of partial differential equations we adjoin the weaker boundary conditions5 (compare with
the conditions (2.6))

u(x, t) = 0, and the tangential condition Pi(x, t)× n(x) = 0, i = 1, 2, 3, (x, t) ∈ ∂Ω× [0, T ], (2.21)

where × denotes the vector product, n is the unit outward normal vector at the surface ∂Ω , Pi, i = 1, 2, 3 are
the rows of P . The model is driven by nonzero initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x), P (x, 0) = P0(x), Ṗ (x, 0) = Ṗ0(x), x ∈ Ω, (2.22)

where u0, u̇0, P0 and Ṗ0 are prescribed functions, satisfying u0(x) = 0 and P0i(x)× n(x) = 0 on ∂Ω.

Remark 2.1 Since P is determined in H(Curl ; Ω) in our relaxed model the only possible description of boundary
value is in terms of tangential traces P.τ . This follows from the standard theory of the H(Curl ; Ω)-space, see
[68].

In contrast with the 7+11 parameters isotropic Mindlin and Eringen model [108, 50, 51], we have altogether
only seven parameters µe, λe, µh, λh, α1, α2, α3. For isotropic materials, our system reads

u,tt = Divσ + f , (2.23)

P,tt = −Curlm+ σ − s+M in Ω× [0, T ],

where

σ = 2µe sym(∇u− P ) + λetr(∇u− P )·11,
m = α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11, (2.24)

s = 2µh symP + λhtr(P )·11 .

Thus, we obtain the complete system of linear partial differential equations in terms of the kinematical unknowns
u and P

u,tt = Div[2µe sym(∇u− P ) + λetr(∇u− P )·11] + f , (2.25)

P,tt = −Curl[α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11]
+ 2µe sym(∇u− P ) + λetr(∇u− P )·11− 2µh symP − λhtr(P )·11 +M in Ω× [0, T ].

In this model, the asymmetric parts of P are entirely due only to moment stresses and applied body moments !
In this sense, the macroscopic and microscopic scales are neatly separated.

The positive definiteness required for the tensors C, H and Lc implies for isotropic materials the following
restriction upon the parameters µe, λe, µh, λh, α1, α2 and α3

µe > 0, 2µe + 3λe > 0, µh > 0, 2µh + 3λh > 0, α1 > 0, α2 > 0, α3 > 0. (2.26)

Therefore, positive definiteness for our isotropic model does not involve extra nonlinear side conditions [48, 159].
In our relaxed model, exclusively, the material parameters µe, λe, µh, λh can even be uniquely determined from

5Note that Pi(x, t) × n(x) = 0, i = 1, 2, 3 is equivalent to Pi(x, t) · τ(x) = 0, i = 1, 2, 3 for all tangential vectors τ at ∂Ω.
The problem being posed for P ∈ H(Curl; Ω), the variational setting only allows to prescribe tangential boundary conditions, i.e.
Pi · τ = 0 on ∂Ω.

12



homogenization theory, see [120, 128, 80]: considering very large samples of an assumed heterogeneous structure,
i.e. the characteristic length tends to zero, we must have [120, 128]

µe =
µh µ

µh − µ
, 2µe + 3λe =

(2µh + 3λh) (2µ+ 3λ)

(2µh + 3λh)− (2µ+ 3λ)
, (2.27)

where λ, µ are the unique macroscopic Lamé moduli obtained in classical experiments for large samples and
λe, µe are isotropic scale transition parameters that control the interaction between the macro and the micro
deformation. Thus, the macroscopic Lamé moduli λ and µ should be always smaller than the microstructural
Lamé constants µh and λh related to the response of a representative volume element of the substructure.

If, by neglect of our guiding assumption, we add the anti-symmetric term 2µc skew(∇u−P ) in the expression
of the Cauchy stress tensor σ, where µc ≥ 0 is the Cosserat couple modulus6, then our analysis also works for
µc ≥ 0. The model in which µc > 0 is the isotropic Eringen-Claus model for dislocation dynamics [32, 49, 33]
(see also the Subsection 4.4 and 4.3) and it is derived from the following free energy

E(e, εp, α) = µe∥ sym(∇u− P )∥2 + µc∥ skew(∇u− P )∥2 + λe

2
[tr(∇u− P )]2 + µh∥ symP∥2 + λh

2
[tr (P )]2

+
α1

2
∥dev symCurlP∥2 + α2

2
∥ skewCurlP∥+ α3

2
tr(CurlP )2. (2.28)

For µc > 0 and if the other inequalities (2.26) are satisfied, the existence and uniqueness follow along the
classical lines. There is no need for any new integral inequalities.

By means of a suitable decomposition (2.28) of the Mindlin-Eringen strain energy density, we are able
to attribute to the unique parameter µc the asymmetry of the stress tensor in the isotropic case [121]. We
believe that this unique parameter plays a fundamental role in the description of wave band-gaps in artificial
metamaterials such as phononic crystals. Since the particular decomposition of the Mindlin-Eringen deformation
energy for isotropic micromorphic media which we introduce in Eq. (2.28) allows for isolating few additional
constitutive parameters with respect to standard Cauchy continuum theory, we may think to associate to each
of these additional parameters a particular effect on wave propagation. Indeed, the search for wave solutions of
the set of governing equations associated to the introduced micromorphic energy density may help to attribute
a specific role to each of these parameters. An exhaustive treatment of wave propagation in relaxed Mindlin-
Eringen media will be given in a forthcoming paper. Here, we limit ourselves to show the most characteristic
features of the different elastic parameters introduced in this paper for the isotropic case. To do so, we summarize
the basic role of the most important micromorphic parameters with respect to wave propagation:

• The parameter µh (associated to the microstrain energy ∥ symP ∥2 in the energy density) regulates the
propagation of acoustic waves inside the considered medium. More particularly, when setting µh = 0
it can be observed that no acoustic waves can propagate in the considered relaxed medium and hence
only optic waves can propagate. This is sensible, since when considering the limit case symP = sym∇u
our relaxed model reduces to a second gradient continuum in which µh is the only first gradient elastic
parameter. It is indeed known that only acoustic waves can propagate in second gradient continua (see
e.g. [39]).

• When studying wave propagation phenomena in isotropic micromorphic media, the fact of accounting for
the curvature dependence only via the parameters α1, α2, α3 (the terms involved in the energy density,

multiplying ∥dev symCurlP ∥2, ∥skewCurlP ∥2 and [tr(CurlP )]2, respectively) gives rise to dispersion
curves (curves in the frequency/wavenumber plane) which have fixed concavity. This could, to some
extent, make more difficult the fitting of the proposed relaxed model with some very particular classes of
possible material behaviours.

• It can be shown that the parameters α1, α2, α3 are related to the propagation of some particular optic
waves. More particularly, when setting α1 = 0, α2 = 0, α3 = 0 in the considered relaxed model, no prop-
agation is associated to the microdisplacement field P , which becomes an internal variable. Nevertheless,

6A non symmetric local force stress tensor σ deviates considerably from classical elasticity theory and indeed it does not appear
in gradient elasticity, see the Subsection 4.9. After more than half a century of intensive research there is no conclusive experimental
evidence for the necessity of non-symmetric force stresses. Therefore, in a purely mechanical (non-polar) context, we discard them
in our model by choosing µc = 0 and this is mathematically sound! Nevertheless, some preliminary study on wave propagation
show that a non-symmetric stress may be needed when dealing with very special metamaterials such as phononic crystals and
lattice structures.
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the global propagation inside the considered relaxed medium is not affected by the presence of α1, α2, α3,
since macroscopic optic and acoustic waves can always propagate for all frequency ranges.

• As far as a nonvanishing Cosserat couple modulus µc > 0 (which is associated to ∥ skew (∇u− P ) ∥2
in the energy density) is considered in the presented relaxed model, the micromorphic continuum starts
exhibiting exotic properties which may be of use to describe the mechanical behavior of very particular
metamaterials as lattice structures and phonon crystals. Indeed, when setting µc ̸= 0, the existence
of frequency band-gaps is predicted by the considered micromorphic model. More particularly, when
switching on the parameter µc, there exist some frequency ranges in which neither acoustic nor optic
waves can propagate. This means that, in these frequency ranges, only standing waves can exist which
continue oscillating without propagating, thus keeping the energy trapped in the same region. We can
conclude that the modeling of such exotic behavior is indeed directly related to the asymmetry of the
stress tensor, at least for what concerns the linearized case.

In the light of the aforementioned remarks, it is clear that the decomposition (2.28) of the strain energy density
for the considered micromorphic media allows for a very effective identification of the elastic parameters and it
may help in the identification of their physical meaning.

Our model can also be compared with the model considered by Lazar and Anastassiadis [96]. In fact, in
[96, 93] a simplified static version of the isotropic Eringen-Claus model for dislocation dynamics [32] has been
investigated with H = 0 and µc > 0, with a focus on the gauge theory of dislocations (see Subsection 4.5).
However, the dynamical theory of Lazar [95, 94] cannot be deduced from Mindlins dynamic theory, since in [95]
there appears an additional gauge field which has no counterpart in Mindlins model.

The theory proposed by Teisseyre in [163] is also using a symmetric force stress force and is a fully symmetric
theory (see the assumption from [163], p. 204) which means that µc = 0 [121, 129], see Subsection 4.6. However,
for the mathematical treatment there arises the need for new integral type inequalities which we present in
the next section. In the energy density given by Teisseyre, there exists a dislocation energy whose sign is not
obvious. This is the reason why he did not take into account the influence of this energy. Using the new results
established by Neff, Pauly and Witsch [136, 137, 138] and by Bauer, Neff, Pauly and Starke [6, 5, 7] we are now
able to manage also energies depending on the dislocation energy and having symmetric Cauchy stresses [67].

2.3 Mathematical analysis

In this subsection, for conciseness, we state only the obtained well-posedness results. The full proof of these
mathematical results are included in [67]. The boundary–initial value problem defined by the equations (2.14),
the boundary conditions (2.21) and the initial conditions (2.22) will be denoted by (P).

In order to establish an existence theorem for the solution of the problem (P) we use the results of the
semigroup theory of linear operators. First, we will rewrite the initial boundary value problem (P) as an
abstract Cauchy problem in a Hilbert space [144, 168]. Let us define the space

X =
{
w = (u, v, P,K) | u∈H1

0 (Ω), v ∈ L2(Ω), P ∈H0(Curl; Ω), K ∈ L2(Ω)
}
.

Further, we introduce the operators A1 w = v, A2 w = Div[C. sym(∇u − P )], A3 w = K,
A4 w = −Curl[Lc.CurlP ] + C. sym(∇u − P ) − H. symP , where all the derivatives of the functions are un-
derstood in the sense of distributions. Let A be the operator A = (A1, A2, A3, A4) with domain

D(A) = {w = (u, v, P,K) ∈ X | Aw ∈ X}.

With the above definitions, the problem (P) can be transformed into the following abstract equation in the
Hilbert space X

dw

dt
(t) = Aw(t) + F(t), w(0) = w0, (2.29)

where F(t) = (0, f, 0,M) and w0 = (u0, u̇0, P0, Ṗ0).

Theorem 2.1 (Existence and uniqueness of the solution) Assume that f,M ∈ C1([0, t1);L
2(Ω)), w0 ∈ D(A)

and the fourth order elasticity tensors C, Lc and H are symmetric and positive definite. Then, there exists a
unique solution w∈C1((0, t1);X ) ∩ C0([0, t1);D(A)) of the Cauchy problem (2.29). �
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Corollary 2.2 (Continuous dependence) In the hypothesis of Theorem 2.1 we have the following estimate

∥w(t)∥X ≤ ∥w0(t)∥X + C

∫ t

0

(
∥f(s)∥L2(Ω) + ∥M(s)∥L2(Ω)

)
ds,

where C is a positive constant. �

3 Another further relaxed problem

In this section, we weaken our energy expression further in the following model, where the corresponding elastic
energy depends now only on the set of independent constitutive variables

εe = sym(∇u− P ), dev εp = dev symP, devα = − devCurlP. (3.1)

In this model, it is neither implied that P remains symmetric, nor that P is trace-free, but only the trace free
symmetric part of the micro-distortion P and the trace-free part of the micro-dislocation tensor α contribute
to the stored energy.

3.1 Formulation of the problem

The model in its general anisotropic form is:

u,tt = Div[C. sym(∇u− P )] + f , (3.2)

P,tt = −Curl[dev[Lc. devCurlP ]] + C. sym(∇u− P )−H. dev symP +M in Ω× [0, T ].

In the isotropic case the model becomes

u,tt = Div[2µe sym(∇u− P ) + λetr(∇u− P )·11] + f , (3.3)

P,tt = −Curl[α1 dev symCurlP + α2 skewCurlP ]

+ 2µe sym(∇u− P ) + λetr(∇u− P )·11− 2µh dev symP +M in Ω× [0, T ].

To the system of partial differential equations of this model we adjoin the weaker boundary conditions

u(x, t) = 0, Pi(x, t)× n(x) = 0, i = 1, 2, 3, (x, t) ∈ ∂Ω× [0, T ], (3.4)

and the nonzero initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x), P (x, 0) = P0(x), Ṗ (x, 0) = Ṗ0(x), x ∈ Ω̄, (3.5)

where u0, u̇0, P0 and Ṗ0 are prescribed functions, satisfying u0(x) = 0 and P0i(x)× n(x) = 0 on ∂Ω.
We remark again that P is not trace-free in this formulation and no projection is performed, compare with

Subsection 4.4 and 4.2. We denote the new problem defined by the above equations, the boundary conditions
(3.4) and the initial conditions (3.5) by (P̃).

3.2 Mathematical analysis

The study of problem (P̃) follows along the same lines as in Subsection 2.3. We consider the operators

Ã1 w = v, Ã2 w = Div[C. sym(∇u−P )], Ã3 w = K, Ã4 w = −Curl[dev[Lc. devCurlP ]] +C. sym(∇u− P )
−H. dev symP , where all the derivatives of the functions are understood in the sense of distributions, and the
operator Ã = (Ã1, Ã2, Ã3, Ã4) with the domain D(Ã) = {w = (u, v, P,K) ∈ X | Ãw ∈ X}.

Theorem 3.1 Assume that f,M ∈ C1([0, t1);L
2(Ω)), w0 ∈ D(Ã) and the fourth order elasticity tensors

C, Lc and H are symmetric and positive definite. Then, there exists a unique solution w ∈ C1((0, t1);X ) ∩

C0([0, t1);D(Ã)) of the following Cauchy problem
dw

dt
(t) = Ãw(t)+F(t), w(0) = w0, where F(t) = (0, f, 0,M)

and w0 = (u0, u̇0, P0, Ṗ0). Moreover, we have the estimate

∥w(t)∥X ≤ ∥w0(t)∥X + C

∫ t

0

(
∥f(s)∥L2(Ω) + ∥M(s)∥L2(Ω)

)
ds,

where C is a positive constant. �
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4 New and/or existing relaxed models

In this section we propose a review of some existing relaxed models and we underline the possible connections
between these models and the new relaxed models which we have proposed in this paper.

4.1 Kröner’s view

4.1.1 Kröner’s discussion of a dislocated body and the Cosserat continuum: symmetric versus
asymmetric force stresses

Beginning from mid 1950 Kröner tried to link the theory of static dislocations to the Cosserat model with
asymmetric force stresses. However, since 1964 it was clear to Kröner that the force stress σ in the dislocation
theory is always symmetric7.

We reproduce here the old, but nevertheless refreshing and clear comments of Kröner ([87, p. 1059-1060])
regarding the papers by Eringen and Claus [49], and Fox [59]. Kröner remarks: ”I would like to make clear why
the skew symmetric stress does not appear in dislocated bodies. Assume particles which are little crystalline
domains, for instance little cubes which build up a perfect crystal. Now imagine two of these particles to be
isolated from the rest and be rotated through the same angle (Fig. 1(a)). By this operation the atomic structure
is not disturbed and the state of the crystal along the interface between particles is not changed. So there is
no static response to this kind of deformation and that is why the skew symmetric part of the ordinary stresses
vanishes in dislocation theory.

It does not vanish in Cosserat type theories where one considers oriented point particles which do not possess
a crystalline structure (Fig. 1(b)). Such bodies could be, for instance, non-primitive crystal lattices where atoms
in a cell are so tightly bound that the deformation of a cell can be disregarded whereas the bonds between the
cells are weak. In this example the cells are the particles of the Cosserat continuum; they possess the usual
translational and rotational degrees of freedom. Now rotate these particles through the same angle and the
body is in a different state. So you expect a response.

I call the body described firstly a dislocated body and the other a Cosserat continuum. In the dislocated
body one observes the occurrence of slip because the above described rotation of the two crystalline domains
implies the slip of a dislocation along the interface between them. Slip has no meaning in the usual Cosserat
continuum.” The comments of Teodosiu8 [164, p. 1053-1054] regarding the papers by Eringen and Claus [49],
and Fox [59] enforce the Kröner’s point of view. In order to defend their theory [49], Claus [31, p. 1054-1055]
gave the following answered to Teodosiu’s comments: “If one includes extra degrees of freedom into the angular

7Kröner writes [86, p. 148]: “Im Gegensatz zu den Momentenspannungen sind die Kraftspannungen stets symmetrisch. Dieser
Befund ist besonders wichtig, da seit Jahren bekannt ist, daß der geometrische Zustand eines Körpers mit Versetzungen im all-
gemeinen Fall durch 15 Funktionen des Ortes beschrieben wird...Im Gegensatz hierzu schienen 18 Funktionen des Ortes nötig,
um den statischen Zustand des Körpers vollständig zu kennzeichnen, was eine Inkonsistenz der Theorie andeutete. Der Befund,
daß durch die besondere Eigenschaft der Versetzungen, Träger der Gleitung zu sein, die drei antisymmetrischen Freiheitsgrade des
Kraftspannungstensors ausfallen, zerstreut diese Sorgen in sehr befriedigender Weise.” and “...dabei stellte sich heraus, daß skew σ
in der Feldtheorie der Versetzungen verschwindet, da die skew σ zuzuordnende geometrische Größe plastischer Natur ist...”

In our translation:
“Contrary to the moment-stresses the force stresses are always symmetric. This statement is very important for it is known since

many years, that the geometrical state of a dislocated body in the general case is given through 15 functions of place... Contrary
to this there seemed 18 functions of place necessary in order to fully describe the static (equilibrium) of the body, which seemed to
indicate an inconsistency of the theory. The statement that, by the very properties of dislocations to be carrier of slip, the three
antisymmetric degree of freedom of the force stress tensor are redundant, removes these concerns in a elegant way.” and “...and it
became obvious, that skew σ vanishes in the field theories of dislocations, since the variable, which must be related to skew σ is of
plastic nature...”

8Teodosiu’s comments: “As long as we are concerned with developing a theory of continuum mechanics in which new invariant
kinematical and dynamical quantities are involved, we can do it in a rather elegant way, and I think we have so far two beautiful
examples. One is the theory of micropolar mechanics developed by Green and Rivlin, and the other that of micromorphic materials
developed by Eringen and Suhubi. These two theories provide a good framework for developing other general theories of physical
phenomena. But if we intend to describe new physical phenomena with these theories, we must be very careful when approaching
physical objects to consider the descriptions by people studying such quantities. [...] In the meantime there is another point which
is not quite clear to me: It is true that in previous developments of dislocation theory no asymmetric stress appears, and there is a
good reason for this. We do not have in dislocation theory, in fact, a new independent degree of freedom such as a rotation, and as
long as we don’t have such independent rotations, we are always able to redefine the stress tensor in order to make it symmetrical.
So there is no asymmetric part of the stress tensor in dislocation theory, as long as we don’t introduce a new rotation. This question
has also been discussed some time ago by Professor Kröner. ”
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1 st particle 2 nd particle particle

1 st particle 2 nd particle
particle

interface = slip plane

(a) (b)
Figure 1: (a) Two adjacent ”particles” of a crystalline body before and after a rotation through the same angle. This kind of
rotation implies the slip of a dislocation along the interface. It does not change the state of the crystal. (b) Four adjacent “particles”
of a Cosserat type material before and after a rotation through the same angle. This kind of rotation does change the state of the
body.

momentum equation, we claim that the equation lead to a non-symmetric stress tensor, whether it is a couple
stress or a stress moment tensor. [...] That is precisely the problem. Everybody these days is looking for
situations in which the stress is non-symmetric. In continuum mechanics many people are trying to think along
these lines. Some of the areas of promise to be pointed out are liquid crystal experiments where inherently there
is a structure to the liquid which could conceivably lead to a non-symmetric stress tensor. Another area is in a
body which contains a polarization, and the behavior of that body in an internal field. Many people are trying
to look for asymmetries there. But I cannot quote an experimental paper where it has been demonstrated.[...]
Concerning the question about elastic and plastic distortion, the interpretation here is that we have a body with
dislocations that are deforming elastically so there is no slip in a lattice sense. There is no plastic deformation
taking place; you put loads on the body and get only elastic reactions. Obviously what we are trying to construct
is a plasticity theory, and we think we have the beginning of a mechanism to do that.” Moreover, Eringen said
[31, p. 1054-1055]: “The ultimate goal of the present theory is to determine the motions and micromotions by
solving an initial-boundary-value problem. Once they are determined, the dislocation density can be calculated
in a straightforward manner. This point of view is, perhaps, in clash with the long-established traditions in
other well-developed fields of continuum physics, I suggest that the continuum dislocation theory should offer
a set of field equations subject to a set of well-posed initial and boundary conditions to predict the evolution of
the motion and of the dislocations. Present practice in this field requires that the distribution of a second-oder
tensor (the dislocation density) be given throughout the body at all times in order that we determine another
second order tensor, namely, the stress tensor. This is not only unreasonable on logical grounds, but also not
feasible experimentally. After all, why not ask for the stress tensor in the first place!”.

4.1.2 The Popov-Kröner dislocation model

If we combine the dynamic model [151] of Popov with the Popov-Kröner static model of elastoplastic media
with mesostructure [154, 152] we obtain the following equations

u,tt = Div[C. sym(∇u− P )] + f, (4.1)

P,tt = −Curl(α1 dev symCurlP + α2 skewCurlP ) + C. sym(∇u− P ) +M, in Ω× [0, T ] ,
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where α1, α2 > 0. The Popov-Kröner model is derived from the internal free energy

2E(εe, α) = ⟨C. sym(∇u− P ), sym(∇u− P )⟩+WCurl(α), (4.2)

where

WCurl(α) = a1∥α∥2 + a2⟨α, αT ⟩+ a3[tr(α)]
2, (4.3)

and

a1 =
µ(2d)2

24

(
3 +

2ν

1− ν

)
, a2 = −µ(2d)2

24

2ν

1− ν
, a3 = −µ(2d)2

24
, (4.4)

ν =
λ

2(µ+ λ)
(the Poisson’s ratio), −1 < ν <

1

2
.

The energy WCurl can be expressed in terms of dev symCurlP, skewCurlP and tr(CurlP ) as in the following

WCurl(α) = (a1 + a2)∥dev symCurlP∥2 + (a1 − a2)∥ skewCurlP∥2 + a1 + a2 + 3a3
3

[tr(CurlP )]2

=
3µ(2d)2

24
∥dev symCurlP∥2 + µ(2d)2

24

(
3 +

2ν

1− ν

)
∥ skewCurlP∥2. (4.5)

We remark that tr(CurlP ) is therefore, in fact, not present in the energy considered by Popov-Kröner
[154, 151, 152] and in consequence it is also absent in the system of linear partial differential equations (4.1).
Thus, the Popov-Kröner equations (4.1) coincide with our further relaxed model (3.3) in which H = 0 and

α1 =
3µ(2d)2

24
, α2 =

µ(2d)2

24

(
3 +

2ν

1− ν

)
, α3 = 0. (4.6)

In gradient plasticity models, there is another modeling issue at work: the microstrain symP is not a state
variable, therefore it should not appear in the free energy, as such H = 0. However, it may enter the equations
through the notion of equivalent plastic strain, governing the isotropic linear hardening response [46].

Let us assume that P is restricted to sl(3), which is the standard assumption in plasticity theory (plastic
incompressibility, tr(P ) = 0). By subsequent orthogonal projection of the second equation (4.1)2 to the space
of trace-free matrices, the full system of equations for the Popov-Kröner model [154, 151, 152] become

u,tt = Div[C. sym(∇u− devP )] + f, (4.7)

(devP ),tt = − dev[Curl(α1 dev symCurl devP + α2 skewCurlP )] + dev[C. sym(∇u− devP )] + devM.

The obtained model (4.7) is a 11 dof model, (u,devP ). In the isotropic case this is a 2+2 parameter model
or a 2+1+2 parameter model if dev symP is taken into account as a constitutive variable. The constitutive
variable symP is not a state variable in this model. The model follows the line of argument given by Kröner9

[86, p. 148].

4.2 Forest’s approach

4.2.1 Forest’s dynamic microstrain model

In this Subsection we give a short description of the linear dynamic microstrain model [56]. The basic
system of partial differential equation of this model can be obtained assuming that the micro-distortion P is
restricted to Sym(3) and by subsequent orthogonal projection of the second equation (2.1)2 (from the general
Eringen’s micromorphic dynamics) to the space of symmetric-matrices. In addition, the ordinary elasticity

9“In contrast to the moment stresses, the force stress tensor is always symmetric”
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tensor C : Sym(3) → Sym(3) has to be taken, instead of Eringen’s elasticity tensor Ĉ, since Ĉ does not map
symmetric matrices into symmetric matrices. This leads to the system

u,tt = Div[C. sym(∇u− P )] + f, (4.8)

(symP ),tt = sym[Div L̂.∇(symP )] + C. sym(∇u− P )] +H. symP + symM, in Ω× [0, T ] .

The microstrain model is, however, incapable of describing rotation of the microstructure and features only
3+6 degrees of freedom. For comparison we give the version without coupling terms. In fact, the mathematical
problem for the microstrain model is to find functions u ∈ H1(Ω) and εp = symP ∈ H1(Ω) which satisfy the
partial differential equations (4.13). A noteworthy feature of this model is a symmetric Cauchy-stress tensor
σ = C. sym(∇u− P ). The curvature is only active on the gradient of microstrain, i.e. curvature depends only
on ∇εp = ∇(symP ). Thus, the remaining set of independent constitutive variables in the microstrain theory is

εe = sym(∇u− P ), εp = symP, ∇εp = ∇ symP. (4.9)

The total energy corresponding to the microstrain micromorphic model is given by

2 Ê(t) :=

∫
Ω

(
∥u,t∥2 + ∥(symP ),t∥2 + ⟨C. sym(∇u− P ), sym(∇u− P )⟩

+ ⟨H. symP, symP ⟩+ ⟨L̂.∇(symP ),∇(symP )⟩
)
dv . (4.10)

It is easy to obtain qualitative properties (uniqueness, continuous dependence, existence) of the microstrain
micromorphic model because we only have to use the well known Korn’s inequality and the positive definiteness
of C,H, L̂ [67], there is no need to specify Dirichlet boundary conditions on symP .

4.2.2 A microstrain-dislocation model without rotational degrees of freedom

Let us consider now a new set of independent constitutive variables, i.e.

εe = sym(∇u− P ), εp = symP, Curl εp = Curl symP, (4.11)

and the corresponding total energy

2 Ê(t) :=

∫
Ω

(
∥u,t∥2 + ∥(symP ),t∥2 + ⟨C. sym(∇u− P ), sym(∇u− P )⟩

+ ⟨H. symP, symP ⟩+ ⟨L̂c. Curl symP,Curl symP ⟩
)
dv . (4.12)

Hence, the model equations are given by

u,tt = Div[C. sym(∇u− P )] + f, (4.13)

(symP ),tt = sym[Curl(L̂c. Curl symP )] + C. sym(∇u− P )] +H. symP + symM, in Ω× [0, T ] .

Existence and uniqueness follows along the lines given by our relaxed model, without the need for new inequal-
ities.

4.2.3 The microcurl model

The microcurl model is intended to furnish an approximation of a gradient plasticity model [34]. The free
energy of the original system reads

2Eχ(εe, ep,Γχ) = ⟨C. sym(∇u− P ), sym(∇u− P )⟩+ ⟨Lc. CurlP,CurlP ⟩ (4.14)

and leads to some difficulties when one implements nonlinear pde-systems due to couplings with plasticity theory
[139, 140, 141, 46, 127, 44].
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The idea then is to introduce a new micromorphic-type variable χp and to couple it to elasto-plasticity.
The independent constitutive variables are the elastic strain tensor εe = sym(∇u − P ), the relative plastic
strain ep = P −χp measuring the difference between plastic deformation and the plastic microvariable, and the
dislocation density tensor Γχ = Curlχp. The new free energy reads

2Eχ(εe, ep,Γχ) = ⟨C. sym(∇u− P ), sym(∇u− P )⟩+ ⟨Hχ. (P − χp), P − χp⟩+ ⟨Lχ. Curlχp,Curlχp⟩ . (4.15)

The quasistatic equations are

0 = Div[C. sym(∇u− P )] , (4.16)

0 = −Curl[Lc.Curlχp] +Hχ.(P − χp) /∈ Sym(3) in general ,

together with flow rules for the plastic variable P (these are missing here). Since χp ∈ R3×3, we have altogether
12 elastic degrees of freedom.

Let us consider two alternative energies (with different coupling of P and χp)

E(1)
χ = ⟨C. sym(∇u− P ), sym(∇u− P )⟩+ ⟨Lχ.Curlχp,Curlχp⟩+ ⟨Hχ. (P − χp), P − χp⟩, (4.17)

E(2)
χ = ⟨C. sym(∇u− P ), sym(∇u− P )⟩+ ⟨Lχ.Curlχp,Curlχp⟩+ ⟨Hχ. sym(P − χp), sym(P − χp)⟩.

The corresponding minimization problem in terms of the energy


E(1)
χ

E(2)
χ

=



has a unique solution χp ∈ H(Curl,Ω) for given P ∈ L2(Ω),
and there is no need for Dirichlet-boundary conditions (for uniqueness),
natural boundary conditions, determined by the variational formulation, suffice;

has a solution χp ∈ H(Curl,Ω) for given symP ∈ L2(Ω),
uniqueness of χp requires tangential boundary conditions.

(4.18)

4.3 The asymmetric isotropic Eringen-Claus model for dislocation dynamics

This model is intended to describe a solid already containing dislocations undergoing elastic deformations: the
dislocations bow out under the applied load, but do so reversibly.

The system of equations derived by Eringen and Claus ([49], Eq. (3.39)) consists, as consequences of the
balance laws of momentum and of the moment of momentum, of the following equations

ϱ ul,tt = σ̃kl,k + fl, (4.19)

ϱ I·Plm,tt = ϵkmnmnl,k + σ̃ml − s̃ml +Mlm,

where (see the constitutive equations (3.32), (3.33) and (3.41) from [49] and the equations (36) and (37) from
[162])

σ̃kl = (λ+ τ) εmmδkl + 2(µ+ ς) εkl + η emmδkl + ν elk + κ ekl,

s̃kl = (λ+ 2τ) εmmδkl + 2(µ+ 2ς) εkl + (2η − τ) emmδkl + (ν + κ− ς) (ekl + elk), (4.20)

mkl = −a3 αmmδkl − a1 αkl + (a1 − a2 + a3)αlk,

and the set of independent constitutive variables ([49], Eq. (1.7)) is

ε = sym∇u, e = ∇uT + P, α = −CurlP. (4.21)

The rest of the quantities have the same meaning as in Subsection 2.1. Let us remark that

ε = sym e+ εp, and e = sym e+ 2εp − skew e (4.22)

depend actually only on the independent constitutive variables10 e, εp, α.

10ε and e are isomorphically equivalent with e = ∇u− P and εp.
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We also remark that

ϵkmnmnl,k = −ϵmknmnl,k. (4.23)

According with the definition of the curl operator, we have

(curl v)k = ϵklmvm,l, for any vector v = (v1, v2, v3)
T ∈ C1(Ω). (4.24)

Hence, if we fix the indices l, then εiknmnl,k gives the i-component of curl(m1l,m2l,m3l), i.e.

(ϵkinmnl,k)li = −
(
Curl(mT )

)
li
. (4.25)

Thus, written in terms of the operator Curl, the constitutive equations (4.20)3 become

m =a3 tr(CurlP )·11 + 2a1 skewCurlP + (a2 − a3) (CurlP )T . (4.26)

In consequence, we deduce

Curl(mT ) = Curl

[
(a2 − a3)CurlP − 2a1 skewCurlP + a3 tr(CurlP )·11

]
(4.27)

= Curl

[
(a2 − a3) dev symCurlP + (a2 − a3 − 2a1) skewCurlP +

2a3 + a2
3

tr(CurlP )·11
]
.

We are thus able to identify the constitutive coefficients of the dislocation energy in the Eringen-Claus model
[32, 49, 33] with the coefficients in our isotropic case, namely

α1 = a2 − a3, α2 = a2 − a3 − 2a1, α3 =
2a3 + a2

3
. (4.28)

Regarding the term σ̃ml − s̃ml from the equations of motion (4.19), if we take ν = κ, then we have only the
elastic strain tensor εe = sym e = sym(∇u−P ) and the micro-strain tensor εp = symP taken into account. The
condition ν = κ is necessary and sufficient in order to have a symmetric force-stress tensor σ̃ (see the discussion
from Subsection 4.1), it corresponds to a vanishing Cosserat couple modulus µc = 0. Moreover, the force-stress
tensor σ̃ vanishes when P = ∇u if and only if µ+ τ = −(ν + κ) and λ+ τ = −2ν. However, Eringen and Claus
strictly considered µc > 0, i.e. the asymmetry of the force stresses.

4.4 The linear isotropic Cosserat model in terms of the dislocation density tensor

In this subsection, we assume that the micro-distortion tensor is skew-symmetric, i.e. P ∈ so(3). For isotropic
materials and with the asymmetric term 2µc skew(∇u−P ) incorporated [16, 15], by orthogonal projection of the
second equation (2.23)2 to the space of skew-symmetric matrices, the full system of equations for our reduced
model is now

u,tt = Div[2µe sym∇u+ 2µc skew(∇u− (skewP )) + λetr(∇u)·11] + f , (4.29)

(skewP ),tt = − skewCurl

[
α1 dev symCurl(skewP ) + α2 skewCurl(skewP ) + α3 tr(Curl(skewP ))·11

]
+ 2µc skew(∇u− (skewP )) + skewM in Ω× [0, T ].

Then, switching to A := skewP , the equations (4.29) become

u,tt = Div[2µe sym∇u+ 2µc skew(∇u−A) + λetr(∇u)·11] + f , (4.30)

A,tt = − skewCurl

[
α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11

]
+ 2µc skew(∇u−A) + skewM in Ω× [0, T ].

Moreover, for antisymmetric A ∈ so(3) the tangential boundary condition

Ai(x, t) · τ(x) = 0, i = 1, 2, 3 implies the strong anchoring condition A = 0 on ∂Ω. (4.31)
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We introduce the canonical identification of R3 with so(3). For

A =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ∈ so(3) (4.32)

we introduce the operators axl : so(3) → R3 and anti : R3 → so(3) through

axl

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 :=

 a1
a2
a3

 , A · v = (axlA)× v, ∀v ∈ R3, (4.33)

Aij =
3∑

k=1

−ϵijk(axlA)k =: anti(axlA)ij , (axlA)k =
3∑

i,j=1

−1

2
ϵijkAij ,

where ϵijk is the totally antisymmetric third order permutation tensor. We also have the following identities
(see [134], Nye’s formula [143] )

−CurlA = (∇ axlA)T − tr[(∇ axlA)T ]·11, (4.34)

∇ axlA = −(CurlA)T +
1

2
tr[(CurlA)T ]·11, (4.35)

for all matrices A ∈ so(3). Using the above Curl-∇ axl identity, it is simple to obtain

α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11 = (4.36)

− α1 dev sym(∇ axlA)T − α2 skew(∇ axlA)T − α3 tr(∇ axlA)T ·11+
+ α1 dev sym tr[(∇ axlA)T ]·11 + α2 skew tr[(∇ axlA)T ]·11 + α3 tr(tr[(∇ axlA)T ]·11)·11
= −α1 dev sym(∇ axlA) + α2 skew(∇ axlA)− α3 tr(∇ axlA)·11 + 3α3 tr(∇ axlA)·11
= −α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11.

Hence, we have after multiplication with A,t

⟨Curl[α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11], A,t⟩ (4.37)

= ⟨skewCurl[α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11], A,t⟩
= ⟨skewCurl[−α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11], A,t⟩
= ⟨Curl[−α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11], A,t⟩

which, using the strong anchoring boundary conditions (4.31), implies∫
Ω

⟨α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11,

dev symCurlA,t + skewCurlA,t +
1

3
tr(CurlA,t)⟩ dv (4.38)

=

∫
Ω

⟨−α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11,CurlA,t⟩ dv.

Moreover, we deduce that

1

2

d

dt

∫
Ω

(
α1∥dev symCurlA∥2 + α2∥ skewCurlA∥+ α3 tr(CurlA)2

)
dv

=

∫
Ω

⟨−α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11,−(∇ axlA,t)
T + tr[(∇ axlA,t)

T ]·11⟩ dv

=

∫
Ω

⟨−α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11,
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− dev sym(∇ axlA,t)
T − skew(∇ axlA,t)

T − 1

3
tr[(∇ axlA,t)

T ]·11 + tr[(∇ axlA,t)
T ]·11⟩ dv

=

∫
Ω

⟨−α1 dev sym(∇ axlA) + α2 skew(∇ axlA) + 2α3 tr(∇ axlA)·11, (4.39)

− dev sym(∇ axlA,t)
T − skew(∇ axlA,t)

T +
2

3
tr[(∇ axlA,t)

T ]·11⟩ dv

=
1

2

d

dt

∫
Ω

(
α1∥dev sym(∇ axlA)∥2 + α2∥ skew(∇ axlA)∥2 + 4α3 [tr(∇ axlA)]2

)
dv.

Because A is skew-symmetric, it is completely defined by its axial vector axlA and we have

symA = 0, tr(A) = 0, ∥A∥2 = 2∥ axlA∥2, tr(CurlA) = 2 tr(∇ axlA)

∥ skew(∇u−A)∥2 = 2∥ axl(skew∇u)− axlA∥2 =
1

2
∥ curl u− 2 axlA∥2. (4.40)

Then, the total energies

L1(u,t, A,t,∇u−A, symA,CurlA)

=

∫
Ω

(
1

2
∥u,t∥2 +

1

2
∥A,t∥2 + µe∥ sym∇u∥2 + µc∥ skew(∇u−A)∥2 + λe

2
tr(∇u)2 (4.41)

+
α1

2
∥dev symCurlA∥2 + α2

2
∥ skewCurlA∥+ α3

2
[tr(CurlA)]2

)
dv,

and

L2(u,t, (axlA),t,∇u−A, axlA)

=

∫
Ω

(
1

2
∥u,t∥2 + ∥(axlA),t∥2 + µe∥ sym∇u∥2 + µc∥ skew(∇u−A)∥2 + λe

2
[tr(∇u)]2 (4.42)

+
α1

2
∥dev sym(∇ axlA)∥2 + α2

2
∥ skew(∇ axlA)∥2 + 2α3 [tr(∇ axlA)]2

)
dv

are equivalent and lead to equivalent Euler-Lagrange equations. The power function is given by

Π(t) =

∫
Ω

(⟨f, ut⟩+ ⟨M,At⟩) dv =

∫
Ω

(⟨f, ut⟩+ ⟨skewM,At⟩) dv (4.43)

=

∫
Ω

(⟨f, ut⟩+ 2⟨axl skewM, axlAt⟩) dv .

In conclusion, in view of (4.40), the Euler-Lagrange equation gives us the following system of partial differ-
ential equations for u and A

u,tt = Div[2µe sym∇u+ 2µc skew(∇u−A) + λetr(∇u)·11] + f ,

(axlA),tt = Div

[
α1

2
dev sym(∇ axlA) +

α2

2
skew(∇ axlA) + 2α3 tr(∇ axlA)·11

]
+ 2µc axl(skew∇u−A) + axl skewM in Ω× [0, T ],

which is completely equivalent with the system (4.29). In the case of the Cosserat theory we must put µe = µ
and λe = λ, where µ and λ are the Lamé constants from classical elasticity11. The set of independent constitutive
variables for the Cosserat model is

e = ∇u−A, α = −CurlA. (4.44)

11In light of our “homogenization formula” (2.27), µe = µh µ
µh−µ

, 2µe + 3λe =
(2µh+3λh)(2µ+3λ)
(2µh+3λh)−(2µ+3λ)

such a choice is inconsistent.

The linear Cosserat model is physically doubtful [10]. In [9, 10] the author disproves micropolar effects to appear from the
homogenization of heterogeneous Cauchy material. In [121] a case is made, that the linear Cosserat model leads to unphysical
effects which are incompatible with a heterogeneous material. In [11] the opposite claim is made, under the assumption that the
inclusion in a Cauchy matrix material is significantly less stiff than the matrix. These authors argue, that a Cosserat model is not
suitable for a stiffer inclusion.
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In terms of the microrotation vector ϑ = axlA, the above system turns into the classical format

u,tt = Div[2µe sym∇u+ 2µc(skew∇u− anti(ϑ)) + λetr(∇u)·11] + f ,

ϑ,tt = Div

[
α1

2
dev sym∇ϑ+

α2

2
skew∇ϑ+ 2α3 tr(∇ϑ)·11

]
+ 2µc

[
axl(skew∇u)− ϑ

]
+ axl skewM in Ω× [0, T ],

We point out that for the static case and for µc > 0 in this model, existence and uniqueness can be shown
for a very weak curvature energy, namely for α1 > 0, α2, α3 ≥ 0, see [82]. For µc = 0 in the linear Cosserat
model, the system uncouples. This is another artefact of the linear Cosserat model.

Let us remark that if we relax the isotropic energy from the gradient elasticity formulation [42, 161, 114]

E(∇u,∇(skew∇u)) = µ ∥dev sym∇u∥2 + 2µ+ 3λ

6
[tr(∇u)]2 + µL2

c ∥∇(skew∇u)∥2, (4.45)

corresponding to the indeterminate couple stress problem, such that

E(∇u,A,∇A) = µ ∥dev sym∇u∥2 + 2µ+ 3λ

6
[tr(∇u)]2 + µL2

c ∥∇A∥2 + κ+µ ∥ skew∇u−A∥2, (4.46)

where κ+ is a dimensionless penalty coefficient, then we obtain the isotropic Cosserat model. The coefficient
κ+µ = µc is the Cosserat couple modulus. We observe that no mixed terms appear.

4.5 Lazar’s translational gauge theory of dislocations

The static equations used by Lazar and Anastassiadis [96, 92] in the isotropic gauge theory of dislocations can
be expressed as

0 =Div[2µe sym(∇u− P ) + 2µc skew(∇u− P ) + λe tr(∇u− P )·11] + f,

σ0 =− Curl[α1 dev sym(CurlP ) + α2 skew(CurlP ) + α3tr(CurlP )·11] (4.47)

+ 2µe sym(∇u− P ) + 2µc skew(∇u− P ) + λe tr(∇u− P )·11 ,

where the coefficients α1, α2, α3 correspond to a1, a2,
a3
3

from the Lazar’s notations, σ0 is a statically admissible

background field (the body moment tensor M in the Eringen-Claus model (4.19)), i.e.

Div σ0 + f = 0, σ0. n|∂Ω\Γ = N , (4.48)

with N prescribed. Lazar and Anastassiadis have decomposed the dislocation tensor CurlP into its SO(3)-
irreducible pieces, “the axitor”, “the tentor” and “the trator” parts, i.e.

CurlP = dev sym(CurlP )︸ ︷︷ ︸
“tentor”

+skew(CurlP )︸ ︷︷ ︸
“trator”

+
1

3
tr(CurlP )·11︸ ︷︷ ︸

“axitor”

. (4.49)

It is clear that the Lazar’s model [96] is a simplified static version of the asymmetric isotropic Eringen-Claus
model for dislocation dynamics [32] (see the Subsection 4.3) with H = 0 and µc > 0. The tensor H is absent
since the term ⟨H. symP, symP ⟩ is not translation gauge invariant. In [96] various special solutions to (4.47)
for screw and edge dislocations are constructed.

Abbreviating βe := ∇u− P ∈ R3×3 the system is equivalent to the Euler-Lagrange equations of∫
Ω

[
µe∥ symβe∥2 + µc∥ skew βe∥2 +

λe

2
[tr(βe)]

2

+
α1

2
∥dev symCurlβe∥2 +

α2

2
∥dev symCurlβe∥2 +

α3

2
[tr(Curlβe)]

2 (4.50)

+ ⟨σ0, βe⟩
]
dv → min . βe, βe · τ = 0 on Γ ⊂ ∂Ω.
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In the variational formulation, the dislocation model can be seen as an elastic (reversible) description of a
material, which may respond to external loads by an elastic distortion field βe which is not anymore a gradient
(incompatible). This is not yet an irreversible plasticity formulation, since elasticity does not change the state
of the body.

The Euler-Lagrange equations turn out to be

−f = Div σ0 = Div[2µe symβe + 2µc skew βe + λe tr(βe)·11],
σ0 = Curl[α1 dev sym(Curlβe) + α2 skew(Curlβe) + α3tr(Curlβe)·11] (4.51)

+ 2µe symβe + 2µc skew βe + λe tr(βe)·11 .

We will deal with the well-posedness for the minimization problem (4.50) in another work.

4.6 The symmetric earthquake structure model of Teisseyre

Teisseyre [162, 163] followed closely the approach to micromorphic continuum theory developed by Suhubi and
Eringen [50] and by Eringen and Claus [49]. In fact he used the equations of motion given by Eringen and Claus
([49], Eq. (3.39)) written in terms of the divergence operator (see Eqs. (1)-(4) from [162] and also [49])

ϱ ul,tt = σ̃kl,k + fl, (4.52)

Plm,tt = Λplm,p + σ̃ml − s̃ml +Mlm,

where (see the constitutive equations (36)-(38) from [162])

σ̃kl = (λ+ τ) εmmδkl + 2(µ+ ς) εkl + ηemmδkl + ν elk + κ ekl,

s̃kl = (λ+ 2τ) εmmδkl + 2(µ+ 2ς) εkl + (2η − τ) emmδkl + (ν + κ− ς) (ekl + elk), (4.53)

Λplk = a1 αrn(ϵprnδkl − ϵkrnδpl) + a2 ϵpknαln + a3 (ϵplnαkn − ϵklnαpn),

the constitutive variables εkl, ekl and αkl are the same as in the Eringen-Claus theory (see Subsection 4.3) and
the rest of the quantities have the same signification as in Subsection 2.1. For simplicity, the system (4.52) is
considered in a normalized form.

The constitutive equations and the equation of motion are the same as in the Eringen-Claus model [49]: in
fact, using that Λklm = −Λmlk from (4.53)3, Eringen and Claus considered the tensor

mkl =
1

2
ϵkmnΛmln (4.54)

and rewrote the equation (4.52)3 in the following format

Plm,tt = ϵkmnmnl,k + σ̃ml − s̃ml +Mlm ⇔ P,tt = −Curl(mT ) + σ̃T − s̃T +M . (4.55)

Moreover, because the tensor mkl is given by

mkl = −a3αmmδkl − a1αkl + (a1 − a2 + a3)αlk, (4.56)

the equations of motion give us an energy whose form can be found following the Subsection 4.3. More precisely,
the energy

K1(P ) = ⟨Λ,∇P ⟩, (4.57)

from [163] is in fact the energy

K2(P ) = ⟨m,CurlP ⟩

= (a2 − a3)∥dev sym(CurlP )∥2 + (a2 − a3 − 2a1)∥ skew(CurlP )∥2 + 2a3 + a2
3

[tr(CurlP )]2

= α1∥dev sym(CurlP )∥2 + α2∥ skew(CurlP )∥2 + α3 [tr(CurlP )]2 . (4.58)
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The first assumption of Teisseyre is that κ = ν which implies that the force stress tensor σ̃ is symmetric.
Imposing the additional assumption that the moments of rotations have to vanish he also requires that the
corresponding differences between the stress moment components and body couples appearing in the equation
vanish. This is the reason why he assumed that

Λplk,p = Λpkl,p, Mlk = Mkl . (4.59)

If (4.59) are satisfied, we see immediately that (4.52) determines P,tt to be symmetric.
Using the identity

Λklm = ϵkmnmnl (4.60)

the symmetry constraint Λplk,p = Λpkl,p, can be rewritten in terms of m, i.e.

(Curl(mT ))ml = ϵlknmnm,k = −ϵklnmnm,k = −Λkml,k (4.61)

= −Λklm,k = −ϵkmnmnl,k = ϵmknmnl,k = (Curl(mT ))lm .

In other words, (4.59)1 demands that m is such that

Curl(mT ) ∈ Sym(3). (4.62)

Obviously, P,tt symmetric does not imply that P must be symmetric.
Hence, in view of (4.26) the constraint (4.62) means that

Curl[α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11] ∈ Sym(3) , (4.63)

and further that

Curl{α1 dev sym(CurlP )T − α2 skew(CurlP )T + α3 tr[(CurlP )T ]·11} ∈ Sym(3). (4.64)

In order to satisfy (4.59)1, Teisseyre considered the following sufficient condition12

a2 = −a3, a1 = −2a3 . (4.65)

In terms of our notations these imply that

α1 = −6α3, α2 = 6α3 . (4.66)

The conditions (4.59) and (4.66) are the so-called Einstein choice in three dimensions and they were used by
Malyshev [99] and Lazar [90, 91] in order to investigate dislocations with symmetric force stress13.

In addition, in another paper [163], Teisseyre assumed that a3 = 0 which removes the effects of the micro-
dislocation tensor α = −CurlP completely.

In other words, the Einstein choice (4.66) leads to

Curl{α1 dev sym(CurlP )T − α2 skew(CurlP )T + α3tr[(CurlP )T ]·11}
= Curl{−6α3 dev sym(CurlP )T − 6α3 skew(CurlP )T + α3tr[(CurlP )T ]·11} (4.67)

= −6α3 Curl{dev sym(CurlP )T + skew(CurlP )T − 1

6
tr[(CurlP )T ]·11}

= −6α3 Curl{dev sym(CurlP )T + skew(CurlP )T +
1

3
tr[(CurlP )T ]·11− 1

2
tr[(CurlP )T ]·11}.

Using the decomposition (4.49) of the dislocation tensor CurlP , (4.67) implies

Curl{α1 dev sym(CurlP )T − α2 skew(CurlP )T + α3tr[(CurlP )T ]·11} (4.68)

= −6α3 Curl[(CurlP )T ] + 3α3 Curl{tr[(CurlP )T ]·11}.
12In fact the condition a2 = a1 + a3 is necessary and sufficient to satisfy (4.59)1 if P ∈ Sym(3).
13In the Lazar’s notations the conditions (4.66) becomes a2 = −a1 and a3 = −a1

2
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Let us remark that for all differentiable functions ζ : R → R on Ω we have

Curl(ζ·11) =

 0 ζ,3 −ζ,2
−ζ,3 0 ζ,1
ζ,2 −ζ,1 0

 ∈ so(3). (4.69)

On the other hand we have

Curl[(CurlS)T ] ∈ Sym(3) , for all S ∈ Sym(3),

Curl[(CurlA)T ] ∈ so(3) , for all A ∈ so(3). (4.70)

tr(CurlS) = 0 , for all S ∈ Sym(3).

Hence, from (4.62), (4.68), (4.70) and (4.69) we obtain

Curl(mT )|α1=−6α3,α2=6α3 =− 6α3 Curl{[Curl(symP )]T }︸ ︷︷ ︸
∈Sym(3)

(4.71)

− 6α3 Curl{[Curl(skewP )]T }︸ ︷︷ ︸
∈so(3)

+3α3 Curl{tr[
(
Curl(skewP )

)T
]·11}︸ ︷︷ ︸

∈so(3)

.

Let us also remark that if we consider

skewP =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 (4.72)

then we have

(
Curl(skewP )

)T
=

 p3,3 + p2,2 −p1,2 −p1,3
−p2,1 p3,3 + p1,1 −p2,3
−p3,1 −p3,2 p2,2 + p1,1

 . (4.73)

Thus, we deduce

tr[
(
Curl(skewP )

)T
] = 2(p1,1 + p2,2 + p3,3) = 2 div p , (4.74)

where p = axl(skewP ).
Moreover, in view of (4.69), (4.74) implies

Curl{tr[
(
Curl(skewP )

)T
]·11} = 2

 0 div p,3 −div p,2
−div p,3 0 div p,1
div p,2 −div p,1 0

 = −2 anti∇(div p). (4.75)

On the other hand, we have

Curl{[Curl(skewP )]T } =

 0 div p,3 −div p,2
−div p,3 0 div p,1
div p,2 −div p,1 0

 = − anti∇(div p). (4.76)

From the above two identities, we deduce

−2Curl{[Curl(skewP )]T }+Curl{tr[
(
Curl(skewP )

)T
]·11} = 0, for all P ∈ R3×3. (4.77)

Thus, we obtain

Curl(mT )|α1=−6α3,α2=6α3 =− 6α3 Curl{[Curl(symP )]T } ∈ Sym(3), for all P ∈ R3×3. (4.78)

Summarizing, we have the following result which gives information about the symmetry of the model.
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Remark 4.1

i) If α1 = −6α3 and α2 = 6α3, then

Curl{α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11} ∈ Sym(3) for all P ∈ R3×3. (4.79)

ii) Given P ∈ Sym(3), then we have

Curl{α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11} ∈ Sym(3). (4.80)

if and only if α1 = −α2.

We conclude that, in view of (4.71) and (4.77), the Einstein choice (4.66) implies that

Curl[mT ] ∈ Sym(3) , for all P ∈ R3×3. (4.81)

Thus, the condition (4.65) is in concordance, without any restriction and projection of the equation, with the
assumption that P,tt remains symmetric since the right hand side of the equations (4.19) is now symmetric.
Therefore Teisseyre’s model does have a symmetric stress tensor, it is based on the dislocation tensor α, and
determines nevertheless a symmetric micro-distortion such that P,tt.

In addition, if P ∈ Sym(3), then from (4.55) it follows that skewP is solution of the problem

(skewP ),tt = 0, (skewP )(x, 0) = 0, (skewP ),t(x, 0) = 0. (4.82)

The unique solution of the above problem is skewP = 0. Thus, we conclude that if P (x, 0) ∈ Sym(3) and
P,t(x, 0) ∈ Sym(3), then P (x, t) ∈ Sym(P ) and in consequence the Teisseyre’s model is a fully “symmetric”
micromorphic model

If we consider the supplementary conditions (4.65), then the energy K2 becomes

K2(P ) = −2a3 ∥dev sym(CurlP )∥2 + 4a3 ∥ skew(CurlP )∥2 + a3
3

[tr(CurlP )]2 , (4.83)

which has no sign! The constraint (4.65), introduced for having P,tt ∈ Sym(3) destroys, therefore, the positive
definiteness of the dislocation energy (4.83). In fact, the most general form of the energy (4.83) considered by
Teisseyre is

K2(symP ) = ⟨L̂c. Curl symP,Curl symP ⟩, (4.84)

where L̂c is a non-positive definite isotropic tensor. In view of (2.17), this energy is equivalent with

KT (symP ) = ⟨L̂T .∇ symP,∇ symP ⟩, (4.85)

where

L̂T : R3×3×3 → R3×3×3. (4.86)

The energy KT (symP ) is similar with the energy from the gradient elasticity formulation [42]

E(sym∇u) = ⟨L̂T .∇(sym∇u),∇(sym∇u)⟩. (4.87)

If we extend the Teisseyre’s model to the anisotropic case, then the total energy is equivalent with the energy

2Ê(t) :=

∫
Ω

(
∥u,t∥2 + ∥(symP ),t∥2 + ⟨C. sym(∇u− P ), sym(∇u− P )⟩

+ ⟨H. symP, symP ⟩+ ⟨L̂.∇(symP ),∇(symP )⟩
)
dv , (4.88)

from the microstrain model [56] (see Subsection 4.2). In conclusion, the Teisseyre’s model is a special degenerate
isotropic microstrain model and it is therefore incapable of describing rotation of the microstructure, hence the
name “symmetric” micromorphic model.
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4.7 The asymmetric microstretch model in dislocation format

It is well known that the theory of microstretch elastic materials is a special subclass of the class of micromorphic
materials [48, 18, 14, 13]. In this Subsection we show that the microstretch model is already contained in our
relaxed micromorphic model in dislocation format. To this aim, we assume that the micro-distortion tensor has
the form P = ζ·11 +A, where A ∈ so(3) and ζ is a scalar function. It is easy to check that

CurlP = CurlA+Curl(ζ·11) = CurlA+

 0 ζ,3 −ζ,2
−ζ,3 0 ζ,1
ζ,2 −ζ,1 0

 , (4.89)

and

Curl(CurlP ) = Curl(CurlA) +

 −(ζ,22 + ζ,33) ζ,12 ζ,13
ζ,12 −(ζ,11 + ζ,33) ζ,23
ζ,13 ζ,23 −(ζ,11 + ζ,22)

 . (4.90)

As in the construction of the linear Cosserat model in terms of the dislocation density tensor (Subsection 4.4), for
isotropic materials and with the asymmetric factor 2µc skew(∇u− P ) incorporated, the constitutive equations
become

σ = 2µe sym(∇u− ζ·11) + 2µc skew(∇u−A) + λe tr(∇u− ζ·11)·11 ,
m = α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11

+ α1 dev symCurl(ζ·11)︸ ︷︷ ︸
=0

+α2 skewCurl(ζ·11) + α3 tr(Curl(ζ·11))︸ ︷︷ ︸
=0

·11 (4.91)

s = 2µh sym(ζ·11) + λhtr(ζ·11)·11 , in Ω× [0, T ].

Observing that for all matrices X ∈ R3×3 we have the decomposition

X − dev symX = skewX +
1

3
tr(X)·11, (4.92)

we obtain by restriction and projection the equations

u,tt = Div[2µe sym(∇u− P ) + 2µc skew(∇u− P ) + λetr(∇u− P )·11] + f , (4.93)

P,tt − (dev symP ),tt = −Curl

[
α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11

]
+ dev symCurl

[
α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11

]
+ 2µe sym(∇u− P ) + 2µc skew(∇u− P ) + λetr(∇u− P )·11
− 2µe dev sym(∇u− P )− 2µc dev skew(∇u− P ) + λe dev tr(∇u− P )·11
− 2µh symP + 2µh dev symP − λhtr(P )·11 + λh dev(tr(P )·11)
+M − dev symM in Ω× [0, T ].

and further

u,tt = Div[2µe sym(∇u− ζ·11) + 2µc skew(∇u−A) + λetr(∇u− ζ·11)·11] + f , (4.94)

(ζ·11 +A),tt − (dev sym(ζ·11 +A)),tt = −Curl

[
α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11

]
− dev symCurl

[
α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11

]
− α2 CurlCurl(ζ·11)− α2 dev symCurlCurl(ζ·11)
+ 2µe sym(∇u− ζ·11)− 2µe dev sym(∇u− ζ·11)
+ 2µc skew(∇u−A)− 2µc dev skew(∇u−A)

+ λetr(∇u− ζ·11)·11− λe dev(tr(∇u− ζ·11)·11)
− 2µh sym(ζ·11) + 2µh dev sym(ζ·11)
− λhtr(ζ·11)·11 + λh dev(tr(ζ·11)·11) +M − dev symM in Ω× [0, T ].
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By orthogonal projection of the second equation (4.94)2 to the space of skew-matrices and to the spherical part,
respectively, and using the fact that tr(CurlS) = 0 for all S ∈ Sym(3) and tr[Curl(skewCurlA)] = 0 for all
A ∈ so(3), the full system of equations for our reduced model is

u,tt = Div[2µe sym(∇u− ζ·11) + 2µc skew(∇u−A) + λetr(∇u− ζ·11)·11] + f ,

skewA,tt = − skewCurl

[
α1 dev symCurlA+ α2 skewCurlA+ α3 tr(CurlA)·11

]
+ 2µc skew(∇u−A) + skewM , (4.95)

tr(ζ,tt·11) = −α2tr[Curl Curl(ζ·11)]
+ 2µetr[sym(∇u− ζ·11)] + 3λetr(∇u− ζ·11)

− 2µhtr sym(ζ·11)− 3λhtr(ζ·11) +
1

3
tr(M) in Ω× [0, T ].

But

Curl Curl(ζ·11) =

 −(ζ,22 + ζ,33) ζ,12 ζ,13
ζ,12 −(ζ,11 + ζ,33) ζ,23
ζ,13 ζ,23 −(ζ,11 + ζ,22)

 .

Hence, we deduce tr[Curl Curl(ζ·11)] = −2(ζ,11 + ζ,22 + ζ,33) = −2∆ζ. In terms of the microrotation vector
ϑ = axlA, the above system becomes

u,tt = Div[2µe sym(∇u− ζ·11) + 2µc (skew∇u− anti(ϑ)) + λe tr(∇u− ζ·11)·11] + f ,

ϑ,tt = Div

[
α1

2
dev sym∇ϑ+

α2

2
skew∇ϑ+ 2α3 tr(∇ϑ)·11

]
+ 2µc

[
axl(skew∇u)− ϑ

]
+ axl skewM (4.96)

ζ,tt =
2

3
α2 ∆ζ +

2µe + 3λe

3
divu− (2µe + 3λe + 2µh + 3λh) ζ +

1

3
tr(M) in Ω× [0, T ].

Using the micro-distortion tensor specific to the microstretch model, the tangential boundary condition
(2.21) implies the strong anchoring condition14

A(x, t) = 0 and ζ(x, t) = 0 on ∂Ω× [0, T ]. (4.97)

The above system is the microstretch model in dislocation format and the total energy for this model is given
by

L3 =

∫
Ω

(
1

2
∥u,t∥2 + ∥ϑ,t∥2 +

3

2
∥ζ,t∥2

+ µe ∥ sym(∇u− ζ·11)∥2 + µc ∥ skew∇u− anti(ϑ)∥2 + λe

2
tr(∇u− ζ·11)2 (4.98)

+
α1

2
∥dev sym∇ϑ∥2 + α2

2
∥ skew∇ϑ∥2 + 2α3 [ tr(∇ϑ)]2 +

3

2
(2µh + 3λh) ζ

2 + α2 ∥∇ζ∥2
)
dv.

We may also obtain the model of microstretch materials if we replace the energy from the gradient elasticity
formulation [42, 161, 114]

E(∇u,∇(skew∇u),∇(tr(∇u))) =µ ∥dev sym∇u∥2 + 2µ+ 3λ

6
[tr(∇u)]2 (4.99)

+ µL2
c1 ∥∇(tr(∇u))∥2 + µL2

c2 ∥∇(skew∇u)∥2,

with

E(∇u,A,∇A, ζ,∇ζ) =µ ∥dev sym∇u∥2 + 2µ+ 3λ

6
[tr(∇u)]2 (4.100)

+ µL2
c1 ∥∇ζ∥2 + µL2

c2 ∥∇A∥2 + κ+
1 µ [tr(∇u− ζ·11)]2 + κ+

2 µ ∥ skew∇u−A∥2,
14(ζ·11 + A)τ = 0 for all τ tangent to the boundary implies ζ⟨τ, τ⟩ + ⟨Aτ, τ⟩ = 0. Since ⟨Aτ, τ⟩ = 0 for skew-symmetric matrices

A, we have ζ = 0 and further A = 0.
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where κ+
1 and κ+

2 are dimensionless penalty coefficients. The coefficient κ+
2 µ = µc is the Cosserat couple

modulus15. Again, no mixed terms appear.
For comparison, the classical linear microstretch formulation has the energy (see [48], p. 253)

L4 =

∫
Ω

(
1

2
∥u,t∥2 +

1

2
∥ϑ,t∥2 +

1

2
∥ζ,t∥2

+ µe ∥ sym(∇u− ζ·11)∥2 + µc ∥ skew∇u− anti(ϑ)∥2 + λe

2
tr(∇u− ζ·11)2 (4.101)

+
γ1
2

∥dev sym∇ϑ∥2 + γ2
2

∥ skew∇ϑ∥2 + γ3
2

[ tr(∇ϑ)]2 +
λ1

2
ζ2 +

γ0
2

∥∇ζ∥2

+ λ0 tr(∇u− ζ·11) ζ + b0 ⟨anti(∇ζ),∇ϑ⟩
)
dv.

The microstretch model in dislocation format involves only three curvature coefficients, instead of four considered
in the classical model [48].

4.8 The microvoids model in dislocation format

It is well known that the theory of elasticity with voids is a subset of the micromorphic model [48, 23, 65, 64,
17, 12]. In this subsection we show that the microvoid model is a special case of our relaxed micromorphic
model in dislocation format. Indeed this is a particular case of (2.25) in which we assume P = ζ·11. Hence,
using (2.25) we obtain

u,tt = Div[2µe sym(∇u− ζ·11) + λetr(∇u− ζ·11)·11] + f ,

ζ,tt =
2

3
α2∆ζ +

2µe + 3λe

3
divu− (2µe + 3λe + 2µh + 3λh)ζ +

1

3
tr(M) in Ω× [0, T ].

The boundary condition which follows from the tangential boundary condition (2.21) is the strong anchoring
condition

ζ(x, t) = 0, on ∂Ω× [0, T ], (4.102)

which implies that on the boundary the volumes of the voids do not change.
This microvoids model in dislocation format is related to the theory of “micro-voids” [142, 36] and corre-

sponds to the following choice of the total energy

L5 =

∫
Ω

(
1

2
∥u,t∥2 +

3

2
∥ζ,t∥2 + µe∥dev sym(∇u− ζ·11)∥2 + 2µe + 3λe

6
[tr(∇u− ζ·11)]2 (4.103)

+
3

2
(2µh + 3λh) ζ

2 + α2 ∥∇ζ∥2
)
dv.

From the above equations we remark that the parameter α2 describes the creation of micro-voids. This obser-
vation suggests to skip α2 when tr(P ) = 0. Cowin and Nunziato [142, 36] introduced the following symmetric
stress tensor

σv = 2µv sym∇u+ λv tr(∇u)·11 + bv ζ·11, (4.104)

while the “balance of equilibrated forces” is given by

ζ,tt = αv ∆ζ − bv divu− ξv ζ + ℓ, (4.105)

where λv, µv, bv, αv and ξv are constitutive constants and ℓ is called “extrinsic equilibrated body force”.
Our symmetric Cauchy stress tensor is given by

σ = 2µe sym∇u+ λe tr(∇u)·11− (2µe + 3λe) ζ·11. (4.106)

15Certainly, penalty parameters do not have the status of material parameters: the doubtful role of the Cosserat couple modulus
is again displayed.
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A direct identification of the coefficients gives us that the coefficient of the Cowin-Nunziato theory can be
expressed in terms of our constitutive coefficients

µv = µe, λv = λe, αv =
2

3
α2, bv = −2µe + 3λe

3
, (4.107)

ξv = 2µe + 3λe + 2µh + 3λh = −3bv + 2µh + 3λh.

In our model we have only four parameters, because 2µh + 3λh can be regarded as a single parameter, instead
of five considered by Cowin and Nunziato [36]. Moreover, we have all the terms considered in the microvoids
theory but without having any mixed terms involving two constitutive variables.

The positivity conditions for the Cowin-Nunziato theory with voids [36] are

µv > 0, 2µv + 3λv > 0, αv > 0, ξv > 0, (2µv + 3λv) ξv > 3 b2v, (4.108)

while in our microvoids model in dislocation format the positivity conditions are obvious

µe > 0, 2µe + 3λe > 0, 2µh + 3λh > 0, α2 > 0 . (4.109)

Let us consider the energy from the isotropic second gradient poromechanics model [38, 42]

E(∇u,∇(tr(sym∇u))) = µ ∥dev sym∇u∥2 + 2µ+ 3λ

6
[tr(sym∇u)]2 + µL2

c ∥∇(tr(sym∇u)∥2. (4.110)

If we rewrite this energy into a two-field formulation for u and ζ

E(∇u, ζ,∇ζ) =µ ∥dev sym∇u∥2 + 2µ+ 3λ

6
[tr(sym∇u)]2 (4.111)

+ µL2
c ∥∇ζ∥2 + κ+µ [tr(∇u− ζ·11)]2,

where κ+ is a dimensionless penalty coefficient, we obtain a 4-parameter microvoids model in which no mixed
terms appear.

We give below, only for comparison, the total energy of the classical linear elastic microvoid model (see
[79, 66])

L6 =

∫
Ω

(
1

2
∥u,t∥2 +

1

2
∥ζ,t∥2 + µv ∥ sym∇u∥2 + λv

2
tr(∇u)2 +

ξv
2
ζ2 +

αv

2
∥∇ζ∥2 + bv tr(∇u) ζ

)
dv.

According to Lakes [88], the Cowin-Nunziato theory of porous materials predicts that size effects will occur in
bending of bars but not in torsion and not in tension in an isotropic material. However, size effects occur always
both in bending and in torsion, which means that the void theory cannot adequately describe materials with
microvoids.

4.9 A glimpse on the isotropic strain gradient model

Let us consider the general energy from the isotropic strain gradient model [62, 63, 38, 42, 161, 3, 114]

E(∇u,D2u) = µ ∥ sym∇u∥2 + λ

2
[tr(sym∇u)]2 +Wcurv(∇ sym∇u). (4.112)

In general, the strain gradient models have the great advantage of simplicity and physical transparency.
Due to isotropy, the curvature energy Wcurv(∇ sym∇u) involves 5 additional constitutive constants. Taking

free variations in the energy (4.112), we obtain∫
Ω

[
2µ ⟨sym∇u, sym∇δu⟩R3×3 + λtr(∇u)tr(∇δu) (4.113)

+ ⟨DWcurv(∇ sym∇u),∇ sym∇δu⟩R27

]
dv = 0, ∀ δu ∈ C∞

0 (Ω).
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But for all δu ∈ C∞(Ω), we have∫
Ω

[
⟨DWcurv(∇ sym∇u),∇ sym∇δu⟩R27

]
dv (4.114)

=

∫
Ω

[
Div

[(
DWcurv(∇ sym∇u)

)T
. (sym∇δu)

]
− ⟨Div(DWcurv(∇ sym∇u)), sym∇δu⟩R3×3

]
dv

=

∫
Ω

[
Div

[(
DWcurv(∇ sym∇u)

)T
. (sym∇δu)

]
− ⟨symDiv(DWcurv(∇ sym∇u)),∇δu⟩R3×3

]
dv

=

∫
Ω

[
Div

[(
DWcurv(∇ sym∇u)

)T
. (sym∇δu)

]
−Div

[(
symDivDWcurv(∇ sym∇u)

)T
. δu

]
+ ⟨Div[symDiv(DWcurv(∇ sym∇u))], δu⟩R3×3

]
dv.

Hence, the relation (4.113) leads to∫
Ω

{
⟨Div

{
2µ sym∇u+ λtr(∇u)·11︸ ︷︷ ︸

“local force stress”

− symDiv(DWcurv(∇ sym∇u)︸ ︷︷ ︸
“hyperstress”

)

︸ ︷︷ ︸
“nonlocal force stress”︸ ︷︷ ︸

“total force stress”

}
, δu⟩R3

}
dv (4.115)

−
∫
∂Ω

{
⟨
(
DWcurv(∇ sym∇u)

)
. n, sym∇δu⟩+ ⟨

(
symDivDWcurv(∇ sym∇u)

)
. n, δu⟩

}
da = 0,

for all δu ∈ C∞(Ω). In this representation, the local and nonlocal parts of the force stress tensor are both seen
to be symmetric. This is in line with the observation that the generalized Cauchy stresses in a second grade
elastic material can always be assumed in symmetric form if frame-indifference is satisfied [161, 114], see the
footnote 6.

5 Conclusion

Let us summarize the main thrust of the paper regarding the new relaxed micromorphic model. We

• reconcile Kröner’s rejection of antisymmetric force stresses in dislocation theory with the dislocation
model of Eringen and Claus and show that the concept of asymmetric force stress is not needed in order
to describe rotations of the microstructure in non-polar materials.

• preserve full kinematical freedom (12 degree of freedom) by reducing the model in order to obtain sym-
metric Cauchy stresses. The proposed relaxed model is still able to fully describe rotations of the mi-
crostructure and to fit a huge class of mechanical behaviours of materials with microstructure.

• note that the possible non-symmetry of the micro-distortion P is governed solely by moment stresses and
applied body moments. The macroscopic and microscopic scales are separated, in this sense.

• define a dependence of the free energy only on the elastic strain, microstrain and dislocation density
tensor.

• provide a standard set of tangential boundary conditions for the micro-distortion, i.e. P. τ = 0 (Pi× n = 0)
on ∂Ω and not the usual strong anchoring condition P = 0 on ∂Ω.

• obtain well-posedness results for the relaxed formulation regarding: existence, uniqueness and continuous
dependence for tangential boundary conditions.

• disclose as unnecessary the concept of asymmetric force stresses for a wide class of microstructured mate-
rials.
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• conclude that the linear Cosserat theory is a redundant model for dislocated bodies and for the description
of a huge class of material behaviours.

• remark that for the isotropic relaxed micromorphic model only 3 curvature parameters remain to be
determined, which may eventually be reduced to 2 parameters, which are needed for fitting bending and
torsion experiments.

• allow in principle for non-smooth solutions and the possibility of fracture. The solution space for the elastic
distortion and micro-distortion is only H(Curl; Ω) and for the macroscopic displacement u ∈ H1(Ω). For
non-smooth external data we expect slip lines.

• introduce a suitable decomposition of the Mindlin-Eringen strain energy density for micromorphic media
(see Eq. (2.28)) which allows to determine a unique parameter µc which is responsible for eventual
asymmetry of the stress tensor.

• observe that the Cosserat couple modulus µc ≥ 0 can be set to zero, the relaxed micromorphic model is
still capable to describe rotations of the microstructure and to fit a large class of microstructured material
behaviours.

• understand that for µc = 0, the seemingly absent (local) control of the antisymmetric part of the elastic
distortion is provided by the dislocation energy, the microstrain energy and the tangential boundary
conditions. Thus, the skew-symmetric part of the distortion is fully determined by the boundary value
problem.

• note that the asymmetry of the Cauchy stress tensor may arise in theories where there are couple stresses
due to a non-mechanical nature, e.g. in models with electromagnetic interactions and in polarizable media
(piezoelectricity, ferroelectricity). As far as purely mechanical models are considered in the framework
of linear elasticity, the need of introducing asymmetric stresses becomes rarer. Indeed, only some very
special engineering materials like lattice structures and phononic crystals may be seen to need asymmetric
stresses to disclose their complete mechanical behavior.

In Figure 2 we indicate the place in the literature of our relaxed model and we point out the relations between
the existing models. Moreover, Figure 3 gives the relations between our relaxed micromorphic, microstretch
model, Cosserat model, microstrain model and microvoid models in dislocation format.

The diagram from Figure 4 gives some new possible relaxed micromorphic models and, in view of the status
of the mathematical background, we indicate the well-posedness of the dynamic and static problem.

6 Outlook

The new concept of metamaterials is attracting more and more the interest of physicists and mechanicians. It
is described and studied in many works: we refer here for instance to [47] or [172].

Metamaterials are obtained by suitably assembling multiple individual elements but usually arranged in
(quasi-)periodic substructures in order to show very peculiar and especially designed mechanical properties. In-
deed, the particular shape, geometry, size, orientation and arrangement of their constituting elements can affect
e.g. the propagation of waves of light or sound in a not-already-observed manner, creating material properties
which cannot be found in conventional materials. Particularly promising in the design of metamaterials are
those micro-structures which present high-contrast in microscopic properties: these micro-structures, once ho-
mogenized, may produce generalized continuum models (see e.g. [21, 2, 145, 56, 55, 113]). The micro-structures
of such metamaterials, although remaining quasi-periodical, are conceived so that some of the physical micro-
properties characterizing their behavior diverge when the size of the REV tends to zero, while simultaneously
some other properties are vanishing in the same limit.

In the present paper we have mathematically studied a large class of evolution equations which are gov-
erning the propagation of linear waves in micromorphic or generalized continua (see e.g. [39, 150, 156]). The
mathematical existence, uniqueness and continuous dependence theorems which we have obtained in [67] are
the logical basis of the studies which will be developed in further investigations, where the manifold variety of
propagating mechanical waves which may exist in micromorphic continua may unfold unexpected applications
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A family of generalized continua'

&

$

%

Cauchy continuum:

linear elasticity

3 dof u, well-posed

σ symmetric, σ = C. ε
isotropic: 2 parameters

no additional coupling

constitutive variable:

ε = sym∇u total strain

'

&

$

%

Eringen-Mindlin micromorphic

12 dof (u, P ), well-posed

σ non-symmetric, σ = Ĉ. e
isotropic: 7+11 parameters

no coupling: 5+11 parameters

constitutive variables:

e = ∇u− P elastic distortion

εp = symP micro-strain

γ = ∇P micro-curvature

'

&

$

%

Eringen-Claus dislocation

12 dof (u, P ), well-posed∗

σ non-symmetric, σ = Ĉ. e
isotropic: 7+3 parameters

no coupling: 5+3 parameters

constitutive variables:

e = ∇u− P elastic distortion

εp = symP micro-strain

α = −CurlP micro-dislocation

'

&

$

%

Microstrain dislocation

9 dof (u, symP ), well-posed

σ symmetric, σ = C. εe
isotropic: 6+2 parameters

no coupling: 4+2 parameters

constitutive variables:

εe = sym(∇u− P ) elastic strain

εp = symP micro-strain

Curl εp : Curl of micro-strain

'

&

$

%

Linear Cosserat model

6 dof (u, skewP ), well-posed

σ non-symmetric, σ = Ĉ. e
isotropic: 3+3 parameters

no coupling: 3+3 parameters

constitutive variables:

e = ∇u− skewP

α = −Curl skewP

physical status doubtful

'

&

$

%

Relaxed micromorphic

dislocation

12 dof (u, P ), well-posed∗

σ symmetric, σ = C. εe
isotropic: 6+3 parameters

no coupling: 4+3 parameters

constitutive variables:

εe = sym(∇u− P ) elastic strain

εp = symP micro-strain

α = −CurlP micro-dislocation

'

&

$

%

Forest microstrain

9 dof (u, symP ), well-posed∗

σ symmetric, σ = C. εe
isotropic: 6+5 parameters

no coupling: 4+5 parameters

constitutive variables:

εe = sym(∇u− P ) elastic strain

εp = symP micro-strain

∇εp : gradient of micro-strain

B
B
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B
BBN

“relax”

∇P  CurlP
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Lazar’s gauge dislocation

12 dof (u, P )

σ non-symmetric, σ = Ĉ. e
isotropic: 3+3 parameters

no coupling: 3+3 parameters

constitutive variables:

e = ∇u− P elastic distortion

α = −CurlP micro-dislocation

εp no state variable

“constrain”

P  symP

“relax”

e sym e

σ  symσ�
�
�
�
�

�
�
�
���

PPPPPPPPPPPPPPPq

“constrain”

P  skewP
µh → ∞
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Q
Q
Q

Q
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Q
QQs

special choice

of coefficients
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“relax”

∇P  CurlP
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“relax”

e sym e

σ  symσ

“constrain”

P  symP

Figure 2: Situation for centro-symmetric materials. All models are defined by a positive definite quadratic
form in the given set of independent constitutive variables, C being a symmetric fourth order tensor such that
C : Sym(3) → Sym(3), while Ĉ : R3×3 → R3×3 is a fourth order tensor which does not map symmetric matrices
into symmetric metrices. For the isotropic case we add the number of constitutive parameters #1 +#2, where
#1 represents the number of constitutive parameters in the force-stress response and #2 is the number of
constitutive parameters in the curvature energy. By ∗ we specify that the well-posedness is discussed in this
work.
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Relaxed micromorphic

dislocation

12 dof (u, P ), well-posed∗

σ symmetric, σ = C. εe
isotropic: 6+3 parameters

no coupling: 4+3 parameters

constitutive variables:

εe = sym(∇u− P ) elastic strain

εp = symP micro-strain

α = −CurlP micro-dislocation
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P  symP

no coupling
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simplicity
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orthogonal

projections
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Eringen-Claus dislocation

12 dof (u, P ), well-posed∗

σ non-symmetric σ = Ĉ. e
isotropic: 7+3 parameters

no coupling: 5+3 parameters

constitutive variables:

e = ∇u− P elastic distortion

εp = symP micro-strain

α = −CurlP micro-dislocation

�
“relax”

e sym e

σ  symσ

?

“constrain”

P  ζ·11 + A

A ∈ so(3)&

orthogonal

projections'
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Microstretch model in

dislocation format

7 dof (u,A, ζ), well-posed∗

σ non-symmetric, σ = Ĉ. e
isotropic: 4+3 parameters

no coupling: 3+3 parameters

constitutive variables:

e = ∇u− (ζ·11 + A) elastic distortion

εζ = ζ·11 micro-strain

∇εζ = ∇(ζ·11) gradient of micro-strain

α = −CurlA micro-dislocation

?

“constrain”

P  A ∈ so(3)
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P  ζ·11
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Linear Cosserat model

6 dof (u,A), well-posed

σ non-symmetric, σ = Ĉ. e
isotropic: 3+3 parameters

no coupling: 2+3 parameters

constitutive variables:

e = ∇u−A elastic distortion

α = −CurlA micro-dislocation
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Symmetric model of Teisseyre

9 dof (u, symP ), not well-posed∗

σ symmetric σ = C. εe
isotropic: 6+1 parameters

no coupling: 4+1 parameters

constitutive variables:

εe = sym(∇u− P ) elastic strain

εp = symP micro-strain

α = −CurlP micro-dislocation

'

&

$

%

Microvoid model in

dislocation format

4 dof (u, ζ), well-posed∗

σ symmetric σ = C. εe
isotropic: 3+1 parameters

no coupling: 2+1 parameters

constitutive variables:

εe = sym(∇u− ζ·11) elastic strain

εp = sym(ζ·11) = ζ·11 micro-strain

∇εζ = ∇(ζ·11) gradient of

micro-strain'

&

$

%

Classical microvoid model

4 dof (u, ζ), well-posed

σ symmetric σ = C. εe
isotropic: 4+1 parameters

no coupling: 3+1 parameters

constitutive variables:

ε = sym∇u total strain

εp = sym(ζ·11) = ζ·11 micro-strain

∇εζ = ∇(ζ·11) gradient of

micro-strain

'

&

$

%

Classical microstretch model

7 dof (u,A, ζ), well-posed

σ non-symmetric, σ = Ĉ. e
isotropic: 6+4 parameters

no coupling: 3+4 parameters

constitutive variables:

e = ∇u− (ζ·11 + A) elastic distortion

εζ = ζ·11 micro-strain

∇εζ = ∇(ζ·11) gradient of micro-strain

α = −CurlA micro-dislocation

Figure 3: Relaxed micromorphic, microstretch model, Cosserat model, microstrain model and microvoid models
in dislocation format
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The family of relaxed micromorphic dislocation models'
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constitutive variables:

εe = sym(∇u− P ) elastic strain

εp = symP micro-strain

α = −CurlP micro-dislocation
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A (dev,dev)-more relaxed

micromorphic dislocation

12 dof (u, P ), well-posed∗

σ symmetric, σ = C. εe
isotropic: 6+2 parameters

no coupling: 3+2 parameters

constitutive variables:

εe = sym(∇u− P )

dev εp = dev symP

devα = − dev CurlP

'

&

$

%

A (·, sym)-more relaxed

micromorphic dislocation

12 dof (u, P ), well-posed?

σ symmetric, σ = C. εe
isotropic: 6+2 parameters

no coupling: 4+2 parameters

constitutive variables:

εe = sym(∇u− P )

εp = symP

symα = − sym CurlP

'
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$
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A (·, dev sym)-more relaxed

micromorphic dislocation

12 dof (u, P ), well-posed?

σ symmetric, σ = C. εe
isotropic: 6+1 parameters

no coupling: 4+1 parameters

constitutive variables:

εe = sym(∇u− P )

εp = symP

dev symα = − dev sym CurlP

?'
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A (dev, sym)-more relaxed

micromorphic dislocation

12 dof (u, P ), not well-posed!

σ symmetric, σ = C. εe
isotropic: 6+2 parameters

no coupling: 3+2 parameters

constitutive variables:

εe = sym(∇u− P )

dev εp = dev symP

symα = − sym CurlP

?'

&

$

%

A (dev,dev sym)-more relaxed

micromorphic dislocation

12 dof (u, P ), not well-posed!

σ symmetric, σ = C. εe
isotropic: 6+1 parameters

no coupling: 3+1 parameters

constitutive variables:

εe = sym(∇u− P )

dev εp = dev symP

dev symα = − dev sym CurlP

-

Figure 4: Relation between possible relaxed micromorphic models. The non-well-posedness follows from the
results in [6, 5, 7].
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in the design of particularly tailored metamaterials, showing very useful and up-to-now unimagined features.
Indeed, as already remarked, second gradient materials can be seen as a particular limit case of the micromor-
phic media introduced in this paper. Such materials can be obtained from micromorphic ones constraining the
micromorphic strain tensor symP to be equal to the classical strain tensor. More precisely, the elastic distortion
∇u− P is considered to be zero. In this sense, the study of wave propagation in micromorphic media intrinsi-
cally contains all the results which are valid for second gradient media. Previous results on wave propagation in
second gradient elastic media have shown a wide variety of exotic phenomena basically related to screening or
transmitting properties of interfaces embedded in such media. It has been shown that (see e.g. [39, 150, 156])
for waves at frequencies which are sufficiently high to interact with the underlying microstructure, the screening
or transmitting properties of the interface can be sensibly enhanced. It is clear that materials which are able
to show such exotic properties with respect to wave propagation could lead to the design of technologically
relevant devices for example in the field of stealth technology or vibration and acoustic passive control. Some
preliminary results on the study of wave propagation in micromorphic media indicate that, for particular sets of
the constitutive parameters suggested by our mathematical analysis, propagation of some types of waves can be
inhibited or waves which propagate without carrying energy can also be observed. Such frequency-dependent
exotic properties are already observable in the bulk of the considered micromorphic medium without consider-
ing more complicated reflection and transmission phenomena at surfaces of discontinuity of material properties.
This means that well-conceived micromorphic materials could be used as exotic waveguides which allows to
filter and/or switch on and off some typical waves depending on the envisaged use. Recently the theory of ma-
terial symmetry for the Cosserat continuum was extended in [148]. In [148] it is mentioned that some relaxed
Cosserat models can be interpreted as micropolar liquid crystals. Although the theory of material symmetry
for the relaxed micromorhic models similar to [148] is not elaborated into details, such relaxed micromorphic
model can be also interpreted as liquid crystal in the sense of the material symmetry group.

We remark that the theorems obtained in [67] can also be used to give a better grounded basis to many
results which are already available in the literature (see e.g. [40, 41]).
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[29] S. Chiriţă and I.D. Ghiba. Rayleigh waves in Cosserat elastic materials. Int. J. Eng. Sci., 51:117–127, 2012.
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loc-stress and strain regularity in Cosserat-Plasticity. Z. Angew. Math. Mech., 89(4):257–266,

2008.
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[136] P. Neff, D. Pauly, and K.J. Witsch. Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible
tensor fields. arXiv:1203.2744, submitted.

[137] P. Neff, D. Pauly, and K.J. Witsch. A canonical extension of Korn’s first inequality to H(Curl) motivated by gradient plasticity
with plastic spin. C. R. Acad. Sci. Paris, Ser. I, 349:1251–1254, 2011.

[138] P. Neff, D. Pauly, and K.J. Witsch. Maxwell meets Korn: a new coercive inequality for tensor fields in RN×N with square-
integrable exterior derivative. Math. Methods Appl. Sci., 35:65–71, 2012.

42



[139] P. Neff, A. Sydow, and C. Wieners. Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Num.
Meth. Engrg., 77(3):414–436, 2009.

[140] S. Nesenenko and P. Neff. Well-posedness for dislocation based gradient viscoplasticity I: Subdifferential case. SIAM J. Math.
Anal., 44(3):1694–1712, 2012.

[141] S. Nesenenko and P. Neff. Well-posedness for dislocation based gradient visco-plasticity II: Monotone case. MEMOCS:
Mathematics and Mechanics of Complex Systems, 1(2):149–176, 2013.

[142] J.W. Nunziato and S.C. Cowin. A nonlinear theory of elastic materials with voids. Arch. Rat. Mech. Anal., 72:175–201,
1979.

[143] J.F. Nye. Some geometrical relations in dislocated crystals. Acta Metall., 1:153–162, 1953.

[144] A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer Verlag, New York, Berlin,
Heidelberg, Tokyo, 1983.

[145] C. Pideri and P. Seppecher. A second gradient material resulting from the homogenization of an heterogeneous linear elastic
medium. Cont. Mech. Thermo., 9:241–257, 1997.

[146] W. Pietraszkiewicz and V.A. Eremeyev. On natural strain measures of the non-linear micropolar continuum. Int. J. Solids
Struct., 46:774–787, 2009.

[147] W. Pietraszkiewicz and V.A. Eremeyev. On vectorially parameterized natural strain measures of the non-linear Cosserat
continuum. Int. J. Solids Struct., 46:2477–2480, 2009.

[148] W. Pietraszkiewicz and V.A. Eremeyev. Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids
Struct., 49:1993–2005, 2012.

[149] G. Piola. Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale
loro forma e costituzione, Modena, Tipi del R.D. Camera, 1846, translated by F. dell’Isola, U. Andreaus and L. Placidi. In
U. Andreaus, F. dell’Isola, R. Esposito, S. Forest, G. Maier, and U. Perego, editors, The complete works of Gabrio Piola,
volume I. Springer, in preparation.

[150] L. Placidi, G. Rosi, I. Giorgio, and A. Madeo. Reflection and transmission of plane waves at surfaces carrying material
properties and embedded in second gradient materials. Math. Mech. Solids, DOI: 10.1177/1081286512474016, 2013.

[151] V.L. Popov. Gauge theory of “plastically incompressible” medium without dissipation-I. Dispersion relations and propagation
of perturbations without dissipation. Int. J. Engng. Sci., 30(3):329–334, 1992.

[152] V.L. Popov. Coupling of an elastoplastic continuum and a Cosserat continuum. Russ. Phys. Journal, 37:337–342, 1994.

[153] V.L. Popov. Dynamics of plastic rotations in a medium with dislocations and disclinations. Tech. Phys. Letters, 20:576,
1994.
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A Some useful identities

In this Appendix we outline some identities which could be useful for the readers:

a) For all matrices A ∈ so(3) we have the Nye’s formula [143]

−CurlA = (∇ axlA)T − tr[(∇ axlA)T ]·11,

∇(axlA) = −(CurlA)T +
1

2
tr[(CurlA)T ]·11 “Nye’s curvature tensor”.

b) For all differentiable functions ζ : R → R on Ω we have Curl(ζ·11) =

 0 ζ,3 −ζ,2
−ζ,3 0 ζ,1
ζ,2 −ζ,1 0

 ∈ so(3) and

CurlCurl(ζ·11) =

 −(ζ,22 + ζ,33) ζ,12 ζ,13
ζ,12 −(ζ,11 + ζ,33) ζ,23
ζ,13 ζ,23 −(ζ,11 + ζ,22)

 ∈ Sym(3)

c) If A =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , then CurlA = 11 ∈ Sym(3).

d) tr(CurlS) = 0 for all S ∈ Sym(3).

e) Curl[(CurlS)T ] ∈ Sym(3) , for all S ∈ Sym(3).

f) Curl[(CurlA)T ] ∈ so(3) , for all A ∈ so(3).

g) In view of b), e) and f) we have

Curl[(Curl symP )T ] ∈ Sym(3), Curl[(Curl skewP )T ] ∈ so(3) ∀ P ∈ R3×3.

h) tr[Curl(skewCurlA)] = 0 for all A ∈ so(3).

i) Saint-Venant compatibility conditions16: if inc(S) := Curl((CurlS)T ) = 0 and S ∈ Sym(3)
then S = sym∇u in a simply connected domain.

j) ∇ axl(skew∇u) = [Curl(sym∇u)]T but ∇ axl(skewP ) ̸= [Curl(symP )]T for general P ∈ R3×3.

k) a1∥X∥2 + a2⟨X,XT ⟩+ a3[tr(X)]2 = (a1 + a2)∥ dev symX∥2 +(a1 − a2)∥ skewX∥2 + a1+a2+3a3

3 [tr(X)]2 for
all X ∈ R3×3.

l) For all P ∈ R3×3 we have

tr[
(
Curl(skewP )

)T
] = 2 div axl(skewP ) (A.1)

Curl{tr[
(
Curl(skew axl(skewP ))

)T
]·11} = −2 anti∇(div axl(skewP )).

m) For all P ∈ R3×3 we have

Curl{[Curl(skewP )]T } = − anti∇(div axl(skewP )) . (A.2)

16Kröner’s notation
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n) We have the identity

−2Curl{[Curl(skewP )]T }+Curl{tr[
(
Curl(skewP )

)T
]·11} = 0, for all P ∈ R3×3. (A.3)

o) If α1 = −6α3 and α2 = 6α3, then

Curl{α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11}
= −6α3 Curl{[Curl(symP )]T } ∈ Sym(3) (A.4)

for all P ∈ R3×3.

p) Given P ∈ Sym(3), then we have

Curl{α1 dev symCurlP + α2 skewCurlP + α3 tr(CurlP )·11} ∈ Sym(3). (A.5)

if and only if α1 = −α2.

q) ⟨v, axl(W )⟩R3 = 1
2 ⟨anti(v),W ⟩R3×3 ∀ W ∈ so(3). The adjoint of the operator axl : so(3) → R3 is the

mapping axl∗ : R3 → so(3), axl∗(·) = 1
2 anti(·).
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