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Abstract

We consider a doubly nonlinear evolution equation with multiplicative noise and show
existence and uniqueness of a strong solution. Using a semi-implicit time discretization
we get approximate solutions. The theorems of Prokhorov and Skorokhod will give us a.s.
convergence in a new probability space, which allows to show the existence of martingale
solutions. By pathwise uniqueness we are able to show existence and uniqueness of strong
solutions.

1 Introduction

We consider the doubly nonlinear PDE with multiplicative noise:

d(B(u)) — div A(Vu) dt = H(u) dW in Q x Qr,
u=0 on Q x (0,T) x 0D,
u(-,0) = up € Wy (D) in Q x D,

where (Q, F, P) is a complete, countably generated probability space, D C R? is a
bounded Lipschitz domain, "> 0, Q7 := (0,7") x D and p > 2. In the following we will
denote this stochastic evolution problem by (P).

We assume that b : R — R is a differentiable function with b(0) = 0. For a measur-
able function u : D — R we define B(u)(z) := b(u(x)) for almost every z € D.

Moreover, we assume that a : D x R — R? is a Carathéodory function, i.e., D 3
z — a(x,§) is measurable for all £ € R and R? 5 ¢ + a(z, ) is continuous for almost
every x € D. For a measurable function G : D — R? we define A(G)(z) := a(z, G(z))
for almost every x € D.

The space of Hilbert-Schmidt operators from U to H will be denoted by HS(U,H),
where U and H are separable Hilbert spaces. Shortly, we set HS(U) := HS(U,U). Then



H is an operator from L?(D) to HS(L?(D)).

We define W (t) as a cylindrical Wiener process with values in L?(D) with respect to
a filtration (F)co,r) satisfying the usual assumptions, i.e., for an orthonormal basis
(en) of L?(D) and a sequence of real-valued, independent Brownian motions (3,), with
respect to a filtration (F;) we define

W(t) = Z enﬁn(t)'
n=1

This process can be interpreted as a (Q-Wiener process with covariance matrix Q =
diag(#) and values in U, where U is the completion of L?(D) with respect to the scalar
product

(w,0)v =) (1),671)2(2%671)27

n=1

u,v € L2(D) (see [10], Section 4.1, 4.2).
More precise assumptions on A, H and B are given in the next section.

The techniques used in this contribution are adapted from [14]. More precisely, in [14]
we find the situation where b = I'd and the monotone operator —div A = —A,, is per-
turbed by a strongly continuous, fist-order term —div F with F' : R — R? Lipschitz
continuous. Consequently, the operator under consideration in [14] is pseudomonotone.
In our case F' = 0, therefore monotonicity methods apply to the (more general) diffusion
term —div a(z, Vu) but technical difficulties arise from the nonlinear term b(u) in the
time derivative. Therefore, some of the arguments from [14] have to be changed and
completely new arguments have been added in our setting. However, for v := b(u) the
equation in (P) is equivalent to

dv — div a(x, Vb~ (v)) dt = H(b ' (v)) dW

and the operator A : Wol’p(D) — WL(D), Av = —div a(z, Vb~ (v)) is pseudomono-
tone (see Appendix, Theorem , but of a different structure than the one considered
in [I4]. We should note that the operator H o b~! satisfies the property (H1) in section
2 if and only if H satisfies it. The existence and uniqueness of solutions for a stochastic
evolution equation with a general pseudomonotone operator is, to the best of our knowl-
edge, an open problem.

In Section 3 we will present our main theorems. These are Theorem 3.4 and Theorem
3.5. In Section 4 one can find the proof of Theorem 3.4. To prove Theorem 3.4 we will
first solve the corresponding semi-implicit time discrete problem to get approximate so-
lutions. Since we cannot get any a.s. convergence for the approximate solutions, we use
the theorems of Prokhorov and Skorokhod to get a.s. convergence of the approximate so-
lutions v to v With respect to a new probability space (Q, F , P) Firstly, we show that



a limit equation holds true. Secondly, we have to identify the limit of the approximative
stochastic integrals with a stochastic integral, where the integrand is H(vso). Thirdly,
we identify the weak limit of A(Vuy) with A(Vvs) by using an It6 formula for the limit
equation and a Minty type monotonicity argument (see e.g., [I1]).

In Section 5 we show pathwise uniqueness of a solution of (P) with respect to the same
probability space, the same filtration, the same Wiener process and the same initial value.
To do this, we use a generalized version of the It6 formula presented by Pardoux [9] in
a Gelfand-triple setting. This will be used to prove Theorem 3.5 in Section 6. There
we construct two sequences of approximate solutions which converge to a solution of
(P) in the same probability space. Since this solution is unique we get convergence in
probability of approximate solutions in the initial probability space (2, F, P) to a strong
solution of (P) which is again unique.

2 Technical Assumptions

2.1 Assumptions on A

We assume that the following assumptions hold true for a : D x R — R
(al) a is monotone with respect to the second component, i.e.,

(a(z,§) —a(z, () - (€ —¢) =0

for almost every z € D and all ¢,¢ € R?
(a2) a is coercive, i.e., there exists a constant ¢; > 0 and k; € L'(D) such that

a(z,€) - &> c1€|P — ki(z)

for almost every x € D and all £ € R?.
(a3) a is bounded, i.e., there exists a constant co > 0 and ky € LP (D) such that

la(z,€)] < caléP + ka()
for almost every x € D and all £ € R?.

Remark 2.1.1. From assumptions i), ii) and iii) it follows that A : LP(D)¢ — LV (D)4
defined as (Au)(z) := a(z,u(z)) for u € LP(D)? and almost every x € D, satisfies the
following properties:

(A1) A is monotone, i.e.,

(Au - AU: U — v)(LP’(D)dJ,p(D)d) >0

for all u,v € LP(D)%.
(A2) A is coercive, i.e.,

(Auvu)(LP’(D)d,LP(D)d) > Cl”“’”ip(D)d = [[k1llx



for all w € LP(D)2.
(A3) A is bounded, i.e.,

1Al 1o pya < ealluall o pya + k2]

for all u € LP(D)?. By a standard argument of Nemyckii operators (see e.g. [11), p.72-
73) one can see that A : LP(D)* — LV (D)% is continuous.

2.2 Assumptions on H

For the orthonormal basis (e,,) of L?(D) as in Section 1 and u € L?(D) we define
H(u)(ey) := hyp ou,

where, for any n € N, h,, : R — R is a continuously differentiable function with A, (0) = 0
satisfying the following assumptions:

(H1) There exists a constant C' > 0 such that

D lhnlk < C.
n=1

An immediate consequence from (H1) is:
(H2) The sequence (hy,), fulfills the inequality

Zlh n()? < CIA = pf?

for all A\, u € R.
In particular, for u € L?(D) we have

1 () 152 Z 1 (u) (en)3 = Z/ | (u())|* d < Cllull3.

Proposition 2.2.1. H : W,?(D) — HS(L*(D), H}(D)) is continuous.
Proof. See [14], p.83-84. O

Remark 2.2.2. For any u € Wol’p(D), by Young inequality, we get

P

1 (@) 1552 (Z 1P ()] D)> 2

s(Znh;Hzo /D Vuf? dm) < C3C, |Vl
n=1

for a constant Cy, > 0.



2.3 Assumptions on B

We assume that b : R — R satisfies the following assumptions:

(B1) b : R — R is Lipschitz continuous and there exist constants ¢, ¢ > 0 such that
c<b <@

Under these assumptions it is clear that b is strictly monotone and coercive, hence it is
bijective. The inverse b~ is differentiable and the derivative satisfies % < (b ly< % For
example, these assumptions are fulfilled by functions like b = Id + arctan, b = 2/d + sin
or b= 2Id + cos.

It is easy to see that B : L2(D) — L?(D), defined as B(u)(z) := b(u(z)) for allu € L*(D)
and almost every x € D, is Lipschitz continuous and strongly monotone. Hence by the
theorem of Zarantonello (see [13], p.504, Theorem 25.B) it is bijective with Lipschitz
continuous inverse B~! : L?(D) — L?(D). In particular, for u € L?(D) we have:

1
lullz < = 1B (w)]l2-

For u € Wol’p(D), according to the chain rule for Sobolev functions we have B(u) €
W (D) and [|VB(u)|lf = ¥/ (u) Vulf5-

3 Strong and martingale solutions and the main theorems

In the following we define strong and martingale solutions to our problem (P). These
definitions of a solution are standard in the theory of stochastic evolution equations.

Definition 3.1 (Strong solution). For an arbitrary ug € L?(D) we call a predictable
process ([10], p. 27-28) u : Q x [0,T] — L*(D) a strong solution to (P) if and only if

B(u(w, ) € C([0,T]; W~ (D)) N L®(0,T; L*(D))

for almost every w € Q, u € LP(Q; LP(0, T VVO P(D))), u(-,0) =ug a.s. in Q and

B(u(t)) — B(up) /leAVu ds-/H

in L*(D), for all t € [0,T], a.s. in Q.
Remark 3.2. We remark that
C([0,T); W=¥ (D)) N L*(0,T; LA(D)) C Cu([0,T]; L*(D)),

so B(u(t)) € L*(D) does make sense for all t € [0,T], a.s. in Q. Since u(t) =
B Y(B(u(t))) for all t € [0,T), a.s. in Q, u(t) € L*(D) does also make sense for all

€ [0,7], a.s. inQ and u : Q x [0,T] — L?(D) is a stochastic process if and only if
B(u) Q x [0,T] — L%*(D) is a stochastic process.



Often it is necessary to consider the probability space, the filtration and the Wiener
process as unknowns of the problem. In particular, this is the case if one wants to use
the theorems of Prokhorov and Skorokhod to get a.s. convergence of the approximate
solutions. The corresponding definition of a solution of (P) is the following.

Definition 3.3 (Martingale solution). We say (P) has a martingale solution, if
and only if for an arbitrary ug € L?(D) there exists a probability space (Q, F,P), a
filtration (ﬁt)te[o,T} and a cylindrical Wiener process W with values in L*(D) such that
there exists a predictable process u : Q x [0, T] — L*(D) such that

B(u(@,)) € ([0, T); W1 (D)) N L*(0,T; L*(D))
for almost every & € Q, u € LP(Q; LP(0, T; Wol’p(D))), u(-,0) = ug a.s. in Q and

B(u(t)) — B(ug) — /0 div A(Vu) ds = /0 H(u) dW

in L*(D), for all t € [0,T), a.s. in Q.
Our aim is to prove the following two theorems:
Theorem 3.4. For any ug € Wol’p(D) there exists a martingale solution to (P).

Theorem 3.5. For any ug € Wol’p(D) there exists a unique strong solution to (P).

4 Proof of Theorem 3.4

4.1 Semi-implicit time discretization

For N e Nand kK =0, ..., N define 7 := % andty :=k-7. Thustp=0<t; <..<ty=T
is an equidistant decomposition of the time interval [0, T].
For ug € L?(D) we consider the following semi-implicit time discrete problem

Bt — B(u®) — 1 div A(VuFt) = H@WP) A W, (1)
where A W= W (tg41) — W(ty) for k=0,...,N — 1.

Lemma 4.1.1. For any ug € L*>(D) and any k = 0,..., N — 1 there exist unique Ftysr-
measurable functions w1 : Q — Wol’p(D) such that for almost every w € €}

B(uf) — B(u®) — 7 div A(VurY) = HWF)Ap W
in L?(D).

Proof. By induction we assume the existence and uniqueness of u* as in the lemma,
and we want to show the existence and uniqueness of u**1. We consider the equivalent
equation

B(ufth) — 7 div A(VuP™Y) = H(u®) Ay W + B(ub)



and set S, : Wy*(D) — W~5¢'(D),

(Sf(u),v)(w_lyp/ Wiy = (B(u),v)2 + 7'/ A(Vu) - Vo dx.
’ D

Since A is monotone and B is strongly monotone, S, is strictly monotone.
For u € Wol’p(D) we have (B(u),u)s > 0, so we conclude

(ST(u),u)(W,Lp/7WO1,p) > 7'/D A(Vu) - Vu dz > 1(c1||Vulll — |[k1][1)-

Therefore S; is coercive. Since B : L?(D) — L?(D) and A are continuous, S, is contin-
uous.

Hence, by the theorem of Minty-Browder (see [II], p. 63) S; is bijective. It follows that
there exists a unique function u*+1: Q — I/VO1 P(D) such that the time discrete equation
holds true. Tt is left to show that w**1 is Fi.+1-measurable. Since VVO1 P (D) is sepa-
rable, by the theorem of Dunford-Pettis (see [T1], p. 35) it is sufficient to show that S;*
is demi-continuous.

For f € W1 (D) there exists a unique u € Wol’p(D) such that S;(u) = f. By (BI)
and (A2) we have

cllull3 + (el Vullh — llkill1) < (B(u),u)2 + 7(A(Vau), Vi)
=(57(w), u)(W,Lp/ WPy = (f, u)(Wfl,p’VWOlvP) < ||f”wfl,p’([))||u||w(}vp(p)

1T
<CrfI5 + IVl

W-1r'(D)

for a constant C: > 0. It follows

CHUHﬁ*HV I < CoIIfIIE py T 7lE

w-1p'
Let f,, — f in W5 (D) and set u, :== S='(f,). The calculation above shows that u,, is
bounded in I/VO1 P(D). Hence there exists a not relabeled subsequence and u € VVO1 P(D)
such that w, — wu in VVO1 P(D). Since VVO1 P(D) is compactly embedded in LP(D) we
get up, — u in LP(D), in particular in L?(D). Now by (A3) the sequence A(Vuy,) is
bounded in L¥ (D)%, so there exists a not relabeled subsequence and G' € L?' (D)? such
that A(Vu,) — G in L? (D). Now we get

(B(u),u)2 + limsup <T(A(Vun), Vun)pr,p> = lim sup ((B(un), up)2 + T(A(Vuy), Vun)pgp)

n—oo n—o0

= lim sup (ST(un),un)(W,Lp,7W&,p) = limsup (fn,un)(w,l,pxwg,p)

n—oo n—oo
:(f7 u)(W*l,p’,Wolvp) = nlggo(fna u)(W*l,p’yW(}»P) (2)
:nli_{r;o(ST(un), u)(W,Lp/,WOl,p) = nlgrolo <(B(un), uw)2 + 7(A(Vuy,), Vu)p/m)

=(B(u),u)2 + 7(G, V) p,



which leads to

lim sup (A(vun)a vun)p’,p = (Ga vu)p’,p‘

n—oo

Since A is monotone and continuous, it fulfills the (M)-property (see [II], p.74-75). This
leads to the equation G = A(Vu).

Because of the fact that S; is monotone and continuous, S; also fulfills the (M)-property.
Since

Up — u in Wy P(D),
Sr(un) = f in W (D),

(f, u)(W,lyp,,Wol,p) = lim sup (ST(un),un)(W,lyp,’Wg,p)

n—oo

we get S;(u) = f and therefore S=!(f) = u. This means
S (fa) = up = u=S7(f)

in VVO1 P(D). By the subsequence principle this weak convergence holds true for the whole
sequence f,, hence S:! is demi-continuous. ]
4.2 A-priori estimates

Lemma 4.2.1. For ug € Wol’p(D) and k = 0,...,N — 1 let u"™! be a solution to (T).
Then, for allm =1,..., N we have the inequality

n—1 n—1

1 1 1
SEIB@IE = SIBo)l3 + 7B Y IB@ ) = B3 +crerB Y Va7
k=0 k=0

n—1
- Cq
<eT|kil + —57E Y | Bb)3.
k=0

c2

Proof. We take the L2-scalar product with B(u**1) in the time discrete equation and
get

(B(u**h) — B(u¥), B(uF 1)), + 7/ AV . VB de = (H(uF) Ay W, B(uF 1)),
D
(3)
Using the identity (x — y)x = %(172 — %+ (x —y)?) for all z,y € R we may conclude
1
(B(*) — B(ub), B, = § (I!B(u’““)H% CIB@MI3 + B B<uk>ué).
(4)



It is easy to see that by the assumptions (A2) and (B1) we obtain
T/ A(VukJrl) . VB(uk+1) dr = 7_/ A(Vuk+1) . vuk+1b/(uk+1) dr
D D
:7‘/ (A(Vuk-l-l) . vuk—l—l + k:l(x))b’(ukﬂ) o k1($)b/(uk+1) dr
D

ZCT/ 1| VuF P dxéT/ k1 ()| de. (5)
D D

As B(u¥) is Fj,-measurable and AW is independent of F;, we have
E(H(uF) Ay W, B(uk))g = E<B(uk),E [H(u’f)AkaftkD = 0. (6)
2

For a = %, by using the Young inequality and the [t6 isometry, we get

E(H (W) At W, B )y = E(H W) Apa W, Blu ’““)—B<u’f>>2
H(uH)Apsa Wiz - [ B(uF*Y) = B(uF))

B(H
(I
<EH " H )dWH§+aEHB(u’““)—B(u’“)||3>

IN
l\.')\r—l tq

tht1
=B [ IO sy d+ GEIBOST — BOHIS
= B H ) s remy + SEIBGY ~ BGE(7)
From (B) - (7)), (H2) and (B1) we obtain the following inequality:

1 1 1
S BB = SEIB@M3 + L BB - Bb)|3 + cm/D [Vur P da

<TE|HW) sz + kil < rCLE]E 3 + x|y

Cy _
<7 *EHB( M5+ ér ka1

Now we sum over k£ =0,..., N — 1 and get

1 1 n—1 n—1
§EIIB(U”)H§ ||B(U0)”2+ EZHB uF ) = B3+ cierE Y [ Vur
k=0 k=0
C n—1
<CTZ [Fa [y + *TEZ IBuM)|3 < T ||k )1 + *TEZ 1B(uM)]3:
k=0



Definition 4.2.2. We define

N-1
uN(t) = uk+1X[tk,,tk+1)(t)7 te [OaT)a uN(T) = qu
k=0
N-—1
U‘T(t) = UkX(tk,tk+1](t)a te (07T]7 uT(O) = Uo,
k=0
N—-1
B(un(t) == > B )X, (0); t€[0,T), Blun(T)) = B(u"),
k=0
N—-1
B(ur(t) == > Bu")Xtt,,,1(t), t € (0, 7], B(ur(0)) = Buo),
k=0

H(u.) dW, t € [0,T),

£
li
or\§F

Nl ol _ gk

)= 3 (= ) a0 1€ 0.7, an(T) =
k=0
N-—1 k . ’LLk

Byt = 3 (P B ) 4 B0 ) e 0 1< 0.7

i
o

(t—t) + MN@k))xm,tM)(t), te(0,7),

Lemma 4.2.3. There exists a constant K > 0 such that for all N € N

max  EJ|B(u”)]2 nax, 1By (®)]lz < K,

N-1 T
B Y 1B = B < K. B [ 1) sy dt < K.
k=0

T T
E/ / \Vuy|P dedt < K, E/ / |A(Vuy) P dzdt < K,
0 D 0 D

T
E/ / VB(un)P dadt < K.
0 D
Proof. We take the inequality in Lemma 4.2.1 and discard some nonnegative terms.
Thereby we get

n—1

1 1 N Ch
§EHB(U")II§ < QHB(Uo)H% + ekl + 75 > E|Bu")|3.
k=0

10



Using the discrete Gronwall inequality we obtain for alln =1,..., N

n - 2TC,
BIBGOIE < (1Bl + 2T ) exp (2557 ).

N-1
If we keep the term 3 ||B(u**1) — B(u*)||2 in Lemma 4.2.1 we can see that this term
k=0

is bounded. By using the same argument we may conclude that £ fOT Jp IVun [P dzdt is
bounded, by (A3) it follows that also EfOT I |A(Vuy)? dadt is bounded and by (B1)

T T T
E/ / |VB(un)|P dedt = E/ / |V (un)[P|Vun [P dzdt < 6”E/ / |Vun|?P dxdt
0 D 0 D 0 D

is bounded. Finally, the inequality
C
I () 2y < Cillur ()1 < 1B (1)) 3

for all ¢ € [0, T yields that EfOT HH(UT)H%{S(L?(D)) dt is bounded. O
Lemma 4.2.4. There exists a constant K > 0 such that for all N € N

pmax (Bl = B mee [|Ba(t)llz <

Proof. Similar to the proof of Lemma 4.2.1 we get
E(IIB(ukH)H% — B3 + 1 B(u*) = B(u*)]3) +T/[)A(Vuk“) - VB(ut) do
= (H(")Apa W, B(u*!) = B(u?))2 + (H(u") Mg W, B(u?))s (8)
< SIH@R A W3 + JIBOH) — B3 + (H(ub) Ag W, Bwb))s.
From it follows that
IB@ N3 = 1B®)|3 — 267 [klly < |[H (u*) Mg a W3 + 2(H (u*) Mg W, B(u*))

and hence after summing over k =0,...,n — 1

n—1 n—1
IB(u™)5 = 1B(uo)ll3 = 26T |[kalh <D 1 H @) Apa W5 +2 Y (H(u*)Apa W, B(u))a.
k=0 k=0

Now we take the maximum over n = 1, ..., NV and the expectation:

N-1
B max | B3 < B3+ 2Tk 1+ B Y [H(H) A W3
k=0
n—1
+2F max uF) A1 W, B(ub))s.
n=1,...,N P 0
The rest of the proof is the same as in [14], p.90-92, if one replaces u, by B(u,). O

11



Lemma 4.2.5. There exists a constant K > 0 such that for all N € N
rd - N
B [ By = Tl < K

Proof. By considering the discrete equation we obtain

d, - ~ :
@(BN — My) =div A(Vun)

in W~ (D), a.s. in Q and

T T
E/ ||div A(VUN)H;;/—L:O’(D) dt = E/ sup |/ |A(Vuy) - Vo da|P dt
0 0 el <1 JD

1, >~
WaP(D)

g T
SE/leW |WﬂEMMVwHZﬁ§E/|mNmM§%
0 e ;

W&’p(D)Sl
which is bounded since Lemma 4.2.3 holds true. OJ

Lemma 4.2.6. Let K,H be separable Hilbert spaces and ®y, an Fi, -measurable random
variable with values in HS(K,H). We define the left-continuous, Fi-adapted process

N-—1
A SL
k=0

Then, for any p > 2 there exist constants v > 0 and C, > 0 and an integrable, real-valued
random variable X only depending on v such that

S
sup sup || O, dW ||y
k=0,...,N—1 Se[tk;,tk-q-l} tr

SC’T7( sup 7| ®k|® +1+X>_
! k=0,...,.N—1 H HHS(’C,H)

Moreover, there exists a constant C' > 0 such that
E(X) < Ctr(Q).

Proof. We combine the Garsia-Rodemich-Rumsey inequality (see [7]) with the same ar-
guments as in [14], p. 94-95. O

4.3 Regularity of approximate solutions

Lemma 4.3.1. There exists a constant K1 > 0 such that

T
EA|W@M@WHW%®DMSKL

12



Proof. See [14], p.96. O

Definition 4.3.2. Let V be a Banach space, 1 < p < oo and 0 < a < 1. The fractional
Sobolev space WP(0,T;V) is defined as follows (see [1]):

WP, T; V) i={f € LP(0, T5 Vs || fllwero,r5v) < 00}

T
[ flwesiora (// Lt = J e dtd>

Lemma 4.3.3. For any o € (0, 3) there ezists a constant C(a,p) > 0 such that

where

B /0 H(utr) AW By o0 ) < Cle D)

In particular, [j H(ur) dW is bounded in LP(Q, W*P(0,T; Hj(D))).

Proof. The assertion follows from [6], Lemma 2.1., p.369 and Lemma [4.3.1] O

Lemma 4.3.4. (My) is bounded in LP(Q, W*P(0,T; H}(D))) for any o € (0,7) and
11

Y= 7 b

Proof. The assertion follows from [2], Lemma 3.2, p.511 with the same arguments as in
[14], p.97-99. O

Remark 4.3.5. By the theorem of Lions-Aubin the space
W= {v e LP(0,T; H}(D)); %v e LY (0, T;W~'* (D))}
is compactly embedded into C([0,T]; W~ (D)) and compactly embedded into L*(0, T; L*(D)).
Lemma 4.3.6. There exists a constant C > 0 such that
HBN||LP(Q;LP(0?T;WOLP(D))) + HBN - MN”LP’(Q,W) <C.

Proof. By an elementary calculation we may conclude that there exists a constant C>0
such that

E| Byl

p
0wy < < CETZ | B(u H

— *(D)

~ T ~
< CE(/O /DyVB(uN)| da:dt+T||VB(u0)Hp> < C(K + T||VB(up) ).

From Lemma 4.3.4 it follows that (My) is bounded in LP(Q, W?(0,T; H}(D))), hence
(By — My) is bounded in LP(Q; LP(0,T; H}(D))). Now we apply Lemma 4.2.5 and the
proof is complete. O
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4.4 Tightness

We set X := C([0,T]; L*(D)) x L(0,T; L*(D)) x C([0,T]; U) and consider for all N € N
the image measures pp = P o (BN)~Y, pary i= Po(My)™ " and pyy := Po WL
Their joint law in A" is denoted by un := (up, . #wy, pw). Then we have the following
proposition:

Proposition 4.4.1. The sequence (g ) on L2(0,T; L3(D)) is tight, and the sequence

(uary) on C([0,T); L2(D)) is tight. As a constant sequence, the sequence (uw) on
C([0,T);U) is tight. In particular, the sequence (un) on X is tight.

Proof. The proof is the same as in [14], p. 100-101, if one replaces @y by By and By
by Mpy. O

Remark 4.4.2. Now we are able to use the theorem of Prokhorov (see [3], Theorem 5.1,
p.59). It follows that the sequence (un) is relatively compact, i.e., there exists a not

relabeled subsequence of () and a probability measure poo = (ply, 2, pw) on X such
that

lim dus = lim E[p(By)] = / d,u(l)o
N—o00 L2(0,T;L2(D)) v By N—o00 [SO( N)] L2(0,T;L2(D)) v

for all p € Cy(L*(0,T; L*(D))) and
lim v duasy = Jim EpOy)) = | b dyi,
N=reo Je((o.r):22(D)) N=roo c([0,T;:L3(D))

for all ¢ € Cp(C([0,T); L?(D))).

4.5 Existence of martingale solutions

We apply the following version of the theorem of Skorokhod (see [12], Theorem 1.10.4,
Addendum 1.10.5, p.59) to get the following proposition:

Proposition 4.5.1. There exists a probability space (Q,]}, ]5) and a sequence of mea-
surable functions ¢y : 2 — Q such that P = P o (¢n)~! for all N € N, and there erists
a measurable function

~

(Booy Moo, Weo) : 2 =5 X

such that

~

My := My o ¢ — My in C([0,T]; L3(D)) a.s. in €,
) Wy := W ooy = W in C([0,T];U) a.s. in §,

14



Definition 4.5.2. For all N € N we define
=k ooy, k=0,...,N —1,

u
N-1
UN(t) = Uk+1X[tk,tk+1)(t)v te [O7T)7 'UN(T) = UN7
k=0
N-1
UT(t) = UkX(tk,thrl](t)? te (07T]7 UT(O) = Uo,
k=0
N-1
B(UN(t)) = B(Uk+1)X[tk,tk+1)(t)a te [OvT)7 B(’UN(T)) = B(UN)7
k=0
N—-1 Rl ok N N
ﬁ]\[(t) = ( - (t - tk’) +v )X[tk,tk+1)(t)7 te [O7T)’ {]N(T) =v,
k=0
: = (M (tign) — My (t)
2 1) — R
() = Y (O (1= )+ 31(0) ) (1) 1€ 0.7
k=0

My(T) = My(T).

Lemma 4.5.3. For all N € N, Wy is a Q-Wiener process with values in U adapted to
the filtration F}'~ := o(Wx(s))o<s<t-

Proof. See [14], p. 103. O
Lemma 4.5.4. For any N € N and any k =0,..., N — 1 we have

B — B(v¥) — 7 div A(VoFH) — H(0*)Ap i Wy =0 (9)
a.s. in €.

Proof. For any A e F, by definition of the image measure and the fact that P =
Po(¢n)~! we obtain

/ B — BOoh) — 7 div A(VoEY) — B Ap Wy dP

A

:/ A B — B(u*) — 7 div A(VuF ) — H(WP) A W dP = 0.
N (A)

Hence B(vFt1) — B(v*) — 7 div A(VoF*) — H(W*) Ay Wy = 0 as. in Q. O

Lemma 4.5.5. We may conclude

My (t) :/OtH(UT) AWy, t €[0,T],

. N-1 oF1Y — B(oF 2
Bt = Y- (BB ) 4 BN a0 1€ 0.D), B(T) = BN
k=0

a.s. in ).
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Proof. Since vy = u, o ¢pn, Wy = W o ¢n and v* = uF o ¢y, the proof is a direct
consequence of the definitions of My and By. O

Lemma 4.5.6. There exists a constant K > 0 such that

E B =E By@)2 < K
L [|BIE = E max |Br(@)]lf < K,

1
B IB0H) - BEOIE <K B [ 10 a0y < K

T
E/ / \Vun|P dzdt < K, E/ / |A(Von)|P dadt < K,
o Jp o Jp
T
E/ / |VB(vn)P dedt < K.
o Jp
Proof. We replace u* by v* for k = 0,..., N and repeat the arguments of Lemma 4.2.3,
Lemma 4.2.4 and Lemma 4.3.1. O
Lemma 4.5.7. We have
i MN — My in LI(Q;C([0,T); L*(D))) for all 1 < ¢ < p,
i — My, in LP(Q; WP(0,T; HY(D))),

)
) M
i) éN 5 Bug in LI(Q; L2(0,T; L2(D))) for all1 < q < p,
) B
)

iv) B(vy) = Boo in L*(Q; L?(0,T; L*(D))),

v) By —* B in L2,(Q; L®(0, T; L3(D))) = L2(Q); L} (0, T; L3(D)))*.

Proof. See [14], p. 105-107, and replace uy by éN, vy by B(vy) and us, by Boo. O

Remark 4.5.8. By assumption (B1) it is easy to see that B : L2(Qx Q1) — L*(Qx Q)
is Lipschitz continuous and strongly monotone. Hence by the theorem of Zarantonello it
is bijective with Lipschitz continuous inverse B~1 : L2(Q x Q1) — L2(Q x Qr).

So we can set v := B~ (Bso) € L2 x Q7).

Lemma 4.5.9. Consider vs of Remark 4.5.8. Then we have

i) UN = Voo i L2(Q X Qr),

191) Uy — Voo IN LZ(Q X Qr),

)
i) O = Voo in L*(Q x Qr),
)
i) H(vy) = H(vso) in L*(Q x (s,t); HS(L*(D))) for all0 < s <t <T.
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Proof. i): This is a direct consequence of Lemma 4.5.7 iv) and the continuity of B~
ii): By Lemma 4.5.6 and assumption (B1) we can calculate

T N— tkﬂ _ ok N N
E/Hmw%wmm%ﬁ:EEZ/ -+ k=
0 k— 7%
N-1 e gy -
k T
=E§:ww“—vﬂg/ 1= TE -
bk T k=0
N—
k-l—l k\(12 < LK 0
B B0 - BuHIE < K 50
k=0

iii): Again we use Lemma 4.5.6 and assumption (B1) to get

T 2 [ kil k2
E/rm@rwmmuﬁzEEZ/ [+ — o3
k=0 Ytk
T N-l T
<TE / IBOM) ~ BOHIE < 5K =0
k=0

iv) We use assumption (H1) und Lemma 4.5.9 ii) and obtain

E/ 1H (vr) = H(voo) 752 (py) 4t = E/ ZHh v7) — hn(veo)||% dt

< OlE/ 10 — vao2 = 0.
S

Remark 4.5.10. By definition (see, e.g., [3]) Bs € L*(0,T; L*(D)) a.s. in Q.
Lemma 4.5.11. For a not relabeled subsequence we have
Voy — Ve in LP(Q x Qr)?,
VB(vy) — VBy in LP(Q x Qr)?.
There exists a function G € LY (Q x Qr)® such that
A(Vuy) = G in LP (Q x Qr)%.

Proof. vy and B(uy) are bounded in LP($); LP(0, T; Wol’p(D))), hence there exist func-
tions f, g € LP(Q x Q7)? such that

N = fin LP(Q; LP(0,T; Wy (D)),
B(uy) — g in LP(; LP(0, T; Wy P (D))).
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We have LP(€; LP(0, T; Wol’p(D))) < L2(Q x Qr), hence by Lemma 4.5.7 and Lemma
4.5.9 we may conclude f = vy and g = Bs. Thus

Voy — Ve in LP(Q x Qp),
VB(vN) = VBao in LP(Q x Q).

In particular, A(Voy) is bounded in LP' (Q x Q7)?, hence the existence of a function G
as claimed in the lemma is clear. O

Lemma 4.5.12. There exist constants v >0, C > 0 and C, > 0 such that

~ T
- S - »
Etes[l(l)%} HMN(t) MN(t)HHé(D) < 2077— <E/O HH(UT)HHS(LZ(D),H(%(D)) dt+1+ CtT‘(Q)) .

In particular, by Lemma 4.5.6

lim E sup HMN(t) — MN(t)HHg(D) = 0.
N—=oo  te0,1)

Proof. See [14], p. 107-108. O

Proposition 4.5.13. vy : Q x [0,7] = L2(D) is a stochastic process with vs(0) = ug
such that

B(vso(t)) = B(ug) + /Ot div G ds + Mx(t) (10)

in L2(D), a.s. in Q, for all t € [0,T].

Proof. This proof can be done analogously to the proof in [I4], p. 108-112. A similar
argumentation leads to

9 By — My) = div G

in L' (Q; LY (0, T; W12 (D))). We see that Beo, Mo € C([0,T]; L2(D)) a.s. in 2, hence
B (t) € L2(12) makes sense for all t € [0,77], a.s. in €. Then we can show that By (t) —
B (t) in L?2(Q2 x D) for all ¢ € [0,T], and in particular we get By (0) = B(uo). O

Corollary 4.5.14.
By (t) = Boo(t)

in L2(Q x D) for all t € [0,T).
Now, the following lemma ends the proof of Proposition 4.5.13:

Lemma 4.5.15. vy is a stochastic process with values in L?(D).
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Proof. Since B~! : L?(D) — L?(D) is continuous, it is sufficient to prove that By, is a
stochastic process with values in L?(D). The proof of this result is similar to the proof
in [I4], p. 112, if one replaces us by Beo. O

Proposition 4.5.16. My is an F;°-martingale, where (F;°) is the augmentation of the
filtration F7° := 0(Maso(5), Voo (5), Wao(8))o<s<t, t € [0,T), i.e., F{° is the smallest com-
plete and right-continuous filtration containing (.7:"1;’O ). The quadratic variation process of
My is
t 1 1
<L My >= / (H(vso) 0 Q2) 0 (H(ve0) 0 Q2)" ds
0

for all t € [0,T7.

Proof. See [14], p. 113-117. Since we want to avoid the use of the Martingale Represen-
tation Theorem in the sequel, we add W, to the limit filtration (see [14], p.127-128). O

Lemma 4.5.17. W, is an F{°-martingale.

Proof. See [14], p. 128-129. O

Lemma 4.5.18. W, is a Q-Wiener process in U, adapted to F;° with increments
Woo(t) — Weo(s), 0 < s <t <T, independent of F°.

Proof. With similar arguments as in [14], p. 129, we use the generalized version of Levy’s
Theorem (see [4], Theorem 4.4, p.89). O

Corollary 4.5.19. We define

t
M(t) = /0 H(vo) dWoe.

Then M is an F7°-martingale with quadratic variation process

1

t
<K M >= /0 (H(UOO) o Q%) o (H('Uoo) o Qﬁ)* ds
for all t € [0,T].

Lemma 4.5.20. We have the cross quadratic variation

¢
K Weo, Moo > = / (H(vso) 0 Q)" ds.
0

Proof. We apply the results of [9], Theorem 3.12, p.12 in the same way as in [14], p.
130. [

Lemma 4.5.21. For all t € [0,T] we have
<K M — My, >=0.

From this equality we get M(t) = Myo(t) for all t € [0,T), a.s. in Q.
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Proof. See [14], p. 131.
Lemma 4.5.22. We have G = A(Vvs,) in L (Q x Qr)?.
Proof. Testing the discrete equation @ in Lemma 4.5.4 with B(v**!) we get
(B — B(v¥), B(v* 1)), + 7'/ AV . VB da
D

=(Mn(tgs1) — My (tr), B(*1))s.
It follows that

<HB( B B )\\%Jr\\B(v’““)—B(v’“)ll%)+T [ AE B o

=(Mn (trs1) — My (i), B(*1))s.
Using the same argument as in Lemma 4.2.1 we can see that
BE(Mny(ter1) — My (t), B(v¥))2 = 0,

so after taking the expectation and summing over k = 0, ..., N — 1 we obtain:

1
S EIB@YIE - 5 1B uo) 3 + ZEIIB ) = BWHI3

+7 Z / k“ VB(vk“) dx

= 3 B(tis) M (1), B) - B,
f}‘)l A
< (Bt (t110) ~ Bi(e)l + BIBOH) - BH)IB).
=0

It follows that

1 1 T
SEIBWOIE— SIB@o)l3 + B / / V(on)A(Vuy) - Vo dad

tet+
_QZH/ H(or) dWl = Z/ 1700 s oo

17 5
=3 | 1O rsuaoy at

Hence we may conclude the inequality

1 1 T
5HB(uO)H% > 2EHB(UN)||§+E/O /Db’(vN)A(wN).wN dxdt

e 5
—3 | 1) rsay

20
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With the information that M fo ) dW we are now in the position to use
the Itd6 formula for the limit equatlon in Pr0p081t10n 4.5.13 with the functional
113 : L3(D) — R (see [10], p.75, Theorem 4.2.5). Taking the expectation we get

1 1 r 1 (r

SIBuo)l3 = S EllB(vee(T)) |3 + E G- VB(vee) dedt — SE | | H(voo) | Frs(r2(py dt-

92 2 o Jo 27 Jo (L*(D))
(12)

From equation and the inequality we obtain

1 T e
5E||B(UN)H§ +E/O /Db/(UN)A(VUN) -Voy dxdt — 2E/0 1 (o) iz 2 (py) dt

1 T 1 ("
g2E||B(UOO(T))H§+E/O DG~VB(voo) dwdt—QE/O 1H (voo) | Frs 22y dt-

It follows that
T 1 T
E/ / V(vn)A(Vuw) - Voy dadt — E/ HH('UT)H?{S(LZ(D)) dt
o Jp 2 Jo
T 1 T
—E/ / G- VB(vx) dxdt + E/ ||H(UOO)||%{S(L2(D)) dt
0 JD 2 0
1 1
<SBlIBao(T)IE - SEIBEY) 3 (13)

We know that the equation B(v™) = By(T) holds true, and from Corollary 4.5.14 we

obtain éN(T) — B(vso(T)) in L*(2 x D). Since || - ||3 is weakly lower semi-continuous
we have

BB (use (T))| < lim inf | By (T) 3
N—oo

and hence

lim sup (Equoo(T»n% - E||§N<T>||%) <o. (14)

N—o00
By Lemma 4.5.9 iv) we get
H(v:) = H(vso)
in L2(Qx(0,T); HS(L*(D))), henceEfO 1H (o) 13752y A — E [ H( (Vo) 1152y -

With this information, from and we may conclude the following 1nequahty

N—oo

T T
lim sup <E/ / V(vy)A(Vouy) - Vo dzdt — E/ / G - VB(vx) dxdt) <0. (15)
0 D 0 D
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Let us consider

T T
E/ / V(vn)A(Voy) - Voy dodt — E/ / G - VB(vs) dadt = 11 + I,
0 D 0 D

where
T
Li=E /O /D W (on ) (A(Von) — G) - Vo dadt,
T
Iy := E/o /D G- (VB(vn) — VB(vs)) dxdt.

Since VB(vx) = VB(vs) in LP(Q x Q)% it follows A}im I, =0.
—00
Now we write

I = I3+ 1y,

where
T
I = E/ / W (on)(A(Vow) - Von — G- Vo) dadt,
0 D
T
1y = E/ / V' (vn)G - (Vs — Vuy) dadt.
0 D

For a not relabeled subsequence vy converges to v a.e. in Qx Q7. Since b is continuous,
V(vy) = U (vso) ae. in Q x Qp and then ¥/ (v,)f — U (vso)f ae. in Q x Qp for all
feLiQxQr)? 1< q<oo. Now we have |V (vy)f|9 < &|f]? € L'(Q x Qr), hence by
the theorem of Lebesgue we obtain

V(vp)f — b (vso) f in LYY x Q)%

Since Vuy — Vg in LP(Q x Qr)?, it follows ]\}im I, = 0 by taking g =p' and f = G.
—00
We write

I3 =I5 + Ig + I,

where

V' (vn)(A(Vun) — A(Vos)) - (Vo — V) dadt,

A
T
Is = E/O /D b (vn)A(Vise) - (Vony — Vi) drdt,
/D W (on) Ve - (A(Von) — G) dadt,
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If we take ¢ = p/ and f = A(Vus) we can see that A}im Is = 0 and if we take ¢ = p and
—00
f = Vv we have lim I7 = 0.
N—o0
Thanks to (B1) and since a is monotone we can calculate

T
Is > c- E/o /D(A(VUN) — A(Vux)) - (Vun — Vo) dadt > 0.

Thus we obtain

0 < lim sup (c B /O ' /D (A(Von) — A(Vo)) - (Vor — Vis) dwdt)

N—oo

= limsup I5 = limsup (I5 + Is + I7) = limsup I3

N—oo N—oo N—o0
= limsup (I3 + I4) = limsup I} = limsup ([} + I3)
N—oo N—oo N—oo
T T
= lim sup (E/ / V(vn)A(Voy) - Vuy dxdt — E/ / G - VB(vs) dxdt) <0.
N—oo 0 D 0 D
Hence

lim (E /OT/D(A(VUN) — A(Vix)) - (Von — V) d:cdt) =0.

N—oo

Thus we get

T T
lim E/ / A(Vuy) - Voy dxdt = E/ / G - Vs dxdt.
N—eco  Jo JD o Jb

Since A : LP(Q x QT)d — LP(Q x Qr)? fulfills the (M)-property we may conclude
A(Vvs) = G in LV (Q x Qr)%. O

Now the proof of Theorem 3.4 is complete.

5 Uniqueness with respect to the same probability space

In this section we show the uniqueness of a solution provided these solutions are solutions
with respect to the same probability space, the same filtration, the same initial value and
the same cylindrical Wiener process.

Proposition 5.1. Let (2, F,(F:), P) be a filtered probability space, uy € Wol’p(D) and
W a cylindrical Wiener process as in Section 2.3. If w1 and us are two solutions with
respect to (Q, F, (Ft), P,ug, W), then ui(t) = ua(t) for allt € [0,T], a.e. in Q x D.

Proof. Let uy and ug be two solutions with respect to (2, F, (Fz), P, ug, W). We show
B(ui(t)) = B(ug(t)) for all t € [0,T], a.e. in Q x D. Then the assertion follows since b
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is bijective as a function from R to R.
We consider a smooth approximation of the absolute value, more precisely: For § > 0 let

—r — %5, if r < =20,
ns(r) = —ﬁr‘l + 8%7"2, if |r| < 20,
r— %(5, if r > 26.

Then 15 € C*(R), ns is convex, nj(r) = 1 for r > 26 and nj(r ) = —1 for r < 26. It
follows that s is Lipschitz continuous with Lipschitz constant 1, 7§ has compact support
[—26,26] and 0 < < &

Since u1 and ug are both solutions of (P) we get the equation

Bui(t)) — Blusa(t)) = /0 div (A(vm) —A(qu)> ds + /O H(u1) — H(us) dW

in L2(D) for all t € [0,T], a.s. in Q. Now we use a version of the It6 formula one can
find in [9], p.65 for the function ¢ : L?(D) — R, ¢(u) = [}, ns(u) dx (see [9], p.72-74,
Example 4.1, Remark 4.2). If we do so, we get

I+ 1 = I3 + Iy,

where

e /D ns(B(ur)(t) — Blus(t))) da,
t

Ih = /0 /1)(A(VU1) — A(Vug)) - (VB(u1) — VB(UQ))ng(B(ul) — B(ug)) dxds,

I3 = /0 <T]5(B(U1) — B(UQ)),H(’LLl) — H(UQ) dW) s

2
1 t
_2//ng(B(u B(u2) Z\h uy) — hp(u2)|? dads.
0o Jp

We have ns(B(u1)(t) — B(ua(t))) — |B(us
Since n5(B(u1)(t) — B(ua(t))) < [B(u1)(t) —
Lebesgue we obtain:

)(t) — B(ug(t))| for § — 07 a.e. in Q x D.

) =
B(us(t))| for all § > 0, by the theorem of

lim E(I) E/ | B(uy (t B(ug(t))| dzx
d—0+

for all ¢ € [0, 7.
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Now we split the term I in two terms as follows:
b:KiLM“M”_AWW»WVBWQ—VM%»%@WQ—BWMdms
_ /Ot /D(A(Vul) (V) - (F () Vit — b () Vo)t (Blun) — Blup)) dads
- /ot /D V() (A(Vur) = A(Vuz)) - (Vur = Vug)nf (B(ur) — B(us)) dads
" /ot /D(b,(ul) — V' (u2)) Vs - (A(Vur) — A(Vu2)) (B(ur) — B(ug)) dads

=0 +15.

Since a is monotone, we can see that I3 > 0. Now we can calculate

|I2| < / / —]b’(ul) — b (u2)||[Vus||A(Vur) — A(Vuz)| dods.
{|B(u1)—B(us)|<25} 40

Since we have assumption (B1) we know that b is Lipschitz continuous, hence there
exists L > 0 such that

[0 (u1) — b (ug)| < Lluy — ug| < %|B(U1) — B(uz)l.

Now it follows

3L

|IZ| < / / B(uy) — B(u2)||Vusz||A(Vu1) — A(Vug)| dzds
(1B (ur)— B(uz)|<25) 48
3L

/ / 26|V us| | A(Viur) — A(Vus)| dvds
{1B(ur)—Bluz) \<25} 4cd

—// \VUQHA(Vul) A(Vug)| dzds.
0 J{IB(ur)~Bus)|<26} 20

By the theorem of Lebesgue we get
BI2| < E/ / 3L G| | A(Vur) — A(Vun)| dads
{1B(ur)— uQ)|<25} 2c

{I1B(u1)— B(uz)l 0}

=F —\VuQHA(Vul A(Vug)| dxds = 0.
{ui=up} 2€

Hence

liminf E(I3) > 0.
§—0t
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Since I3 is a stochastic integral, we have E(I3) = 0. It remains to consider I4:

3 ¢ >
B(I)| < E/ / B (1) — o (2) |2 dds
46- Jo {B(m)—B(uznsza};

t
SclE/ / luy — up|? drds
40 Jo J{B(ur)-B(uz)| <26}

IN

t
< ?)C;lE/ / B(uy) — Blus)[? dads
4c*o Jo JyBau)-B(un)l<2s)
t
< 30215E/ / 1 dxds
¢ 0 J{|B(u1)—B(u2)|<25}
—0

for § — 0. Combining the previous estimates we have

E/ |B(ui(t)) — B(ua(t))| de = lim E(I;) <liminf E(I; + Iz) = liminf E(Is 4+ I4) =0
D 8 6—07+ 6—0t

—0t

for all t € [0,T]. Thus we get B(ui(t)) = B(ua(t)) for all t € [0,T], a.e. in @ x D. O

6 Existence and uniqueness of strong solutions

Now use the results of Section 3, 4 and 5 to show the existence and uniqueness of strong
solutions. In fact, we will prove Theorem 3.5. To do so, we use the following lemma (see
[8], Lemma 1.1):

Lemma 6.1. Let V' be a Polish space equipped with the Borel o-algebra. A sequence of
V-valued random variables (X,,) converges in probability if and only if for every pair of
subsequences X; and Xy, there exists a joint subsequence (le,ij) which converges for
j — 00 in law to a probability measure p such that

p{(w,2) €V X V; w=2}) = 1.
Let (B, My, W) and (B, Mz, W) be subsequences of (By, My, W). Since
(Bk, My, W, Br,, M1, W)
on

P <L2<o,T; L2(D)) x €([0,T}; *(D)) C([O,T];U>>27

is tight, this sequence is relatively compact by the theorem of Prokhorov, i.e., there exists
a subsequence

(Bk,, Mx,,Wj, Br,, M, W;)
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which converges in law to a probablhty measure u. By the theorem of Skorokhod there
exists a probablhty space (Q ]: P) and a sequence of measurable functions ¢, : O—Q,
such that P = Po gb ! for all j € N and measurable functions

(BL, ML, W, B2 M2, W,):Q— X
satisfying the following properties:
i é _BK op; — BL in L*(0,T; L*(D)), as. in Q,
=By, 0¢; — B in L*(0,T; L*(D)), a.s

By,

M = Mk, o ¢; — ML in C([0,T); L*(D)), a.s. in Q,
My, == My, o ¢; — M2, in C([0, T]; L*(D)
W -
L(B

v ), a.s. in Q,

v =W o ¢p; = W in C([0,T];U), as. in €,

vi LML W, B%:, M2 W) = .
If we define v’ := B~!(B’.) for i = 1,2 then by using the same argumentation as in
Section 4 we can prove that the equation M, fo ) dWso holds true and that for

i = 1,2, vl are solutions of (P) with respect to (2, .7-" (.7-"t ), P, ug, Wao), where (F°)
is the augmentation of (F°) := (vl (s),v%(s), ML (s), M2 (), Weo(5))o<s<i. From
Proposition 5.1 it follows that vl = v2,.

In particular, since M7, fo H(vi,)) dWy for i = 1,2, we get ML = M2 . Hence
p{(w,2) € X5 w=z}) =1,
Thus by Lemma 6.1 the sequence (B N, My, W) converges in probability to a function
(Bsos Moo, W) : @ — L*(0,T; L*(D)) x C([0, T]; L*(D)) x C([0, T}; U).

Since (BN,M ~N, W) converges in probability, there exists a not relabeled subsequence
of (By, My, W) which convergences a.s. in Q. Now we are in the same situation as
in Section 4, but with respect to the probability space 2 instead of Q. We repeat all
arguments in Section 4, so we see that v, := B7!(Bs) is a strong solution to (P). In
fact, this solution is unique since the assertion in Proposition 5.1 holds true.

7 Appendix

Theorem 7.1. Let a: D x R - R? and b: R — R as in section 2. Then the operator
A: Wol’p(D) — WD), Au= —div a(-, V(b= (u))) is pseudomonotone.

Proof. Let u, — u in Wol’p(D) and lim sup(Auy,, u, — u) < 0.

n—oo
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Then we have
(A, up — / a(z, V(b Y (tn — 1)

JACE

/ a(z, (b7) (un) V) - V(up — u)

/D b—1) ( b~ (up) Vuy) — a(z, (b_l)’(un)vu)>.

) (upn)Vu, — (b_l) (upn)Vu) + / a(zx, (b_l)’(un)Vu) -V (up —u)
D

)

"(un)Vuy,) — a(x, (b_l)’(un)Vu)> -V (up —u)

)

+
T

> /D a(z, (0™ (un)Vu) - V(up — u) — 0.

Here we used that (b=1)’ > 0, a is monotone and (b=1)(u,) — (b=1)(u) in LP(D).
Therefore we obtain linr_l> inf (Aup, u, —u) > 0.

By using the assumption we may conclude lim (Au,,u, —u) = 0.
n—oo

Now let w € Wol’p(D) and set z = u + t(w —u), t > 0. It follows that = — u in
W, (D) for t — 0F. We obtain:

(Au, — Az, un — 2) = / < 2, (071 (un) V) — a(z, (b—l)/(z)vz)> Y (un — 2)

— /D < "(un) V) — a(z, (bl)’(un)VZ)> -V(up — 2)
I /D < '(un)V2) — a(z, (b—l)'(z)w)> -V (up — 2)
(st

y

Ay, u — w) > —(Aup, up —u) + t(Az,u —w) + (Az, up — u)

T /D (a(a:, (b~ Y (un)V2) — a(z, (b‘l)’(z)VZ)> - V(un — 2).

"(un)V2) — a(x, (b_l)’(z)Vz)> -V (up, — 2).

)

Therefore it follows

Now we take the limit inferior on both sides of the inequality. Since a is monotone we
may conclude

tliminf(Auy,, uy, — w) > t(Az,u — w) +/

n—oo D

<a(fn, (b Y (u)Vz) — a(x, (b_l)'(z)Vz)> -V(u—z)
=t(Az,u —w) + t/D <a(a:7 (b (u)V2) — a(z, (b_l)/(z)Vz)> -V(u—w)
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We divide by ¢ and get

lim inf(Auy,, u, —w) > (Az,u — w) + /

n—oo D

(a(x, (b (u)Vz2) - a(z, (b_l)’(z)Vz)> -V(u—w)

By passing to the limit ¢ — 07 we get:

lim inf (A, u, — w) > (Au,u — w) + /

n—oo D

(a(x, (b1 (w)Vu) — a(z, (b_l)'(u)Vu)> -V(u—w)
= (Au,u — w).

Hence, A is pseudomonotone. O
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