

Supporting Information

for Small, DOI 10.1002/smll.202302581

Sodium Incorporation for Performance Improvement of Solution-Processed Submicron CuIn(S,Se)₂ Thin Film Solar Cells

Yao Gao, Guanchao Yin* and Martina Schmid*

Supporting Information

Sodium incorporation for performance improvement of solutionprocessed submicron CuIn(S,Se)₂ thin film solar cells

Yao Gao, Guanchao Yin*, Martina Schmid*

Figure S1 Composition depth profiles of CISSe absorbers without/with Na incorporation measured by GDOES. (a) Reference CISSe, (b) Pre-DT CISSe, (c) Pre-ST CISSe, and (d) PST CISSe. All these measurements are carried out after removing the CdS/i-ZnO/AZO top layers by 10% HCl etching.

Figure S2 (a) *J-V* curves, (b) shunt resistance (R_{sh}) , (c) series resistance (R_s) and ideality factor (*A*), and (d) reverse saturation current density (j_0) of best CISSe solar cells with one time or two times selenization. Statistical distributions of (e) V_{oc} and j_{sc} , (f) *FF* and Efficiency, (g) R_s and R_{sh} , (h) j_0 and *A* derived from 16 devices for CISSe solar cells with one time or two times selenization.

Figure S3 Plots of (a) G_{sh} vs. V, (b) dV/dJ vs. $1/(J+J_{sc}-V/R_{sh})$ for derivation of R_s and A, and (c) semi-logarithmic plot of $J+J_{sc}-G_{sh}V$ vs. $V-JR_s$ to determine j_0 . Statistical distribution of (d) G_{sh} , (e) R_{sh} , (f) R_s , (g) A, and (h) j_0 .

Figure S4 Statistical distribution of (a) N_A , (b) W_d , and (c) $V_{oc,def}$ derived from measurements of 15 CISSe sub-cells.

Figure S5 ln(EQE) vs ($E - E_g$) of CISSe solar cells in the long-wavelength edge of EQE for the calculation of E_U of CISSe absorbers with various Na incorporation strategies.

Figure S6 Statistical distribution of (a) V_{oc} , (b) j_{sc} , (c) FF, and (d) efficiency derived from 15 CISSe devices with 1 M NaCl aqueous-ethanol solution Pre-ST for various times.

Figure S7 Band gaps of CISSe devices with 1 M NaCl aqueous-ethanol solution Pre-ST for various times.

Figure S8 Statistical distribution of (a) N_A , (b) W_d , (c) E_g , and (d) $V_{oc,def}$ derived from 15 CISSe devices with 1 M NaCl aqueous-ethanol solution Pre-ST for various times.

Figure S9 Statistical distribution of (a) V_{oc} , (b) j_{sc} , (c) FF, and (d) efficiency derived from 15 CISSe devices with Pre-ST for 10 min in various concentrations of NaCl aqueous-ethanol solution.

Figure S10 Band gaps of CISSe devices with Pre-ST for 10 min in various concentrations of NaCl aqueous-ethanol solution.

Figure S11 Statistical distribution of (a) N_A , (b) W_d , (c) E_g , and (d) $V_{oc,def}$ derived from 15 CISSe devices with Pre-ST for 10 min in various concentrations of NaCl aqueous-ethanol solution.