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Abstract In this contribution a general framework for the con-
struction of polyconvex anisotropic strain energy functions, which
a priori satisfy the condition of a stress-free reference configuration,
is given. In order to show the applicability of polyconvex functions,
two application fields are discussed. First, a comparative analysis of
several polyconvex functions is provided, where the models are ad-
justed to experiments of soft biological tissues from arterial walls.
Second, thin-shell simulations, where polyconvex material models
are used, show a strong influence of anisotropy when comparing
isotropic shells with anisotropic ones.

1 Introduction

With a view to modern engineering applications, very often fiber-reinforced
materials are used. Due to the existence of embedded fibers one has to deal
with an anisotropic material behavior showing mostly a nonlinear response
at large strains. For the modeling of such materials in the sense of continuum
mechanics a suitable framework is based on the invariant theory; see e.g.
Ericksen and Rivlin (1957) or Doyle and Ericksen (1956) for representations
of anisotropic finite elasticity. By introducing structural tensors the polyno-
mial basis of the constitutive equations can be derived in an attractive way.
For an introduction to the coordinate-invariant formulation of anisotropic
constitutive equations based on the concept of structural tensors we refer to
e.g. Spencer (1971), Boehler (1987), or Betten (1987). In order to concretize
the general representations of finite elasticity such that a physically reason-
able material behavior is obtained, there exist various restrictions to the
form of the strain energy. The Coleman-Noll (Coleman and Noll (1959))
inequality implies the convexity of the strain energy with respect to the
deformation gradient. In large strain formulations this condition is not rea-
sonable, because it precludes buckling, it is incompatible with the principle
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of material frame-indifference and it violates some essential growth require-
ments. A suitable condition is the Legendre-Hadamard inequality, where
the existence of traveling waves is investigated by analyzing the ellipticity
of the acoustic tensor. Violation of the Legendre-Hadamard ellipticity leads
to material instability of the model and therefore the existence of singular
surfaces, which should obviously not occur in the case of hyperelasticity.
Furthermore, there exist restrictions on the strain energy with regard to
the existence of minimizing deformations of the energy potential under given
boundary conditions. In order to ensure the existence of minimizers, the en-
ergy has to be coercive and polyconvex in the sense of Ball (1977a,b). This
condition can be checked locally and directly implies Legendre-Hadamard
ellipticity and therefore material stability. Furthermore, the quasiconvexity
condition is a priori satisfied, which ensures that homogeneous bodies do not
break down in coexisting stable phases. Anisotropic polyconvex energies,
especially for the case of transverse isotropy and orthotropy, have been first
introduced by Schroder and Neff (2001, 2003). Extensions and applications
of these fundamental functions are documented in Schréder et al. (2005),
TItskov and Aksel (2004), Markert et al. (2005), Balzani et al. (2006), Balzani
(2006), Ehret and Itskov (2007), and Balzani et al. (2008).

This contribution is organized as follows: after briefly recapitulating essen-
tial continuum mechanics in Section 2 a general framework for the genera-
tion of polyconvex anisotropic strain energy functions, which automatically
satisfy the condition of a stress-free reference configuration, is explained in
Section 3. There also numerous polyconvex functions obtained by the given
construction principles are derived, which are listed in the appendix. An im-
portant application of polyconvex strain energy functions are soft biological
tissues since these behave anisotropically and in most cases hyperelasti-
cally in a physiological range of deformations. Therefore, this contribution
provides a comparative analysis showing the usage of polyconvex functions
with respect to these materials in Section 4. Another very important ap-
plication field of polyconvex functions is the simulation of membrane-like
fiber-reinforced lightweight constructions. Several examples showing the in-
fluence of anisotropy with respect to such structures are given in Section 5.

2 Continuum-Mechanical Preliminaries

In the (undeformed) reference configuration the body of interest is denoted
by B C R®, parameterized in X, and denoted by S C IR?, parameterized in
x, in the deformed configuration. The nonlinear deformation map ¢, : B —
S at time t € Ry maps points X € B onto points € S. The deformation
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gradient F' and the right Cauchy—Green tensor are defined by
F(X) :=Gradp,(X)] and C:=F'F, (1)

with the Jacobian J := det F' > 0. In the case of hyperelastic materials we
postulate the existence of a strain-energy function W (F'), defined per unit
reference volume. In order to obtain constitutive equations which satisfy
the principle of material objectivity a priori, the functional dependence
W(FTF) = ¢(C) is taken into account. Then we compute the second
Piola—Kirchhoff stresses, the first Pioloa—Kirchhoff stresses and the Cauchy
stresses by

S =20y, P=FS and o=J'FSF", (2)

respectively. A suitable framework for the description of anisotropic mate-
rials is the concept of structural tensors. Therein, an additional argument
tensor, the structural tensor, is defined such that it reflects the symmetry
group of the considered material, see e.g. Spencer (1971), Boehler (1987),
or Zheng and Spencer (1993). Here we only consider anisotropic materi-
als which can be characterized by certain directions. That means that the
anisotropy can be described by some unit vectors A,y and some second-
order tensors M (,) defined in the reference configuration. In the sequel, we
concentrate on fiber-reinforced materials, hence, we restrict ourselves to the
cases of transverse isotropy and to materials which can be approximated
by a given number of superimposed transversely isotropic models. In these
cases we are able to express the material symmetry of the considered body
by a set of second-order structural tensors

M(a) = A(a) ® A(a) with a=1..n,, (3)

where n, is the number of fiber directions. For the construction of specific
constitutive equations we focus on a coordinate-invariant formulation, thus,
the invariants of the deformation tensor and of the structural tensors are
required. Let M ,) be of rank one and let us assume the normalization
condition ||M|| = 1, then the explicit expressions for the principle and

mixed invariants are given by
I :=traceC, I :=trace[CofC], I3 := detC, ()
Jia) = trace[CM (o), J5(a) = trace[C* M (o] -

For the construction of constitutive equations one obtains the possible poly-
nomial basis
Pu = {11, I, Is, J\, JE} . (5)
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For fiber-reinforced materials, where we assume a weak interaction between
the fiber families, the general structure of the strain energy function for a
given number of fiber families ny ends up in

B(C, M (o)) = (11, I, I3) +Z¢ (L 1o, I3, I JE) 0 (6)

a=1

Herein, the isotropic energy ¥**° describes the behavior of the matrix ma-
terial, whereas z/ﬂ(t;) represents the energy associated with the response of

the fiber family (a). By application of the chain rule one gets

Y OLi _ Giso
_22(% aC—S +Zs(a) (7)

with L; € Py and the explicit terms for the isotropic and transversely
isotropic parts
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From the physical point of view it is important to fulfill the condition of a
stress-free reference configuration, which can be written down as

S(C=1)=0. 9)

Inserting C' = 1 into the explicit expressions for the second Piola-Kirchhoff
stresses given in (8) leads to the side conditions

81)[}1'50 81)[}1'30 awiso
+2 + —0,
ol 2P 81'3' , (10)
outt L out outt Wy L0
8[1 812 613 o aJia) ajéa) o

Herewith, we enforce that S**° vanishes in the natural state independently.
At this point it is remarked that especially for polyconvex functions these
restrictions are generally not a priori fulfilled.
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3 Polyconvexity and Fiber-Reinforced Materials

In the framework of material modeling basic principles as e.g. the prin-
ciple of material frame indifference or the principle of material symmetry
have to be satisfied as well as further restrictions necessary for a mathemat-
ically and physically reasonable material behavior. A sufficient condition
for the existence of minimizers is the sequential weak lower semicontinuity
(s.w.ls.) of [ W(F)dV on WP(B) together with the coercivity of W;
WLP(B) means, that the first derivatives of W exist in the weak sense and
are p-times integrable over B.

A condition implying s.w.l.s. is the convexity of the strain energy function
with respect to the deformation gradient. Furthermore, a strictly convex
function also guarantees the uniqueness of solutions, which means that a
local minimum is always a global minimum, too. From the numerical point
of view this is quite interesting with view to gradient-based linearization
methods. A huge drawback of the convexity condition is that it is physi-
cally too restrictive. As an example, convexity of the stored energy precludes
buckling and contradicts the principle of material frame indifference. An-
other important restriction is the quasiconvexity condition, which has been
introduced by Morrey (1952) and which represents, together with polyno-
mial growth conditions, a sufficient condition for the s.w.l.s.. Unfortunately,
the quasiconvexity condition is an integral inequality and is therefore only
conditionally appropriate for the analysis of functions. A more suitable
condition for the practical use in this context is the notion of polyconvex-
ity in the sense of Ball (1977b,a), which is a sufficient condition for s.w.l.s.
also without growth conditions and which directly implies quasiconvexity.
Due to its local character this condition can be checked pointwise. Another
important convexity condition is the rank-1-convexity, which is associated
with the Legendre-Hadamard ellipticity. In its strong form it ensures wave
propagation with real velocity and is strongly linked with material stability.
It should be noted that quasiconvexity is a sufficient condition for rank-1-
convexity. It is well known that a convex function is also polyconvex, a
polyconvex function is also quasiconvex and a quasiconvex function is also
rank-1-convex. Generally, the converse implications are not true, see Da-
corogna (1989).

Summarizing, the polyconvexity seems to be the most suitable condition
since it a priori implies s.w.l.s., which is important for the existence of mi-
nimizers, it implies quasiconvexity and rank-1-convexity, which is linked to
the physically reasonable requirement of real wave speeds, and it does not
preclude some important properties in finite strains like the convexity con-
dition. In order to ensure the existence of minimizers, the polyconvexity
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condition alone is not a sufficient one, since it only implies s.w.l.s. but
not coercivity. Due to the definition of coercivity we directly notice that
each additively composed strain energy with positive additive terms will
automatically satisfy the coercivity condition provided that at least one ad-
ditive term is coercive. It should be noted that in this work we focus on the
construction of polyconvex energy functions and do not treat the issue of
coercivity for each polyconvex function. The polyconvexity condition reads

Definition of Polyconvezity: F +— W(F) is polyconvez if and only if
there exists a function P:R¥>3 xR xR — R (in general non-unique)
such that

W (F) = P(F, Cof[F], det[F])
and the function R — R, (X,}},Z) — P(X,?,Z) is convez for all
points X € R, O

We notice that the arguments of P are exactly the transport theorems
for the transition of infinitesimal line-, vectorial area-, and volume elements
from the reference to the actual configuration.

3.1 Isotropic Polyconvex Strain Energy Functions

In this section we remember some well-known isotropic functions, which
satisfy the polyconvexity condition, cp. Hartmann and Neff (2003), Schréder
and Neff (2003). The most straightforward functions are the invariants for
the isotropic case themselves, i.e. Iy, I and I3 as given in (4). The poly-
convexity of the third invariant is trivially satisfied, due to the definition of
polyconvexity. In order to check the polyconvexity of the first and second
invariant we have to prove the convexity of these functions with respect
to F' and Cof[F], respectively. For this purpose the second derivative of
the functions has to be positive. In order to prove the polyconvexity of
positive powers of I; we consider the function If, which can be reformu-
lated by W (F) = tr[FT F]* = (||F||?)*, and compute the piecewise second
derivative. After calculating

Dp|W].H = 2k||F||**"*(F, H)
we obtain the second derivative
D%WI.(H, H) = 2k(| F||**"*(H, H) + (2k — 2)| F||**~*(F, H)*) > 0,

which is positive for k > 1. The proof for powers of I5 is trivially obtained
by replacing the cofactor in the derivative. Thus, we obtain the polyconvex
functions

90 = I7? and  YF° =y 157, (11)
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with a; > 0 and s > 1. For some materials the additive split of the strain
energy into a volumetric and an isochoric part is quite important and the
energy takes the general form

W(F) - Wyol (det[F]) + Wisoch(c) . (12)

Herein, we have C := det[C]~/3 C, because then the determinant of C' is
equal to one. For the first invariant of C' this means, that the isochoric part
is calculated by

I =tr[C] = == (13)

whose polyconvexity is proved in e.g. Neff (2000) or Schréder and Neff
(2003), Hartmann and Neff (2003). There, it is shown, that the function
> .. a+tl_ p

= th —> —— 14
det[F]a a “p-1 (14)

W(F)
is a polyconvex function. This holds for the case & = 2/3 and p = 2, which
is associated with the function given in (13). The substitution of || F|| by
||Cof[F]|| in (14) would lead to the analogous proof of polyconvexity for the
function W (F') = det[F]~%||Cof[F]||’. Unfortunately, for the isochoric part
of I the parameters would be @ = 4/3 and p = 2, which would not satisfy
the condition (& + 1)/a& > p/(p — 1). Reformulated in direct terms of the
invariants we obtain the polyconvex functions

I
= al _—
n/?

; 1

180

3 = Q13
1/

and i (15)

with a3 > 0. For volumetric energy functions formulated in I3 some poly-
convex functions are given by

20 = I§? and YE° = —ay In(13) (16)
with a1 > 0 and ag > 1 V ap < 0. Due to I3 = (detF)? > 0 the second
derivative of the power function in (16); is always positive and therefore
polyconvex. The same holds for the second function in (16), because the
negative natural logarithm is a monotonically increasing function.

Although the functions given above satisfy the polyconvexity condition, they
have a physical drawback: they themselves do not fulfill the condition of
a stress-free reference configuration, which is an important requirement for
material models. Therefore, we now recapitulate some isotropic polyconvex
functions that satisfy this natural state condition. In Hartmann and Neff
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functions that satisfy this natural state condition. In Hartmann and Neff
(2003), Schroder and Neff (2003) some examples for such functions are given

iso al(I§2+Isz2)as , a1 >0, ag>az3>1,
l a2
50 = (132_1> , a; >0, ag>1,
| . o (17)
iso m(@g&z) ;a1 >0, ag>1 az>1,

) 1—302/2 as
10 a1<2 (3\/§)a2> , a1 >0, ag>1 az>1.

For the proof of polyconvexity we refer to Hartmann and Neff (2003), where
the coercivity issue is also investigated for special isotropic energies. For
further functions see the Appendix. In the context of the description of soft
biological tissues the function

. I
180
=1 | —% -3, a1 >0, (18)
B (131/ ’ >
is often utilized in the literature, as for example in Holzapfel et al. (2000),
Holzapfel et al. (2004a) and similarly in Weiss et al. (1996). Another func-
tion for the isotropic part of soft biological tissues is

” I
izo:a1<%—3>,a1>0. (19)
I3

The difference between the latter two functions is the usage of I; and Io
and therewith the use of the terms in C and in CofC', respectively.

3.2 Fundamental Transversely Isotropic Polyconvex Functions

In this section the fundamental polyconvex functions for transverse isotropy
as introduced in Schréder and Neff (2003) are briefly recapitulated. For a
more extensive description see the contribution of Schréder in this book.
As in the previous section we firstly investigate the invariants for trans-
verse isotropy themselves, because these would be the most straightforward
functions. When reformulating J; = tr[CM] = FA : FA = ||FA|? one
obtains the polyconvex functions
Jo?

[ Ja
n3

= J? and b =« (20)
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with a; > 0 and as > 1. For the proof of polyconvexity see Schroder and
Neff (2003). Please note that from now on we skip the index (), if ideal
transverse isotropy with only one preferred direction is treated. It is to be
remarked that the function v, for ap = 1 represents the isochoric part j4 of
the fourth invariant, thus, it might be a useful function for volumetrically-
isochorically decoupled models. By utilizing an alternative structural tensor
the construction of further fundamental functions is possible based on the
introduction of

Ky =tr[C(1 — M) =1, — Ja, (21)
see Schroder and Neff (2003), and one obtains the polyconvex functions
K5?

f=a; K§? and o) = (22)

1 ?
with oy > 0 and as > 1. Since the functions J; and K5 are linear in
C' and therefore possess a relatively limited mapping range, the supply of
quadratic terms in C seems to be profitable. Unfortunately, it turns out
that the fifth invariant J; = tr[CzM ] is not polyconvex, see Merodio and
Neff (2006), although the associated isotropic basic invariant J, = tr[C?]
is polyconvex. A variety of transversely isotropic polyconvex functions is
based on the introduction of the function

K; =tr[cof[CIM] = Js — 1 Ju + >, (23)

which is a polyconvex function with non-polyconvex terms J; and I Jy.
After a short algebraic transformation we obtain K; = ||Cof[F]A||? and see
that /K, controls the change of area with a unit normal vector into the
preferred direction A. Due to this physical interpretation, K seems to be a
suitable function for the description of transverse isotropy. By replacing the
structural tensor M in K; by the alternative one, we obtain the additional
polyconvex function

K3 = tr[Cof[C)(1 — M) = Iy J; — Js. (24)

When reformulating K3 = ||Cof[F]||? — | Cof[F] A||?> we notice that /K3
controls the deformation of an area element with a normal vector perpendic-
ular to the preferred direction A. Analogous to the proof of polyconvexity
for (20) we obtain the polyconvex functions

a2 a2

N K , . ,
Y =y K| ézzalj_l%,Q/J?Zalezandz/)?:al (25)
3

3
n*
with oy > 0 and as > 1. In Schroder and Neff (2003) a variety of further
polyconvex functions constructed by additive combinations of polyconvex

and non-polyconvex terms are introduced.



140 Daniel Balzani, Jorg Schroder and Patrizio Neff

3.3 Polyconvex Framework for Anisotropic Functions Satisfying
a priori the Natural State Condition

Regrettably, the functions given in the last section do not satisfy the
stress-free reference configuration (9). To overcome this problem one can
construct suitable additive combinations of individual polyconvex functions
and then derive restrictions with respect to material parameters from (10)
in order to satisfy the natural state condition. Although this is in general
possible it is not a really generous approach. However, a first polyconvex
transversely isotropic function constructed in this fashion is proposed in
Schroder and Neff (2001), see also Schroder et al. (2005) for two fiber fam-
ilies. A more elegant additive combination is proposed in Itskov and Aksel
(2004), see also Ehret and Itskov (2007) and Schroder et al. (2008) for a
more general form. However, in order to be more flexible, e.g. when only
a moderate number of material parameters should be used for the approxi-
mation of highly nonlinear problems, an alternative approach is proposed
in Balzani (2006), see also Balzani et al. (2006). There, a principle for the
simple construction of polyconvex energy functions that automatically sat-
isfy the condition of a stress-free reference configuration is given motivated
by the fact that a function R" — R, X — m(P(X)) is convex, if the func-
tion P : IR" — IR is convex and the function m : R — IR is convex and
monotonically increasing, cp. Schroder and Neff (2003), Lemma B.9. The
principle can be rephrased in words as the following problem:

Principle 1a: find a polyconvex function P(X) which is zero in
the reference configuration and include this function into any ar-
bitrary convex and monotonically increasing function m, whose
first derivative with respect to P vanishes in the origin; then the
polyconvex function satisfying the stress-free reference configu-
ration is given by ¥ = m(P(X)).

Convex and monotonically increasing functions whose first derivative
with respect to P is equal to zero could be

mi(P) = P* and my(P) = cosh(P) —1 (26)

with P > 0 and & > 1. The requirement for positive internal functions
P > 0 means that we have to consider the case distinction

- {m(P) for P>0 27

0 for P <0.

This seems to be a suitable approach, because P = 0 represents the referen-
tial state and therefore, we obtain a smooth energy function when satisfying
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m(P = 0) = 0. A result of introducing the case distinction (27) may be
that discontinuous stress functions and/or discontinuous tangent moduli are
obtained. Therefore, we investigate m; and ms with respect to their first
and second derivatives. In a first investigation we consider the power func-
tion ¥ = m; and compute the first derivative with respect to the (inner)
polyconvex function P

Opth = kPF1 with k> 1. (28)

We notice that (28) vanishes at the reference configuration since P is equal
to zero at the natural state. Hence, also the second Piola—Kirchhoff stresses

AP OL;
dL; 0C

S =200t =20p0 Y with L; € P (29)
L;cP

are zero in the reference configuration and the case distinction leads to a
continuous stress function. Please note that at this point P can be an arbi-
trary polynomial basis describing any type of anisotropy. Then we calculate
the second derivative

Obpth =k(k—1)P*2 with k> 2 (30)
and observe that the tangent moduli

P oL,
=, 0L; 0C

i

OP OL;
L;eP aL’L oc

P
T =200S =40% 00 Z—C ® (31)

0
+40py %l

are also equal to zero in the reference configuration for k£ > 2 since the first
and second derivatives of P are zero in the natural state. Therefore, the
tangent moduli are continuous for k > 2, too, when the case distinction (27)
is considered.

Now we focus on the hyperbolic cosine and set ) = my. The first derivative
of this energy function with respect to P is given by

Opt) = sinh(P) (32)

and we see that Opv vanishes for P = 0. Hence, the stresses are zero in the
reference configuration and the case distinction (27) leads to a continuous
stress function. By computing the second derivative

0% p1p = cosh(P) (33)

we notice that (33) is not zero for P = 0 and therefore, it is not guaranteed
that the tangent moduli vanish in the reference configuration. This would
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lead to discontinuous tangent moduli at P = 0 when the case distinction
(27) is considered.

Due to the fact, that a convex and monotonically increasing function
m(P(X)), whose first derivative with respect to P vanishes in the origin,
has a global minimum in the origin, we can reformulate Principle la as

Principle 1b: find a polyconvex function P(X) which is zero in
the reference configuration and include this function into any ar-
bitrary convexr and monotonically increasing function m, which
attains its global minimum in the origin; then the polyconvex
function satisfying the stress-free reference configuration is given

by ¢ = m(P(X)).
In order to give an example we consider the strain energy function of
the cosine hyperbolic type as proposed in (26), i.e.

(34)

Doosh = cosh(P)—1 for P>0
cosh = for P<0.

As (inner) functions P which satisfy the condition of an energy-free reference
configuration we can use any polyconvex function describing any type of
anisotropy. In order to obtain an energy-free referential state, which is also
a physically convenient condition, constant factors that have the value of
the function itself in the reference configuration have to be subtracted, i.e.
1 = m(P) —m(P = 0). For the case of isotropy or transverse isotropy we
are able to include the polyconvex functions given in the sections before,
provided that a suitable constant factor m(P = 0) is subtracted.

In addition to the functions obtained by applying Principle 1, we are able
to construct further polyconvex functions a priori ensuring the stress-free
reference configuration. Analogously motivated by the fact that a function
R" — R, X — g(m(X)) is convex, if the function m : R" — R is convex
and the function g : IR — IR is convex and monotonically increasing we
obtain the principle:

Principle 2: include any function m(P (X)), obtained by apply-
ing Principle 1, into the exponential function g(m) = exp(m);
then further polyconver functions are given by

b= exp(m(P(X))) for P >0
0 for P <O0.

Due to the fact that the stresses are computed by replacing v in the right
hand side of (29) by m and multiplying the formula by the derivative 0,1
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the stresses governed by Principle 2 are also zero in the referential state.
Analogously, the properties with respect to continuous tangent moduli of
the functions ¢ = my or ¥ = my are preserved.

3.4 Transversely Isotropic Polyconvex Strain Energy Functions

Now we are interested in constructing transversely isotropic polyconvex
functions by utilizing the construction principles given above. As a first
function we choose the strain energy function

Plpry = ar(Ja— 1) (35)

with ay > 0 and a > 1. Herein, the Macauley bracket ((e)) := 1[|(e)|+(o)]
filters out positive values. This function fits into the first construction prin-
ciple, because P = J4 — 1 is polyconvex and (...)P is convex and mono-
tonically increasing for positive convex arguments. For the complete proof
of convexity see Balzani et al. (2006). At the referential state the internal
function .J4 takes the value 1, therefore, it is subtracted here in order to nor-
malize P. It should be noted that setting a.s > 2 leads to continuous tangent
moduli as shown in the previous section. Due to the fact that Jy represents
the square of the stretch in fiber direction A the distinction of cases in (35),
expressed by the Macauley bracket, seems to be reasonable, because Jy < 1
characterizes the shortening of the fibers, which is assumed not to generate
stresses. Note that replacing Jy by its isochoric part Jy = J4/I§/ % leaves
(35) polyconvex provided that the case-distinction is adapted accordingly.
Soft biological tissues are characterized by an exponential-type stress-strain
behavior in the fiber direction. A model for the description of these materi-
als, which also satisfies the condition of a stress-free reference configuration,
is proposed by Holzapfel et al. (2004a, 2000). The transversely isotropic
function appears as

Yoy = {GXP [ka(Ja—1)%] =1}, (36)

where k1 > 0 is a stress-like and ks > 0 a dimensionless material parameter.
An appropriate choice of k; and ko enables the histologically-based assump-
tion that the collagen fibers do not influence the mechanical response of the
artery in the low pressure domain to be modeled, see Roach and Burton
(1957). The proof of convexity of (36) with respect to F' is, e.g., given in
Schroder et al. (2005), see also Balzani et al. (2006). Note that the replace-
ment of Jy by its isochoric part Jy is also possible without violating the
convexity condition. Additionally note that the natural state condition is
satisfied. We see, that this function fits into the second principle, because
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m = ko(Jy — 1)? fits into the first principle as already shown above and is
embedded into the exponential function as proposed in Principle 2. Since
the function explka(Js — 1)?] is equal to one at the natural state, 1 is sub-
tracted to satisfy the (not necessary) condition of an energy-free reference
configuration. The replacement of J4 in (36) and (35) by an arbitrary poly-
convex function leads to a large number of polyconvex functions, which are
listed in the Appendix.

As examples we construct some special transversely isotropic polyconvex
functions. Since the functions given in (35) and (36) are based on invari-
ants that are linear in C, and therefore have a relatively limited mapping
range, the use of quadratic terms in C' would be profitable. By using the
function K; we are able to construct two more strain-energy functions which
satisfy the condition of a stress-free reference configuration a priori, i.e.

. 3 «
U{py = ca (K1 =) and (py = oo {exp [as(K1 —1)°] =1} (37)

with oy > 0, g > 1 and ag > 0. Please note, that as > 2 ensures continu-
ous tangent moduli. The first function (1/)332)) represents the substitution
of Jy by K3 in (35), while the second one characterizes a slight modification
in the model of Holzapfel, Gasser & Ogden. The proof of polyconvexity
for (37) is straightforward, since a convex and monotonically increasing
function of a polyconvex argument is also polyconvex (Schroder and Neff
(2003)). K; and also K» control the change of area with a unit normal
into the preferred direction in some sense, thus, in a uniaxial tension test
of an incompressible material these two functions increase if the material
is shortened. Therefore, any function containing K; or Ks, that is gov-
erned by the given construction principle (e.g., the functions (37) generate
stresses mainly when the material is shortened in the preferred direction.
This is physically not meaningful for soft biological tissues since collagen
fibers mainly support tensile stresses. Nevertheless, it might be useful for
some cases to activate stresses under such a condition; then functions like
(37) may be utilized.

For incompressible materials K3 increases when the material is elongated
in the direction A. Hence, using K3 for the construction of further poly-
convex strain energy functions is physically meaningful for soft biological
tissues, because then stresses are generated when the fibers are elongated.
As examples we obtain the two strain-energy functions

. «
U(pay = 1 (K3 —2)**  and r.js {exp [ag(Ks —2)*] —1} (38)

with a3 > 0, as > 1 and ag > 0. These functions are also polyconvex, the
proof of which is analogous to (37). Tt is remarked that setting as > 2 leads
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to continuous tangent moduli. Of course other polyconvex functions can be
obtained by replacing J4, K7 and K3 with any other polyconvex function.
An extensive list of polyconvex functions governed by this way is given in
the Appendix. It is worth noting that every other monotonically increasing
function, e.g., also the other function given in (26), cosh(...), with positive
and polyconvex arguments would lead to a polyconvex function, too. As an
example, if the function proposed by Riiter and Stein (2000)

w’(ff%) = oy cosh(Jy — 1), (39)

was embedded, then this would provide a polyconvex function.

4 Polyconvex Energies Applied to Biomechanics

In this section we focus on some special three-dimensional constitutive
models for healthy elastic arterial tissues, which are mainly composed of
a groundsubstance and embedded collagen fibers. It is well-known, that
biological tissues adapt to loading conditions in order to obtain an opti-
mized state, e.g. the fibers are usually arranged in such a way that the load
can be resisted in an optimal way. As examples in ligaments or tendons
the fibers are basically oriented in one direction while the collagen fibers in
arterial walls are mainly oriented in two directions forming two crosswise
arranged helixes. In order to represent the above explained characteristics
we consider a strain energy function of the structure as given in Eq. (6)
and set ny = 2. Then, the groundsubstance is described by the isotropic
part ¥"*° and the fibers by the superposition of the transversely isotropic
parts ¥(®) for each of the two fiber orientations. In the previous section a
variety of transversely isotropic polyconvex functions are constructed based
on the construction principle given there. These functions require to take
into account a special case distinction, but have the great advantage that
they themselves satisfy the condition of a stress-free reference configuration
automatically. To give an example of the applicability of these energy func-
tions some suitable models are adjusted to the Media (the middle layer of
the artery) of a human carotid artery.

4.1 Experimental Data for a Human Carotid Artery

The Media of a human carotid artery, which has been excised during
autopsy within 24 hours after death is analyzed. The arterial wall was sep-
arated anatomically into the three layers, i.e. Intima, Media and Adventitia.
Here, we focus on the Media, because from the mechanical perspective the
Media is the most significant layer in a healthy artery. From the Media, strip
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samples with axial and circumferential orientations were cut out so that two
specimens were obtained. For representative tissue samples see, for exam-
ple, Fig. 4 in Holzapfel et al. (2004b)). Prior to testing, pre-conditioning
was achieved by executing five loading and unloading cycles for each test to
obtain repeatable stress-strain curves. Subsequently, the stripes underwent
uniaxial extension tests in 0.9 % NaCl solution at 37°C with continuous
recording of tensile force, strip width and gage length. For details on the
customized tensile testing machine the reader is referred to Schulze-Bauer
et al. (2002). Additional experimental data for uniaxial extension tests for
the Intima, Media and Adventitia of human abdominal aortas are given in
Holzapfel (2006).

4.2 Method for Parameter Adjustment

In this section we deduce the equations necessary for the evaluation
of general anisotropic material laws for the specific boundary conditions
defined by the experiments. As already mentioned, in arteries we observe
mainly two fiber families oriented crosswise, thus we assume that the fibers
are oriented as shown in Fig. 1. Then the associated structural tensors are
computed by

2 —cs 0 s2 s 0
My =| —cs & 0 and M@ =|cs & 0 (40)
0 0 0 0 0 0

for the extension test in circumferential direction. Herein, the abbreviations
¢ = cos(fy) and s := sin(fy) are inserted.

We focus on uniaxial extension tests and assume an incompressible ma-
terial behavior. Therefore, the coefficients of the deformation gradient and
the right Cauchy-Green tensor are written in terms of the stretch in exten-
sion direction A\; and the transverse stretch in the fiber plane Ao, i.e.

A0 0 A0 0
F=| 0 X 0 and C=| 0 A3 0 . (41)
0 0 A'A? 0 0 A2\72

In order to incorporate incompressibility an additional penalty term is in-
cluded in the strain energy function such that the structure of the overall
energy function reads

2
qZ) = +p3—1) where o= wiso + Z¢EZ) ) (42)

a=1
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Figure 1: Uniaxial extension in a) circumferential and b) axial direction of
a test stripe taken from an artery. Note that the fiber angle 3 describes
the angle between the circumferential and the fiber direction.

which is a suitable polyconvex strain energy function describing the material
behavior of the soft biological tissue and p is a Lagrange multiplier. Please
note that 1 needs not necessarily to be isochoric. Following Eq. (2) we
obtain the general constitutive equation

S:2(§%+pQﬂCD. (43)

Taking into account the symmetry of the experiments 1! := "/’ﬁ) = "/’g)
and Eq. (41); one finds that

f;) 50 ) 150 K] 50
Sop = 2{1” + L4 (A§+A;2A;2)+(p+ Ld )A2‘2

8[1 3[2 a-[3
L A RN S
"'2[3_71 +8—I2(/\1+/\1 A7) (44)

ti ti ti
LV SCL e L 2)\332]}:0.

+ s —
oL "2 g T g

From this equation we are able to compute the Lagrange multiplier p, which
is then inserted into the requirement S33 = 0 in order to obtain a relation



148 Daniel Balzani, Jorg Schroder and Patrizio Neff

between the first and second stretch A\; and A\

awiso awiso
Say = 2< oL, (1= AA3) + o, (AT — ATA3)
awti awtz
|G 0B)GE ) )
ti ti
—%()Afxgs? -2 &z’( )X{ASSZ =0.
oJ," aJ5"

It is obvious that this equation can not be solved analytically for the general
case, thus, a Newton-scheme is used. For this purpose we consider the
linearization o
1
LinSss = S5 + (%) ANTD =0, (46)
02
where the index (o)) and ()t denote values at the last and at the
actual iteration step, respectively. The iteration is repeated, where in each
step the increment A\, is computed and updated )\giH) = AS) + A)\éi+l),
until the stresses vanish (Ss3 < tol). As the starting value in each iteration
procedure we set )\go) equal to the extension stretch of interest, i.e. to the

value measured in the experiment. In order to improve the efficiency of the
iteration we consider the modified starting value for

~ A
AP =, A(—})) , (47)
1
wherein the quantities () denote quantities resulting from the last iteration
procedure. With this method in hand we are able to compute the only stress
in x1-direction S1; governed by a general hyperelastic constitutive model as
a function of the stretch A\; read from the experiment. In order to be able
to compare the computed stresses with the experimental ones the Cauchy
stresses have to be calculated by ocomp = )\% S11. Then we define the relative
error

r(, @) == |erp()‘1) - Ucomz)()‘lva)‘ (48)

b
max|(oeqp]

wherein the normalization by the maximum value of experimental stresses
in the considered extension cycle max|oeqp] # 0 is introduced. The vector
« contains all material parameters involved in the constitutive energy .
For the adjustment higher values of experimental stresses are highlighted,
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thus, the resulting total error, which now deals as an objective function,

Ne Mmp (m) (m) 2
- 1 Teap(Ny ) — 0 A\ a)
() = Z — Z ( exp max[;om;]) ) (49)
e=1 MP =1 erp

is minimized by use of a sequential quadratic programming algorithm. Here,
we consider the number of n. = 2 experiments: extension in circumferential
and axial direction. The number of measuring points is n,,, = 49 for the

axial and n,,;, = 43 for the circumferential extension test.

4.3 Comparative Analysis of Polyconvex Models

As a first example we consider the model of Balzani et al. (2006), which
consists of the polyconvex isotropic part Eq. (18) and the polyconvex trans-
versely isotropic part Eq. (38);. Then the complete energy is given by

T N (11 Y3 - 3) +azi:1a1 <K§“> - 2>a2 . (50)

Herein, ¢ and a; scale the isotropic and transversely isotropic response,
respectively, and «s is a parameter determining the degree of the exponential
character of the model. Please note that the fiber angle 3y, defined as the
angle between the circumferential and the fiber directions, is also treated
as a fitting parameter and not identified from microscopic analysis. The
parameters for the best fit to the experimental data are shown in Table 1,
where we notice a total relative error of 7 = 0.126. The fiber angle results
to be By =9.2°.

=

c ay Qs B
[kPa] [kPa] ] [°] -]

Wven 885 2399525 3.06 40.14  0.126

Table 1: Parameters of the model %% v -

The stress-stretch response of the experimental and the constitutive
model is depicted in Fig. 2a for the circumferentially and axially oriented
strip whereas Fig. 2b shows the progress of the relative error r during ex-
tension. We observe a good agreement for the axially oriented strip and a
slight deviation from the experiments with view to the axial one. This is
also expressed by the higher relative errors shown in Fig. 2b.
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Figure 2: a) Stress-stretch response and b) relative error in uniaxial exten-
sion tests of a Media strip oriented in circumferential ® and axial direction
@ for the strain energy Y% v gy

In order to improve the constitutive model the most straightforward way
could be to replace the anisotropic part in Eq. (6) by a series of anisotropic
parts, then the energy is structured as

ns MNf

b=y N el (51)

s=1a=1

where ng is the number of series parts taken into account. Note that this
ansatz is motivated by the well-known Ogden approach, which has also been
addapted by Itskov and Aksel (2004). With view to the polyconvex energy
given in Eq. (50) we are able to write down the improved model

Ns 2 a(s)
Uivsr =c (B =3) £33 ol (K™ —2)" . (52)

s=1a=1

We set ny, = 2 and adjust the model to the experiments, then we obtain
the parameters shown in Table 2 and the stress-stretch response depicted
in Fig. 3a.

Now, a good correlation with the experiments is observed, which is also
shown by the lower curves of the relative error, see Fig. 3b. The total relative
error 7 = 0.0840 is much lower than the error obtained for %y gz, thus,
we conclude a better response of ¥ gy, although the micromechanical
motivation for the consideration of two additional anisotropic energies with
differing fiber orientations remains questionable.
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c a1 (o) By K T
[kPal [kPal [ [°] (] (]
o 859 1 2974.06 2.42 40.07 — 0.084
BNSHE 2 6501.06 11.83 30.25 - '
Vinen 7.54 984.29 218 39.48 0.06 0.036
Table 2: Material parameters of the models Y% g and Y5y gpr-
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80 o ] 0.35
70 / 0.3
60 / 0.25
50 / [ o2
;‘8 / @ / 1 o1
20 / y 0.1 o
10 / — 0.05 )

°] 105 11 115 12 125 13 °, 105 11 115 12 125 13
c) 1/l d) 1/lo

Figure 3: a,c) Stress-stretch response and b,d) relative error in uniaxial
extension tests of a Media strip oriented in circumferential ® and axial
direction @ for the strain energies V5 g and ¥ g, respectively.
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A more physically interpretable improvement of the model Eq. (50) can be
obtained by taking into account that fibers are not ideally oriented in one
direction. By including a special internal function following the idea of the
fiber dispersion approach used in Gasser et al. (2006) we end up in the
energy function

2 a
- 3 a 2
VBNsH = ¢ (Il L' 3) +) o <I€I1 + (1 - 5%) K - 2> . (53)

a=1

Herein, the additional parameter k € [0,2/3] scales between an isotropic
distribution of the fibers (x = 2/3) and an anisotropic fiber distribution
(k = 0). Please note that since the additive terms I; and K3 form a
polyconvex internal function, the resulting function Eq. (53) will also be
a polyconvex function. If we now fit this model to the experiments and
treat the parameter x as a fitting parameter which is not identified from
microscopical analysis, then we obtain the parameters as given in Table 2.

Again, we observe a good aggreement with the experiments when com-
paring the stress-stretch response of the model with the experiment shown
in Fig. 3c, see also Fig. 3d for the curves of the relative errors. Furthermore,
we again conclude an even better response than for the model Eq. (52) since
the total error ¥ = 0.0355 is even lower than the half of the total error of
Eq. (52).

Since K3 = I J4 — J5 takes into account a quadratic mixed invariant of
C (Js = tr[C*M]) and it also incorporates a term coupling the isotropic
response with the fiber elongation (I Jy), this function seems to be appro-
priate to describe a wide range of fiber-reinforced materials. With view to
soft biological tissues, where we can assume a relatively weak interaction
between the ground substance and the fibers, the incorporation of J, into
the transversely isotropic energy may be sufficient. In addition, the fourth
mixed invariant Jy = tr[C M| = A?c has the advantage that it describes the
square of the fiber stretch Ay and hence, provides a clear micromechanical
interpretation. For this reason we analyze the often used and well-known
transversely isotropic function of Holzapfel, Gasser & Ogden, cp. Eq. (36),
and consider again the additive improvement given in Eq. (51). Then the
complete polyconvex energy function reads

T 0(111;1/3—3)
ng 2
- kl(s) (a,s) 2 (54)
= 23 e (071 ] )

The parameter ¢ scales the isotropic response whereas k; and ks are param-
eters for the fiber behavior. Again we set ny = 2 and adjust the model to
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the experiments. Then the material parameters result in the ones listed in
Table 3.

c s k1 ko By K r
[kPa] [kPa] ] [°] ] ]
1 1312.95 390.58 27.46 -
Vheo 118 2 1638 3l57 sa7a o 0sT0TTS0
Vieo T3 1482.38 564.81 37.02 0.16 0.03724851

Table 3: Material parameters for the models V%o and Y5 q0o-

By comparing the stress-stretch response of the model with the exper-
iments and analyzing the relative errors depicted in Fig. 4a and Fig. 4b,
respectively, we notice a good correlation. The total error ¥ = 0.0371 is
even lower than the one of the model V3 gsr-

Now we consider the model Eq. (36) and incorporate a similar ansatz for
the fiber distribution as in Eq. (53), then we write down the energy function

Voo = c(hl;"*-3)
2
ky (@) 2 (55)
+ ;% {exp [kzg </<:Il +(1-3k)J," — 1> ] — 1} ,

with k € [0,1/3]. Please note that due to the fact that the additive terms
I, and Jy form a polyconvex internal function and thus, as a result of the
construction principles given in section Eq. 3 the complete energy is poly-
convex. The model is adjusted to the experiments again and the material
parameters listed in Table 3 are obtained. Interestingly, a very similar fiber
angle By = 37.02° compared to the one of 95 g5y is computed. The stress-
stretch response of the model and the relative errors are depicted in Fig. 4c
and Fig. 4d, respectively. It can be observed that the model fits the exper-
iment with high accuracy and also the total error # = 0.0372 is comparable
to the one of Y5 g OF Virao-

Concluding this section, we note that it seems to be necessary to include
a fiber distribution into the models in order to obtain a good representation
of the material behavior. Although the improvements due to the incorpo-
ration of anisotropic polyconvex function series (V5% vy and ¥3,50) have
been remarkable, we emphasize the relatively clear micromechanical inter-
pretation of the fiber splay approaches used in Y% gy and ¥ oo. Both
functions are relatively simple, their parameters have a direct meaning with
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Figure 4: a,c) Stress-stretch response and b,d) relative error in uniaxial
extension tests of a Media strip oriented in circumferential ® and axial
direction @ for the strain energies 1¥%;,~0o and ¥§op, respectively.

respect to the mechanical response and they are polyconvex, thus, they seem
to be suitable for the description of soft biological tissues.
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5 Application of Polyconvex Energies to Thin Shells

In the following we analyze the influence of anisotropy in membrane-like
materials. Such structures are often composed of woven fiber networks made
of glass-, textile- or synthetic fibers, embedded in a silicone-, polymer- or
rubberlike matrix. Therefore, we apply some of the polyconvex functions
obtained by the construction principles in Section 3 capable to describe such
fiber-reinforced materials to thin shell problems. The following results are
mainly based on a common work with F. Gruttmann (Balzani, Gruttmann
& Schréder (2008)).

5.1 Thin Shell Kinematics

In the reference configuration the shell body is parametrized in ® and
in the current configuration in ¢. The nonlinear deformation map ¢, :
B — S at time ¢t € Ry maps points P € B onto points of S. With &’
we introduce a convected coordinate system of the shell, where &3 is the
thickness coordinate with —h/2 < ¢3 < h/2. Here, h denotes the thickness
and the mid-surface € is defined by &3 = 0. A director field D(¢,£2) is
defined as a vector perpendicular to €. In the sequel the usual summation
convention is used, where Latin indices range from 1 to 3 and Greek indices
range from 1 to 2. The position vector ® of any point P € B is defined by

B8 = e=X+D(E,E®) with |D(ELE) =1 (56)

and —h/2 < &€ < h/2, where X (¢!, £2) denotes the position vector of the
shell mid-surface 2. Hence, the geometry of the deformed shell space is
described by

D¢, 2.6) = ¢l e = 2(¢1, ) +£7d(¢,€%) with [d(¢, &%) =1. (57)
The inextensible director d is obtained by applying an orthogonal trans-

formation to the initial vector D. Since d is not normal to the current
configuration the kinematic assumption (57) allows transverse shear strains.
The deformation gradient F' is then defined by F(®) := V¢, (®) with the
Jacobian J(®) := detF(®) > 0. The right Cauchy Green tensor is then
computed by Eq. (1)2. Next, the Green-Lagrangean strain tensor with
covariant components E;; and contravariant basis G' is given by

1 : . 1
E = 5(0 -1)=E;G G, E;; = 5(45,1' ¢, —P,i-®,;). (58)

Please note that commas denote partial derivatives with respect to the co-
ordinates ¢'. Inserting the equations (56) and (57) into (58)2 yield

Eop=cap+E kap+ ()2 pap and 2FEa3 = Yo - (59)
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Note that FE33 will be computed iteratively in a scheme where the stresses
in thickness direction vanish, c¢p. Section 5.3. In (59) the membrane strains
€a8, curvatures kog and shear strains -, are given by

1

Eap = E(waa “L,5 _Xaoz 'Xaﬁ ) P
1
Rap = E(waa daﬁ +33,ﬁ 'daoz _Xaoz Daﬁ _Xvﬁ 'D7o¢ ) ) (60)
Yo = m,a'd*X,a'D.

The shell strains are organized in the vector

T
€ = [e11, €922, 2612, K11, K22, 2K12, 71, V2] (61)

wherein the second order curvatures p,p are neglected for thin structures.

5.2 Variational form of the Shell Formulation

The present finite element formulation is based on a three field vari-
ational functional introduced by Simo and Rifai (1990) in the context of
small strain elasticity and plasticity. Geometrical nonlinear extentions of
the method have been presented in Simo and Armero (1992) using enhanced
displacement gradients. Here we follow the approach for nonlinear shells in
Betsch et al. (1996), where the shell strains € are enhanced by & = € + €.
The shell is loaded statically by surface loads p on €2 and by boundary forces
t on the boundary I',. The variational framework for the enhanced assumed
strain method is the three field variational functional in a Lagrangean rep-
resentation

H(v,é,&):/[W(é(v))f&Té]dAf/qudAf / ul'tds  (62)

(2) (2 (I'e)

with dA = jd¢'dé? and j = | X,3 xX,2|. The first term describes the
internal potential, while the last two terms denote the potential of the ex-
ternal forces. Here, v = [u”,w”]”, &, and & denote the independent dis-
placement /rotation, enhanced strain and stress fields, with w = & — X the
displacement vector and w the vector of rotational parameters of the shell
middle surface. The strain energy W is a function of the total strains &.
Variation of the functional (62) with respect to the independent variables
and introducing some orthogonality conditions in order to eliminate the in-
dependent stresses from the set of equations yields the weak form of the
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boundary value problem
ST = / 6eT0aW dA — / sulpdA — / sultds =0 (63)
(@) (@) (Ts)

with 0& = de + 0& and de = [5611, 5522, 25612, 5/111, 5%22, 25/112, 5")/1, 5’}/2]T.
Herein, the individual parts are computed by

1
deag = 5(5&5,& T,3 +H0x,3T,0 ),
1
Ohap = 5 (0B dyy 02,5 dio +0dse 5 +0dy Toa ) (64)
Vo = Xy -d+dd-x,, .

For the sake of completeness, the local Euler-Lagrange equations associated
with the variation of (62) can be obtained with integration by parts and
standard arguments of variational calculus and yield the following equations
in  and stress boundary conditions on I',:

F(jn*)a+p =0, €=0 00
% (.] ma)aoc +&,q XN =0, asW -6=0 (65)
JiM%uy) —t=0, j(muy,) = } on I's

Herein, we have n® = n®? z,3+q¢*d := nos T,3 +Gd+m>P8 d,3 with mem-
brane forces n®? = 75, bending moments m*® = m?* and shear forces
G and m® := d x m“P x5 with m®” = m® and the components v, of
the normal vector to the boundary. The effective stress resultants n®° and
G® are related to the stress resultants n®? and ¢® by well-known relations,
Green and Naghdi (1974). The geometric boundary conditions u—a = 0 on
I', have to be fulfilled as constraints. In the following, the stress resultants
obtained by partial derivatives of the strain energy function are denoted by
o := 0zW, whose components are arranged according to (61),

~11 ~22 ~12

o = [, a%2 a2 mt

2m' g, " (66)

,m
The field variables are approximated by using the isoparametric concept
and bi-linear ansatz functions for the position and director vectors. Then
the weak form is linearized in order to get the stiffness matrix and residual
vector, for details we refer to Balzani et al. (2008).
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5.3 Interface to General 3D-Constitutive Laws

This section explains the interface of the shell element to general nonlin-
ear three-dimensional constitutive laws as pointed out in Section 3 and
provides the numerical integration of the stress resultants. As a start-
ing point we consider the relation between the strains at a layer point
with coordinate ¢3 and the shell strains (59) in matrix notation E,, =
[EH, EQQ, Elg, E137 E23]T7 which is rewritten by

S
1 00¢€ 0 0 0 0 2522
0100 & 0 00 c12

E,=Ae=]001 0 0 & 0 0 e (67)
0000 0 0 10 2”22
0000 0 0 01 12

Ba!
L 72

In this section we use () for tensorial quantities arranged in vectors or ma-
trices, e.g. the second-order tensor E can be written as vector E. The kine-
matic shell model assumes inextensibility in thickness direction. Thus, the
zero normal stress condition has to be enforced, which then yields the thick-
ness strains, see Dvorkin et al. (1995) and Klinkel and Govindjee (2002).
For this purpose we consider the stresses to be organized in a vector given
by

sz[gg} (68)

Herein, S™ = [S11, 822 5§12 §13 623|T are the Second Piola-Kirchhoff stresses,
which are obtained by evaluating a general nonlinear three-dimensional con-
stitutive law. In order to derive the vector of the stress resultants we insert
(67) in the internal virtual work expression of the body and obtain

(h/2)
ol = / ATS™ [ de? (69)
(=h/2)

where i denotes the determinant of the shifter tensor. The zero normal
stress condition S33(E33) = 0 is iteratively enforced. For this purpose the
increment of the Second Piola—Kirchhoff stress tensor is reformulated in
matrix notation by

_ dgm @mm @m?) dEm -
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where C = 05S denotes the material tangent which is determined within
a three—dimensional stress analysis at the considered point in shell space.
The Taylor series of the zero normal stress condition is aborted after the
linear term and set to zero. Then the normal stress condition reads
§330) 4 CBOD ARG =0 with  CBO) = a5 (71)
dES)

and the solution yields the update formula

§33(1)

i+1 7
E?()3 ) = Eé?)) - CS?’(i) ’

(72)
where i denotes the iteration number. Thus, the nonlinear scalar equa-
tion S33(FE33) = 0 is iteratively solved for the unknown thickness strains
using Newtons scheme. One obtains the stress vector S™ and the tangent
matrix C with submatrices according to (70). The algorithm provides an
interface to arbitrary nonlinear three—dimensional material laws. It requires
the computation of S and C which is a standard output of any nonlinear
three-dimensional stress analysis.

5.4 Examples: Influence of Anisotropy

To provide numerical examples this section discusses two examples, where
polyconvex anisotropic hyperelastic strain energy functions are used. For
an illustration of the anisotropy effects the simulations of anisotropic shells
are compared with the results of similar isotropic ones. Due to the fact
that fiber reinforced shells often show a different behavior in warp and fill
direction, a quadratic plate with two preferred directions characterized by
different material properties is considered first. Second, a hyperbolic shell
is taken into account, where the material is reinforced in one preferred di-
rection. It is remarked that in all numerical calculations the solution for
each load step is found after 4 to 6 Newton iterations for both, the isotropic
and the anisotropic case.
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Quadratic Plate with two Different Fiber Types This example con-
siders a thin quadratic plate consisting of a typical membrane-like engi-
neering material with a particular behavior in warp and fill direction. To
analyze the influence of anisotropy we submit a follower load (perpendicular
to the deformed mid-surface) and compare the solution of this plate with
the results of an isotropic plate.

Figure 5: Boundary conditions of the thin quadratic plate and fiber direc-
tions Ay =(1 0 0)" and Apy=(0 1 0)T.

The width and thickness of the quadratic plate are set to b = 0.1 m and
2.0 mm, respectively. The boundary conditions are shown in Fig. 5. For
the description of the isotropic behavior we use the strain energy density

Yiso = C1 (Il 151/3 - 3) + e (I52 + 13 — 2) (73)

and the energy associated with each fiber direction is represented by
(@)
a 2
Vo) = of’ <K§ - > : (74)

Since different fiber properties are assumed for the warp and fill direction
also different material parameters for the two directions are taken into ac-
count. Thus, we set ny = 2 and the complete energy reads

e o
b = thiso + ol (KEV —2) 4ol (K —2) (75)

The warp direction is aligned in x-direction, i.e. Ay = (1 0 0)”, and
the fill direction is oriented in y-direction, i.e. Ap) = (0 1 0)7. The
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parameters are set to

g = 1.0kN/mm?,

€1 = 100.0 kN/mm?, e = 5.0,

(1; / (1? (76)
a;’ = 98.0kN/mm? ;' = 3.0,
ol = 140.0kN/mm?, of? = 23.

Then we obtain the material behavior as depicted in Fig. 6, where the
force-strain response of the considered material is illustrated for a biaxial
tension test and a uniaxial tension/compression test in x- and y-direction.

force, kN/m force, kN/m
20 T T 20 i .

(1)/ /(2) /(1) /(2)
15 / 15

10

0

a) strain, % b) strain, %

Figure 6: Force-strain response of a) uniaxial tension/compression test and
b) biaxial tension test; (1) warp- and (2) fill-direction.

For the numerical analysis we increase the load parameter until we ob-
tain a maximum vertical displacement of approximately usz = 130.0 mm for
the isotropic and the anisotropic plate. We investigate the discretization
of the plate with 1600 four-node shell elements. In Fig. 7 the distribu-
tion of n'! and n?? is depicted. For the isotropic case we notice that the
distribution of n'! is identical to the rotated distribution of n?? by 90°,
which directly results from isotropy. In the anisotropic case we observe,
due to the differing stiffness in warp and fill direction, a significantly differ-
ent response concerning the quantitative normal forces n'' and n?2, which
becomes obvious when comparing Fig. 7b with 7d.
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Sig1 Sig1
10.0 800.0
9.0 o 7222
| 8.0 644.4
I | 7.0 ] 566.7
Eiieeamnazs 6.0 ' i 488.9
5.0 H \ H 411.1
40 HHHH 3333
3.0 255.6
2.0 177.8
1.0 100.0
a b
= Sig2 P Sig2
H tHH 550.0
! 10.0 HH 500.0
o g'g EREERE 450.0
‘l‘ ! 70 400.0
| 0 350.0
HH 20 300.0
o i 250.0
a0 a1 200.0
o 3 150.0
29 100.0
' 50.0
c) d)

Figure 7: Normal force in x-direction n'! and in y-direction n?? for the a,c)
isotropic and b,d) anisotropic plate, respectively.

Hyperbolic Shell Subjected to Locally Distributed Loads In this
section we investigate a hyperbolic shell, which is subjected to four pairs of
locally distributed vertical loads, cp. Bagar and Ding (1997) or Bagar and
Grytz (2004). In Fig. 8 the boundary value problem and the discretization
with 3200 four-node shell-elements are depicted.

The height is defined to be H = 12.0 m and for the thickness of the
shell 0.05 m are chosen. The radius of the hyperbolic shell is computed as
a function of the z-coordinate, i.e.

wherein the minimum radius is set to Ry = 3.0 m. For an illustration of the
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a) b)

Figure 8: Hyperbolic shell: a) schematic sketch of the system with boundary
conditions and b) discretization with 3200 four-node shell elements.

anisotropy we compare the simulation of an i) isotropic and a ii) transversely
isotropic shell, where locally distributed loads at the top and bottom of
the hyperboloid extend the structure in z-direction. For the isotropic and
the transversely isotropic energy the same functions as for the plate in the
previous section are used. Since for the anisotropic shell only one fiber
direction A is taken into account, which is aligned as a helix around the
hyperbolic shell with 3 = 45.0°, cp. Fig. 8a, we set ny = 1 and the complete
energy reads

W = iso + 1 (K3 — 2)°2 . (78)

The material parameters are set to

100.0kN/m?, ¢ 2000.0kN/m?, e = 10.0,
5000.0 kN/m? | «ap = 2.3.

C1

(79)
ai

In order to be able to qualitatively compare the transversely isotropic with
the isotropic shell we apply concentrated loads in each structure such that
a vertical displacement of approximately us = 2.0 m is reached. When
comparing the deformed structure of both shells as depicted in Fig. 9, we
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observe a significant difference. The deformed isotropic shell is symmetric
with respect to the global coordinate axis, while the transversely isotropic
shell is twisted although only a symmetric force in z-direction is applied.

Figure 9: Different deformation states (from the left to the right: from the
undeformed to the completely deformed state) for the a) isotropic and b)
transversely isotropic shell.

The reason is obviously the stiff fibers providing a strong reinforcement
in the diagonal direction around the hyperbolic shell. The exponential char-
acter of the transversely isotropic energy function is shown by the fact that
the anisotropic shell behaves nearly isotropic in the beginning, too, see
Figs. 9b; 2, where no twisting is observed. But then for larger deforma-
tions the anisotropic influence increases until the twist becomes significant
in Fig. 9by.

6 Conclusion

In this contribution it was shown that the polyconvexity condition seems
to be a suitable condition for the construction of energy functions, also
with respect to engineering applications. By satisfying this condition the
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existence of minimizers has been guaranteed as well as material stability.
In the framework of polyconvexity the stress-free reference configuration is
in general not able to be satisfied automatically. Thus, a simple construc-
tion principle was proposed based on the property that external convex
and monotonically increasing functions of internal polyconvex functions are
again polyconvex and a variety of transversely isotropic energy functions was
constructed. These functions were discussed with respect to the description
of soft biological tissues and their applicability has been illustrated by the
comparison with experiments showing a good aggreement. In addition to
this, thin shell problems were analyzed at finite strains. For the incorpora-
tion of the polyconvex strain energies in the considered shell formulation an
interface for a general three-dimensional constitutive model was described.
Several numerical examples were investigated where an isotropic plate and
shell was compared with anisotropic ones. When comparing the isotropic
and anisotropic cases, significant differences of the deformation and also of
the distribution of some representative stress-resultants were observed.
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Appendix
Isotropic functions using Iy = tr[C], I = tr[Cof[C]], I3 = det][C]
Polyconvex function Restrictions Stress-free r.c.

1')041 Iixz

1')041 Igz

RN
n*
y
n*
ReN
1173

Ly
L,y

L,

1')061 (13 o 1)2

1 s
Vo (14 7z -2)

3
Yy (VI 1)

1')041 [[3 — ln(lg)]

041>07 ag > 1

041>07 ag > 1

ap >0

ap >0

ap >0

ap >0

a1 >0, ag>1, I3>0

ap >0

ap >0

ap >0

ap >0

ap >0

a1 >0, az> a3 >1

041>07 ag > 1

ap >0

no

no

no

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

1‘)cp. e.g. Hartmann and Neff (2003), Schroder and Neff (2003)
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Isotropic functions (continued)

Polyconvex function Restrictions Stress-free r.c.
Dy {Is — In(I3) + [In(I5)]*} a1 >0 yes
g -
Loy 1—/3 — 392 a1 >0, a2 >1asg>1 yes
I3
13a2/2 @3
Yoy 2[a2 — (3v/3)°2 a1 >0, s >1asg>1 yes
3
i -
1)a1 exp 13730‘2 —1 a1 >0, a2 >1, ag >1 yes
I§62/
]3a2/2 @3
Yoy { exp 2]‘“ — 3(V/3)*2 -1 a1 >0, as>1, a3 >1 yes
3
I
2 ﬁ -3 ar >0 yes
Iy
I
3')a1 % -3 a; >0 no
Iy

1‘>cp. e.g. Hartmann and Neff (2003), Schroder and Neff (2003)
2)ep. e.g. Holzapfel et al. (2000) or Schroder et al. (2005)
3')cp. e.g. Schroder and Neff (2001), Schréder and Neff (2002) or Schroder et al. (2005)
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Transversely isotropic functions using I = tr[C], I> = tr[Cof[C]], I3 = det[C],

J4 = tI‘[CM], J5 = tI‘[COf[C]M], K1 = J5 — 11 J4 +IQ, KQ = 11 — J4, K3 = 11 J4 — J52

Polyconvex function  Restrictions Stress-free r.c.
1'>Oé1 JEQ ] > 0, az > 1 no
J?
1')061 f ] > 0, az > 1 no
L’
3
1')Oé1 K;!Q a > 0’ e % 2 1 no
K
Yy L a1 >0, az >1 no
n*
3
K2
1')061 21 o > 0 no
'
3
Yoy K§2 a1 >0, as >1 no
K3
By —2= a1 >0, az >1 no
n*
3
K2
1'>061 22 a1 >0 no
'
3
Yoy K32 a1 >0, az >1 no
K3*?
By 2 a1 >0, az >1 no
n*
3
Dy (112 + Ja 11) a; >0 no
Yy (2]12 — K> Il) a; >0 no
Yy (122 + Ko Ig) a; >0 no
1')oq (2]22 + K3 Ig) ar >0 no
Yoy (aely —azJs)  a1>0, az >az >0 no
1')Oé1 (042 Is — a3 K1) a; >0, ag > a3 >0 no

see Schrider and Neff (2003)
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Transversely isotropic functions (continued), power functions

Polyconvex function Restrictions Str.-fr. r.c.
Vo (J&3 —1)*2 a1 >0, ae>1, a3 >1, Ju>1 yes
o
J8 J8
1‘)a1 f/s —1 a; >0, ae > 1, ag > 1, f/s >1 yes
I I
Dy (K8 —1)*2 a1 >0, a0>1, as>1, Ky >1 yes

ag
K3 K3
1‘)a1 L a; >0, a2 >1, ag > 1, 1> yes
(1;/3 shes=hope
oo (KT K?
Yo | —= —1 a; >0, ae>1, —=>1 yes
2 2
My (K53 —2%3)*2 a1 >0, ae>1, a3 >1, Ko >2 yes
Kg 2 Kg
oy 1—2/3 — 208 a1 >0, az > 1, ag > 1, 12/3 > 293 yes
3 I
az
K3 K3
Yay 2—/23—4 a; >0, ag > 1, 2—/2324 yes
I3 I3
Doy (Kg8 —293)*2 a1 >0, a0>1, as>1, K3>2 yes
a2
K3 K3
Y eon < 13/3 — 2a3> ar >0, a2 >1, ag > 1, 13/3 > 293 yes
1y 1y

1)ep. Balzani et al. (2006), Balzani (2006). Please note that continuous tangent moduli

are obtained for ag > 2.
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Transversely isotropic functions (continued), hyperbolic cosine

Polyconvex function Restrictions Stress-free r.c.
Yay [cosh (J§2 — 1) — 1] a1 >0, a2 >1, Jy>1 yes
Jg? Jg?
Yy |:cosh (If/?’ - 1> - 1} a1 >0, az > 1, If/3 >1 yes
3 3
Moy [cosh (K82 — 1) — 1] a1 >0, a2 >1, K1 >1 yes
K2 K2
Loy [cosh (111/3 — 1> — 1} ar >0, ag > 1, 111/3 >1 yes
3 3
K7 K7
Yay |cosh 2—1 -1] -1 ap >0, Lo>1 yes
12/3 7273
3 3
ay [cosh (K2 — 2°2) — 1] a1 >0, as>1, Ko >2 yes
K5? K32
Yoy |:cosh ( 12/3 — 20‘2) - 1:| a1 >0, az > 1, 1—2/3 > 292 yes
1. 1
3 3
K3 K3
Loy |:cosh (12/23 - 4> - 1:| ay >0, 1_2/23 >4 yes
3 3
Yy [cosh (K§2 —292) — 1] a1 >0, ag >1, K32 >2 yes
K32 K3
g [cosh (113’/3 - 20‘2) — 1] ay >0, az > 1, 11—3/3 > 2% yes
3 3

1ep. Balzani (2006)
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Transversely isotropic functions (continued), exponential functions

Polyconvex function Restrictions Str.-fr. r.c.
1')2&71 {exp [ (J5 — 1)2] -1} a1 >0, ag >0, ag >1, Ji® >1 yes
2
Jy8 ’ g
1) 2L dexp | ;13—1 -1 a1 >0, as >0, ag > 1, fgzl yes
202 13/ 13/
”20‘—1 {exp [az (K7® —1)] — 1} o1 >0, a2>0, a3 >1, K >1 yes
Q2
K3 ’ K2
1) exp |ae ﬁ -1 —1 a1 >0, a2 >0, ag > 1, 11/3 > yes
20z I3 I3
ax K3 ’ K}
1) exp | a2 2—/13 -1 -1 a1 >0, a2 >0, 2/13 >1 yes
2002 _[3 ]3
1->20‘_1 {exp [a (K5 —2°2)%] — 1} a1 >0, a2 >0, az>1, Ko >2 yes
(65
K33 ’ K3
1) exp | a2 1—25 — 293 -1 a1 >0, a2 >0, ag > 1, 123 > 293 yes
2002 ]3/ ]3/
ai K3 ’ K3
1) =L exp | a2 2—/23 —4 -1 a1 >0, a2 >0, 2/23 >4 yes
202 I3 I
1');—1 {exp [z (K5? — 2a3)2] -1} a1 >0, a2 >0, az3 >1, K3>2 yes
Q2
K3® ’ K3®
1) M exp | az _53 _9a3 -1 ar >0, az >0, az > 1, 133 > 293 yes
202 ]3/ [3/

1ep. Balzani et al. (2006),

Balzani (2006)
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Transversely isotropic functions, special models

Polyconvex function Restrictions Str.-fr. r.c.

2
J. J.
1) A exp | aa 1%43—1 -1 a1>0,a2>0,a321,1%4321 yes
200 ]3/ ]3/

e () )

Br
1 (" 3
+— w; Ji —1
3 (i)

i

1 _
+— (I W—1)} pr >0, ar > 1, B >1, v > —1 yes
Yr

with I; = tr[CL;], J; = tr[Cof[C]L;] Y w!” =1,r=1,2,..

andleM, LQZ%(]_—M)

2 (5—*” (272 =1) = fim ani/Q) S im0, fim(ym —2) 20, Ja > 1 yes

1 )
4.) . J aj+1
;Cﬂ [Olj + 1( )

1 ) 1 _
ﬁ-+1(K1)B'7+1+7(13) ”} ¢; 20,05 20,8 >0, iz yes
J J
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+

see Holzapfel et al. (2000)
2)gee Ttskov and Aksel (2004)
3)see Markert et al. (2005)
4)gee Schroder et al. (2008)
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