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Abstract In this paper we show the existence of global minimizers for the geometrically
non-linear equations of elastic plates, in the framework of the general 6-parameter shell
theory. A characteristic feature of this model for shells is the appearance of two independent
kinematic fields: the translation vector field and the rotation tensor field (representing in
total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence
theorem by applying the direct methods of the calculus of variations. Then, we generalize
our existence result to the case of anisotropic plates.
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1 Introduction

In this paper we present an existence theorem for the geometrically non-linear equations of
elastic plates, in the framework of the 6-parameter shell theory.

The general (6-parameter) non-linear theory of shells, originally proposed by Reissner
[37], has been considerably developed in the last 30 years. This theory and most of the
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results in the field have been presented in the books of Libai and Simmonds [24] and
recently Chréscielewski, Makowski and Pietraszkiewicz [10]. The model is based on a
dimension-reduction procedure of the three-dimensional formulation of the problem to the
two-dimensional one, and is expressed through stress resultants and work-averaged defor-
mation fields defined on the shell base surface. Thus, the local equilibrium equations for
shells are derived by an exact through-the-thickness integration of the three-dimensional in-
dependent balance laws for linear momentum and angular momentum. The deformation of
the shell is then characterized by two independent kinematic fields: the translation (displace-
ment) vector and the rotation tensor. The appearance of the rotation tensor as an independent
kinematic field variable is one of the most characteristic features of this general shell theory.
In this respect, we mention that the kinematical structure of the non-linear 6-parameter shell
theory is identical to that of the Cosserat shell model (i.e., the material surface with a triad
of rigidly rotating directors attached to any point) proposed initially by the Cosserat broth-
ers [14] and developed subsequently by Zhilin [42], Zubov [43], Altenbach and Zhilin [3],
Eremeyev and Zubov [20], Birsan and Altenbach [7], among others. A related Cosserat
shell-model has been establish recently by Neff [27, 29] using the so-called derivation ap-
proach.

The subject of derivation and justification of the non-linear, geometrically exact equa-
tions for plates and shells has been treated in many works, and the existence of solutions has
been investigated using a variety of methods, such as the method of formal asymptotic ex-
pansions or the I"-convergence analysis, see, e.g., [1, 2, 21, 34, 35, 39-41]. For an extensive
treatment of this topic, as well as many bibliographic references, we refer to the books of
Ciarlet [12, 13]. To the best of our knowledge, one cannot find in the literature any existence
theorem for the non-linear 6-parameter theory of plates or shells as developed in [10, 24]. In
our work, we describe the geometrically non-linear equations of elastic plates as a two-field
minimization problem of the total potential energy and we prove the existence of minimizers
by applying the direct methods of the calculus of variations. The first result concerning the
existence of minimizers for a geometrically exact (6-parameter) Cosserat plate model has
been presented by the second author in [27, 29]. Due to differences in notation, this result
has not been much noticed. In this paper, we employ similar techniques as in [27] and adapt
the existence proof to the general 6-parameter plate equations.

In the framework of the linearized 6-parameter theory, the existence of weak solutions
for micropolar elastic shells has been proved recently in [16]. We mention that the kinematic
structure of the general 6-parameter shell theory differs from that of the so-called Cosserat
surfaces, i.e., material surfaces with one or more deformable directors [4, 22, 26]. In partic-
ular, the kinematics of Cosserat surfaces with only one deformable director [26, 38] leaves
indefinite the drilling rotation about the director, while the general 6-parameter shell theory
is able to take into account such drilling rotation. For the linear theory of Cosserat surfaces,
the existence theorems have been established in [5, 6, 15].

Here is the outline of our paper: In Sect. 2 we briefly review the field equations of the non-
linear 6-parameter plate theory. Then, in Sect. 3 we prove the existence theorem for isotropic
plates. The generalization of the existence result for anisotropic plates is presented in Sect. 4.
We also show that the existence theorem remains valid in the case of some alternative relaxed
boundary conditions for the rotation field. We present a comparison between the non-linear
6-parameter plate and the Cosserat plate model proposed and investigated by the second
author in [27, 29]. Although this Cosserat model for plates has been obtained independently
by a formal dimensional reduction of a finite-strain three-dimensional micropolar model (see
also [31]), the kinematical variables and the strain measures of the two models essentially
coincide. Moreover, the expressions of the elastic strain energies become identical, provided
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Existence Theorems in the Non-linear 6-Parameter Theory

we make a suitable identification of the constitutive coefficients for isotropic plates in the
two approaches.

The linearized version of this model has also been investigated in [27-30, 32] and its
relations to the Reissner—Mindlin, Kirchhoff-Love and other classical plate models have
been discussed.

2 Basic Equations of Geometrically Exact Elastic Plates

The governing equations of the general 6-parameter non-linear theory of shells have been
derived in [4, 10, 24] by direct integration of the two independent fundamental principles of
continuum mechanics: the three-dimensional balance laws of linear momentum and angular
momentum. In this section we summarize these equations, specialized here for the case of
plates (i.e., initially flat shells). To this aim, we employ mainly the notations introduced
in [10, 17, 24].

Consider an elastic plate, which is a three-dimensional body identified in the reference
(undeformed) configuration with a region £2 = {(x1, x2,2)|(x1, X2) €,z € (=%, 1)} of the
Euclidean space. Here i > 0 is the thickness of the plate and » C R? is a bounded, open do-
main with Lipschitz boundary dw. Relative to an inertial frame (O, e;), with e; orthonormal
vectors (i = 1,2, 3), the position vector r of any point of 2 can be written as

r(xy,2) =x+ze3, X=2x4€4, (X],X2) EW, Z€ (—% %) (1)
Throughout this paper, we employ the usual convention of summation over repeated indices.
The Latin indices i, j, ... take the values {1, 2, 3} and the Greek indices «, 3, . .. range over
the set {1, 2}.

In the deformed configuration, the base surface of the plate (shell) is represented by the
position vector y = x (x), where x : @ C R? — R3 is the surface deformation mapping. Let
the vector field u(x) represent the translations (displacements) and the proper orthogonal
tensor field Q(x) designate the rotations of the shell cross-sections. Then the deformed
configuration of the plate is given by (see Fig. 1)

y=xx)=x+u), di=Qe;, i=12.3. 2)

Fig. 1 The reference base surface w of the plate and the deformed surface S, described by the surface
deformation mapping y = x (x) and the independent rotation tensor field Q(x)
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The vectors d; introduced in (2) are three orthonormal directors attached to any point of the
deformed base surface S = x (w). Thus, the rotation field Q(x) € SO(3) can be written as

0=d;®e. 3)

According to the Lagrangian description, let f and ¢ be the external surface resultant
force and couple vectors applied at any point y € S, but measured per unit area of w. Also,
letn, = Nv and m,, = Mv be the internal contact stress and couple resultant vectors defined
at an arbitrary boundary curve dG C S, but measured per unit length of the undeformed
boundary 9y C w. (We have denoted here by G = x(y) and v is the external unit normal
vector to dy lying in the plane of w.) Here, the tensors N = Nj,e; ® e, and M = M;,e; Q e,
are the internal surface stress resultant and stress couple tensors (of the first Piola—Kirchhoff
stress tensor type). Then, the local equilibrium equations are given in the form [10, 25]

Div,N+ f=0,  DivM +axI(NF' —FN")+¢=0, )

where F = Grad, y = y , ® e, is the surface gradient of deformation and Divy N = N4 q€;,
Divy M = M, 4e;. As usual, we denote the partial derivative with respect to x, by (-) 4 =
% (). In (4) the superscript (-)7 denotes the transpose and axI(A) is the axial vector of any
three-dimensional skew-symmetric tensor A, given by

axl(A) = Asye; + Ajzey + Ayjes, forA=A;je;®e;, AT =—A, 3)

such that Av = axl(A) x v, for any vector v. The corresponding weak form of the local
balance equations has been presented in [24] Chap. VIII, or in [17].

To formulate the boundary conditions, we take a disjoint partition of the boundary curve
dw = dwg Udwy, dwg Ndws =@, with length(dw,) > 0. We consider the following bound-
ary conditions [10, 36]

u—u*=0, 0— Q=0 along dwy,, (6)
Nv —n* =0, Mv—m*=0 alongdwy, @)

where n* and m* are the external boundary resultant force and couple vectors applied along
the part dwy of the boundary dw. In general, from a modelling point of view, it is a difficult
task to specify boundary conditions for the rotation @ in (6) at the boundary dw,. In [17]
the following requirement is considered: in relations (6) the functions u* and Q* defined
on dw, should be found from the Dirichlet boundary conditions u3p(xy, 2) = U5, (xa, 2)
for the three-dimensional body §2, at any point (x,, z) € 082, = dwy X (—%, %). Thus, the
functions #* and Q* should be determined from the condition that the work done along dw,
by the resultant stress and couple vectors n,,, m, on the translation * and rotation Q* be the
same as the work done along 9£2,; by the nominal three-dimensional stress vector £, (x4, )
on the translation u3, (x4, 2).

In the general resultant theory of shells, the strain measures are the strain tensor E and
the bending tensor K, given by [10, 17, 19]

E= QT(€a®ea)’ sOt:y,a_dOtv (8)
K=0"(,®e,), x,=ax1(Q,0"). ©)

We mention that the kinematical structure (8), (9) of the general shell theory is identical
with that of the classical version of the Cosserat shell [3, 7, 14, 20, 42]. In the case of plates,
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these strain tensors can be written in component form relative to the tensor basis {e¢; ® ey}
as

E:Eiaei®em:(y,a'di_sia)e[®ea7 (10)
1
K=Ke;Q@e, = Eeijk(dj,a -dpe; e,
=(dyy-d3)ey®ey+(dsy-di)e; Qe+ (d -dr)es @ e, (11

where §; is the Kronecker symbol and e is the permutation symbol.
According to the hyperelasticity assumption, the constitutive equations for elastic plates
are given in the form [10, 18, 24]

ow ow
N=0Q0—, M=0—, 12
QE)E QE)K (12)
where
W=W(E, K) (13)

is the strain energy density. Then, (4) are the Euler-Lagrange equations corresponding to the
minimization problem of the total potential energy.

In order to characterize the material of the elastic plate, one has to specify the expression
of the potential energy function (13). In the paper [18] the conditions for invariance of the
strain energy under change of the reference placement are discussed and the local symmetry
group is established. The structure of the local symmetry group puts some constraints on
the form of W, which allows one to simplify the expression of W. From this representation,
the strain energy density corresponding to physically linear isotropic plates is given by (see
[18], Sect. 10)

W(E, K) = Wi (E) + Whena (K),
2Wmn(E) = ayt? By + axrE| + astr(E| E)) + aunEE" n,
2Woend(K) = itr? K | + BotrK + Bstr(K [ K ) + Ban KK n,
E=E—-nQ®n)E, Ki=K—-n®nK, n=e;,

(14)

where the coefficients oy, B (k =1, 2, 3,4) are constant material parameters.

Remark 1 In the works [10, 11] the authors have employed a particular form of the expres-
sion (14) for the strain energy density in the isotropic homogeneous case, namely

2W(E,K) = C[vt’E |+ (1 —v)tr(E[ E})] + ,C(1 —v)nEE"n
+ D[’ Ky + (1 —v)tr(K[ Ky)] + o, D(1 —v)nKK"n, (15)
where the coefficients are given by

Eh ERh? 5 7
oy = — o= —. (16)

C_ ’
6 10

=, Dzi,
1 — 12 12(1 — v2)

Here E is the Young modulus, v is the Poisson ratio, C is the stretching (membrane) stiffness
of the plate, and D is the bending stiffness. The values of the two shear correction factors o
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and «, from (16) have been determined in [11] through a numerical treatment of several non-
linear shell structures. We observe that the form (15) of the strain energy density W can be
obtained from the more general representation (14) by choosing the following coefficients

2A1L
V=
A+2u

o) = h, 052:0, a3=C(1—U):2,uh,

oy =a;C(1 —v) =2uah,

a7
)‘M h3 m 3
:D = _ = :D 1— = —,
B Va6 p2=0, B3 =D(1 —v) 5
o b’

Bi=a,D(1—v)= 6

where 1 and X are the elastic Lamé moduli of the isotropic and homogeneous material.

3 Existence Theorem for Isotropic Plates

We employ the usual notations for the Lebesgue space L?(w) and the Sobolev space H' (),
endowed with their usual norms || - |2, and || - || 41(,).- We denote the set of proper or-
thogonal tensors by SO(3) and designate the set of (three-dimensional) translation vec-
tors by R? and the set of second-order tensors by R**3. The functional spaces of vec-
torial or tensorial functions will be denoted by Lz(a), R, H 1(a), R?), and respectively
Lz(w, R3*3), H! (w, R3*3). For tensorial functions with range in SO(3), we employ the no-
tations L*(w, SO(3)) and H'(w, SO(3)). We also use the classical notations for the norms
vl = @-v)'/2, Vv e R3, and | X|? = tr(XX7),VX € R¥3,
Let us define the admissible set .4 by

A= {(J’v 0) e Hl(a),]R3) x Hl(w,50(3))|y|3wd =y, Qou, = Q*} (18)

The boundary conditions in (18) are to be understood in the sense of traces. We assume the
existence of a function A(u, Q) representing the potential of the external surface loads f, ¢,
and boundary loads rn*, m* [17].

Consider the two-field minimization problem associated to the deformation of elastic
plates: find the pair (y, Q) € A which realizes the minimum of the functional

I1(y, Q)=/ W(E, K)dw — A(u, Q) for (y, Q) € A. (19)

Here the strain tensor E and the bending tensor K are expressed in terms of (y, Q) by rela-
tions (8) and (9). The variational principle of total potential energy relative to the functional
(19) has been presented in [17], Sect. 2.

The external loading potential A(u, Q) is decomposed additively

A, Q) = Ay(u, Q) + Ayo, (u, 9), (20)
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where A, (u, @) is the potential of the external surface loads f, ¢, while Ay, (u, @) is the
potential of the external boundary loads n*, m*, which are taken in the form

Aot @) = [ £ -udo+ 11,(Q).
. 2D
Ai)wf(ua Q):/ ”*Uds-i-nawf(Q)
dwy
The load potential functions I7,, : L*(w,SO0(3)) — R and Hawf : L*(w, SO(3)) — R are as-
sumed to be continuous and bounded operators, whose expressions are not given explicitly.

We are now able to present the main existence result concerning the deformation of
isotropic elastic plates.

Theorem 2 Assume that the external loads and the boundary data satisfy the regularity
conditions

fel*(w.R’), n*eLl’(dosR’), y eH'(o,R), Q* € H'(»,50(3)).
(22)
Consider the minimization problem (18), (19) for isotropic plates, i.e., when the strain en-
ergy density W is given by the relations (14). If the constitutive coefficients satisfy the con-
ditions

20 + oy + a3 >0, oy + a3 >0, oz —ap >0, a4 >0,

281+ B2+ B3 >0, B2+ B3>0, B3 — B2 >0, Ba >0,

(23)

then the problem (18), (19) admits at least one minimizing solution pair (3, Q) € A.

Proof To prove this assertion, we apply the direct methods of the calculus of variations.
First, we observe that for any @ € SO(3) we have || @||> = 3 and, hence, || Oll12) 18
bounded independent of Q. In view of the conditions (22),, and the boundedness of [T,
and [T, 7o We derive from (20), (21) that there exist some positive constants C; > 0 such
that

[A@. )| = 1 22 + 77| 2o 181 260 ) + [T(@)] + [Maw, (Q))]
< Cillull 2 + Collullgi) + Cs + Cy,
which means that there exists a constant C > 0 with
[A@, D <C(Iyllgw +1), Y, @) €A (24)

From (14), we observe that Wy, (E) is a quadratic form in the strain variables E;, (i =
1,2,3; ¢ =1, 2) given by (10). More precisely, we may write

7 1 2 2 1 2 2
Wi (E) = W (Eio) = 3 (o1 + a2 + a3)(ET + E3) + 5oz3(E12 + E3))
1 2 2
+ 2014(E31+E32)—|—a1E1|E22+a2E12E21. (25)
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The quadratic form WW(E,«O() given by (25) is positive definite if and only if the conditions
(23)_4 on the coefficients o are satisfied. Then, by virtue of the relations (23);_4 we infer
that there exists a constant ¢; > 0 such that

3 2
War(Ei) =1 Y Y E;,. VEq €R,
i=1 a=1
or, equivalently,
Wb (E) > 1| E|I>, VE =Ei,e; ®e,, Eiy €R. (26)

Analogously, from the conditions (23)s_g on the coefficients 8, we deduce that there exists
a constant ¢; > 0 such that

Woena(K) > &1 K|?, VK =Kiue; ® €4, Kig €R. (27)
On the other hand, in view of (8) we observe that
IEII>=t(EE") =t[(e, - €p)ea ®es| =€ €=V 4 Yoy —2V 4 do+2,

since ||d, || = 1. Then, the Cauchy-Schwarz inequality yields

1/2
/ IEIPdo = 131132, + 13 2122, —2v2a(13 1132, + 13 2122,,,) " + 2.
or

IENZ: ) = I1F 1172, — 2V2al Fll 2 + 24, (28)

L%(w) L2 (w)

where a = area(w) and F = Gradyy = y , ® e, is the surface gradient of deformation intro-
duced previously.

We show now that the functional /(y, Q) is bounded from below over A. Indeed, for
any (y, Q) € A we use consecutively the inequalities (24), (26), (28) to write

1(.0) = /mew)dw— Aw, Q) > /clnEnzdw— Iyl +1)
= 1 (IF 172, — 2V2all Fll 2 +2a) = C(I¥ll 1wy + 1)

so that

1(y, @) = kil Fli o, = kell¥llgiw — ks, Y3, Q) €A, (29)

for some constants &y, k,, k3 with k; > 0, k, > 0. Using the Poincaré inequality for the field
y—y* e H (w,R%) (with y — y* = 0 on dwy) in the form

|Grad, (3 = ¥) 120, = 1 = ¥) 320y + 10 =) 2132 = €215 = 3 310

then from (29) we deduce that there exist some constants K; > 0, K, > 0 and K3 such that
%2 *
13 D =Ky =y, — Kly =y, — K YO. Q€A (30
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Relation (30) shows that / is bounded from below over .4, and thus there exists an infimizing
sequence {y*, 0¥}, C A with

Jlim 1(y", Q") =inf{1(y, Q)I(y, @) € A}. (31)

According to the hypotheses (22); 4 we have (y*, Q%) € A and I (y*, Q") < co. In view of
(30), we may choose the infimizing sequence with the first term (y', Ql) = (y*, Q") and
the general term (y*, Q%) satisfying

* * %12 *
00> 1(y", 01) = 1(¥, 0) = Ki[[y* = [0y — Ko ¥ =" |11y — K. VK EN.
(32)
Hence, the sequence { y"},‘:‘;l is bounded in H'! (w, R?). Consequently, we can extract a sub-
sequence of { yk},‘jil, not relabeled, which converges weakly to an element y in H' (w, R?),
ie.
y'—3% inH'(0,R?), fork— oo, (33)

and moreover it converges strongly in L*(w, R?) by Rellich’s selection principle
y*—=3 inL*(w,R’), withjeH' (o, R%). (34)

On the other hand, from (32), (19), and (24) it follows that the sequence f W (EN)dow is
bounded independent of k € N. Then, from (26) we deduce that {E¥ }oo, is a bounded se-
quence in L*(w, R3*3). Therefore, there exists a subsequence (not relabeled) and an element
E € L*(w, R3*3) such that

E*~ E inL*(w,R¥?), with EX = Q*T[(y, — Q%e.) ® €, ]. (35)

Similarly, from (32) we deduce that fw Wiend (K¥)dw is a bounded sequence and, in view
of (27), the sequence {K"},‘:O=1 is bounded in L*(w, R3*3). Taking into account (9) and (5),
we observe that | K[> = 3(1Q /11> + | @ ,II*) and || @||> = 3. Then, it follows that the se-
quences {Qk }eo, are bounded in L*(w, R33) and, hence, {Qk}k | is a bounded sequence

in H '(w, R¥*3). Consequently, there exists a subsequence (not relabeled) and an element
Q € H'(w, R*3) such that

0"~ Q0 inH'(0,R>), and Q@' — Q inL*(w,R™). (36)

Moreover, we observe that L2(w, SO(3)) is a closed subset of L%(w, R¥). Indeed, for
any sequence {Rk}k L C L*(w,SO03)) with R* — R in L?*(w, R3*?), we can write 1 =
R‘R*" — RR" in L' (0, R¥?). Thus, RR” =1 and R € L*(w, SO(3)).

Consequently, from (36) and Q € LZ(w SO(3)) we obtain that Q e H' (0w, SO(3)).

By virtue of the boundedness of {K*)® to, in L*(w, R3*3), there exists a subsequence (not
relabeled) and an element K € L2(w, R3*3) such that

K~ K in L*(w, R¥?), with K* = 0*"[ax1(Q", 0°") ® e, ]. (37

Concerning the (weak) limits y, Q E and K specified by relations (33)—(37), it remains to
show that they satisfy the equations

A

E=Q"[(},— Qe ®e], K=0"[ax1(0,0") ®e] (38)
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Indeed, from (33) and (36), it follows that
0"yt ~ 0"y, inL'(0,R%),a=1,2,
or, equivalently,
O [(¥, - Q'e) ®eu] = OT[(F, — Qe) ®es] inL'(w,R™F).  (39)

Since the weak limits of { E*}2 | in the spaces L' (w, R3*%) and L*(w, R3**) must coincide,
we deduce from (35) and (39) that the relation (38); holds true.
In order to prove (38), we proceed analogously: from (36) we deduce that

0 Q%" — 00", inL'(w,R>). (40)

On the other hand, by virtue of the relations (5) and (37), we can write

2
|2 = [ax1(Q4 4T) @ a7, = D axi(@%, @4 7) 12,
a=1

12
= 2 Z ” Qk Q{ZT ”iZ(w)'
a=1

Since {K k},fozl is bounded in L?(w, R3*?), we deduce from the above relations that the se-
quences { Q¢ Q{‘&T},fil are also bounded (for @ = 1, 2) and, hence, they admit subsequences
(not relabeled) weakly convergent in L*(w, R33). Taking into account (40), we deduce that
these weak limits must coincide with Q QTa i.e., we have

0057~ 007, InL*(w.R*).a=1.2,
and
ax1(QY, 0°7) @ e, — axl(Q, 07) ® e, in L*(w, R*Y). ah
Since QX7 — Q7 in L*(a, R¥?) according to (36),, we get from (41)
0" ax1(Q*, 0"") ®e,] ~ Q"[ax1(Q,0") ®e.] inL'(w,R¥).

If we compare the last relation with (37), then we obtain that (38), holds.

In the next step of the proof, we show the convexity of the strain energy density function.
By virtue of the conditions on the constitutive coefficients (23), the Hessian matrix of the
quadratic form Wy, (E) in (25) is positive definite. Similar arguments hold for Wyenq(K),
and altogether we obtain

W(E, K) isconvexin (E, K). (42)

By (35), (37) and (38) we deduce E¥ — E and K* — K in L*(w, R¥3), and from (42) we
find that

/W(E,k)dwgnkminf/ W(E*, K*)do. (43)
w —00 w
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If we denote by u* = y* — x, &t = y — x, then from (20)—(22), (34), (36), and the continuity
of I1,, Hawf it follows

lim A(u*, 0") = A, 0). (44)

Since the pairs (y*, Q%) satisfy the boundary conditions on dw,, we deduce in view of the
convergence relations (33), (34), (36) and the compact embedding in the sense of traces, that
y=y* 0= Q" on dw,. Hence, we have (y, Q) € A

Finally, from (31), (43) and (44) we obtain I(y, Q) < inf{I(y, Q)|(y, Q) € A}, which
means that (y, Q) is a minimizer of the functional I over A. The proof is complete. 0

Remark 3 We observe that the minimizing solution pair (y, Q) belongs to H' (w) and more-
over Q € L*°(w, SO(3)). Thus, the rotation field Q may fail to be continuous, according to
the limit case of the Sobolev embedding.

Remark 4 We notice that the conditions on the constitutive coefficients (23) are satisfied for
the particular model of isotropic plates presented in Remark 1. Indeed, taking into account
the identification (17), we find that the inequalities (23) reduce to

u >0, 2+ 31> 0.

These conditions are satisfied in view of the positive definiteness of the three-dimensional
quadratic elastic strain energy density for isotropic materials. Thus, the existence result
given by Theorem 2 applies to the particular plate model presented in [10, 11].

4 Generalization of Existence Result and Discussions

In this section we present some variants and generalizations of Theorem 2, as well as the
comparison with a Cosserat model for plates obtained by a different approach [27, 29].

We observe that the boundary conditions imposed on the rotation @ can be relaxed or
even omitted in the definition of the admissible set (18). For a discussion of some possible
alternative boundary conditions for the rotation field Q on dw,; we refer to the works [27,
29]. In this line of thought, we present next the existence result corresponding to a larger
admissible set.

Theorem 5 Consider the minimization problem (19), over the admissible set
={(y. Q) e H' (0, R*) x H' (0, SO(3))|yl30, = ¥*}- (45)

If the external loads f, n* and the boundary data y* satisfy the conditions (22),_3 and the
constitutive coefficients ay, Bi verify the inequalities (23), then the minimization problem
(19), (45) admits at least one minimizing solution pair (y, Q) € A.

Proof The proof can be achieved in a similar manner as the proof of Theorem 2, where the
boundary condition Q = Q on dw, has not played an important role. O

The Theorem 2 is concerned with isotropic plates for which the strain energy density
W(E, K) is given by relations (14). We can generalize this existence result to the case of
anisotropic non-linear plates, provided the function W satisfies the conditions of convexity
and coercivity:
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Theorem 6 (Anisotropic plates) Consider the minimization problem (18), (19) associated to
the deformation of anisotropic plates, and assume that the external loads and boundary data
satisfy the conditions (22). Assume that the strain energy density W(E, K) is an arbitrary
quadratic convex function in (E, K), and moreover W is coercive, in the sense that

W(E,K) > k(|EIP+IK|*), VE=Eqe; ®e, K=Kise; ®eq, Eiu, Kig €R, (46)

for some constant k > 0. Thfn, the minimization problem (18), (19) admits at least one
minimizing solution pair (y, Q) € A.

Proof We follow the same steps as in the proof of Theorem 2. In view of (46), we show
first that the estimate (30) holds also in our case. Then, there exists an infimizing sequence
{y*, Qk},fil C A, and we can prove similarly that it verifies the relations (31)—(38). By
virtue of our hypothesis, W is convex in (E, K), so that the properties (42)—(44) are satisfied,
and we can reach the conclusion of the theorem. O

The Theorem 6 remains valid also for the minimization problem written over the larger
admissible set A given by (45), instead of the admissible set (18).

Remark 7 The 6-parameter theory of shells can be used to model also composite thin elastic
structures. In this case, the internal energy density has a more complicated structure, and
exhibits multiplicative coupling of the strain tensor E with the bending tensor K, see, e.g.,
[9, 23]. Nevertheless, the Theorem 6 can be applied to deduce the existence of minimiz-
ers for layered composite plates, under appropriate conditions on the material/geometrical
parameters [8].

The Cosserat model for plates (planar shells) proposed and investigated by the second
author in [27, 29] is obtained by a consistent formal dimensional reduction of a finite-strain
three-dimensional Cosserat (micropolar) model. Apart from the differences in notations,
there are essential similarities between this Cosserat plate model and the 6-parameter plate
theory presented in Sect. 1. Firstly, in both approaches the primary independent kinematical
variables are the deformation field y € R® and the rotation tensor field Q € SO(3). The ro-
tation field @ in the derivation approach is inherited from the parent Cosserat bulk model,
which already includes a triad of rigidly rotating directors [33]. Moreover, the measures of
strain are essentially the same in the two approaches. In particular, the so-called stretch ten-
sor U is introduced in [27] through the relation U=0" (¥, ®ey+ Qesz ®e3). Comparing
U with the strain measure E defined in (8), we find that E=U — 1.

Let us compare now the expressions of the strain energy density for isotropic plates.
With a suitable identification of parameters, the expressions of the strain energy density in
the two approaches coincide, in terms of the independent kinematical variables (y, @). The
membrane part of the strain energy density is assumed in the Cosserat plate model in the
form

Wb (E) = Wi (U — 1)

A
A

= 1[ulom@ — D + i fskew @ - D+ 24

(r(U - 1))2}, 47)

where p,. > 0 is the Cosserat couple modulus. To realize the coincidence of the two strain
energy functions (14), and (47), we need to identify the set of constitutive coefficients
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(aq, ..., aq) from (14), with the parameters (A, i, i) in the following way

2A1L
ay=h , ar=h(u— ue), a3 =h(u+ pe), oy =rh(pu+pe), (43)
A+2u

where « is the formal shear correction factor. We observe that a3 — ap = 2hu.. Thus, the
requirement oz — o, > 0 assumed by the hypotheses (23) of Theorem 2 corresponds to the
condition w,. > 0. In the interesting degenerate case when . = 0 (i.e., @3 — o = 0) the
energy function W is only positive semi-definite, and the proof of the existence results is
more delicate, see [29].

In a future contribution we will extend our results to the general case of 6-parameter
shells.
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