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ART. XLVIII. – The Finite Elastic
Stress-Strain Function;

by GEO. F. Becker

Hooke’s Law. – The law proposed by Hooke to account for the results
of experiments on elastic bodies is equivalent to: – Strain is proportionate
to the load, or the stress initially applied to an unstrained mass. The law
which passes under Hooke’s name is equivalent to: – Strain is proportional
to the final stress required to hold a strained mass in equilibrium.∗ It is
now universally acknowledged that either law is applicable only to strains
so small that their squares are negligible. There are excellent reasons for
this limitation. Each law implies that finite external forces may bring about
infinite densities or infinite distortions, while all known facts point to the
conclusion that infinite strains result only from the action of infinite forces.
When the scope of the law is confined to minute strains, Hooke’s own law
and that known as his are easily shown to lead to identical results; and
the meaning is then simply that the stress-strain curve is a continuous one
cutting the axes of no stress and of no strain at an angle whose tangent is
finite. Hooke’s law in my opinion rests entirely upon experiment, nor does
it seem to me conceivable that any process of pure reason “should reveal
the character of the dependence of the geometrical changes produced in a
body on the forces acting upon its elements.”†

Purpose of this paper. – So far as I know no attempt has been made
since the middle of the last century to determine the character of the stress-
strain curve for the case of finite stress.‡ I have been unable to find even
an analysis of a simple finite traction and it seems that the subject has
fallen into neglect, for this analysis is not so devoid of interest as to be
deliberately ignored, simple though it is.

∗Compare Bull. Geol. Soc. Amer. vol. iv, 1893, p. 38.
†Saint-Venant in his edition of Clebsch. p. 39.
‡J. Riccati, in 1747, a brief account of whose speculation is given in Todhunter’s

history of elasticity, proposed a substitute for Hooke’s law.
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In the first part of this paper finite stress and finite strain will be examined
from a purely kinematical point of view; then the notion of an ideal isotropic
solid will be introduced and the attempt will be made to show that there is
but one function which will satisfy the kinematical conditions consistently
with the definition. This definition will then be compared with the results
of experiment and substantially justified.

In the second part of the paper the vibrations of sonorous bodies will be
treated as finite and it will be shown that the hypothesis of perfect isochro-
nism, or perfect constancy of pitch, leads to the same law as before, while
Hooke’s law would involve sensible changes of pitch during the subsidence
of the amplitude of vibrations.

Analysis of shearing stress. – Let R, N and T be the resultant, normal
and tangential stresses at any point. Then if σ1, σ2 and σ3 are the so-called
principal stresses and n1, n2, n3 the direction cosines of a plane, there are
two stress quadrics established by Cauchy which may be written

R2 = σ2
1 n

2
1 + σ2

2 n
2
2 + σ2

3 n
2
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N = σ1 n
2
1 + σ2 n

2
2 + σ3 n

2
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Since also T 2 = R2 −N 2,

T 2 = (σ1 − σ2)2 n2
1 n

2
2 + (σ1 − σ3)2 n2

1 n
2
3 + (σ2 − σ3)2 n2
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2
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and these formulas include the case of finite stresses as well as of infinites-
imal ones.

In the special case of a plane stress in the xy plane, σ3 = 0 and n3 = 0,
and the formulas become
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In the particular case of a shear (or a pure shear) there are two sets of planes
on which the stresses are purely tangential, for otherwise there could be no
planes of zero distortion. On these planes N = 0, and if the corresponding
value of n1/n2 is α,

−σ1 α = σ2/α .

If this particular quantity is called Q/3, one may write the equations of
stress in a shear for any plane in the form
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For the axes of the shear the tangential stress must vanish, so that n1 or
n2 must become zero, and therefore the axes of x and y are the shear axes.
If Nx and Ny are the normal axial stresses, one then has

−Nxα = Ny/α = Q/3 .

A physical interpretation must now be given to the quantity α. In a
finite shearing strain of ratio α, it is easy to see that the normal to the
planes of no distortion makes an angle with the contractile axis of shear
the cotangent of which is α. If the tensile axis of the shear is the axis of y,
and the contractile axis coincides with x, this cotangent is n1/n2. Hence in
the preceding formulas α is simply the ratio of shear.

In a shear of ratio α with a tensile axis in the direction of oy, minus Nxα
is the negative stress acting in the direction of the x axis into the area α on
which it acts. It is therefore the load or initial stress acting as a pressure
in this direction. Similarly Ny/α is the total load or initial stress acting as
a tension or positively in the direction oy. Hence a simple finite shearing
strain must result from the action of two equal loads or initial stresses of
opposite signs at right angles to one another the common value of the loads
being in the terms employed Q/3.∗

It is now easy to pass to a simple traction in the direction of oy since
the principle of superposition is applicable to this case. Imagine two equal
shears in planes at right angles to one another combined by their tensile
axes in the direction oy, and let the component forces each have the value
Q/3. To this system add a system of dilational forces acting positively and
equally in all directions with an intensity Q/3. Then the sum of the forces
acting in the direction of oy is Q and the sum of forces acting at right
angles to oy is zero.

Inversely a simple finite load or initial stress of value Q is resoluble into
two shears and a dilation, each axial component of each elementary initial
stress being exactly one-third of the total load. Thus the partition of force
in a finite traction is exactly the same as it is well known to be in an
infinitesimal traction, provided that the stress is regarded as initial and
not final.†

∗This proposition I have also deduced directly from the conditions of equilibrium in
Bull. Geol. Soc. Amer., vol. iv, 1893, page 36. It may not be amiss here to mention one
or two properties of the stresses in a shear which are not essential to the demonstration
in view. The equation of the shear ellipse may be written in polar coördinates 1/r2 =
α2n22+α−2n21. Hence the resultant load on any plane whatever is Rr = ±Q/3. The final
tangential stress is well known to be maximum for planes making angles of 45◦ with the
axes; but it is easy to prove that the tangential load, T r, is maximum for the planes
of no distortion. These are also the planes of maximum tangential strain. Rupture by
shearing is determined by maximum tangential load, not stress.
†Thomson and Tait, Nat. Phil., section 682.
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Application to system of forces. – Without any knowledge of the relations
between stress and strain, the foregoing analysis can be applied to develop-
ing corresponding systems of stress and strain. Let a unit cube of an elastic
substance presenting equal resistance in all directions be subjected to ax-
ial loads P,Q,R. Suppose these forces to produce respectively dilations of
ratios h1, h2, h3 and shears of ratios p, q, r. Then the following table shows
the effects of each axial force on each axial dimension of the cube in any
pure strain.

Active force P Q R
Axis of strain x y z x y z x y z
Dilation h1 h1 h1 h2 h2 h2 h3 h3 h3

Shear p 1/p 1 1/q q 1 1/r 1 r

Shear p 1 1/p 1 q 1/q 1 1/r r

Grouping the forces and the strains by axes, it is easy to see that the
components may be arranged as in the following table, which exhibits the
compound strains in comparison with the compound loads which cause
them, though without in any way indicating the functional relation between
any force and the corresponding strain.

Pure Strains.

Axes x y z

Dilation h1h2h3 h1h2h3 h1h2h3

Shear p2 · 1

q
· 1

r

1

p2
· q · r 1

Shear 1
pq

r2

r2

pq

Products
h1h2h3p

2

qr

h1h2h3q
2

pr

h1h2h3r
2

pq

Loads or Initial Stresses.

Axes x y z

Dilation
P +Q+R

3

P +Q+R

3

P +Q+R

3

Shear − Q+R− 2P

3

Q+R− 2P

3
0

Shear 0
P +Q− 2R

3
− P +Q− 2R

3

Sums P Q R
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In many cases it is convenient to abbreviate the strain products. Thus
if one writes h1h2h3 = h, qr/p2 = α and pq/r2 = β, the products are
h/α, hαβ and h/β.

Inferences from the table. – It is at once evident that the load sums
correspond to the products of the strain ratios, and that zero force answers
to unit strain ratios. There are also several reciprocal relations which are
not unworthy of attention. If R = 0 and Q = −P , the strain reduces
to a pure shear. But the positive force, say Q, would by itself produce
a dilation h2, while the negative force, minus P , would produce cubical
compression of ratio h1 < 1. Now a shear is by definition undilatational
and therefore, in this case, h1h2 = 1. Hence equal initial stresses of opposite
signs produce dilatations of reciprocal ratios. The same two forces acting
singly would each produce two shears while their combination produces but
one. Q would contract lines parallel to oz in the ratio 1/q while minus P
would elongate the same lines in the ratio p/1. Since the combination leaves
these lines unaltered, p/q = 1. Hence equal loads of opposite signs produce
shears of reciprocal ratios. It is easy to show by similar reasoning that
equal loads of opposite signs must produce pure distortions and extensions
of reciprocal ratios.

Strain as a function of load – One may at will regard strains as func-
tions of load or of final stress; but there seem to be sufficient reasons for
selecting load rather than final stress as the variable. To obtain equations
giving results applicable to different substances, the equations must contain
constants characteristic of the material as well as forces measured in an ar-
bitrary unit. In other words the forces must be measured in terms of the
resistance which any particular substance presents. Now these resistances
should be determined for some strain common to all substances for forces
of a given intensity. The only such strain is zero strain corresponding to
zero force. Hence initial stresses or loads are more conveniently taken as
independent variables.∗

Argument based on small strains.

Physical hypothesis. — In the foregoing no relation has been assumed
connecting stress and strain. The stresses and strains corresponding to one
another have been enumerated, but the manner of correspondence has not
been touched upon. One may now at least imagine a homogeneous elastic
substance of such a character as to offer equal resistance to distortion in

∗When the strains are infinitesimal, it is easy to see that load and final stress differ
from one another by an infinitesimal fraction of either.
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every direction and equal resistance to dilation in every direction. The two
resistances may also be supposed independent of one another – for this is
a more general case than that of dependence. The resistance finally may
be supposed continuous and everywhere of the same order as the strains.

In such an ideal isotropic substance it appears that the number of inde-
pendent moduluses cannot exceed two; for a pure shear irrespective of its
amount is the simplest conceivable distortion and no strain can be simpler
than dilation, while to assume that either strain involved more than one
modulus would be equivalent to supposing still simplier strains, each de-
pendent upon one of the units of resistance. It is undoubtedly true that,
unless the load-strain curve is a straight line, finite strains involve constants
of which infinitesimal strains are independent; but these constants are mere
coefficients and not moduluses: for the function being continuous must be
developable by Taylor’s Theorem, and the first term must contain the same
variable as the succeeding terms, this variable being the force measured in
terms of the moduluses. In this statement it must be understood that the
moduluses are to be determined for vanishing strain.∗

One can determine the general form of the variable in terms of the resis-
tances or moduluses for the ideal isotropic solid defined above. The load
effecting dilation in simple traction, as was shown above, is exactly one
third of the total load, or say Q/3; and if a is the unit of resistance to lin-
ear dilation, Q/3a is the quantity with which the linear dilation will vary.
The components of the shearing stresses in the direction of the traction are
each Q/3, and, if c is the unit of resistance to this initial stress, the

∗One sometimes sees the incompleteness of Hooke’s law referred to in terms such as
“Young’s modulus must in reality be variable.” This is a perfectly legitimate statement
provided that Young’s modulus is defined in accordance with it; but the mode of state-
ment does not seem to me an expedient one to indicate the failure of linearity. Let E∗

represent Young’s modulus regarded as variable and F a force or a stress measured in
arbitrary units. Then if y is the length of a unit cube when extended by a force, the
law of extension may be written in the form y = 1 + F/E∗. Now let E be the value of
Young’s modulus for zero strain, and therefore an absolute constant. Then, assuming
the continuity of the functions, one may write E∗ in terms of E thus,

1

E∗
=

1

E
φ

(
F

E

)
=

1

E

(
1 +

AF

E
+
BF 2

E2
+ . . . .

)
.

But this gives

y = 1 +
F

E
+
AF 2

E2
+
BF 3

E3
+ . . . .

so that 1/E∗ merely stands for a development in terms of F/E. If therefore one defines
Young’s modulus as the tangent of the curve for vanishing strain, the fact of curvature
is expressed by saying that powers of the force (in terms of Young’s modulus) higher
than the first enter into the complete expression for extension.
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corresponding extension will vary with 2Q/3c. In simple extension all faces
of the unit cube remain parallel to their original positions, and the prin-
ciple of superposition is applicable throughout the strain. Hence the total
variable may be written Q

(
1
3a

+ 2
3c

)
. The intensity of Q will not affect

the values of the constants a and c which indeed should be determined for
vanishing strain as has been pointed out.

The quantities a and c have been intentionally denoted by unusual letters.
In English treatises it is usual to indicate the modulus of cubical dilation
by K and the modulus of distortion by G. With this nomenclature a = 3K
and c = 2G. Using the abbreviation E for Young’s modulus the variable
then becomes

Q

(
1

9K
+

1

3G

)
= Q/E .

Since this is the form of the variable whether Q is finite or infinitesimal, the
length of the strained cube according to the postulate of continuity must
be developable in terms of Q/E and cannot consist, for example, solely of a
series of terms in powers of Q/9K plus a series of powers of Q/3G; in other
words the general term of the development must be of the form Am(Q/E)m

and not Am(Q/9K)m +Bm(Q/3G)m.

Form of the functions. – If α is the ratio of shear produced by the traction
Q in the ideal isotropic solid under discussion, α must be some continuous
function of Q/3G. So too if h is the ratio of linear dilation, h is some
continuous function of Q/9K. The length of the strained mass is α2h, and
this must be a continuous function of Q/E. If then f, ϕ and ψ are three
unknown continuous functions, one may certainly write

α2 = f

(
Q

3G

)
; h = ϕ

(
Q

9K

)
; α2h = ψ

(
Q

E

)
. (1)

It also follows from the definitions of α and h that

1 = f(0); 1 = ϕ(0); 1 = ψ(0) . (2)

For the sake of brevity let Q/3G = ξ and Q/9K = η. Then ξ and η
may be considered algebraically as independent of one another even if an
invariable relation existed between G and K; for since in simple traction,
the faces of the isotropic cube maintain their initial direction, the principle
of superposition is applicable; and to put G = ∞ or K = ∞ is merely
equivalent to considering only that part of a strain due respectively to

AM. JOUR. SCI. – THIRD SERIES, VOL. XLVI, No. 275. – Nov., 1893.
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compressibility or to pure distortion.∗ Now the functions are related by the
equation

f(ξ)ϕ(η) = ψ(ξ + η) (3)

and if ξ and η are alternately equated to zero

f(ξ) = ψ(ξ) and ϕ(η) = ψ(η) .

Hence the three functions are identical in form† or (4) becomes

f(ξ) f(η) = f(η + ξ) . (4)

Developing the second member by Taylor’s theorem and dividing by f(η)
gives a value for f(ξ), viz:

f(ξ) = 1 +
df(η)

dη
· 1

f(η)
· ξ + . . . .

Since the two variables are algebraically independent, this equation must
answer to McLaurin’s Theorem, which implies that the expression contain-
ing η is constant, its value being say b. Then

df(η)

f(η)
= b dη .

Hence since f(0) = 1
f(η) = eb η

and since all three functions have the same form

f(ξ + η) = eb (ξ+η) = 1 + bQ/E + . . .

∗Compare Thomson and Tait Nat. Phil. section 179.
†This proposition is vital to the whole demonstration. Another way of expressing it is as follows: –

If the functions are continuous,

α2h = 1 +A

(
Q

3G
+

Q

9K

)
+B

(
Q

3G
+

Q

9K

)2

+ . . .

where A,B, etc. are constant coefficients. Then since G and K are algebraically independent, or since
the principle of superposition is applicable, the development of α2 is found by making h = 1 and K =∞.
Thus

α2 = 1 +
AQ

3G
+B

(
Q

3G

)2

+ . . .

A,B, etc., retaining the same values as before. Consequently α2 is the same function of Q/3G that α2h
is of Q/E. By equating α to unity and G to infinity, it appears that h also is of the same form as α2h.

There is the closest connection between this method of dealing with the three functions and the
principle, that when an elastic mass is in equilibrium, any portion of it may be supposed to become
infinitely rigid and incompressible without disturbing the equilibrium. For to suppose that in the
development of α2h,K =∞ is equivalent to supposing a system of external forces equilibrating the forces
Q/9K. This again is simply equivalent to assorting the applicability of the principle of superposition
to the case of traction.

In pure elongation, unaccompanied by lateral contraction, it is easy to see that h = α and that α
varies as Q/6G. In this case also 6G = 9K because Poisson’s ratio is zero. Hence without resorting to
the extreme cases of infinite G or K, it appears that h is the same function of 9K that α is of 6G. This
accords with the result reached in (6) without sufficing to prove that result.
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Here b/E is the tangent of the load-strain curve for vanishing strain, and
this by definition is 1/E, so that b = 1.

It appears then that the equations sought for the load-strain functions
are

α2 = eQ/3G ; h = eQ/9K ; α2h = eQ/E ; (5)

a result which can also be reached from (5) without the aid of Taylor’s
theorem.

Tests of the equations. – These equations seem to satisfy all the kinemati-
cal conditions deduced on preceding pages. It is evident that opposite loads
of equal intensity give shears, dilations and extensions of reciprocal ratios
and that the products of the strain ratios vary with the sums of the loads.
It is also evident that infinite forces and such only will give infinite strains.
A very important point is that these equations represent a shear as held
in equilibrium by the same force system whether this elementary strain is
due to positive or negative forces. If any other quantity (not a mere power
of Q or the sum of such powers), such as the final stress were substituted
for the load Q, a pure shear would be represented as due to different force
systems in positive and negative strains which would be a violation of the
conditions of isotropy.∗ One might suppose more than two independent
moduluses to enter into the denominator of the exponent; but this again
would violate the condition of isotropy by implying different resistances in
different directions. Any change in the numerical coefficients of the mod-
uluses would imply a different partition of the load between dilation and
distortion, which is inadmissible. It would be consistent with isotropy to
suppose the exponent of the form (Q/E)1+2c; but then, if c exceeds zero,
the development of the function would contain no term in the first power of
the variable and the postulate that strains and loads are to be of the same
order would not be fulfilled. The reciprocal relations of load and strain
would be satisfied and the loads would be of the same order as the strains,
if one were to substitute a series of uneven powers of the variables for ξ
and η. Such series are for example the developments of tan ξ and tan η.

∗Let a shearing strain be held in equilibrium by two loads, Q/3 and minus Q/3. If
a second equal shear at right angles to the first is so combined with it that the tensile
axes coincide, the entire tensile load is 2Q/3. If on the other hand the two shears are
combined by their contractile axes, the total pressure is 2Q/3. In the first case the
area of the deformed cube measured perpendicularly to the direction of the tension is
1/α2, and if Q′ is the final stress, Q′/α2 = 2Q/3 or Q′ = 2Qα2/3. In the second case
the area on which the pressure acts is α2 and if the stress is Q′, Q′′ = −2Q/3α2. Thus
Q′ = −Q′′α4. Hence equal final stresses of opposite signs cannot produce shears of
reciprocal ratios in an isotropic solid. The same conclusion is manifestly true of any
quantity excepting Q or an uneven power of Q or the sum of such uneven powers.
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In a case of this kind, however, α2h would not be a function of Q/E = ξ+η
excepting for infinitesimal strain; the exponent then taking the form of a
series of terms Am (ξm + ηm) instead of Am(ξ+η)m. Finally it is conceivable
that the expanded function should contain in the higher terms moduluses
not appearing in the first variable term; but this would be inconsistent
with continuity. In short I have been unable to devise any change in the
functions which does not conflict with the postulate of isotropy as defined
or with some kinematical condition.

Abbreviation of proof. – In the foregoing the attempt has been made to
take a broad view of the subject in hand lest some important relation might
escape attention. Merely to reach the equations (6) only the following steps
seem to be essential. Exactly one-third of the external initial stress in a
simple traction is employed in dilation, and of the remainder one half is
employed in each of the two shears. An ideal isotropic homogeneous body
is postulated as a material presenting equal resistance to strain in all direc-
tions, the two resistances to deformation and dilation being independent of
one another; the strains moreover are to be of the same order as the loads,
and continuous functions of them. In such a mass the simplest conceivable
strains, shear and dilation, can each involve only a single unit of resistance
or modulus. The principle of superposition is applicable to a simple trac-
tion applied axially to the unit cube however great the strain. It follows
that the length of the strained unit cube is a function of Q/E.

Together these propositions and assumptions give (2) and without further
assumptions the final equations sought (6) follow as a logical consequence.

Data from experiment. – No molecular theory of matter is essential to the
mechanical definition of an isotropic substance. An isotropic homogeneous
body is one a sphere of which behaves to external forces of given intensity
and direction in the same way however the sphere may be turned about its
center. There may be no real absolutely isotropic substance, and if there
were such a material we could not ascertain the fact, because observations
are always to some extent erroneous. It is substantially certain, however,
that there are bodies which approach complete symmetry so closely that
the divergence is insensible or uncertain. Experience therefore justifies the
assumption of an isotropic substance as an approximation closely repre-
senting real matter.

All the more recent careful experiments, such as those of Amagat and of
Voigt, indicate that Cauchy’s hypothesis, leading for isotropic substances
to the relation 3K = 5G, is very far from being fulfilled by all substances
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of sensibly symmetrical properties. This is substantially a demonstration
that the molecular constitution of matter is very complex,∗ but provided
that the mass considered is very large relatively to the distances between
molecules this complexity does not interfere with the hypothesis that pure
shear and simple dilation can each be characterized by one constant only.

The continuity of the load-strain function both for loads of the same sign
and from positive to negative loads is regarded as established by experiment
for many substances; and equally well established is the conclusion that for
small loads, load and strain are of the same order.† In other words Hooke’s
law is applicable to minute strains. Perfect elastic recovery is probably
never realized, but it is generally granted that some substances approach
this ideal under certain conditions so closely as to warrant speculation on
the subject.

These results appear to justify the assumptions made in the paragraph
headed “physical hypothesis” as representing the most important features
of numerous real substances. On the other hand viscosity, plasticity and
ductility have been entirely ignored; so that the results are applicable only
to a part of the phenomena of real matter.

Stress-strain function. – It is perfectly easy to pass from the load-strain
function to the stress-strain function for the ideal solid under discussion.
The area of the extended cube is its volume divided by its length of h3/α2h.
Hence if Q′ is the stress, or force per unit area, Q′h2/α2 = Q. Therefore
the stress-strain function is

(α2h)α
2/h2 = eQ

′/E

an equation which though explicit in respect to stress and very compact is
not very manageable. If one writes α2h = y and h/α = x, the first member
of this equation becomes y1/x2 . Here x and y are the coördinates of the
corner of the strained cube.

Verbal statement of law. – If one writes α2h−1 = f , the last of equations
(6) gives

df = (1 + f) d[Q/E]

or the increment of strain is proportional to the increment of load and to
the length of the strained mass. This is of course the “compound interest
law” while Hooke’s law answers to simple interest.

∗Compare Lord Kelvin’s construction of the system of eight molecules in a substance
not fulfilling Poisson’s hypothesis in his Lectures on Molecular Dynamics.
†Compare B. de Saint-Venant in his edition of Navier’s Leçons. 1864. p. 14, and

Lord Kelvin, Encyc. Brit. 9th ed. Art. Elasticity, Section 37.
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Curves of absolute movement. – Let ν be Poisson’s ratio

or ν =
3K − 2G

2(3K +G)
.

Let x0 y0 be the original positions of a particle in an unstrained bar, and
let xy be their positions after the bar has been extended by a load Q. Then
x = x0h/α and y = y0 α

2h. It also follows from (6) that α6G = h9K , whence
it may easily be shown that the path of the particle is represented by the
extraordinarily simple equation∗

x yν = x0 y
ν
0 . (6)

If one defines Poisson’s ratio as the ratio of lateral contraction to axial
elongation, its expression is by definition

ν = −dx
x

/dy
y

= −y
x

dx

dy
;

and this, when integrated on the hypothesis that ν is a constant, gives (7).
Thus for this ideal solid, the ratio of lateral contraction to linear elongation
is independent of the previous strain.

The equation (7) gives results which are undeniably correct in three spe-
cial cases. For an incompressible solid ν = 1/2, and (7) becomes x2y =
constant, or the volume remains unchanged. For a compressible solid of
infinite rigidity ν = −1 and (7) becomes x/y = constant so that only ra-
dial motion is possible. For linear elongation unaccompanied by lateral
extension ν = 0, and (7) gives x = constant.†

∗On Cauchy’s hypothesis ν = 1/4, which, introduced into this equation, implies that
the volume of the strained cube is the square root of its length.
†It seems possible to arrive at the conclusion that ν is constant by discussion of these

three cases. Let e and −f be small axial increments of strain due to a small increment
of traction applied to a mass already strained to any extent. Let it also be supposed
that the moduluses are in general functions of the coördinates, so that G and K are only
limiting values for no strain. Then, by the ordinary analysis of a small strain (Thomson
and Tait, section 682), one may at least write for an isotropic solid

e = P

(
1

3G [1 + f1(x)]
+

1

9K [1 + f2(x)]

)
,

−f = P

(
1

6G [1 + f3(x)]
− 1

9K [1 + f4(x)]

)
,

where f(x) is supposed to disappear with the strain. These values represent each element
of the axial extension and each element of the lateral contraction as wholly independent.
The value of ν is −f/e. Now for an incompressible substance, as mentioned in the text,
ν = 1/2 and the formula gives

ν =
1

2
· 1 + f1(x)

1 + f3(x)
, so that f1(x) = f3(x) .

Again for G =∞ only dilation is possible, or ν = −1, while the formula gives
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Argument from finite vibrations

Sonorous vibrations finite. — In the foregoing pages the attempt has
been made to show, that a certain definition of an isotropic solid in combi-
nation with purely kinematical propositions leads to a definite functional
expression for the load-strain curve. The definition of an isotropic solid
is that usual except among elasticians who adhere to the rariconstant hy-
pothesis, and it seems to be justified by experiments on extremely small
strains. But the adoption of this definition for bodies under finite strain
is, in a sense, extrapolation. It is therefore very desirable to consider the
phenomena of such strains as cannot properly be considered infinitesimal.

It is usual to treat the strains of tuning forks and other sonorous bodies
as so small that their squares may be neglected, and the constancy of pitch
of a tuning fork executing vibrations of this amplitude has been employed
by Sir George Stokes to extend the scope of Hooke’s law to moving systems.
It does not appear legitimate, however, to regard strongly excited sonorous
bodies as only infinitesimally strained. Tuning forks sounding loud notes
perform vibrations the amplitudes of which are sensible fractions of their
length. Now it is certain that no elastician would undertake to give results
for the strength of a bridge, or in other words he would deny that such
flexures were so small as to justify neglect of their squares.∗

Sonorous vibrations isochronous. — The vibrations of sonorous bodies
seem to be perfectly isochronous, irrespective of the amplitude of vibration.
Were this not the case, a tuning-fork strongly excited would of course sound
a different note from that which it would give when feebly excited. Neither

ν = − 1 · 1 + f2(x)

1 + f4(x)
, so that f2(x) = f4(x).

For pure elongation the lateral contraction is by definition zero, or ν = 0, and the
formula is

ν =
f3(x)− f4(x)

2[1 + f2(x)] + [1 + f1(x)]
, whence f4(x) = f3(x) .

Hence all four functions of x are identical and ν reduces to its well known constant-form.
— With ν as a constant equation (7) follows from the definition of ν; and substituting
α2h = y/y0 and h/α = x/x0 gives α6G = h9K . If W = 6G log α one may then write

α = eW/6G ; h = eW/9K ; α2h = eW/E = 1 +W/E + . . . .

Here experiment shows that W may be regarded either as load or stress: and reasoning
indicates that it must be considered as load if E is determined for vanishing strain.
∗It is scarcely necessary to point out that many of the uses to which springs are put,

in watches for example, afford excellent evidence of the continuity of the load-strain
function for finite distortions.
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musicians nor physicists have detected any such variation of pitch which,
if sensible, would render music impossible. The fact that the most delicate
and accurate microchronometrical instruments yet devised divide time by
vibrations of forks, is an additional evidence that these are isochronous.
Lord Kelvin has even suggested the vibrations of a spring in a vacuum as
a standard of time almost certainly superior to the rotation of the earth,
which is supposed to lose a few seconds in the course of a century.∗

It is therefore a reasonable hypothesis in the light of experiment that the
load strain function is such as to permit of isochronous vibrations; but to
justify this conclusion from an experimental point of view, it must also be
shown that Hooke’s law is incompatible with sensibly isochronous vibration.
I shall therefore attempt to ascertain what load-strain function fulfills the
condition of perfect isochronism (barring changes of temperature) and then
to make a quantitative comparison between the results of the law deduced
and those derived from Hooke’s law.

Application of moment of momenta. — If the cube circumscribed about
the sphere of unit radius is stretched by opposing initial stresses and then
set free, it will vibrate; and the plane through the center of inertia perpen-
dicular to the direction of the stress will remain fixed. Each half of the mass
will execute longitudinal vibrations like those of a rod of unit length fixed
at one end, and it is known that the cross section of such a rod does not
affect the period of vibration, because each fiber parallel to the direction
of the external force will act like an independent rod. Hence attention may
be confined to the unit cube whose edges coincide with the positive axes
of coördinates, the origin of which is at the center of inertia of the entire
mass.

The principle of the moment of momenta is applicable to one portion of
the strain which this unit cube undergoes during vibration. The moment of
a force in the xy plane relatively to the axis of oz, being its intensity into its
distance from this axis, is the moment of the tangential component of the
force and is independent of the radial force component. Now dilation is due
to radial forces and neither pure dilation nor any strain involving dilation
can be determined by discussion of the moments of external forces. Hence
the principle of the moment of momenta applies only to the distortion of
the unit cube. This law as applied to the xy plane consequently governs
only the single shear in that plane.

The principle of the moment of momenta for the xy plane may be repre-
sented by the formula

∗Nat. Phil., sections 406 and 830.
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d

dt
Σm

(
x1
dy1

dt
− y1

dx1

dt

)
= Σ (x1Y − y1X) , (7)

where the second member expresses the moments of the external forces,
which are as usual measured per unit area, and x1 y1 are the coördinates
of any point the mass of which is m.

Reduction of equation (8). — Let x and y represent the position of the
corner of the strained cube; then the abscissa of the center of inertia of
the surface on which the stress Y acts is x/2, and since Y is uniform,
Σx1 Y = xY/2. Similarly Σy1X = yX/2. Now xY and yX may also be
regarded as the loads or initial stresses acting on the two surfaces of the
mass parallel respectively to ox and oy, and in a shear these two loads
are equal and opposite. Hence the second member of (8) reduces to xY .
It has been shown above that, if Q is an initial tractive load, Q/3 is the
common value of the two equal and opposite loads producing one shear.
But to obtain comparable results for shear dilation and extension, Q/3
must be measured in appropriate units of resistance. Since E is the unit of
resistance appropriate to extension, the separate parts of the force must be
multiplied by E and divided by resistances characteristic of the elementary
strains. Now

E

2G
· Q

3
+

E

2G
· Q

3
+

E

3K
· Q

3
= Q ,

and it is evident that 2G/E is the unit in which Q/3 should be measured
for the single shear.∗ Thus the second member of (8) becomes EQ/6G.

This, then, is the value which the moment of the external forces assumes
when these hold the strained unit cube in equilibrium. This unit cube
forms an eighth part of the cube circumscribed about the sphere of unit
radius. When the entire mass is considered, the sum of all the moments of
the external forces is zero; since they are equal and opposite by pairs. If the
entire mass thus strained is suddenly released and allowed to perform free
vibrations, the sum of all the moments of momenta will of course remain
zero. On the other hand the quantity EQ/6G will remain constant. For
this load determines the limiting value of the strain during vibration and
is independent of the particular phase of vibration, or of the time counted
from the instant of release. It may be considered as the moment of the
forces which the other parts of the entire material system exert upon the
unit cube.

∗In this paper changes of temperature are expressly neglected. The changes of tem-
perature produced by varying stress in a body performing vibrations of small amplitude
can be allowed for by employing “kinetic” moduluses, which are a little greater than the
ordinary “static” moduluses. Thomson and Tait, Nat. Phil., section 687.
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Turning now to the first member of (8), values of x1 and y1 appropriate to
the case in hand must be substituted. Each point of the unit cube during
shear moves on an equilateral hyperbola, so that if x0, y0 are the original
coördinates of a point, x1 y1 = x0 y0. For the corner of the cube, whose
coördinates are x and y, the path is x y = 1. Now x1/x0 = x and y1/y0 = y
so that

x1 dy1 − y1 dx1 = x0 y0 (xdy − ydx)

If ψ is the area which the radius vector of the point x, y describes during
strain, it is well known that 2dψ = x dy − y dx and, since in this case
x y = 1, it is easy to see that

2dψ = 2d [log y] .

Since the quantities x and y refer to a single point, the sign of summation
does not affect them, and the first member of (8) may be written

d2 log y

dt2
Σ 2mx0 y0 .

Here one may write for m, ρdx0 dy0, where ρ is the constant density of the
body; and since the substance is uniform, summation may be performed
by double integration between the limits unity and zero. This reduces the
sum to ρ/2.

Value of α. Equation (8) thus becomes

d2 log y

dt2
=

2

ρ
· EQ

6G

the second member being constant. Counting time from the instant of
release, or from the greatest strain, and integrating y between the limits
y = α and y = 1 gives

logα =
EQ

6G
· t

2

ρ
.

It is now time to introduce the hypothesis that the vibrations are isochronous.
It is a well known result of theory and experiment that a rod of unit length
with one end fixed, executing its gravest longitudinal vibrations, performs
one complete vibration of small amplitude in a time expressed by 4

√
ρ/E.

In the equation stated above t expresses the time of one-quarter of a com-
plete vibration or the interval between the periods at which y = 1 and
y = α. Hence for a small vibration, t as here defined is

√
ρ/E. If the

vibrations are to be isochronous irrespective of amplitude, this must also
be the value of t in a finite vibration. Hence at once

α = eQ/6G = eψ ,

the same result reached in (6).
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This result may also be expressed geometrically. The quantity Q/6G is
simply the area swept by the radius vector of the point x0 = 1, y0 = 1. This
area is also the integral of ydx from x = 1/α to x = 1, or the integral of
xdy from y = α to y = 1. Thus ψ represents any one of three distinct areas.
In terms of hyperbolic functions, α = sinhψ + coshψ and the amount of
shear is 2 sinhψ.

It appears then that isochronous vibrations imply that in pure shear
the area swept by the radius vector of the corner of the cube, or logα,
is simply proportional to the load. The law proposed by Hooke implies
that the length α− 1 is proportional to the same load. The law commonly
accepted as Hooke’s makes α−1 proportional to the final stress, or (α−1)/α
proportional to the load.

Value of h. — Knowing the value of α, the value of h can be found
without resort to the extreme case G =∞. In the case of pure elongation,
unattended by lateral contraction, h = α and 9K = 6G. If α1 and h1 are
the ratios for this case,

α1 = eQ/9K ; h1 = eQ/9K ; α2
1 h1 = eQ/3K .

If three such elongations in the direction of the three axes are superimposed,
the volume becomes

(α2
1 h1)3 = eQ/K ,

and this represents a case of pure dilation without distortion. Here however
α1 = h1 and therefore the case of no distortion, irrespective of the value of
G, is given by

h9 = eQ/K .

The values of α and h derived from the hypothesis of isochronous vi-
brations when combined evidently give the same value of α2 h which was
obtained from kinematical considerations and the definition of isotropy in
equation (6).

Law of elastic force. — Let s be the distance of a particle on the upper
surface of a vibrating cube from its original position or

s = α2 h− 1 = eQ/E − 1 .

Then the elastic force per unit volume is minus Q, or

ρ
d2s

dt2
= −Q = −E log(s+ 1) = −Es+

Es2

2
− . . . .

When the excursions of the particle from the position of no strain are very
small, this becomes

ρ
d2s

dt2
= −Es

a familiar equation leading to simple harmonic motion.
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Limitation of harmonic vibrations. – While the theory of harmonic vi-
brations is applicable to very small vibrations on any theory in which the
load strain curve is represented as continuous and as making an angle with
the axes whose tangent is finite, it appears to be inapplicable in all cases
where the excursions are sufficient to display the curvature of the locus. If
the attraction toward the position of no strain in the direction of oy is pro-
portional to y−1, then in an isotropic mass there will also be an attraction
in the direction of ox which will be proportional to 1− x. The path of the
particle at the corner of a vibrating cube will therefore be the resultant of
two harmonic motions whose phases necessarily differ by exactly one-half
of the period of vibration, however great and however different the ampli-
tudes may be. This resultant is well known to be a straight line. Hence the
theory precludes all displacements excepting those which are so small that
the path of the corner of the cube may properly be regarded as rectilinear.
It seems needless to insist that such cannot be the case for finite strains in
general.

There is at least one elastic solid substance, vulcanized india rubber,
which can be stretched to several times its normal length without taking a
sensible permanent set. Now if the ideal elastic solid stretched to double its
original length (or more) were allowed to vibrate, the hypothesis of simple
harmonic vibration implies that this length would be reduced to zero (or
less) in the opposite phase of the vibration, a manifest absurdity.

Variation of pitch by Hooke’s law. – It remains to be shown that if the
commonly accepted law were applicable to finite strain, sonorous vibra-
tions would be accompanied by changes of pitch which could scarcely have
escaped detection by musicians and physicists. Experiments have shown
that the elongation of steel piano wire may be pushed to 0 · 0115 before
the limit of elasticity is reached.∗ Since virtuosos not infrequently break
strings in playing the piano, it is not unreasonable to assume that a one
per cent elongation is not seldom attained. In simple longitudinal vibration
the frequency of vibration is expressed by 1/4 of

√
E/ρ, and if according

to Hooke’s law, s = Q/E, where Q is the load, the number of vibrations,
v, may be written

v =
1

4

√
Q

sρ
.

If, on the other hand, according to the theory of this paper, log(1 + s) =
Q/E the number of vibrations, u, may be written

∗From experiments on English steel piano wire by Mr. D. McFarlane.
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u =
1

4

√
Q

ρ log(1 + s)
, so that

v

u
=

√
log(1 + s)

s
.

If s = 0 · 01, this expression gives v/u = 400/401.

It would appear then that on the hypothesis of Hooke, a note due to
longitudinal vibrations of about the pitch G3 would give a lower note when
sounding fortissimo than when sounding pianissimo, and that the difference
would be one vibration per second, or one in four hundred. But accord-
ing to Weber’s experiments experienced violin players distinguish musical
intervals in melodic progressions no greater than 1000/1001, while simul-
taneous tones can be still more sharply discriminated.∗ The value of s
corresponding to v/u = 1000/1001 is only 0 · 004, and consequently strains
reaching only about one-third of the elastic limit of piano wire should give
sensible variations of tone during the subsidence of vibrations if Hooke’s
law were correct.

Longitudinal vibrations are not so frequently employed to produce notes
as transverse vibrations. The quantity E/ρ enters also into the expression
for the frequency of transverse vibrations though in a more complex man-
ner. In the case of rods not stretched by external tension, the ratio v/u
would take the same form as in the last paragraph. One theory of the
tuning-fork represents it as a bar vibrating with two nodes, and therefore
as comparable to a rod resting on two supports.

A pair of chronometrical tuning-forks could be adjusted to determine
much smaller differences in the rate of vibration than 1000/1001; for the
relative rate of the forks having been determined on a chronographic cylin-
der for a certain small amplitude, one fork could be more strongly excited
than the other and a fresh comparison made. The only influences tending
to detract from the delicacy of this method of determining whether change
of amplitude alters pitch, would seem to be the difficulty of sustaining
a constant amplitude and the difference of temperature in the two forks
arising from the dissipative action of viscosity.

Conclusion. – The hypothesis that an elastic isotropic solid of constant
temperature is such as to give absolutely isochronous longitudinal vibra-
tions leads to the conclusion log(α2 h) = Q/E without any apparent alter-
native. Comparison with the results of Hooke’s law shows that, if this law
were applicable to finite vibrations, easily sensible changes of pitch would
occur during the subsidence of vibrations in strongly excited sonorous bod-
ies. – The logarithmic law is the same deduced in the earlier part of the
paper from the ordinary definition of the ideal elastic isotropic solid, based

∗Helmholtz, Tonempfindungen, page 491.
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upon experiments on very smalls strains, in combination with purely kine-
matical considerations. – There can be no doubt that the law here proposed
would simplify a great number of problems in the dynamics of the ether
and of sound, as well as questions arising in engineering and in geology,
because of the simple and plastic nature of the logarithmic function. In the
present state of knowledge, the premises of the argument can scarcely be
denied; whether the deductions have been logically made must be decided
finally by better judges than myself.

Washington, D. C., July, 1893.
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Incorporated changes to the original text

Young’s modulus M −→ E

variable Young’s modulus µ −→ E∗

Poisson’s number σ −→ ν

modulus of distortion n −→ G

modulus of cubical dilation k −→ K

Neper’s number ε −→ e = 2.718 . . .

Variables ν −→ ξ

κ −→ η

formula for Poisson number on page 348

ν =
3K − 2G

2(3K + 2G)

corrected−−−−−−→ 3K − 2G

2(3K +G)

natural logarithm ln −→ log

λ, µ, ν, the direction −→ n1, n2, n3

cosines of a plane

R,N,T, the amounts −→ R,N , T
of traction

N1, N2, N3, the principle −→ σ1, σ2, σ3

stresses

hyperbolic Sin, Cos −→ sinh, cosh


