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Abstract Hyperelastic material behavior can be preferably de-
scribed by using polyconvex energies, since the existence of min-
imizers is then guaranteed, if, in addition, the coercivity condition
is satisfied. We give an overview of the construction of polyconvex
energies for the description of non-trivial anisotropy classes, namely
the triclinic, monoclinic, rhombic, tetragonal, trigonal and cubic
symmetry groups, as well as transverse isotropy. The anisotropy of
the material is described by invariants in terms of the right Cauchy-
Green tensor and a specific second-order and a fourth-order struc-
tural tensor, respectively. To show the capability of the proposed
polyconvex energies to simulate real anisotropic material behavior
we focus on fittings of fourth-order elasticity tensors near the refe-
rence state to experimental data of different anisotropic materials.

1 Introduction

The polyconvexity (Ball (1977)) of anisotropic free energy functions was
first proved in Schroder and Neff (2001) for transverse isotropy; a general
extension of this work to orthotropic polyconvex functions is discussed in
Schroder and Neff (2003). There the concept of structural tensors, intro-
duced in an attractive way by Boehler (1978, 1979, 1987), was taken into
account. The main idea of this concept is to extend anisotropic functions
to isotropic functions by introducing first- and second-order tensors charac-
terizing the underlying material symmetry group, called structural tensors,
as additional agencies. Thus, the known isotropic tensor function represen-
tations, as e.g. extensively developed by Wang (1969a,b, 1970a,b, 1971),
Smith (1970, 1971), Boehler (1977), can be used to yield representations for
anisotropic tensor functions, see Boehler (1979, 1987), Liu (1982), Spencer
(1971, 1982) and Zheng (1994b). However, with regard to e.g. Zheng and
Spencer (1993), transverse isotropy and orthotropy as well as the triclinic
and monoclinic symmetry groups are the only symmetry groups, which can
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be described by first- and second-order structural tensors. Therefore, only
in these cases the tensor-representation theory yields a complete polynomial
basis of principal and mixed invariants, which are suitable for the construc-
tion of specific energy functions. For the representation of eight mechani-
cally important anisotropy types structural tensors of order higher than two
are required: for the trigonal, tetragonal and cubic systems fourth-order and
for the hexagonal systems sixth-order structural tensors are necessary, see
Zheng and Spencer (1993), Zheng (1994b). In this context Zheng (1994b)
pointed out some difficulties which

depend on the much less well knowledge of complete and irreducible
representations for isotropic tensor functions with tensors of orders higher
than two.

There are some particular cases in literature discussing this topic, e.g. Bet-
ten (1982, 1987, 1991, 1998), Betten and Helisch (1992, 1995, 1996), Xiao
(1996, 1997), Zheng and Betten (1995) and Zheng (1994a). Xiao (1996,
1997) presented vector-valued and second-order tensor-valued tensor func-
tions for all 32 crystal and non-crystal classes.

The construction of polyconvex triclinic, monoclinic, rhombic and trans-
versely isotropic energy functions based on second-order, symmetric and
positive-definite structural tensors is given in Schréder et al. (2008), see also
Ebbing et al. (2009). A direct extension of the results presented in Schréder
and Neff (2003) by introducing a single fourth-order structural tensor for
a basis of a polyconvex cubic energy is given in Kambouchev et al. (2007).
Furthermore coordinate-free representations of tetragonal, trigonal and cu-
bic polyconvex energy functions, based on crystallographically motivated
fourth-order structural tensors, can be found in Schréder et al. (2009).

In this contribution we give an overview of the development of poly-
convex anisotropic energy functions for non-trivial anisotropy classes — the
triclinic, monoclinic, rhombic, tetragonal, trigonal and cubic mechanically
important symmetry classes— as well as transverse isotropy based on the
works Schroder et al. (2009, 2008). These energies are formulated in terms
of specific second-order and fourth-order structural tensors, respectively,
which are constructed by taking the base system of the underlying crystal
class into account. In order to show the applicability of this procedure, we
present the fittings of fourth-order elasticity tensors near the reference state
with the proposed polyconvex anisotropic energy and compare the results
with experimental data taken from the literature.
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2 Non-Trivial Anisotropy Groups

For the formulation of anisotropic energies the Neumann’s Principle postu-
lating relations between crystal symmetries and the crystal’s physical pro-
perties, plays an important role, see Neumann (1885). This principle, which
states that symmetry elements associated with any crystal physical property
must include the elements of the symmetry point group of the crystal leads
to several restrictions of the specific form of anisotropic energies and is
therefore of high importance for the representations of tensor functions.
The symmetry of crystals as well as their anisotropic physical properties
are closely related to the crystal lattices. A so-called Bravais lattice is
characterized by the lengths of the three base vectors ai,as, a3, given by
a = |lai||,b = ||laz]|,c = ||as|| and the orientations of the base vectors
described by the axial angles «, 3,~ as can be seen in Fig. 1. Here we intro-

Figure 1. Push-foward operation G.

duce a fictitious reference configuration By, in this context see also Menzel
and Steinmann (2001). Let H represent a linear tangent map, which maps
cartesian base vectors e; € By onto crystallographically motivated base vec-
tors a; € By, i.e.,

H: e, — a; — H = [al,az,ag] with a; = Héi . (1)
Then the second-order symmetric and positive (semi-)definite tensor
G=HH" (2)

can be interpreted as a push-forward of the cartesian metric of the fictitious
configuration By to the real reference configuration By. The triclinic, mon-
oclinic, rhombic system as well as the transversely isotropic symmetry can
be described by such specific second-order metric tensors. In all cases we
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assume that
al || el and as L ég . (3)

Concerning the notation for the material symmetry groups we refer to Zheng
and Spencer (1993). In the triclinic case, i.e. here for the symmetry group
Cy, no additional restrictions on the orientation or lengths of the base vectors
have to be taken into account. The Voigt notation of the triclinic elasticity
tensor reads

Ci111 Ciiz2 Ciizz Cirrz Criz Ciias
Ca222 Ca233 Ca212 Cazoz Ca213
Cl: C— Cs333 C3312 C3323 Csz13 4
12 C= Ci12 Cizs Cross | - )
1212 Ci223 Cio13
sym. Caz2z Casi3
Ciz13

In the monoclinic case (C2) the base vector a; as well as as are oriented
perpendicularly to as; therefore the relation « = 8 = 90° must hold. The
monoclinic elasticity tensor appears as

Ci111 Ciio2 Cii33 Criiz 0 0
Ca222 Ca233 Co212 0 0
Cs333 C3312 0 0
Cy: C= . 5
2 Ci212 O 0 (5)
sym. Ca323 Cazis
Cizi3

The base vectors of the rhombic lattice (C3) are aligned in the directions of
the three mutually orthogonal two-fold axes, see Fig. 2. Here the coefficient
scheme of the elasticity tensor is

Ci111 Ciio2 Ciizz 0 0 0
Caz22 Co233 0 0 0
e Cs333 0 0 0
Caz €= Ci212 O 0 (6)
sym. Cazo3 0
Ciz13

The detailed metric tensor representations for these cases are presented in
the Appendix. The parameters a, b, ¢, @, b, & @, b, ¢, which appear there,
can be interpreted as additional material parameters and must satisfy the
conditions for the positive (semi-)definiteness of the concerning metric ten-
sor. In case of transverse isotropy G is given by G = diag[a,b,b] with
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a,b > 0, if the assumed preferred direction of the material a; lies paral-
lel to the e;—axis. For the representation of the tetragonal, trigonal and
cubic anisotropy fourth-order structural tensors are needed, see Zheng and
Spencer (1993). Thus, for the description of these symmetry classes we
constructed crystallographically motivated fourth-order “structural tensors”
(Schroder et al. (2009)). These are decomposed in a sum of dyadic products,
ie.,
3
G:Zai®ai®ai®ai, (7)

i=1

where the vectors a;, i = 1,2, 3 are the base vectors of an associated under-
lying crystallographic base system. The definition (7) leads to an elasticity
tensor -type representation of the fourth-order structural tensor.

Figure 2. a) Triclinic (C1), b) monoclinic (C2), ¢) rhombic (C3), d) tetrag-
onal (Cs), e) cubic (C7), f) trigonal (Cs) cell .

The base system of the tetragonal symmetry classes C4 and Cs is characte-
rized by two orthogonal base vectors a; and as of equal lengths which are
perpendicular to the four-fold axis a3. Whereas for C4 a1 and as can be
taken as any two orthogonal vectors perpendicular to as, for Cs they are
aligned in directions of two mutually orthogonal two-fold axes of Cs, e.g.,
a; =ae;, ay=aey, az=ces,see Fig. 2d. The anisotropic elasticity
tensors at reference state C =4 7,/120C,|C:1 for the crystal type C4 and Cs in
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Voigt notation are given by the expressions

Ciinr Cii22 Ciizz Cipz 0 0
Ciinn Ciizz —Ciiiz 0 0
Cs333 0 0 0
Cy: C= 8
4 C1212 0 0 ) ( )
sym. Caszaz 0
Ca323
[ Ci111 Cii22 Ciizs O 0 0 ]
Cii11 Cizz 0 0 0
Cs333 0 0 0
Cs: C= 9
> Ci212 O 0 )
sym. Caz23 0
i Caszo3 |

In the trigonal case (Cs and Cg) we consider the basis of the associated
rhombohedral cell denoted by a1, a2, a3 of equal lengths and which include
the same angle with one another. The three-fold axis is given along the (a1 +
as + as)-direction. Whereas for Cg the base vectors a; can be taken as any
of the described base vectors, for Cy the base vectors a; are perpendicular
to the three two-fold axes of Cg denoted here by f;, i = 1,2, 3, see Fig. 2f,
ie., a;Lf,. The trigonal elasticity tensors of type Cs and type Cy appear in
the forms

[ Ci111 Cr122 Ciiss 0 Ci12s  Cins |
Cii11 Cuiss 0 —Cii23 —Cius
Cg: C= , (10
8 3(C1111 — C1122) —Ci11s Ciias (10)
sym. (C2323 O
i Caszos |
Ci111 Cii22 Ciass 0 Cii2z 0
Ci111 Cuiss 0 —Ci123 O
Cs333 0 0 0
Co: C= .o (11
’ $(Ci111 —Ci122) 0 Ciigs (11)
sym. (22323 O
Ca323

In the cubic case (C7) the three mutually orthogonal base vectors a; of
equal lengths coincide with the three four-fold symmetry axes of Cr, i.e.,
a; =ae;, i=1,2 3, which are depicted in Fig. 2e. The coefficient scheme
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of the elasticity tensor is

Ci111 Cii22 Cri2 O 0 0
Ciin Cii22 0O 0 0
Cunn 0 0 0
Cr: C= 12
! Ci2i2 O 0 (12)
sym. Ci2i2 O

(C1212

The resulting fourth-order structural tensors are listed in the Appendix.

3 Construction of Anisotropic Polyconvex Energies

For the construction of energy functions the principle of objectivity must
be fulfilled, which is here satisfied by using reduced constitutive equations
in terms of the right Cauchy-Green tensor C, i.e.,

Y(C)=W(F) with C=FTF, (13)

where F' denotes the deformation gradient. Furthermore, the principle of
material symmetry enforces the invariance of the constitutive equations with
respect to the transformations @ € G C O(3) of the material symmetry
group G C O(3). Thus, the invariance condition

P(C)=9(QCQ") VQeg (14)

must hold. Under consideration of the concept of structural tensors, see
Boehler (1979), and representation theorems of tensor functions, we insert
structural tensors as additional arguments into the free energy function
(14). Second-order structural tensors G' and fourth-order structural tensors
G characterize the underlying material symmetry group G C O(3) if

G =QGQ"
G =QNQ:G:Q"RQ"

wherein the Kronecker product is defined by (AXB) : (a®b) = (Aa)®(Bb)
with A, B € R**? and a,b € R®. The index representation of G reads

} VQegcO(3), (15)

A A ABCD
G BCD _ Q AQBBQCC‘QDB GABCD . (16)
Finally, for the description of anisotropic materials we obtain the function

¥(C,G,6) =¢(QCQT,QGQ",QRQ :G: QTRQ")VQ € 0(3). (17)
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Hence, the introduction of structural tensors as additional tensor agencies in
the free energy function extends the G-invariant functions (14) to isotropic
tensor functions (17). For the construction of energy functions which satisfy
this property we use polynomial bases in terms of the principal invariants

I =trC, I, = tr[CofC], I3 = detC (18)

and mixed invariants in terms of the right Cauchy-Green tensor and the
second- and fourth-order structural tensors, respectively, appearing in the
Appendix. For the formulation of triclinic, monoclinic, rhombic as well as
transversely isotropic energy functions we consider the polyconvex polyno-
mial basis

Pa’m’o = {Ila 123 I3a J4a J5}7 (19)
where the polyconvex mixed invariants J4 and J5 are defined as
Jy = tr[CG], J5 = tr[Cof[C]G] . (20)

Trigonal, tetragonal and cubic energy functions are based on the elements
of the polyconvex polynomial basis

phite.= (I, Ib, I3, Js, J7, Js, Jo} . (21)

Here the polyconvex mixed invariants are formulated in terms of the under-
lying fourth-order structural tensor given in the Appendix and C, i.e.,

Js=C:G:1, J;=CofC :G: 1,
(22)
Js=C:G:C,Jg=CofC : G : CofC'.

The proof of polyconvexity of the above mentioned invariants is given in
detail in Schréder et al. (2008, 2009).

3.1 Specific Anisotropic Polyconvex Energies.

In general we consider an additive decomposition of the polyconvex
anisotropic energy functions, i.e.,

i =N Y i =1,2 (23)
where as isotropic part the Mooney-Rivlin model

,l/)iso _ 51]1 + 52]2 + 63_[3 — (251 —+ 452 -+ 2(53)111\/5 (24)
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is taken into account. For the symmetry groups C; — C3 as well as for
transverse isotropy we use the energy function

= g, (25)

where the anisotropic part is assumed to be of the type

g — Z |£30I13) + F5(Jag) + by (1) (26)

with the j — th invariants
J4j = tI‘[CGj], Jsj = tI‘[COf[C]GJ] . (27)

As an example, in case of monoclinic anisotropy the j—th structural tensor
has the form

G" = d; b 0 |- with aj, ¢; >0, a;b; > d§~ (28)

OOCj

In detail, the polyconvex anisotropic functions in (26) are given by

n

grj (arj+1)
fildaj)= )  ———rady
J J Z:l (aTJ +1) Qg 4J

= . &rj (Brj+1)
(T E ————J;; I 29
f]( 5]) o (67»] + 1) /87_/ ( )

T
Is) :Zg,jT{13 e
r=1 "

with the polyconvexity conditions a;;, Brj, & > 0, v; > —1/2 and the
relation g; := G, : 1. The function (25) satisfies also without the isotropic
part the coercivity condition; the proof is given in Schréder et al. (2008).
The additional consideration of an isotropic function h;(I3), see (29)3, was
proposed in an analogous way in Itskov and Aksel (2004). This term allows
for a simple fulfillment of a stress-free reference configuration, i.e.,

m
1 g1
o =2001e = 30326 (=i + a1
r=1j=1 (30)
1 Qi 1 Brj
( = )Gl =0.

) -9
PRI
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For the description of the symmetry groups C4, C5 and C7, Cg, Cy we choose
the second energy function of (23)

1/}2 — q/}iso 4 wézniso7 (31)

which consists of the anisotropic part

Pgnise = Z [fj(Jﬁj) + fj(]jj) + ?j(JSj) + ﬁj(IS) ) (32)

j=1
with the polyconvex functions

n

fr' apj+1
f](e]6]):Z (Oé +1J) Qirj J6]( ! )a
rj

r=1
= - 3&r; (Bry1)
(T 7J J
fj( 7]) ; (ﬂm-i-l) Bm (33)

— - &rj (nrs+1)
fiUsi)=) ————:Jds; 7

n

= 3m; .
@-(@,):Z&,j . LI
r=1

rJ

Here the j — th invariants are given by
JGJ C . G 1, J7j:COfCIGj31, Jgj:CIGjSC; (34)
the abbreviation m; :=1: G; : 1 and the polyconvexity restrictions
1
Qrj, ﬂrja Tlrjs frj > OvVTj = _5 (35)

are taken into account. As an example, for the crystal class Cs the j—th
fourth-order structural tensor appears in the form

G"; = diagla},a?,¢7,0,0,0], with aj, ¢; >0. (36)

g2y =g

The second Piola-Kirchhoff stresses at natural state, which are here auto-
matically equal to zero, are obtained by

3
Sloo, = 2801/}2|c 1 Zzzgm [ —3m;j + (m )ﬁm mﬁrj+l)1

r=1j=1

(37)

1 s 3 ) 2
m; "’ m@” +

g™ " T gy ™
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4 Fitting to Referential Data

In order to show the capability of the polyconvex functions (23) to describe

the phenomenological response of materials characterized by the presented

symmetry groups, we adjust the underlying linearized fourth-order elasticity

tensor near the reference state Cy, with Co := 400 c¥|-_,, to experimen-

tal measurements. The linearization of the stress response functions at a
natural state, i.e.,

. . . oS
Lin[S] = Cy : Lin[E], with Cq:= 26_(7 , Sle_y, =0 (38)
C=

1

and the Green-Lagrange strain tensor E := %(C — 1), reduces to
oc=Cp:e, (39)

where the term Lin[S] can be identified with the linear stress tensor o
and the term Lin[E] with the linear strain tensor € in the case of small
strains; therefore, the linearized tangent moduli Cy at the reference state
is identical to the classical representation of the elasticity tensor in the
small strain regime. For the approximations we use experimental data on
monoclinic, rhombic, tetragonal, trigonal and cubic elasticities presented in
Simmons and Wang (1971). In Schroder et al. (2008) and Ebbing et al.
(2009) approximations of rhombic and monoclinic elasticity tensors using
the polyconvex function (25) can be found. In Schrdder et al. (2009) a
trigonal elasticity tensor is adjusted by considering the polyconvex function
(31). The adjustment of moduli is based on the minimization of the error
function _
_lc-cy
ICl
C € R5%6 denotes the computed tangent moduli Cy in Voigt notation and
C € R%%6 is the associated coefficient scheme of experimental values. For
the minimization of (40) we use the evolution strategy proposed by Schwefel
(1996).

In the following the results of the fittings for materials of different aniso-
tropy types are presented. Note that in all cases the adjustments are done
by using the energy functions (23) with n = m = 3. In order to get a
better understanding of the underlying anisotropic material behavior the
characteristic surfaces of Young’s moduli of the adjusted materials are de-
picted; in this context see Shuvalov (1988) and Béhlke and Briiggemann
(2001). Furthermore, the explicit form of Young’s Moduli and the errors of
the adjustments as well as detailed results on the material parameters and
the structural tensors are given.

(40)
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Monoclinic material, type Cs: First we approximate the elasticity
tensor of the monoclinic material Aegirite-Augite. We consider the energy
function (25) with n = m = 3, the anisotropic part (26) and G7", given by
(28). The characteristic surface and representations of the experimentally
determined and computed elasticity tensor can be found in Fig. 3. The

[216.10 66.00 68.40 19.20 0 0
155.60 81.10 25.30 0 0

151.80 26.00 0 0

46.50 0 0

sym. 49.20 4.10

i 40.00 |
[215.36 66.52 68.32 19.65 0 0]
158.05 78.63 22.78 0 0

154.14 25.08 0 0

51.55 0 0

sym. 38.656 —1.77

i 40.73 |

a) b)

Figure 3. Aegirite-Augite: a) Characteristic surface of Young’s moduli, b)
C and C in [GPa).

optimization of (40) with C := 40oc¥|._, yields a relative error e of ap-
proximately 4.3 %. The optimized set of material parameters and resulting
monoclinic structural tensors are shown in Table 1.

Table 1. Material parameter set of Aegirite-Augite

isotropic material parameters: anisotropic material parameters:
01 =2.08, 62 =1.08, 63 =0.23 i Qg Brj Yrj &rj
- 171089 | 017 | -0.28 | 0.40
G, = 8%; ?gg 8 ] 2| 11090 | 009 | -037 | 1.54
0 0 1.31 3111087 | 073 ] -0.15 | 0.96
- 108 —091 0 112000 |29 | -0.39 | 1.74
Gy=|-091 130 0 } 212 - - - -
0 0 1.36 3121000 | 286 | -040 | 1.20
© 946 —0.04 0 1] 329 | 029 | -0.37 | 0.61
Gs = | —0.04 0.001 0 } 2 | 3| 245 | 0.32 | -0.37 | 1.26
0 0 0.000002 3|13 ] 244 | 066 | -044 | 0.35
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Rhombic material, type Cs: For the approximation of the experimen-
tally determined elasticities of Aragonite we use the energy function (25),
where we set n = m = 3 and take the anisotropic part (26) with the rhombic
structural tensor G? given in the Appendix into account. The characteristic
surface of Young’s moduli reflects the typical rhombic symmetry properties
described in section 2, see Fig. 4. Optimizing (40) leads here to an error

[ 159.58 36.63 1.97 0 0 0]
86.97 15.91 0 0 0
c_ 85.03 0 0 0
- 42.74 0 0
sym. 41.32 0
i 25.64
[159.71 35.14 3.33 0 0 0]
90.78 14.15 0 0 0
C_ 85.42 0 0 0
36.05 0 0
sym. 32.61 0
i 33.85
a) b)

Figure 4. Aragonite: a) Characteristic surface of Young’s moduli, b) C
and C in [GPal.

of e = 6.7%. Detailed results on the computed elasticities and the material
parameters can be found in Fig. 4 and in Table 2.

Table 2. Material parameter set of Aragonite

isotropic material parameters: anisotropic material parameters:

01 =2.80, 02 =7-10""7, &3 =0.03 j Qpj Brj Yrj &rj
1.72 | 0.24 | -0.47 | 0.20
3.08 | 0.30 | -0.50 | 1.64
3.03 | 0.17 | -0.50 | 2.04
0.41 | 0.39 | -0.50 | 0.04
0.04 | 0.09 | -0.50 | 0.75
0.05 | 0.07 | -0.44 | 0.01
1.58 | 1.40 | -0.50 | 0.86
0.71 | 1.22 | -0.50 | 0.62
0.95 | 0.65 | -0.50 | 1.20

G, = diag(2.04,0.83,0.0000001)

G = diag(0.000004, 0.97, 0.61)

Gi3 = diag(0.0000002, 1.23,2.13)

W N [ o Nf = o D =] 3
W W W[ N NN || =~
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Tetragonal material, type C4: We choose the experimental elasti-
cities of Calcium molybdate, given in Fig. 5. Under consideration of the
energy (31) with n = m = 3, the anisotropic part (32) and the fourth-
order tetragonal structural tensor G§-1 given in the Appendix we obtain the

[145.00 66.00 44.60 13.00 0 0]
145.00 44.60 —13.00 0 0
c_ 126.50 0 0 0
36.90 0 0
sym. 45.00 0

i 45.00 |

[146.54 65.38 43.40  4.81 0 0]
146.54 43.40 —4.81 0 0
C— 129.66 0 0 0
- 40.73 0 0
sym. 37.51 0
37.51

a) b) - i

Figure 5. Calcium molybdate: a) Characteristic surface of Young’s moduli,
b) C and C in [GPa].

optimized results on elasticities and material parameters shown in Fig. 5
and Table 3, respectively, with z = 107°. The optimization (40) yields an
error of 7.23%.

Table 3. Material parameter set of Calcium molybdate

isotropic material parameters:
ro.23 0.08 0 0 0.080

01 =2.73, 62 =0.75, I3 =0.48 023 0 0 —0.080
anisotropic material parameters: G1 = 0.54 0 Og 8 8
r g ] arg | Brj Yri | Mg Erj sym. 00
1 [ 1] 0.23] 1.58 | -0.13 | 0.43 | 0.07 L 0
211043 | 230 | -0.07 | 0.04 | 0.50 L 31e 048 o 0 045 0

. z . z . z

311000 | 218 | -0.27 | 0.00 | 1.81 1.312 0 0 —0.45> 0
12| 141 | 0.89 1.07 | 1.95 | 0.85 Gy = 0.192 0 00
2 [ 2045 | 0.14 | 1.16 | 0.57 | 0.43 cum 0.482 oo
3121062 1.08 0.03 | 1.12 | 0.55 L v 0
1 [3 ] 1.23 ] 0.00 | -050 ] 2.15 | 0.50
2 3] 18 | 005 | -050 | 1.86 | 0.32 r0.73 g-gg g g g-gig
3131099 | 0.00 [ -0.50 | 0.99 | 0.90 G — T8z o oo
relative error: 3= 0.25 00

e=723% Lo ’0
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Tetragonal material, type Cs: The elasticities of Indium are taken,
see Fig. 6. For the computation of the elasticity tensor at the reference
state C = 4w2cc|c=1 the energy function (31) with n = m = 3, the
anisotropic part (32) and j—th tetragonal structural tensors G;Q given in the
Appendix are used. The characteristic surface of Young’s moduli depicted

[ 45.30 40.00 41.50 0 0 0
45.30 41.50 0 0 0
45.10 0 0 0
6.50 0 0
sym. 12.10 0
i 12.10 |
[ 48.38 39.18 39.09 0 0 0]
48.38 39.09 0 0 0
48.47 0 0 0
4.57 0 0
sym. 4.60 0
i 4.60 |

a) b)
Figure 6. Indium: a) Characteristic surface of Young’s moduli, b) C and
C in [GPal.

in Fig. 6 shows here the typical symmetry properties of a tetragonal material
of Cs-type. The optimization procedure yields the material parameters and
three tetragonal structural tensors as listed in Table 4; the obtained error
is e =10.17%.

Table 4. Material parameter set of Indium

isotropic material parameters: anisotropic material parameters:

01 =0.02, d2 =223, 63="7.49 ooy | B | i | ey | &y
1.24 | 2.04 | 0.47 | 1.87 | 1.17
1.61 | 3.55 | 0.89 | 0.98 | 0.28
1.45 | 2.65 | 0.96 | 1.12 | 0.93
0.68 | 0.63 | 1.00 | 1.19 | 1.88
2.82 | 2.03 | 0.18 | 0.30 | 1.11
2.31 | 1.26 | 243 | 1.03 | 1.34
1.23 | 2.85 | 1.61 | 0.44 | 1.99
2.13 | 248 | 0.74 | 2.13 | 0.36
0.60 | 1.28 | 1.71 | 0.98 | 1.32

Gy = diag(0.0002, 0.0002, 0.0001, 0, 0, 0)

Gy = diag(0.0006, 0.0006, 0.0024, 0, 0, 0)

G5 = diag(0.001, 0.001, 0.00022, 0, 0, 0)

Q| N | of DOf =] wof DO =] 3
W W W[ N N N | | =~
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Cubic material, type C;: Fig. 7 depicts the experimental and opti-
mized elasticity tensor of Aluminium as well as the characteristic surface
of Young’s moduli reflecting the cubic symmetry properties of Aluminium.
For the approximation of the elasticity tensor the energy function (31) with
n = m = 3, the anisotropic part (32) and the j—th cubic structural tensors
given in the Appendix are taken into account. The corresponding cubic ma-

a) b)

[107.30  60.80
107.30

sym.

[109.13 59.88
109.13

sym.

60.80
60.80
107.30

59.88
59.88
109.13

24.63

oo oo

28.30

o O OO

24.63

OO O OO

28.30

OO O oo

24.63 |

Figure 7. Aluminium: a) Characteristic surface of Young’s moduli, b) C

and C in [GPal.

terial parameters and resulting three cubic structural tensors can be found
in Table 5. From the optimization of (40) we obtain a relative error of

approximately 3.07%.

Table 5. Material parameter set of Aluminium

isotropic material parameters: anisotropic material parameters:
61 = 4.76, b2 =T7.56, b3 =T7.41 r | j Qi Brj Yrj Nrj &rj
1 1 0.07 | 2.17 | 2.54 1.46 1.14
Gy = diag(0.0065%, 0.0065%, 0.0065%, 0, 0, 0) 2 1 126 ) 155 | 050 | 152 | 1.00
1= . , 0. ;0. , 0,0,
31| 102 232 [ 258 | 0.25 | 0.37
12229 | 258 | 334 | 259 | 1.31
Gy = diag(0.0024%,0.0024%,0.0024%, 0, 0, 0) 3 ; é;g Z?é ;ig (1)21 (2]}2
1 3 1.94 | 2.20 1.81 0.88 | 0.29
Gs = diag(0.0012%,0.0012%,0.0012%, 0, 0, 0) 23]243 | 165|259 | 1.94 | 0.59
3 = B s Y. s Ve » U, U,y
3 [3 ] 1.61 [ 310 ] 296 [ 2.68 | 0.46
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Trigonal material, type Co: The elasticity tensor at the reference state
is here computed under consideration of the energy function (31) with the
anisotropic part (32) and the trigonal fourth-order structural tensor G2,
A comparison of the computed and experimentally determined elasticity

[233.00 47.00 80.00 0 —11.00 0
233.00 80.00 0 11.00 0
¢ = 275.00 0 0 0
93.00 0 —11.00
sym. 94.00 0

i 94.00 |

[232.99 46.99 80.00 0 —10.99 0]
X2 232.99 80.00 0 10.99 0
C= 275.00 0 0 0
92.99 0 —10.99
sym. 94.00 0

a) b) | 94.00 |

Figure 8. Lithium tantalate: a) Characteristic surface of Young’s moduli,
b) C and C in [GPal.

tensors of Lithium tantalate, see Fig. 8, shows that this trigonal material
can be described using the energy function (31), the error is 0.0021%. For
more details on the material parameters see Table 6, with z = 1072.

Table 6. Material parameter set of Lithium tantalate

isotropic material parameters:
r0.90 0.30 0.40 0 —0.35 0

61 =1.32, 62 =0.14, 63 =0.11 0.90 0.40 0 0.35 0
anisotropic material parameters: G = 0.27 o 38 8 o 3(5J
|l J | ary Brj Yrj Nrj Erj sym. ' 040 0
1 1 0.12 | 0.59 | -0.42 | 0.01 1.26 L 0.40
211064 | 1.16 | -0.48 | 0.13 | 0.15 Cor 072 5.1 0 18 0
3] 1] 000 074 ] -0.49 | 0.04 | 2.26 s o l1s o
1 (2] 19 | 0.04 | -0.23 | 1.66 | 1.79 Gy = 20z 0 0 0
2 [ 2] 08T | 057 | 2.39 | 1.21 | 0.15 . 0:002 - orse
32 202 006 | -0.37 | 1.71 | 0.01 I 51s
1|3 ] 218 | 0.05 | -0.36 | 1.98 | 2.30
2131077 1.16 0.42 1.93 0.09 [7= 2-? S'gz 8*3-? g
3 3] 134 022 | -0.24 | 1.98 | 0.90 o o o o
relative error: Gs = 2.352 0-4.52

e = 0.0021% | S e
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5 Conclusion

In this contribution we have presented a framework for the construction of
polyconvex energy functions suitable for the description of triclinic, mono-
clinic, rhombic, trigonal, tetragonal, cubic and transversely isotropic hyper-
elastic materials. For this we have used polyconvex polynomial invariants
in terms of the right Cauchy-Green tensor and second-order and fourth-
order structural tensors, respectively. For the construction of the structural
tensor the base system of the underlying crystal class has been taken into
account. Representative examples have been discussed in order to show the
capability of the proposed energy function for the fitting of real anisotropic
material behavior.
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Appendix

Triclinic system, group Cy:

a; = (a,0,0)T, ay = (bcosv,bsiny,0), a3 = (ccosf, X,Y)"

G =

™ Qg
Sk SR

D~k ™

with &= a®+b% cos’ v+ ¢ cos® 3

2

b= 12 sin?y 4 C(COS@ =08 cos 7)?
sin? v
5o c2(1 42 cosa cos B cosy — cos? a — cos? § — cos® )
B sin? y

d= b?cosy siny+ c?cos B (cosg—cosﬁ cos )

sin ~y
- c?cosB (1 +2 cosa cosBcosy — cos® o — cos? 3 — coszfy)l/2
e =

sin 7y
Fe c2(cos o — cos 3 cos )

sin 7y
(142 cosa cos cosy — cos? o — cos? 3 — cos? ~)1/2

sin 7y

X =c(cosa —cosf cosvy)/siny

Y =c[l42 cosa cosfB cosy — (cos? a + cos? B + cos? )]/ 2 /siny

Monoclinic system, group Cs:

a; = (a,0,0)7, ay = (bcosy,bsiny,0)L, az=(0,0,¢)"
a® + b2 cos?y b? cosvy siny 0
G" = | b2cosy siny b? sin®~y 0
0 0 c?
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Rhombic system, group Cs:

ar = (a,0,007, az = (0,607, a3z =1(0,0,¢)"
a> 00
G°=|0 b 0
0 0 ¢

Tetragonal system, group Ca:

a1 = (a,b,0)", ax=(-b,a,0", az=(0,0,¢)7

at+ vt 2a°b> 0 ab—ba 0 0
a* 4+ b* 0 Ba—ad 0 0
¢t 0 0 0
th —
sym. 2a%b? 0 0
0 0
i 0
Tetragonal system, group Cs:
a1 = (a,0,0)7, a2 =(0,a,0)7, az=1(0,0,¢)T
at 0 0 0 0 0
a* 0 0 0 0
- ¢t 0 0 0
sym. 0 0 0
0 0
L 0 -
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Trigonal system, group Cs:

a; = —_% , a= ﬁg 2], az= 2—\%—%
[ic* LC* Lce o A B
ic? Lce o -A  -B
Ghil =ct 0 0 0
sym 21402 —-B A
oe 0

I $Ce |

with A——ﬁa%@rmlﬁé%, B:—4—13a52é+1;¢§a36, C=a*+0’

Trigonal system, group Co:

ai = (0, f_E/\/ﬁ, ¢/3)T, as = (b/2,b/(2V3),¢/3)T, az = (=b/2,b/(2V/3),¢/3)T

it Lvt L 0 Bb’e 0
v e 0 —mble 0
Gh? =t 0 0 0
sym. i?)“ 0 ﬁl}?’é
e 0
_ s |

Cubic system, group Cr:

ai = (a,0,0)7, a2=(0,a,0)", a3 =1(0,0,a)T
[ et 0 0 0 0
at 0 0 0
G — a* 0 0 0
sym. 0 0 0
0 0
L 0
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