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Abstract I consider the I'-limit to a three-dimensional Cosserat
model as the aspect ratio h > 0 of a flat domain tends to zero. The
bulk model involves already exact rotations as a second independent
field intended to describe the rotations of the lattice in defective
elastic crystals. The I'-limit based on the natural scaling consists
of a membrane like energy and a transverse shear energy both scal-
ing with h, augmented by a curvature energy due to the Cosserat
bulk, also scaling with h. A technical difficulty is to establish equi-
coercivity of the sequence of functionals as the aspect ratio h tends
to zero. Usually, equi-coercivity follows from a local coerciveness
assumption. While the three-dimensional problem is well-posed for
the Cosserat couple modulus p. > 0, equi-coercivity needs a strictly
positive g > 0. Then the I'-limit model determines the midsurface
deformation m € H*? (w,R3). For the true defective crystal case,
however, u. = 0 is appropriate. Without equi-coercivity, we ob-
tain first an estimate of the I' — liminf and I' — lim sup which can
be strengthened to the I'-convergence result. The Reissner-Mindlin
model is "almost” the linearization of the I'-limit for u. = 0.

1 Introduction

1.1 Aspects of shell theory

The dimensional reduction of a given continuum-mechanical model is
already an old subject has seen many ”solutions”. Omne possible way to
proceed is the so called derivation approach, i.e., reducing a given three-
dimensional model via physically reasonable constitutive assumptions on
the kinematics to a two-dimensional model. This is opposed to either the
intrinsic approach which views the shell from the onset as a two-dimensional
surface and invokes concepts from differential geometry or the asymptotic
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methods which try to establish two-dimensional equations by formal expan-
sion of the three-dimensional solution in power series in terms of a small
nondimensional thickness parameter, the aspect ratio h. The intrinsic ap-
proach is closely related to the direct approach which takes the shell to be
a two-dimensional medium with additional extrinsic directors in the sense
of a restricted Cosserat surface Cosserat and Cosserat (1909).! There, two-
dimensional equilibrium in appropriate new resultant stress and strain vari-
ables is postulated ab-initio more or less independent of three-dimensional
considerations, cf. Antman (1995); Green et al. (1965); Ericksen and Trues-
dell (1958); Cohen and DeSilva (1966a,b); Cohen and Wang (1989); Rubin
(2000).

A comprehensive presentation of the different approaches in classical
shell theories can be found in the monograph Naghdi (1972). A thor-
ough mathematical analysis of linear, infinitesimal-displacement shell the-
ory, based on asymptotic methods is to be found in Ciarlet (1998) and the
extensive references therein, see also Ciarlet (1997, 1999); Antman (1995);
Destuynder and Salaun (1996); Dikmen (1982); Genevey (2000); Anzellotti
et al. (1994). Excellent reviews of the modelling and finite element im-
plementation may be found in Sansour and Bufler (1992); Sansour (1995);
Sansour and Bocko (1998); Gruttmann et al. (1989); Gruttmann and Taylor
(1992); Wriggers and Gruttmann (1993); Betsch et al. (1996); Biichter and
Ramm (1992) and in the series of papers Simo and Fox (1989); Simo et al.
(1989, 1990a,b); Simo and Kennedy (1992); Simo and Fox (1992). Properly
invariant, geometrically exact, elastic plate theories are derived by formal
asymptotic methods in Fox et al. (1993). This formal derivation is extended
to curvilinear shells in Miara (1998); Lods and Miara (1998). Apart from
the pure bending case Friesecke et al. (2002a, 2003), which is justified as the
I-limit of the three-dimensional model for A — 0 and which can be shown
to be intrinsically well-posed, the obtained finite-strain models have not yet
been shown to be well-posed. Indeed, the membrane energy contribution is
notoriously not Legendre-Hadamard elliptic. The different membrane model
formally justified in Le Dret and Raoult (1996) by I'-convergence is geo-
metrically exact and automatically quasiconvex/elliptic but unfortunately
does not coincide upon linearization with the otherwise well-established
infinitesimal-displacement membrane model. Moreover, this model does
not describe the detailed geometry of deformation in compression but re-
duces to a tension-field theory Steigmann (1990). The quasiconvexification

1Restricted7 since no material length scale enters the direct approach, only the nondi-
mensional aspect ratio h appears in the model. In terminology it is useful to distinguish
between a ”true” Cosserat model operating on SO(3) and theories with any number of
directors.



I'-convergence for a Geometrically Exact Cosserat Shell Model 303

step in Le Dret and Raoult (1996) appears since the membrane energy takes
then into account the energy reducing effect of possible fine scale oscilla-
tions (wrinkles). The development of Le Dret and Raoult (1996) has been
generalized to Young-measures in Freddi and Paroni (2004). A hierarchy of
limiting theories based on I'-convergence, distinguished by different scaling-
exponents of the energy as a function of the aspect ratio h is developed
in Friesecke et al. (2006). There the different scaling exponents can be
controlled by scaling assumptions on the applied forces.

It is possible to include interfacial energy (here a second derivative term
k|| D?p]|? in the bulk energy) in the description of the material. The I'-limit
for constant s has been investigated in Bhattacharya and James (1999) in
an application to thin martensitic films. As a result, no quasiconvexifica-
tion step is necessary (the higher derivative excludes arbitrary fine scale
wrinkles) and in the limit one independent ” Cosserat-director” appears. If
simultaneously k — 0 faster than h — 0, then the I'-limit coincides (Shuh,
2000, Rem.5) with that of Le Dret and Raoult (1996). In our context (see
below), including such an interfacial energy is tantamount to setting . = 0o
in the Cosserat bulk model, i.e. the Cosserat bulk model would degenerate
into a second gradient model.

There are numerous proposals in the engineering literature for a finite-
strain, geometrically exact plate formulation, see e.g. Fox and Simo (1992);
Sansour and Bufler (1992); Sansour and Bednarczyk (1995); Sansour and
Bocko (1998); Wriggers and Gruttmann (1993); Betsch et al. (1996); Biichter
and Ramm (1992). These models are based on the Reissner-Mindlin kine-
matical assumption which is a variant of the direct approach; usually one
independent director vector appears in the model. In many cases the need
has been felt to devote attention to rotations R € SO(3), since rotations
are the dominant deformation mode of a thin flexible structure. This has
led to the drill-rotation formulation which means that proper rotations ei-
ther appear in the formulation as independent fields (leading to a restricted
Cosserat surface) or they are an intermediary ingredient in the numerical
treatment (constraint Cosserat surface, only continuum rotations matter fi-
nally). While the computational merit of this approach is well documented,
such models lacked any asymptotic basis.

1.2 Outline of this contribution

In Neff (2004b) the author has proposed a Cosserat shell model for mate-
rials with rotational microstructure. In the underlying Cosserat-bulk model
the Cosserat-rotation R and the gradients of R enter into the measure of
deformation of the body. In fact, variation of R leads to a balance of
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substructural interaction Capriz (1989). These gradients account therefore
for the presence of interfaces between substructural units in a smeared sense.
One may think of, e.g., liquid crystals, defective single crystals or metallic
foams Neff (2006¢); Neff and Forest (2007).

Assuming a strict principle of scale separation rules out the possibility
of a direct comparison between macroscopic quantities (the usual deforma-
tion) and the microscopic ones (for example the lattice vectors in a defective
crystal) and makes it plausible to assume that they behave independently of
each other. For definiteness, we may view the Cosserat-rotations R as aver-
aged lattice rotations, independent of the macroscopic rotation.? It can be
shown that the Cosserat-rotation follows closely the macroscopic rotation in
the bulk model provided that a constitutive parameter, the Cosserat couple
modulus g, is strictly positive. Therefore, the interesting case with inde-
pendent microstructure is represented by p. = 0. In this case, the amount
of incompatibility of the lattice rotations, measured through Curl R, deci-
sively influences the elastic response of the material and elastic coercivity
can only be established for a reasonably smooth distribution of incompat-
ibilities and defects. Every real pure single crystal contains still a massive
amount of defects and incompatibilities. Thus, giving up the idealization of
a defect free single crystal adds to the physical realism of the model. Let
us henceforth refer to p. = 0 as defective elastic crystal case.

The above mentioned shell model is shown to be well-posed in Neff
(2004b) for the case e, > 0 and in Neff (2007) for the case p. = 0.
Apart for technical details, this Cosserat shell model includes the gener-
alized drill-rotation formulations alluded to above. Notably for u. = 0,
the in-plane drill-energy is absent in conformity with the classical Reissner-
Mindlin model.

The formal derivation of the new shell model Neff (2004b), based on an
asymptotic ansatz for a Cosserat bulk model with kinematical and phys-
ical assumptions appropriate for thin structures, however, still gives rise
to questions as far as the asymptotic correctness and convergence is con-
cerned. In this paper we address this point by showing, that the I'-limit
of the Cosserat bulk model for h — 0 (under natural scaling assumptions)
is, after descaling, given by the corresponding formal derivation, provided
the energy contributions scaling with h are retained and the coefficient of
the transverse shear energy is slightly modified. Given that the information
provided by the I'-limit hinges also on scaling assumptions, we think that

2Compare with Zaafarani et al. (2006), where it is observed that lattice rotations are,
in fact, independent of the macroscopic rotations in nano-indent single crystal copper
experiments.
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this result is a justification of the formal derivation in Neff (2004b) and the
employed kinematical ansatz.

Central to our development is therefore the notion of I'-convergence, a
powerful theory originally initiated by De Giorgi Giorgi (1975, 1977) and
especially suited for a variational framework on which in turn the numer-
ical treatment with finite elements is based. This approach has thus far
provided the only known convergence theorems for justifying lower dimen-
sional nonlinear, frame-indifferent theories of elastic bodies.

Now, after presenting the notation, we recall in Section 2 the underlying
"parent” three-dimensional finite-strain frame-indifferent Cosserat model
with rotational substructure embodied by the Cosserat rotations R, i.e., a
triad of rigid directors (R;|Rz2|R3) = R € SO(3) and provide the existence
results for this bulk model. Then we perform in Section 3 the transformation
of the bulk model in physical space to a nondimensional thin domain and
introduce the further scaling to a fixed reference domain € with constant

thickness on which the I'-convergence procedure is finally based.

In Section 4 we recapitulate some points from I'-convergence theory and
introduce the I'-limit for the rescaled formulation with respect to the two
independent fields (¢, R) of deformations and microrotations in Section 5.
Two limit cases, y. = 0 and p. = oo deserve additional attention. Following,
we provide the proof for the I'-convergence results. First, for the simple case
e > 0 in Section 6 similar to the development in Le Dret and Raoult (1996)
and then for the case of defective elastic crystals . = 0 in Section 7. The
case . = oo will be dealt with rigorously in a separate contribution. Our
geometrically exact results have been first announced in Neff and Chelminski
(10/2004); Neff (2005, 2006b). In the meantime, the geometrically linear
case for pu. > 0 has been treated by Aganovic et al. (2007a,b).

1.3 Notation

Notation for bulk material Let © C R? always be a bounded open
domain with Lipschitz boundary 992 and let I" be a smooth subset of 0
with non-vanishing 2-dimensional Hausdorff measure. For a,b € R? we
let (a,b)ps denote the scalar product on R* with associated vector norm
lall2s = (a,a)gs. We denote by M>*? the set of real 3 x 3 second order
tensors, written with capital letters. The standard Euclidean scalar prod-
uct on M*3 is given by (X, Y )yaxs = tr [XYT], and the Frobenius tensor
norm is || X |2 = (X, X)pexs. In the following we omit the index R, M3*3.
The identity tensor on M®*3 will be denoted by 11, so that tr [X] = (X, 11)
and tr [X]* = (X, 1)>. We let Sym and PSym denote the symmetric and
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positive definite symmetric tensors respectively. We adopt the usual ab-
breviations of Lie-group theory, i.e., GL(3) := {X € M3*3 |det[X] # 0}
the general linear group, O(3) := {X € GL(3) | XTX = 1}, SO(3) :=
{X € GL(3) |XTX = 1, det[X] = 1} with corresponding Lie-algebra
50(3) := {X € M>*3 | XT = — X} of skew symmetric tensors. With Adj X
we denote the tensor of transposed cofactors Cof(X) such that Adj X =
det[X] X1 = Cof(X)T if X € GL(3). We set sym(X) = $(XT + X) and
skew(X) = £(X — X7) such that X = sym(X) + skew(X). For vectors
&,m € R™ we have the tensor product (£ @ 1);; = & n;. We write the polar
decomposition in the form F' = RU = polar(F)U with R = polar(F)
the orthogonal part of F. For a second order tensor X we define the
third order tensor h = D, X (x) = (V(X (x).e1), V(X (z).e2), V(X (z).e3)) =
(h1, 5%, 53) € M3*3 x M2¥3 x M3*3 = F(3). For third order tensors h € T(3)
we set [|B]|2 = D7, |[b[|* together with sym(p) := (sym b', sym b, sym h%)
and tr[ph] := (tr [h'], tr [p?],tr [h3]) € R3. Moreover, for any second or-
der tensor X we define X - b := (Xbh', X2 Xh3) and b - X, correspond-
ingly. Quantities with a bar, e.g. the micropolar rotation R, represent the
micropolar replacement of the corresponding classical continuum rotation
R. For the deformation ¢ € C'(Q,R3) we have the deformation gradi-
ent F =V € O(Q,M>*3). S)(F) = DpW(F) and So(F) = F~'DrW (F)
denote the first and second Piola Kirchhoff stress tensors. The first and sec-
ond differential of a scalar valued function W (F) are written DpW (F).H
and D% W (F).(H, H). We employ the standard notation of Sobolev spaces,
ie. L2(Q), HY2(Q), HY?(Q), Wh4(Q), which we use indifferently for scalar-
valued functions as well as for vector-valued and tensor-valued functions.
The set WH4(Q,SO(3)) denotes orthogonal tensors whose components are
in Wh4(Q). Moreover, we set || X || = sup,cq | X (z)||. By C§°(Q) we de-
note infinitely differentiable functions with compact support in . We use
capital letters to denote possibly large positive constants, e.g. CT, K and
lower case letters to denote possibly small positive constants, e.g. ¢, d™T.

Notation for plates and shells Let w C R? always be a bounded open
domain with Lipschitz boundary dw and let v9 be a smooth subset of dw
with non-vanishing 1-dimensional Hausdorff measure. The aspect ratio of
the plate is h > 0. We denote by M™*" the set of matrices mapping
R™ — R™. For H € M3*? and £ € R3 we write (H|¢) € M3*3 for the matrix
composed of H and the column . Likewise (v[€|n) is the matrix composed
of the columns v, £,n. This allows us to write for ¢ € C1(R3,R?) : Vo =
(0zloylpz) = (02p|0y0]0-0). The identity tensor on M?2*? is 1p. The
mapping m : w C R? —— R3 is the deformation of the midsurface, Vm is
the corresponding deformation gradient and 77, is the outer unit normal on
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m. A matrix X € M?*3 can now be written as X = (X.ea|X.e2|X.e3) =
(X1]X2]X3). We write v : R? — R3 for the displacement of the midsurface,
such that m(z,y) = (z,y,0)7 + v(z,y). The standard volume element is
dxdydz = dV = dwdz.

2 The underlying three-dimensional Cosserat model

2.1 Problem statement in variational form

In Neff (2006a) a finite-strain, fully frame-indifferent, three-dimensional
Cosserat micropolar model is introduced. The two-field problem has been
posed in a variational setting. The task is to find a pair (¢, R) : Q C E? —
[E? x SO(3) of deformation ¢ and independent Cosserat-rotation R € SO(3),
defined on the ambient physical space E?, minimizing the energy functional
I?

u%m=Lmaﬁﬁwwmwﬁnm—mw%nmmw’ 1)

—/ Hy(p)dS — | Tp (R)dS — min. wr.t. (o, R),
Fs I‘lC

together with the Dirichlet boundary condition of place for the deformation
@ on I'' ¢ = gq and three possible alternative boundary conditions for
the microrotations R on T,

Ry, the case of rigid prescription,
EF = ¢ polar(Vip), the case of strong consistent coupling,

no condition for R on I', Neumann-type relations for R on I".
(2)
The constitutive assumptions on the densities are

_ — A — 2
Wanp (D) = g [ sym(T = W2 + g || skew (@) + 5 tr [sym(T - 1)),

U=RF, F=Vp, (3)
L1+P
Wcurv(ﬁ) =p ;2 (1 +ay Lg H‘ﬁ”q)
1+p

2

<a5 | sym &) + ag || skew &||2 + ar tr [ﬁ]2) :
A=R'D,R:= (ETV(Rel),ETV(E.eQ),ETV(Re?,)) :

the third order curvature tensor,
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under the minimal requirement p > 1, ¢ > 0. The total elastically stored
energy W = Wy, + Weurv is quadratic in the stretch U and possibly super-
quadratic in the curvature K. The strain energy Wy, depends on the de-
formation gradient F' = Vip and the microrotations R € SO(3), which do
not necessarily coincide with the continuum rotations R = polar(F'). The
curvature energy Wey depends moreover on the space derivatives D.R
which describe the self-interaction of the microstructure.® In general, the
micropolar stretch tensor U is not symmetric and does not coincide with
the symmetric continuum stretch tensor U = RTF = v FTF. By abuse
of notation we set || sym &||? := Zg’zl | sym &||? for third order tensors &,
cf.(1.3).

Here I' C 092 is that part of the boundary, where Dirichlet conditions
ga, Rq for deformations and microrotations or coupling conditions for mi-
crorotations, are prescribed. I's C 9 is a part of the boundary, where
traction boundary conditions in the form of the potential of applied surface
forces Iy are given with ’'NTg = (). In addition, I'c C 9N is the part of the
boundary where the potential of external surface couples Il are applied
with ' NT'¢ = (. On the free boundary 9Q \ {I' UT's UT'¢} corresponding
natural boundary conditions for (¢, R) apply. The potential of the external
applied volume force is II; and I, takes on the role of the potential of
applied external volume couples. For simplicity we assume

Hf(sa):<fa50>v HM(E):<M7E>7
In(p) = (N, ), I (R) = (M, R), (4)

for the potentials of applied loads with given functions f € L?(Q,R3), M €
L2(Q,M3%3), N € L?(T's,R3), M, € L?>(T'c,M3*3).

The parameters pu, A > 0 are the Lamé constants of classical isotropic
elasticity, the additional parameter p. > 0 is called the Cosserat couple

modulus. For y. > 0 the elastic strain energy density Wy, (U) is uniformly
convex in U and satisfies the standard growth assumption ¥V F' € GL™(3):

— —T . =T . =
Winp(U) = Winp(R' F) > min(p, i) [[R° F — 1||* = min(p, ) ||F — R]|?
> mi . inf ||F — R||? = mi ) dist?(F,0(3
> min(g, fie) rady | [|* = min(g, pe) dist™(F, O(3))

= min(y, pc) dist®(F, SO(3)) = min(y, pe) | F — polar(F)|?
= min(u, pe) |U — 1[|*. (5)

3Observe that ETV(Rei) #* ET&%E € 50(3).
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In contrast, for the interesting limit case of defective elastic crystals p. = 0,
where the Cosserat rotations R are viewed as the lattice rotations, the strain
energy density is only convex w.r.t. F' and does not satisfy (5).*

The parameter L. > 0 (with dimension length) introduces an internal
length which is characteristic for the material, e.g., related to the interaction
length of the lattices in a defective single crystal. The internal length L. > 0
is responsible for size effects in the sense that smaller samples are relatively
stiffer than larger samples. We assume throughout that ay, as, ag > 0, a7 >
0. This implies the coercivity of curvature

Jem >0 VREZ(B): Weun(R) >t ||8)1TPH, (6)

which is a basic ingredient of the mathematical analysis. Note that every
subsequent result can also be obtained for a true lattice incompatibility
measure Wyefect replacing Weyry with

Waeteot = o L7 | B Curl B|) 7+, (7)

see Neff and Miinch (2008). Wiefect accounts for interfacial energy between
adjacent regions of lattice orientations.

The non-standard boundary condition of strong consistent coupling en-
sures that no unwanted non-classical, polar effects may occur at the Dirichlet
boundary I'. It implies for the micropolar stretch that U‘r € Sym and for
the second Piola-Kirchhoff stress tensor Sp := F~1DpWy, (U) € Symon T
as in the classical, non-polar case. We refer to the weaker boundary condi-
tion U‘F € Sym as weak consistent coupling.

It is of prime importance to realize that a linearization of this Cosserat
bulk model in the case of defective elastic crystals py. = 0 for small dis-
placement and small microrotations completely decouples the two fields of
deformation ¢ and Cosserat-lattice rotations R and leads to the classical
linear elasticity problem for the deformation.> For more details on the
modelling of the three-dimensional Cosserat model we refer the reader to
Neff (2006a).

2.2 Mathematical results for the Cosserat bulk problem

We recall the obtained results for the case without external loads. It can
be shown Neff (2006¢, 2004a):

4The condition F € GL*(3) is necessary, otherwise || F — polar(F)||2 = dist2(F, O(3)) <
dist?(F,S0(3)), as can be easily seen for the reflection F' = diag(1, —1,1).

5Thinking in the context of an infinitesimal-displacement Cosserat theory one might
believe that pe > 0 is necessary also for a "true” finite-strain Cosserat theory.
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Theorem 2.2.1 (Existence for 3D-finite-strain elastic Cosserat model with
pe > 0). Let Q C R? be a bounded Lipschitz domain and assume for the
boundary data gq € H'(Q,R?) and Rq € WH*P(Q,SO(3)). Then (1) with
pe > 0,04 > 0,p > 1,q > 0 and either free or rigid prescription for R
on I' admits at least one minimizing solution pair (¢, R) € H'(Q,R3) x
WP (Q, SO(3)). O

In the case of defective elastic crystals a more stringent control of the
lattice incompatibility (higher curvature exponent) is necessary. Using the
extended Korn’s inequality Neff (2002); Pompe (2003), the following has
been shown in Neff (2006¢):

Theorem 2.2.2 (Existence for 3D-finite-strain elastic Cosserat model with
pe = 0). Let Q C R3 be a bounded Lipschitz domain and assume for the
boundary data gq € H'(Q,R3) and Ry € WHTP+4(Q,SO(3)). Then (1)
with g =0, a4 > 0,p > 1, ¢ > 1 and either free or rigid prescription for
R on T admits at least one minimizing solution pair (¢, R) € H*(Q, R3) x
Whiteta(Q SO(3)). O

3 Dimensional reduction of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basic task of any shell theory is a consistent reduction of some
presumably ”exact” 3D-theory to 2D. The three-dimensional problem (1)
defined on the physical space E? will now be adapted to a shell-like the-
ory. Let us therefore assume that the problem is already transformed in
nondimensional form. This means we are given a three-dimensional (nondi-
mensional) thin domain Q, C R3

h h
Qh ::wx[—§,§], WCRZ, (1)
with transverse boundary Q'™ = w x {—%, %} and lateral boundary
oAU = Ow x [—2, 2] where w is a bounded open domain® in R? with

smooth boundary dw and h > 0 is the nondimensional relative character-
istic thickness (aspect ratio), h < 1. Moreover, assume we are given a
deformation ¢ and microrotation R,

0: QO cR®—R3, R:Q, CcR®—SO(3), (2)

SFor definiteness, one can think of w = [0, 1]] x [0, 1]].
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solving the following two-field minimization problem on the thin domain
th

(. F) = /Q W (T) + Weure (8) — (f, ) dV

- / (N, ¢)dS + min. w.r.t. (¢, R),
o

QjrentUlys [~ 4, 41}

— =T
U=R F, c)Olr[;)1 :gd(:c,y,Z),

_]7 Yo C awa Ys M0 = Qja (3)

weak consistent coupling boundary condition or

R: free on Fg, alternative Neumann-type boundary condition ,
where ZC = % is a nondimensional ratio. Without loss of mathematical
generality we assume that M, M. = 0 in (4), i.e. that no external volume
or surface couples are present in the bulk problem. We want to find a

reasonable approximation (ps, Rs) of (¢, R) involving only two-dimensional
quantities.

3.2 Transformation on a fixed domain

In order to apply standard techniques of I'-convergence, we transform
the problem onto a fixed domain €y, independent of the aspect ratio h > 0.
Define therefore

11
mzkaichi w C R2. (4)
The scaling transformation

C:neQ CR* =R ((ni,m,m3) == (n1,m2,h - m3), (5)
471 :E S Qh C RB = R37 <71(§17£27£3) = (El7£27§3/h)7

maps € into Qp, and ((21) = Q. We consider the correspondingly scaled
function (subsequently, scaled functions defined on ©; will be indicated with
a superscript f) ¢f : Q1 — R3, defined by

P61, 62,6) = PH(CTHEL 2. &) VEE U ¢F(n) = w(C(n) Y€,
1
V@(fbfz,&,) - (am@ﬁ(ﬂl,772,773)|8n280ﬁ(77177727773)|Ean390ﬁ(771,7727773))

=: Vit :F}i. (6)

n
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Similarly, we define a scaled rotation tensor R0 CRY SO(3) by

R(&1,6,65) = R(CM (&, 60, 6)) VE € Qs
B n) =R )) Ve,

R(
VR 6 )l = (0 FO)lon B ell jonFwel) 0
: VZ[ (n).ei] € M3*3
DR () i= (VIR (n).e1), VIR (n).c2), VAR (n).cs]) € 5(3).

This allows us to define scaled nonsymmetric stretches U?L s ,3 and
the scaled third order curvature tensor ﬁi 1 Q- T(3)

s = (B0 (0 Feon @ el 0, er])
B () (am (7 1)-c2)10 (R 0)- 211 5.0y, [R”<n>.e2]) : (8)
R o) (00 [ ) a0 1)l 00 [ )] )

T VAR ().er], B ) VIR (0)-ca), B () V3[R (1) ]

In terms of the introduced scaled deformations and rotations

o O CRIHRY, R0 CRP—S0(3), (10)
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the scaled problem solves the following two-field minimization problem on
the fixed domain €;:

F(ph Vot B DR
- / ) [me@i)wm(ﬁi)—<fﬁ,soﬁ> det[V¢(n)] AV
neildy

- / (V¥ o) || Cof Ve (n).ex] dS, |
s 4 1S

=hf Wanp (Th) + Weure (85) — (£, 01) AV,
neily

_/<Nﬁ7<pﬁ>1d577
Qirans

—/ (N*, ") hdS,, +— min. w.r.t. (wﬁ,ﬁu). (11)
Vs x[=2,3]

3.3 The rescaled variational Cosserat bulk problem

Since the energy %I # would not be finite for h — 0 if tractions N¥ on
the transverse boundary were present, the investigations are in principle
restricted to the case of N* = 0 on 9Q§#".7 For conciseness we investigate
the following simplified and rescaled (N*, f# =0, gq(&1,€2,&3) := ga(&1,&2))
two-field minimization problem on ; with respect to I'-convergence (with-
out the factor h > 0 now), i.e. we are interested in the limiting behaviour
of the energy per unit aspect ratio h:

i -t 4
Ig(gpﬁ’Vngu,R ,DZR ) = / 0 me(Uh)‘FWcurv(ﬁ}ﬁz)dvna
nesly

AT
Un=R"F, ¢ (0)=gin) = gaC(m) = ga(m.n2, hns) = galm, m2,0),
0

11
i = 0
0=7%[=55 0 Cow,
R'. frecon 'y, Neumann-type boundary condition, (12)

7ﬁ7T 7ﬁ
& =R" DR (n).

Here we assume that the boundary condition gq is already independent of
the transverse variable. We restrict attention to the weakest response, the

Neumann boundary conditions on the Cosserat rotations fiﬁ in line with the

"The thin plate limit A — 0 obviously cannot support non-vanishing transverse surface
loads.
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difficulty to experimentally influence the lattice rotations at the Dirichlet-
boundary.® Moreover, we assume

p>1, g¢>1, (13)

such that both cases p. > 0 and g, = 0 can be considered simultaneously.
External loads of various sort can be treated by Remark 4.0.5.

Within the rescaled formulation (12) we want to investigate the possible
limit behaviour for h — 0 and fixed relative internal length Ec > 0. This
amounts to considering sequences of plates with constant physical thick-
ness d, increasing in plane-length L and accordingly increasing curvature
strength of the microstructure, similar to letting x = const in Bhattacharya
and James (1999).

3.4 On the choice of the scaling

The T'-limit, if it exists, is unique. The only choice, which influences
the final form of the I'-limit is given by the initial scaling assumptions
made on the unknowns, in order to relate them to the fixed domain €2; and
the assumption on the scaling of the energies, here the membrane scaling
%I ¥ < o0o. Our scaling ansatz is consistent with the one proposed in Le
Dret and Raoult (1995); Friesecke et al. (2002b), but not consistent with
the one taken in Ciarlet (1997), which scales transverse components of the
displacement different in order to extract more information from the I'-
limit. Since we deal with a ”two-field” model it is not possible to scale the
fields differently. The general inadequacy of the scaling of linear elasticity
adopted in Ciarlet (1997) in a geometrically exact context has been pointed
out in Fonseca and Francfort (2001). The motivation for our choice is given
by the apparent consistency of the results with formal developments and
its linearization stability. Here we see that the energy scaling assumptions
also introduce an ambiguity in the development. For example, starting
from classical nonlinear elasticity, considering the present scaling for the
unknowns and assuming %I < 00, a nonlinear von Karman plate can be
rigourously justified by I'-convergence Friesecke et al. (2002b). These results
have been extended to a hierarchy of models in Friesecke et al. (2006).

8We could as well treat the rigid case, i.e. E"j L= Rq. The case of weak consistent cou-
r

0
pling would need additional provisions, the three-dimensional existence result already
needs additional control in order to define the then necessary boundary terms.
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4 Some facts from ['-convergence

Let us briefly recapitulate the notions involved by using I'-convergence. For
a detailed treatment we refer to Dal Maso (1992); Braides (2002). We start
by defining the lower and upper I'-limit. In the following, X will always
denote a metric space such that sequential compactness and compactness
coincide. Moreover, we set R := R U {+o00}. We consider a sequence of
energy functionals Ip,; : X +— R, h; — 0.

Definition 4.0.1 (Lower and upper I'-limit). Let X be a metric space and
let Iy, : X — R, h; — 0 be a sequence of functionals. For z € X we define

r— lirrlllinffhj X - R,
r- hr%jinf Iy, (z) := inf {lir%jinf I, (xn,), xn, — ),
I'—limsup lp; : X R,
h; '
I' — limsup Iy, (x) := inf {limsup Ip, (xp,), xn, —2x}. O
It is clear that I' — liminf;, I, and I' — lim supy,,; Ip; : X — R always exist

and are uniquely determined.

Definition 4.0.2 (I'-convergence). Let X be a metric space. We say that
a sequence of functionals I, : X — R TI'-converges in X to the limit

functional Iy : X +— R, if for all € X we have

VeeX: Vo, —x: Iy(z) < lihm i%f In, (xn;), (lim inf-inequality)
VeeX: 3oy, —a:  Io(x) > limsup In, (vn,), (recovery sequence) .
h,;—>0

Corollary 4.0.3. Let X be a metric space. The sequence of functionals
In; : X — R TI'-converges in X to Ip : X — R if and only if

F—lin}llinflhj =0 —limsuply, = Ip. U

hj

Remark 4.0.4 (Lower semicontinuity of the I'-limit). The lower and up-
per I'-limits are always lower semicontinuous, hence the I'-limit is a lower
semicontinuous functional. Moreover, if the I'-limit exists, it is unique.

Remark 4.0.5 (Stability under continuous perturbations). Assume that
In; + X — R T-converges in X to Iy : X — R and let Il : X — R,
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independent of hj;, be continuous. Then Iy, + II is I'-convergent and it
holds

(€~ m{l, + 1) (2) = (0 = tm Iy, )(@) + Ta) = Do(a) +1M(x).~ (14)

see (Dal Maso, 1992, Prop. 6.21). Recall that when the functional II,
independent of h;, is not continuous it can influence whether or not I'-
convergence takes place (Dal Maso, 1992, Ex. 6.23). O

Let us also recapitulate the important equi-coerciveness property. First
we recall coerciveness of a functional.’

Definition 4.0.6 (Coerciveness). The functional I : X ~ R is coercive
w.r.t. X, if for each fixed C' > 0 the closure of the set {x € X |I(z) < C}
is compact in X, i.e. I has compact sub-levels. O

Following (Dal Maso, 1992, p.70) we introduce

Definition 4.0.7 (Equi-coerciveness). The sequence of functionals I, :

X +— R is equi-coercive, if for each fixed C' > 0 there exists a compact set
K¢ C X such that {x € X |Ij,,(z) < C} C K¢, independent of h; > 0. O

Hence, if we know that I, is equi-coercive over X and that along a
sequence ¢; € X it holds that I, (¢;) < C, then we can extract a subse-
quence, ¢;, converging in the topology of X to some limit element ¢ € X.

Theorem 4.0.8 (Characterization of equi-coerciveness). The sequence of
functionals I5; : X — R is equi-coercive if and only if there exists a lower
semicontinuous coercive function ¥ : X — R such that In; > Von X for
every h; > 0.

Proof. (Dal Maso, 1992, Prop. 7.7). O
The following theorem concerns the convergence of the minimum values
of an equi-coercive sequence of functions.

K Typically, coerciveness is given for X = LP(Q,R3),1 < p < oo with Q a bounded
domain with smooth boundary and

I(Sﬂ) _ {fﬂ W(V‘P) dv ifp € Wl’p(Q,R3), Plog = 0,
+

(15)
o) else,

with the local coercivity assumption W (F) > ¢ [|F||P — ¢f. Coerciveness follows
by Poincaré’s inequality and Rellich’s compact embedding WP (Q,R3) C LP(Q,R3).
Recall that linear elasticity does not satisfy a local coercivity condition. This is the
cause for some technical problems of the theory.
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Theorem 4.0.9 (Coerciveness of the I-limit). Suppose that the sequence
of functionals I, : X +— R is equi-coercive. Then the upper and lower
I’-limit are both coercive and

min (F — lim inf Ihj> () = liminf inf I, (x). (16)
zeX hj j (<D,

hj T

If, in addition, the sequence of integral functionals I, : X +— R I'-converges
to a functional Iy : X — R, then Iy itself is coercive and

min Ip(x) = I}LI]n ;g{ In, (). (17)
Proof. (Dal Maso, 1992, Theo. 7.8). O

Note that equi-coercivity is an additional feature in the development
of T'-convergence arguments, which allows to simplify proofs considerably
through compactness arguments. As far as I'-convergence is concerned, it
may be useful to recall (Braides, 2002, p.19) that minimizers of the I-limit
variational problem may not be a limit of minimizers, so that I'-convergence
can be interpreted as a choice criterion. In addition, the I’-limit of a constant
sequence of functionals J, which is not lower semicontinuous, does not coin-
cide with the constant functional J, instead one has (I' —lim J)(z) < J(x).
In this case, (I' — lim J)(z) = QJ(z), where QJ is the lower semicontinu-
ous envelope of J. In the case of non lower semicontinuous functionals, the
[-limit is therefore introducing a different physical setting. We are dealing
with lower-semicontinuous functionals.

5 The ”"two-field” Cosserat ['-limit

5.1 The spaces and admissible sets

Now let us proceed to the investigation of the I'-limit for the rescaled
problem (12). We do not use I fbj directly in our investigation of I'-convergence,

since this would imply working with the weak topology of H2(Q,R?) x
Whitr+a(0,,SO(3)), which does not give rise to a metric space. Instead, we
define suitable "bulk” spaces X, X’ and suitable ”two-dimensional” spaces
X, X/. First, for p > 1, ¢ > 1 we define the number r > 1 by

1 1 1 2(1
- 4= = rz—( “pta) ; (18)
1+p+q r 2 (I+p+qg) —2

such that L'*P+9. L™ c L2, Note that for 1 +p + ¢ > 3 it holds that
r < 6 which implies the compact embedding H?(Q,R3) C L"(Q,R3).
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Now define the spaces

X :={(g,R) € L"(,R3) x L**PT4(Q;,S0(3))},

X" :={(p,R) € H**(Q,R?) x WHP+4(Q, SO(3))}, (19)
X, :={(p,R) € L"(w,R?) x L% (w,SO(3))},
X, = {(p,R) € H"?(w,R%) x WP (0, 50(3))},

and the admissible sets

Al = {(<)07R) € HLQ(Ql)RS) X W1,1+p+q(917 SO(S)) )
o1y ) = gh(n) ¥, (20)
Al = {(p, R) € H"(w,R%) x WHTHPH(w,50(3)),
@1, (mm2) = gi(m,m2,0)  },
Ap, w = {(p, R) € H"?(Q,R%) x WHFPH(w,50(3))
Pley (1) = ghm 1},
We note the compact embedding X’ € X and the natural inclusions X, C
X and X/, € X’. Now we extend the rescaled energies to the space X
through redefining
. . 8/ 4 wh t Db -t . ¢ ot /
Iﬁ((pﬂ,V:;gpu,Ru,]j;Rﬁ): I (e Vg »R»]jan) if (p*, ") € A
+00 else in X,
(21)
by abuse of notation. This is a classical trick used in applications of I'-
convergence. It has the virtue of incorporating the boundary conditions

already in the energy functional. In the following, I'-convergence results
will be shown with respect to the encompassing metric space X.'°

Definition 5.1.1 (The transverse averaging operator). For p € L*(Q1,R3)
define the averaging operator over the transverse (thickness) variable 73

1/2
Av: (OB o P B, Avaplmom) = [ ol ) dis.

—1/2
(22)

00¢ course, X, X’ as such are not vector spaces, since one cannot add two rotations.
Nevertheless, L"(Q1,S0(3)) C L"(Q1,M>3*3) and this space is a Banach space.
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It is clear that averaging with respect to the transverse variable 73 com-
mutes with differentiation w.r.t. the planar variables 7,72, i.e.
[AV N1 2 (11,112, 13)] (115 112) = Vo [AV -0 lmummn)] (1, m2) -+ (23)

for suitable regular functions . Note in passing that for a convex function
f:M>?*2 i R Jensen’s inequality implies

/f (nlng)[AV 30](77177]2 dw_/f AV V(nlng)@](nlﬂh))d
1/2
// v(nmz)(p 7717772»773))d773dw

- /Q F Vool meams)) AV, . (24)

5.2 The I'-limit variational ”membrane” problem
Our first result is
Theorem 5.2.1 (I'-limit for u. > 0). For strictly positive Cosserat couple

modulus /. > 0 the I-limit for problem (12) in the setting of (21) is given
by the limit energy functional I X e R,

f Whom (v Av .o, R) + Whom(&,) dw

mp curv

ff D) . -
BB =3 Ay T (0. ) € Ap, , )
+o00 else in X,

with Whom and Whom defined below.

curv

The proof of this statement will be given in Section 6.

If we identify the thickness averaged deformation Av .y with the defor-
mation of the midsurface m : w C R? — R3, this problem determines in
fact a purely two-dimensional minimization problem for the deformation of
the midsurface m : w C R? — R? and the microrotation of the plate (shell)
R:wCR?— SO(3) on w:

curv

Ii(m,R) = / Whom (Vim, R) + WS (R,) dw

—II(m, R3) — min. w.r.t. (m, R), (26)

and the boundary conditions of place for the midsurface deformation m on
the Dirichlet part of the lateral boundary vo C dw,

m,, = ga(z,y,0) = Av.ga(z,y,0), simply supported (fixed, welded) .
(27)
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The boundary conditions for the microrotations R are automatically de-
termined in the variational process. The dimensionally homogenized local

density is'! 12

Wao™ (Vm,R) := p || sym((Ra1|R2)" Vim — 115)||>

7intrinsic” shear-stretch energy

+pe || skew((Ry|Rz)" Vim)|? (28)

”intrinsic” first order drill energy

He — 2 — 2
e (Rma)® + (Rem)’)

homogenized transverse shear energy
HA
204+ A

+ 2p

+

tr [sym((Ri|R2)" Vim — ]12)]2

homogenized elongational stretch energy

The dimensionally homogenized curvature density is given by

whom(g) = inf W2, (R 0, R R 0,1 A),

curv Acso(3) curv
q - (ET(V(RGM()),ET(V(R@NO),ET(V(F.G;;)IO))

—T —
=R (x,y)DyR(x,y), (29)
R = (R, 82 8%) € T(3), the reduced curvature tensor,

where W7, is an equivalent representation of the bulk curvature energy in

terms of skew-symmetric arguments

WCUYV (ﬁ) = Wc*urv(ETamﬁv ET@WZF» FT&?E.E) i
Wi ¢ s0(3) x 50(3) x 50(3) — RT | (30)

curv

with ET&HR € s0(3) since Iy, [ETE] = 0,11 = 0. We note that W,

curv
remains a convex function in its argument and so is W™ (R,). Moreover,

curv

Watk (8s) = Weury (8s) for Weure(R) = W(||R]).

| skew ((R1|R2)TVm)||2 = ((R1,my) — (Ra,ma))°. Note  that
|| skew ((R1|R2)TVm)|| = 0 does not imply that Rz = .

1211 the following, ”intrinsic” refers to classical surface geometry, where intrinsic quanti-
ties are those which depend only on the first fundamental form I,, = Vm” Vm € M2*2
of the surface. Then ”intrinsic” in our terminology are terms, which reduce to such a
dependence in the continuum limit R = polar(Vm|fi). For example (R1|R2)TVm =

VVmTVm, in this case.
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In (26) II denotes a general external loading functional, continuous in
the topology of X, cf. Remark 4.0.5. It is clear that the limit functional
I} is weakly lower semicontinuous in the topology of X’ = H2(Q,R?) x
Whitrta(Q SO(3)) by simple convexity arguments. We note the twofold
appearance of the harmonic mean H,3

A A
= H

5 Hlp, ) = 2. (31)

1
7H ) )
(1 20+ A J

2

An advantage of this formulation is that the dimensionally homogenized
formulation remains frame-indifferent. Note that the limit functional Ig is
consistent with the following plane stress requirement (c.f. (50))

11
VUS S [_57 5] : 51(771’7]27773)@3 = Oa (32)

i.e. a vanishing normal stress over the entire thickness of the plate, while
for any given thickness h > 0 from 3D-equilibrium one can only infer zero
normal stress at the upper and lower faces

(B (1,12, £1/2)S1 (01,72, £1/2) €3, €5) = 0. (33)

In this sense, the Cosserat "membrane” I'-limit underestimates the real
stresses, notably the transverse shear stresses, as noted in (Friesecke et al.,
2006, 9.3) with respect to the membrane scaling.

5.3 The defective elastic crystal limit case pu. =0

Since it is not possible to establish equi-coercivity for the defective crystal
case . = 0, one cannot infer a I'-limit result for y. = 0 as a conbequence of
the result for u. > 0. However, since the energy functional I for p. > 0 is
strictly bigger than the same functional for p. = 0, 1ndependent of hj >0, it
is easy to see (Dal Maso, 1992, Prop. 6.7) that on X we have the 1nequaht1e5

I‘—hmmf[}i " <1"—limsupI2j < lim0 (I‘—llm[}i " ) =: I§’07
pe=0 - pe>0
(34)

BEor a,b > 0 the harmonic, arithmetic and geometric mean are defined as H(a,b) :=
ﬁ, A(a,b) = GT'H’, G(a,b) = Vab, respectively and one has the chain of in-
a b

equalities H(a,b) < G(a,b) < A(a,b).
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where

[, Whem0(V Av .o, R) + WA (&) dw
(¢, R) = —H(AV-%Rs) (¢, R) € Afpem
400 else in X,

(35)
with AF*™ defined as
Amem = {(QD, ) S X| Sym (R1|R2) v(mnz) Av. pE L2<Ql7M2X2)
R e Whitrta(y, S0(3)),

ey (1) = 9500 = galm. m2,0) }, (36)

and the understanding of V, .., Av.p as distributional derivative for ¢ €
L"(Q1,R3). The corresponding local energy density in terms of m = Av.p
is

WhemO(m, R) := p || sym(Ra[Ra)T Vim — 1|2

”intrinsic” shear-stretch energy

UA

+2u+)\

tr [sym((R1|R2)" Vim — ]12)]2 . (387

homogenized elongational stretch energy

Observe that the upper bound Ig,o for the I' — lim sup energy functional is
not coercive w.r.t. H?(w,R?) due to the now missing transverse shear con-
tribution, while it retains lower-semicontinuity. This degeneration remains
true for whatever form the I'-limit for p. = 0 has, should it exist. Our main
result is

Theorem 5.3.1 (T-limit for defective elastic crystals . = 0). The I-limit
of (12) for pi. = 0 in the setting of (21) exists and is given by (35). O

The proof of this statement is deferred to Section 7.

The loss of coercivity for p. = 0 is primarily a loss of control for the
"transverse” components (mg, R3), (my, R3), while w.r.t. the remaining
”in-plane” components compactness for minimizing sequences, whose mid-
surface deformations are supposed to be already bounded in L"(w), can be
established (appropriate use of an extended Korn’s second inequality, c.f.
(101)). That homogenization may lead to a loss of (strict) rank-one con-
vexity has been observed in Geymonat et al. (1993) for nonlinearly elastic
composites, whose constituents are strictly rank-one convex.
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For linearization consistency, it is easy to show that the linearization
for p. = 0 of the frame-indifferent I'-limit Ig,o w.r.t. small midsurface
displacement v : w C R? — R3 and small curvature decouples the fields
of infinitesimal midsurface displacement and infinitesimal microrotations:
after de-scaling we are left with the classical infinitesimal ”membrane” plate
problem for v : w C R? +» R3

2+ A
—{(f,(v,e1) -e1+ (v,ea) - €2) — min. w.r.t. v, (38)
<’U7€i>|ﬂ/0 = <ud(x7y70)7ei>a 1= 172

A
/h (u”symV(vl,vg)Hz—i- H tr [symV(vl,UQ)f) dw

simply supported (horizontal components only) ,

which leaves the vertical midsurface displacement vs undetermined due to
the non-resistance of a linear ”membrane” plate to vertical deflections. This
problem coincides with a linearization'® of the nonlinear membrane plate
problem proposed in (Fox et al., 1993, par. 4.3), based on purely formal
asymptotic methods applied to the St.Venant-Kirchhoff energy. The vari-
ational problem (38) is as well the I'-limit of the classical linear elasticity
bulk problem (if corresponding scaling assumptions are made, compare with
(Anzellotti et al., 1994, Th.4.2), Bourquin et al. (1992) or (Ciarlet, 1997,
Th.1.11.2). The classical linear bulk model in turn can be obtained as lin-
earization for p. = 0 of the Cosserat bulk problem. Hence, only in the
defective elastic crystal case p. = 0, linearization and taking the I'-limit
commute with the T-limit of classical linear elasticity.!?

5.4 The formal limit u. = oo

This case is interesting, because the formal I'-limit for . — oo exists and
still gives rise to an independent field of microrotations R, while the Cosserat
bulk problem for p. = co degenerates into a constraint theory (a so called
indeterminate couple-stress model or second gradient model), where the
microrotations R coincide necessarily with the continuum rotations polar(F')
from the polar decomposition.

The formal I'-limit problem is: find the deformation of the midsurface
m :w C R? — R? and the microrotation of the plate (shell) R : w C R?

14Expansion of the first fundamental form I,, of the midsurface m w.r.t. planar initial
configuration yields I, — 12 = VmT Vm—1l3 &~ sym V (ay) (v1, v2)+O(||Vv||?). Hence
control on vertical deflections v3 is lost during linearization.

15 As is well known (Ciarlet, 1999, p.464) this is not the case with the membrane I'-limit,
see Le Dret and Raoult (1995), based on the non-elliptic St.Venant-Kirchhoff energy.
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SO(3) on w such that for Ig’oo : X + R in terms of the averaged deformation
m = Av .p,

Ig’oo(m,ﬁ) + min. w.r.t. (m, R), (39)
with
S, Waa™oe (Vim, R) + Wi () dw
I5®°(m,R) =4 —TII(m, Rs) (m,R) € Al
400 else in X,
(40)
and the admissible set
AL = {(m, R) € H"*(w,R?) x WHTPHa(y, SO(3)),
my. (. m2) = gi(m. 12, 0)
(Ri,my) = (Ra,mg) . (41)

The formal local energy density reads

W™ (Vm, R) == ||(R1|R2)" Vim — 1L||?

7intrinsic” shear-stretch energy

+ 24 <<E3,mz>2 + <E3,my>2>

homogenized transverse shear energy

2 - 5 2
+ 2/1, T N\ tr [sym((R1|R2)TVm — ]12)] . (42)

homogenized elongational stretch energy

Note that pu. = oo rules out in-plane drill rotations Hughes and Brezzi
(1989); Fox and Simo (1992), the transverse shear energy is doubled, but
transverse shear is still possible since Rz need not coincide with the normal
on m. In this sense, the resulting homogenized transverse shear modulus
excludes what could be called ”transverse shear locking” in accordance with
the ”Poisson thickness locking” which occurs, if the correct homogenized
volumetric modulus is not taken.'® In a future contribution we will discuss
whether the formal limit (39) is the rigourous I'-limit of the constraint
Cosserat bulk problem. Note that in Bhattacharya and James (1999) it has
been shown that the I'-limit of a second gradient bulk model gives rise to
one independent ” Cosserat”-director, which here would correspond to Rs.

Pl oo 5H (i, 5) = 4 < 00 but limy o 5.A(, 3) = 0.



I'-convergence for a Geometrically Exact Cosserat Shell Model 325

6 Proof for positive Cosserat couple modulus p. > 0

We continue by proving Theorem 25, i.e. the claim on the form of the I'-
limit for strictly positive Cosserat couple modulus u. > 0. The proof is split
into several steps.

6.1 Equi-coercivity of [ gj, compactness and dimensional reduc-
tion
Theorem 6.1.1 (Equi-coercivity of I gj ). For positive Cosserat couple mod-

ulus p. > 0 the sequence of rescaled energy functionals 1 2]_ defined in (12)
is equi-coercive on the space X.

Proof. It is clear that for given h > 0 the problem (12) admits a mini-
mizing pair (gaﬂh,ﬁi) € H2(Qq,R3) x Whitrta(Q,,SO(3)) by the obvious
scaling transformation of the minimizing solution of the bulk problem for
values of p > 1,¢ > 1 and for both pu. > 0 and p. = 0.!” This is espe-
cially true for Neumann boundary conditions on the microrotations, since
for exact rotations, |[R|| = v/3. This leads to a control of microrotations
in Whitpta(Q, SO(3)) already without specification of Dirichlet boundary
data on the microrotations.

Consider now a sequence h; — 0 for j — oco. By inspection of the exis-
tence proof for the Cosserat bulk problem, it will become clear that for corre-

sponding sequences (go,ﬁlj,ﬁuhj) € HV2(Qp,R3) x Whitrta(Q, SO(3)) = X’
with I gj (@ij,ﬁij) < o0 bounded independent of h; (not necessarily mini-
mizers) we obtain a bound on the sequence (gouhj,ﬁ,ﬁ”) in X', independent
of h;. To see this, note that for p. > 0, it is immediate that VZ@” = Ffb

is bounded in L2?(Q, M3*3), independent of Rij on account of the local
coercivity condition

—4,T . =,
WH‘P(R}Lj F}gj) Z mln(MC?/’L) ||th F}i] - ]1H2

. T
= min(ue 1) (15|12 = 2(R),) Ff 1) +3)
> min(ue, 1) (I1FF 12 = 2V3IFE [ +3) . (43)
n contrast to I’-convergence arguments based on the finite-strain St.Venant-Kirchhoff

energy Le Dret and Raoult (1995), which might not admit minimizers for any given
h > 0.
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and after integration

00 > I} (¢}, ,Rh / Wanp(Th,) + Weure (8, dV,

> [ WanlT},)av,
Q

> | minGue, o) (I 1P = 2VBIF [ +3) av, (44)

> min(gc, 1) /

Q

1
rlon 1|
J

([1om e + 1012 +
1

231081 + 10,61 + 110wl +3) av,.
J

This implies a bound, independent of h;, for the gradient V(pflj in L2(Qy,R3).
The Dirichlet boundary conditions for ‘Pij together with Poincaré’s inequal-
ity yield the boundedness of gpglj in H12(2;,R3).1® With a similar argu-

ment, based on the local coercivity of curvature, the bound on Rij can be

obtained: we need only to observe that for a constant ¢t > 0, depending
on the positivity of a4, as, as, az, but independent of hj,

-4 4
o0 > I}ﬁzl (@ijath) > /Q WIUP<Uhj) + Wcurv<ﬁ§”)dvn
1

> [ W)V,
Q1

> [ et preav, = o [ RTDPRE, [,
of! K o

_ +/Q ||Df71j§ij|‘1+p+qdvm (45)

which establishes a bound on the gradient of rotations sz [Rij (n).eil, i =
1,2, 3, independent of h;. Moreover, Hﬁij | = /3, establishing the

Whitpta(Q, SO(3)) bound on T{ij. Thus we may obtain a subsequence,
not relabelled, such that

= ¢ i HY(QURY), R, —R; n W0, 80(3)) . (46)

18 This argument fails for the limit case . = 0 since local coercivity does not hold, which
is realistic for defective elastic crystals.
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Both weak limits (goﬁo, Euo) must be independent of the transverse coordinate
713, otherwise the energy I,‘;j could not remain finite for h; — 0, see (44)
and compare with the definition of Dﬁ;j in (7). Hence the solution must
be found in terms of functions defined on the two-dimensional domain w.
In this sense the domain of the limit problem is two-dimensional and the
corresponding space is X,,. Since the embedding X’ C X is compact, it

is shown that the sequence of energy functionals I, gj is equi-coercive w.r.t.
X. O

6.2 Lower bound-the liminf-condition

If Ig is the I'-limit of the sequence of energy functionals I, g]_ then we must
have (lim inf-inequality) that

I§(0, Ro) < liminf I (¢}, ,Ry,)). (47)

whenever

) — b i L7(,R?), Eij SR i LMP(Q,,80(3)),  (48)

for arbitrary (Lpg,ﬁg) € X. Observe that we can restrict attention to se-
quences (@ij,ﬁij) € X such that I ﬁj (@ij,ﬁij) < oo since otherwise the

statement is true anyway. Sequences with g]_ (gp%j , Eij) < oo are uniformly
bounded in the space X', as seen previously. This implies weak convergence
of a subsequence in X’. But we know already that the original sequences
converge strongly in X to the limit (Lpg,ﬁg) € X. Hence we must have as
well weak convergence to ¢f, € H2(w,R3) and Eﬁ € Whitrta(w SO(3)),
independent of the transverse variable 73.

In a first step we consider now the local energy contribution: along
sequences ((p,ﬁlj,ﬁij) € X with finite energy I 2]4 the third column of the

deformation gradient sz @ij remains bounded but otherwise indetermined.
Therefore, a trivial lower bound is obtained by minimizing the effect of
the derivative in this direction in the local energy Wy,,. To continue our

development, we need some calculations: For smooth m : w C R? — R3, R :
w C R? — SO(3) define the "director”-vector b* € R3 formally through

WEO™(Vim, R) = Wap (B (Vb))
. —T
= bleanB Wp (R (Vm|b)) . (49)
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The vector b*, which realizes this infimum, can be explicitly determined.
Set F':= (Vm]b*). The corresponding local optimality condition reads
Vob* € R®:  (DWp(R' (Vm|b*)), R (0[0[5b*)) =0 =

(R DWoap(R (Vm|p*)), (0]0]66°)) = 0 =

R DWop(R (Vm|b*)).e5 =0 =

DpWip(B' (Vm|b*)).e5 =0 = (50)

Sl((Vm|b*),F)63 =0.
Since
Si(F,R) =R (u (FTmRTF —9 ]1)

+2p. skeW(ETF) + Atr [ETF - ]1} ]1) (51)

and

e <<El,mm> (Ri,my) <El,b*>) e

R F=[(Ry,m.) (Raymy,) (R2,b*)|, F'R+R F—-21= (52)
(_2[<§1,mx>_— 1] (Ri,my) + (Rz2,m.) <}_21,b*>+(Eg,mx>)

<1223 m:r> + <R_1>my> _2[<R23 my>: 1] <R27 b:> + <R33 my>
<R3, mx> + <R1, b*> <R3, my> + <R2, b*> 2[<R3, b*> — 1]

% (<E1amy> - <E2>mz>) % (<Elab*> - <E«33mfl’>))
2 )
* 0

0
skeW(ETF) = (* 0 ((R2,b*) — (R3,my))

the (plane-stress) requirement Si.es = 0 (50) implies

<E1,b*> + <E37mx> (El,b*> - <E37m$>
| (B2,b%) + (R, my) | 4 pe | (R2,b%) — (Rs,my)

2[(Rs, ") — 1 0
0
) : (O) -
0

The solution of the last system can conveniently be expressed in the

_ o O

+ X ((R1,mg) + (Ra,my) + (Rs,b*) — 3) (
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orthonormal triad (R1, Ra, R3) as

b* = pe 71 <R3,mz> Rl Jr
M+Mc ,U/J'_/’[’C

G=1- 2M1 - [((Tml0). Ty~ 2] 54)

<R3>my> Ry + 0}, Rs,

Note that for R € SO(3) and Vm € L?(9;,R3) it follows that b* €
L?(Q1,R3). Reinserting the solution b* we have

. <§17mﬁ:> <§17my> H+Hg<R37m$> o .
R F=[(Ryymy) (Raymy) L=L(Rym,)|, F'R+R F-21=

_ _ st
<R33mm> <R33my> Q:n
2[(Ry,my) —1] (Ri,my) + (R2omg) (14 45t ) (B3, ma)
<E2>mz> + <E13 my> 2[<E2>my> —1] 1+ Iﬁ <E33 my> )
(1+te52) Royma) (14 858) (Ramy) 200, — 1]
0 % (<E1vmy> - <R23mm>) % ﬁ -1 <E37m1>
kew(ﬁTﬁ) = L[ pe—p i)
S * 0 5 m -1 <R3,my> ’
* * 0
c 2 c c *2
|y He B e ey T (55)
B e A phe Mt phe M e

We obtaln finally for Whom(Vm R) := Wy, (_T(Vm|b*)) with

mp

U = (Vm|b*) — R'F after a lengthy but otherwise straightforward
computation

Whom (Tim, B) = Wy (0)

= el sym(@ — WP + e | skew (@) + 5 tr [sym(@ — 1)

= (B BV~ TP + s (BB T (56
((Rs,mm>2 + <E3>my>2)

+ 2
: +uc

tr [sym((Ra [Ra)” Vim — 119)]*.

u
20+ A
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Along the sequence (gpﬁhj , R,ﬁ”) we have by construction,
4T oh, =T 1

W (Br.; Vi @) = Wanp (B, (Vosow 04, |50 0h,))
j

m -
> WIl;]([)) (v(ﬂmz)(pjiizj ) th) . (57)

Hence, integrating and taking the liminf also
liminf | Wp(By. Vi )dV
Il N hy Vi Ph; n
1

.. h —t
> hmhjlnf A WE™ (Vi Ph - By AV (58)
1
Now we use weak convergence of gp%j and strong convergence of Rij, to-
gether with the convexity w.r.t. Vm and continuity w.r.t. R of
le Whom(Vm, R)dV,, to get lower semi-continuity of the right hand side
in (58) and to obtain altogether

. . -7 : m ol
hn}llmf 0 me(th VZJSD%j)an Z/Q er;% (anz)@ngO)an- (59)
J 1 1

Next we are concerned with the curvature contribution: it is always possi-
ble to uniquely rewrite the curvature energy expression in terms of skew-
symmetric quantities

Wi ot 50(3) x 50(3) x s0(3) — RT,

curv
W B 0y B R 0y, B R 0y, R) = Weur (R) | (60)

curv

where RT&hﬁ € 50(3) since Oy, [RTR] = 0. We note that W, remains
a convex function in its argument since & € %(3) can be obtained by a
linear mapping from (ET(?mR, ET(?WR, RT(’“)%E) € 50(3) x 50(3) x s0(3).
We define the "homogenized” (relaxed) curvature energy through

(R"0,, R, R 0,,R, A"
(R'0, R,R 0,,R,A), (61)

* m Bl - Bl §s) *
Wehom(RY9,, R, R 0,,R) : =W,

curv curv

= inf WZ
Aeso(3) eury

and set accordingly

Whn(R,) = Wil (R' 0, B R 0,,R),

curv curv

& = (R (V(R.e1)[0), B (V(Reex)|0), R (V(Res)l0)) ,  (62)
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in terms of the reduced curvature tensor & € T(3).
Similarly to (50) the infinitesimal rotation A* € so(3), which realizes the
infimum in (61), can be explicitely determined. We refrain from giving the

explicit result. Suffice it to note that W21 is uniquely defined, remains

convex in its argument and has the same growth as Weyv. Then
STt « phTy Bt BT, mf 15T, St
WcurV(th DZ] th) = Wcurv(th 37,1 th7th anz tha Fth 8773th)
J
hom,phT 4 Bt HELT 4 Hi
> WE ™ (R, O Ry Ry O Ry, ) - (63)

Integrating the last inequality, taking the liminf on both sides and using

that Wkom is convex in its argument, together with weak convergence of

the two in-plane components of the curvature tensor, i.e.
7ﬂ7T 7ﬂ 7ﬂ7T 7ﬂ 7ﬂ7T 7ﬁ 7ﬁ7T 7ﬂ
(Rh_j am Rh_jath am th,O) - (RO am RO’ RO 87]2 ROa O)
in LT, %(3)), (64)
we obtain
lim inf/ Weury (EiTD;% Rfl v,
hj Ql J J
*,hom -4 =i ST -t
> [ waden @ o, T, R 0, av,
1
— [ W@ DR v, (65)
Q

Then, because Weyry, Winp > 0,

liminf [ Wiy (Ei‘fv’;j 05 )+ Weur (BT DI R, )V,
J Q1 ’ ! ! ’

B ST h, s SHT ;i
Z IIH]}lenf /Ql WmP(th VZJ w?zj)dvn + IIH}lL:nf /Ql Wcurv (th U;J th)an
om *ﬂ om *ﬁ’T *ﬂ
> [ W St )V, + [ Whi(RE DR av, (66)

1

curv

1
om *ﬂ om *ﬂﬁT *ﬁ
= /Q Wr}rllp (V(nwm)@g’ RO) + Wh (RO DRO) dVTI ’
1

where we used (59) and (65). Now we use that gpg is independent of the
transverse variable ns, which allows us to insert the averaging operator
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without any change to see that
om - om -
/ Wllrllp (v(nl,wz)sog? RO) = / Wr?lp (v(nl;rm) Av 90(‘37 RO) dvn
Ql Ql
om _ﬁ
— [ W S A o o, (6T

since Eg is also independent of the transverse variable. Hence we obtain
altogether the desired lim inf-inequality

-i .. -i
1§(¢6, Ro) < liminf I (¢}, . Rj,,) (68)
J
for

curv

Ig (9007 FO) = /Q Wr}rll%m(v(nwm) Av -0, EO) + Whom (FSDEO) dvn

om §5) om (Bl Np
— [ W (T Av 0, Tio) + WEEE By Do) .
6.3 Upper bound-the recovery sequence

Now we show that the lower bound will actually be reached. A sufficient
requirement for the recovery sequence is that

V (0, Ro) € X = L"(Q21,R?) x L'P19(0;,50(3))
3ph g0 mL(QLRY), Ry —Ro inLYPH(Q,,50(3):

. -t -
limsup I}, (¢, . Ry,) < I§(«20, Ro) - (69)

Observe that this is now only a condition if Ig(gao,ﬁo) < oo. In this
case the uniform coercivity of Iﬁj(@%j,ﬁij) over X' = HV2(Q;,R3) x
Whitpta(Q, SO(3)) implies that we can restrict attention to sequences
(W R’ i kly ¢

©hy» ftn,;) converging weakly to some

(0, Ro) € HY?(w,R3) x Whitrta(y SO(3)) = X/, defined over the two-
dimensional domain w only. Note, however, that finally it is strong conver-
gence in X which matters.

The natural candidate for the recovery sequence for the bulk deformation
is given by the "reconstruction”

o, (mm12,m3) 2= m(i,m2) + hy 13 b (01, m2) = @o(m1,m2) + hyma 07 (m,12)
(70)
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where, with the abbreviation m = pg = Av.pg at places,

b (i, m2) == Zch_ulj <R0,3,mz> R0,1 + Zch_ulj <R0,3,my> }_30,2 + 0, Eo,?,,
* )\ 55)
o =1- [(Vm[0), Ro) — 2] . (71)

20+ A

Observe that b* € L?(w,R?). Convergence of gogbj in L"(Qy,R?) to the limit
¢o as h; — 0 is obvious.

The reconstruction for the rotation Ry is, however, not obvious since on
the one hand we have to maintain the rotation constraint along the sequence
and on the other hand we must approach the lower bound, which excludes
the simple reconstruction Eij (n1,m2,m3) = Ro(n1,7m2). In order to meet
both requirements we consider therefore

ol 55) *
Ry, (n1,m2,m3) == Ro(n1,n2) - exp (h; 3 A™ (11, 1m2)) (72)

where A* € s0(3) is the term obtained in (61), depending on the given
Ry and we note that A* € L'*PT9(w, s0(3)) by the coercivity of W7, . Tt

curv®

is clear that Eij € SO(3), since exp : s0(3) — SO(3) and we have the
convergence E,ﬁlj — Ro in L'*P*9(Q4,80(3)) for h; — 0.

Since neither b* nor A* need be differentiable, we have to consider
slightly modified recovery sequences, however. With fixed € > 0 choose
be € Wh2(w,R?) such that ||be —b*|| 12 rs) < € and similarly for A* choose

A; € WhITPHI(y s0(3)) such that ||Ae— A*|| p1+p+a(w,s0(3)) < €. This allows
us to present finally our recovery sequence

. (1, m) == o (1, 1) + iy 13 be (1, 772)
_ﬁ J—
Ry, <(m,m2,m3) := Ro(ni,m2) - exp (hyns Ae(n1,m2)) - (73)
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This definition implies
Nieh, <1, m2.m8) = (Vepo(m, m2) Ry be (11,m2)) + hy 13 (Vbe(n1,m2)[0)
Rh aamRh e=-exp(h;ns As)TROT

[0, Ro exp (hjns Ac) + Ro D exp (hyns Ac) [k 130, Ac]]
Rh aaﬁth e=-exp(h;ns A" F(j;

[0, Ro exp (hjn3 Ac) + Ro D exp (h;ns Ac) .[h; 130p, Ac]
Rh saﬁsRh e — €XP (hjms As)T Rg

[0y Ro exp (b3 Ac) + Ro Dexp (hy ns Ac) .[hy Ac]]

= hy exp (h;ns A-)" Dexp (hjns Ac) [Ad], (74)

with 0,, A. € s0(3). In view of the prominent appearance of the exponential
in these expressions it is useful to briefly recapitulate the basic features of
the matrix exponential exp acting on so0(3). We note

exp: $0(3) — SO(3) is infinitely differentiable,

VAecso3): |exp(A)] =3 =

exp : L'PT9(Qy 50(3)) — L*PT9(Q,,S0(3)) is continuous,
Dexp : s0(3) — Lin(so(3), M>*3) is locally continuous,
VHeso(3): Dexp(0).H=H,

VA, H € s0(3):exp(A)T - Dexp(A).H € s50(3). (75)

Note that by appropriately choosing hj,e > 0 we can arrange that strong
convergence of (74) to the correct limit still obtains by using (75)5. Now
abbreviate

T = Ry (Vepo(m, o) [b*) € M3,
Vi, = R (Vo (. me) be(nn, 12)) + hy 13 (Ve (1, 1m2)[0)] € MP¥2,
Vo i= R (Vo (1, )b (mr, m2)) € MP*, (76)
B =T 0,F, . cso(3), =123,
€ =Ry 0y Ro €50(3), i=1,2,
Ap, e = exp (h;nz Ae(m, m))" Dexp (h;ns Ac(m,m2)) [Ac] € s0(3),
Rij,s = Ei’:amjﬁij,a(mm%ﬂs) €3(3)

T —
RKo(m,m2) = Ry DRo(m,m2) € T(3).
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We note that by the smoothness of A. € WH1TP+4(w, 50(3))

[ Ap; e — Acllprsrtan so@)y — 0 if h; — 0,
€ . — Ell reraonmo@y — 0 i hy =0, (77)

=& =~
thj - V0|‘L2(Q1’M3X3) — 0 if hj — O,

—~ & =~
thj —Ullp2(0, mex3y — 0 if  hj,e — 0.

The abbreviations in (76) imply

* T yols
[ﬁ (Sph szh a /ZWIHP Vh )+Wcurv<{%§zls’éiﬁ125’ h_th,aa’ﬂsth,a) an
J

/me Vh +W:urv(eilg,eize,Ahm)dv,,, (78)
Q

where we used that h; - b in the deﬁnition of the recovery deformation
gradient (74), is cancelled by the factor in the definition of I g . Whence,

adding and subtracting Wi, (U)

Iﬁ Sph & Rh 6)
=~ —~£ =~
o me U + me<th) - me(U) + ‘/Vc*urv(élﬁzle7 92257 Ahj78) dV”]
=~ =~ ~¢£ =~ il
-/ Wanp(U) + Waap(T + V), = T) = Waap(U) + Weury (8,) dV

since Wi, and Weyry are both positive, we get from the triangle inequality

ad i =~ £ P fad
< A Wip(U) + [Winp(U + V), = U) = Winp (U)]
+ W:m(effa, e?fa, Ay, v,
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Expanding the quadratic energy W, we obtain

— [ W) + Wi (D) + (DWonp (0, V,, = ) (79)
(951

il ~ & ~ ~£ ~
+ D*Wanp(U).(V, = U,V = )]+ Wa (61 852 Ay )V,

me @) + | DWap @) [V, = Tll +C [V, ~ T2

* 1 2
+Wcurv(E2L 678311 ,e?

Ahj,g) dv,
for th - U|| <1 we have
~ & i
< [ Wan@) + (C+ 1DWan @)1 1V, - T
1

W (E%ls,éflzs,Ahj,s)dV,,

since HDme( ) < Cy ||ﬁH we obtain
< [ W @)+ (0 1T1) 1V, = T+ W (5 8220 A, 0V,
1
and by Holder’s mequality we get

/ me U + Wc*urv(kuhle’ E?LQE’ Ahj#:) dVTI
Q1

+(C+ ITlz2@n) IV, = Tllzzca -

A

Continuing the estimate with regard to W, (€, . €,

Ap, -) and adding

and subtracting V0 we may obtain

—t
Iu (QO?LJ,mRh s)
/Q Winp(U) +W:urv(e}),eg,A*)+W:urv(e§fs,e§f€,Ahj,€)
1
Wc*urv(em P%’ A*) dVTI
~ £ ~ € ~ €& il
+ (C+ Tlaen)) Vi, = Vo + Vo = Ullaan
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Thus

ot
Ilgj (Qpij,gv th,e)

< me(U)+W*

o curv
+ || (:urv(keile’E 73-2 ‘Zlhj#:) Wc*urv(eéaE&AE)”Ll(Ql) (80)
+ || curv(EO’EO’A ) W:urv(EO?E(Q)’A*)HLI(QQ

= ~€ ~e =
+ (CH+ ITls2@n) (IVh, = Vollzan + Vo = Tllzzay))

(Etl)’ Eg’ A*) dVTI

Now take h; — 0 to obtain by the continuity of W, ., in its first two
arguments and (77),

hmbup[ﬁ (gph E,Rh o) / me )+ Wi (65 82, A%)dV,
h;—0 1931

+ || curv(EO’EOVA ) W:urv(k(l)aegvA*)HLl(Ql)
+(C+ [Tlp2en) Vo = Tllzan - (81)

Since

e = =T =T .
Vo = UlI* = lIRo (Voo (1, m2)lbe) — Ry (Voo (n1,m2)|b%) |

= IRy (Vo (i, m2)b2) — (Vo (m1, m2) b)) |1°
= 1(Vgo (1, m2)[be) — (Vepo (1, ) [B)]I2 = [lbe — b*]12,  (82)

we get, by letting ¢ — 0 and using now the continuity of W ., in its last
argument together with |[A. — A*|| L14pta(w s0(3)) < €, the bound

lim bup Iﬁ (Sph ,€7 Rh 6 / me U + Wc*urv(k(l)’ Eg? A*) dVTI
h —0 Ql
— [ W@ W 85,8 AV,
Q1

- / W™ (g0, Bg) + WM () AV, . (83)
Q

Since g, Ry are two-dimensional (independent of the transverse variable),
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we may write as well

timsup 7 (o], . T, ) < / WA (9,0 AV 0, Ro) + WA (o) AV,

hj—

/ Whom (0 AV 00, Ro) + RO (R) duw

= IO(<»007R0) ’ (84)

which shows the desired upper bound. Note that the appearance of the
averaging operator Av is not strictly necessary since the limit problem for
te > 0 is independent of the transverse variable anyhow. This finishes the
proof of Theorem 25. O

7 Proof for zero Cosserat couple modulus p. =0

Now we supply the proof for Theorem 5.3.1, i.e. we show that the formal
limit of p. — 0 of the I'-limit for p. > 0isin fact the I'-limit for u. = 0. This
result cannot be inferred from the case with p. > 0 since equi-coercivity is
lost.

Remark 7.0.1 (Loss of equi-coercivity). If we consider I'-convergence in
the weak topology of W1:2(Q, R?) for the deformations ¢ instead of working
with the strong topology L"(2,R?), i.e. assuming for minimizing sequences
a priori that [|Vipp, [|12(q) is bounded, then the problem related to a loss of
equi-coercivity does not appear and the I'-limit result for u. = 0 is an easy
consequence of the case for u, > 0.

For p. > 0 equi-coercivity is enough to provide for the uniform bound on
the deformation gradients in the minimization process. The crucial question
is whether to obtain a uniform bound on the deformation gradients in the
minimization process also for p. = 0. For thickness h — 0 the deforma-
tions of the thin structure might develop high oszillations (wrinkles) which
exclude such a bound on the gradients but the sequence of deformations
could still converge strongly in L"(£2,R?). Therefore, the strong topology
of L"(2,R?) is the convenient framework for I'-convergence results.

In order to circumvent the loss of equi-coercivity we investigate first a lower
bound of the rescaled three-dimensional formulation for the limit case p. =
0.
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7.1 The ”"membrane” lower bound for y. =0

We introduce a new family of functionals I }ﬁl,mem : X' — R, where all
transverse shear terms have been omitted, more precisely

IPmem (pf, Vit R DhR )

/ Wnp (T3, + Wcurv(ﬁi) dV, — min. w.r.t. (goﬁ,ﬁu),
neQ

@l 1) = 95(0) = 9a(C(n) = galms, mz b ms) = gaCm,m2,0),

U, == F
— mem ggz,ll Uh 12 0
Uy Uh21 Uh 22 0
0 0 Thas
@006 ()00 0
= | B o0t (B 0n) 0 :
: 0 o
Dh =0 x [~5.2 70 Cw
0 375 )
R . free on 'S, Neumann-type boundary condition , (85)

—f#,mem —f,mem A f,mem 2
Wanp (T5"") = | sym (@™ = W12 + 5 tr [sym (@, = 1)
mem ol
= Wms <v<p§w R ) ’
Wcurv<ﬁ§l) =

P Zq ||t
<= (1+aa L2185 )1)

1+p

2

2
(a5 | sym &% (|2 + ag || skew £ [|2 4 a7 tr [ﬁﬂ > ,

ST 5t
f,=R" DR (n).

Note that for (<pﬁ,§ﬁ) € X the product U?L does not have a classical mean-
ing if V! ¢ L2(Qy,M?*3). However, the product Ui does already have
a distributional meaning because R Whitrta(Q, SO(3)) and VeF €



340 Patrizio Neff

W=Er(Qq, M3*3). Accordingly, we define the admissible set

—f,mem

Ape™ = {(¢,R) € X | sym U}, € L*(, M**3),
R € WHHrPHa(Q, S0(3)),
Pley (1) = GA(0) = ga(m,m2,0) }. (86)

where the distribution U&L’mem is regular and belongs to L?(Q, M3*3). Asin
(21) we extend the rescaled energies to the larger space X through redefining

Ig,mem(¢u7vz u7 }_%ﬁ,Di;Eﬁ)

mem —f -t mem
e VI RLODERY) i (04, R € AR )

+00 else in X .
Observe that

Vh>0: If (65 Vi R DIRY > N (o, V! B DURY)

(88)
which implies (Dal Maso, 1992, Prop. 6.7) that
I~ lim inf I, =T- lim inf phamen (89)
Hence I' — liminf [2,mem provides a lower bound for I' — liminf Ig‘ .
He=

Putting inequalities (34) and (89) together, we obtain the natural chain
of inequalities on X

r— hrnlnflu’rnem <I-— hrnlnf[h| B

§Fflimsupfh < lim ( —hm[ﬁh 0) =: Ig’o.

(90)

IHc:U foe—

7.2 A lower bound for the ”membrane” lower bound

Let us consider the following energy functional Ig’mem : X — R,
Iﬁ,mem(%m E) —
f Whom 0 v(mmz) Av '90(7717 72, 773)3 E) + W(&lorr\?( ) dw (903 ) € Amem

+oo else in X,
(91)
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where W™ is defined in (37) and the admissible set is now

Ao = {(p ) € X | sym (FalRo) Ny Av o € L2(Q1, M2?),
T WhrHa(y, S0(3)),
# (n) = gi(n) = galm, 72,0}, (92)
0

with a distributional meaning for (Ry|R2)TV,,.., Av.¢. Note that I™°™ =
Ig’o. We show next the

Lemma 7.2.1 (Membrane lower bound). For arbitrary ((pg,ﬁg) € X it
holds that

mem D) . . mem _u
15" (o, Ro) < liminf I;™" (g}, | R),),

whenever

g b i LN(QLRY), R, — Ry inL'PT(Q,,50(3).

Proof. Observe that we can restrict attention to sequences (@%_7Ei_) €
J J

X such that Ifb;mem(wij,ﬁij) < oo since otherwise the statement is true
anyway. If Ifl;mem(ap%j,ﬁij) < oo, then equicoercivity w.r.t. rotations
remains untouched by a change from Wy, to WIe™ in the local energy.
Hence, as usual by now, we can restrict attention to sequences of rotations
Eij converging weakly to some Ry € W1+P+4(, SO(3)), defined over the
two-dimensional domain w only. However, we cannot conclude that ¢q is
independent of the transverse variable, contrary to the case with p. > 0.

Along sequences (@ij,ﬁij) € X with finite energy the product

h%_(ﬁhj,gﬁ%@iﬁ remains bounded but otherwise indeterminate. There-
fore, a trivial lower bound is obtained by minimizing the effect in the 33-
component in the local energy W ™. To do this, we need some calculations:

for smooth ¢ : Q; +— R, R:w C R? — SO(3) define the ”director”-vector
b* = (0,0, 0")" € R3 with b(g) = (0,0, 0)T € R? formally through
om %) mem (71 *
WI}‘rllp 7O(v(n1mz)<pvR) = me (R (V(nmz)ﬁplb ))

: mem -7
= él)gﬂg me (R (V(T,N,Q)(,O“)(Q))) . (93)
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The real number o*, which realizes this infimum, can be explicitly deter-
mined. Without giving the calculation, which follows as in (50), we obtain

* >\ R
0" =1~ EYEY (Vo ]0), R) — 2]
>\ -
=1- 2[& + )\tr [Sym((R1|R2)TV(TI1m2)SO - ]12)] : (94)

Note that if R € SO(3) and sym((R1|R2)"V,,, .,y — 1l2) € L?(91,R3) one
has o* € L?(Q4,R3).

We obtain for Who™O(V, .., R) = me(RT(V(mm)gdb*)) after a lengthy
but straightforward computation

Wan™ (Vorsng 0 B) = | sym((Ra|Rz2) " Ve — o) |J? (95)

550 5) 2
+ tr [Sym((R1|R2)Tv(n1yn2)50 - ]12)]

UA
204+ A
Along the sequence (gpﬂhj,ﬁ,ﬁlj) we have therefore by construction,

y/ mem Rﬂ’thJ gy _ Pomem \V/
mp ( h; n Sphj) - mp ( ( (mnz)sph | 7]3()0}1 ))

Z Wg%m,o(v(nmz)@hijhj) . (96)

Hence, integrating and taking the liminf also

hmmf /Q Winp ( Rh vh @h )dV, > lim inf /Q W;gm»o(v(m,@&bj,ﬁij)dvn.
(97)

1

As in (59) (and subsequently) the proof of statement (7.2.1) would be fin-
ished, if we could show weak convergence of Vi, ., gpﬂhj in L2(Q, M3*3) when-
ever gpglj — @} strong in L"(Q;,R3) and I,g’jmem(gpglj,ﬁij) < 00. Bounded-

ness and weak convergence of the sequence me)@gzj in L2(Qq, M3*3) is,
however, not clear at all, since we now basically control only the ”symmet-
ric intrinsic” term || sym((R1|R2)T'V, @ —12)||? in the integrand. Instead,
we will prove a weaker statement, namely that

=i Bl -t Bl
(Rl,hj |R2,h]~)Tv(mynz>90gzj - (Rl,OlRZ,O)TV(mmz)(pﬁO € L2<917M2X2) ’ (98)

after showing, that the above expressions have a well-defined distributional
meaning along the sequence, since V(y,w,z)(p,ﬁlj has no classical meaning if we

know only that ‘P}ﬁ” € L"(Q,R3).
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In order to give a precise distributional meaning to the expression in
(98) along the sequence we define first for smooth ¢ € C*>°(Q1,R?) and
R € Whitrta(Q,,S0(3)) an intermediate function W,

U0 —RE, U(ny,m,m3) = (2%;:;;) ) (99)

This implies that ¥ € WHTPTe(Q; R?). It holds
D D R R178 ¢>)
R1|R2)™YV,,,, —(_ 1o ;
(FrlRe) Nons® = \ (R, 0, 8)  (Ror 00
D(Eﬂﬁg) = (

0]

¢

_ 8'fll <El7 ¢> 87]2 <El7 ¢>
V= (am (Rard) Oy (Ro. )

= (R1|R2)" Vynp® + D(R1|Rz).¢. (100)

The last equality shows

(El |R2)Tv(nm2)¢ = V(nmrz)\p - D(Rl |R2)¢ . (101)
We note the local estimate
Ri|R2)" V1) + sym(D(Ry|Rs).9)|°
(Ri[R2)" Vo O)II” + 2| sym(D(R:[Rs).¢) |2
(R1|R2)" Vi ®)II? + 2| D(R1|Ra)-¢|*  (102)
(R1[R2)" Vi O)II* + 2| D(R1[Ra) | - |9l

|| sym v(mmz)\:[jng = || Sym(

—

< 2[sym
< 2||sym

—~ 4~~~

< 2| sym

The last inequality implies after integration and Holder’s inequality (re-

. 21
minder r = %, c.f. (18))

/Q | sym Vi W[V,
1

< 2/9 Isym((R1|R2)" Vrn ®)I* AV + 2[Rl Gy1 1 va () 017 (0, po) -
1
(103)
Moreover,

/Q [sym ¥ 1% + W[ AV, < 2/Q lsym((Rs[R2)" Vs 9) I AV,
1 1

*‘2H7§H%VL1+p+q@1g H¢H%TG)LR3)*‘2||¢”%2@1hm3)7 (104)
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since | U[> = (By,¢)” + (R, )" < |[Ra|[o? + [Rel?I ] = 2]¢lI>
Furthermore, adding and Subtractmg 1o

/Q | Sym iy, 12 + [ ¥]2dV,
1

2 / | sym((Ry|Ba)T Vi @) AV,
1
+ 2| Rl atoracan 10170, mey + 211001720, re)
—2 / | sym((Ra|Rz) "V — Tz + To)||2dV,
1

+ 2| Rl asrragan 10170 mey + 211011720, g
< /Q 4] sym((Fa[Ba) Vo — L)|? + 4|12 AV, (105)
1

+ 2| Rl asrragan) 10170 mey + 2 1011720, ro) -

Hence, considering gp%j instead of ¢ we obtain along the sequence (cp%j , Rij) €
X with

#

I}ﬂz;-mem((pgjvﬁh ) < oo, (106)

J

and the distributional meaning of the gradient on cpij the additional uniform
bound

; |8y Vg W1 + (W] AV,
1

4 mem *ﬂ
< ;I}i’. (sa%j,th)jL/Q 4|11 [* av7, (107)
1

B2 2 2
+ 2||th|\W1,1+p+q(Ql) ||9091j||LT(Ql,R3) +2 ||80?”HL2(91,R3) < 00.

The classical Korn’s second inequality without boundary conditions on a
Lipschitz domain (Temam, 1985, Prop.1.1) implies therefore that

0> /Q Sy Ty U, 2 + [0, 2 AV, (108)
1

1/2
-/ A s LS
1/2

1/2
_/ |:CK/ (Voo @y (11502, 13) |1 + ([ %0, (01,72, m3) |2 dw} dns ,
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which allows us to conclude the boundedness of V,,,,, ¥, in L?(Q1, R?) and
weak convergence of this sequence of gradients to a limit. By construction
we know already that W, — ¥¢ € L?(91,R?) (assumed strong convergence

of Ry, and @%j). Hence V.,
we know as well that amﬁij - 5‘ni§g in L1PHa(Qy M>3*3) i = 1,2 and
gp%j — gog in L" (21, R3) we obtain

yWUn, converges weakly to V, ,,Vo. Since

ot ot Bt
D(Rl,hj|RQ,hj)-¢§1j - D(R1,0|R2,0)'¢§) € Lz(QlaM2X2)- (109)
Looking now back at (101) shows that
=i B
(Rl,hj|R2,hj)Tv<mm2>90§Lj € L*(,M**?), (110)

is a well defined expression with distributional meaning of V@mz)@i] for
which (98) holds. Due to the convexity of W2o™9 in the argument
sym((R1|R2)TV,,,.» ¢, we may pass to the limit in (97) to obtain

.. —#,T P om -t
imint [ W (R V)4V, = [ WO, o) V.

(111)
The convexity of Wé‘l‘l’)m’o and Jensen’s inequality (24) show then
[ WO T A ol ), T
1/2 _
= / W™ (Vo (15 112, 03), R) i dew
wJ—1/2
= /Q W™ (Vs 9 (11,02, 1), ) AV (112)

Combining (112) with (111) gives

.. —t,T . om 5}
i inf | Wo (R V0, )4V, = [ WA (T, Av ol ). T o
J 1 w
(113)

The proof of Lemma 7.2.1 is finished along the lines of (59). Note that (110)
does definitely not yield control of me)gpij in L2(Qq, M3*2). O
Proof of Theorem 5.3.1: To finish the proof of I'-convergence for zero
Cosserat couple modulus Theorem 5.3.1 we observe first that Lemma 7.2.1
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implies that

Iimem < p— lim inf [imem (114)
' J

Iﬁ,mcm

which is 7almost” a liminf result for since I5™™ could be strictly

smaller. We combine this result with the chain of inequalities (115) which
yields that on X = L"(Q,R3) x L1TP+4(Q;,SO(3))
™™ < T —liminf I5™" <T —liminf I}

<T—limsuplf, < lim0< —hmﬂl ) — 2. (115)
He= e

Since, however, Ig’““m = 13*0, the last inequality is in fact an equality, which
shows that

I —lim I} =140, (116)

This gives us complete information on the behaviour of sequences of mini-
mizing problems for p. = 0, should such sequences exist and converge to a
limit in the encompassing space X. ]

8 Comparison with the formal finite-strain Cosserat
thin plate model with size effects

Statement of the formal Cosserat plate model

A formal "rational” of dimensional descend has led us in Neff (2004b, 2007)
to postulate the following two-dimensional minimization problem for the
deformation of the midsurface m : w C R? — R? and the microrotation of
the plate (shell) R :w C R? — SO(3) on w:

_ _ B3
I(m7 R) = / h me(U)+h Wcurv (ﬁs) + E Wbend(ﬁb) dw

—1II(m, R3) — min. w.r.t. (m,R), (1)
under the constraints

F = (Vm|Rs) € M¥?, 2)

U=RF
A, ( V(R.c1)|0), R (V(Reg)m),ET(V(Reg)m)) cT(3), R =K,
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and the boundary conditions of place for the midsurface deformation m on
the Dirichlet part of the lateral boundary 7y,

my,, = ga(2,y,0), simply supported (fixed, welded) . (3)

The basically three possible alternative boundary conditions (consistent
coupling, free, rigid) for the microrotations R on 7, are

R, = polar((Vm|Vga(z,y,0).e3))
strong form of reduced consistent coupling,
VA e C5°(v,50(3)) : (4)

/ (ET (Vm(z,y)|Vga(x,y,0).e3), Az, y))ds =0,

lvo 2

very weak consistent coupling,
EHO : free on vy, Neumann-type boundary condition

ng(x, Y, 0)'63

R; = , rigid director prescription .
o | Vga(z,y,0).es]]

The constitutive assumptions on the reduced densities are for the strain
energy!?

Wanp (U) = p || sym(U — )||* + pc || skew(U) |

UA — 2
t -1
+ TS [sym(U — 11)]
= p || sym((Ri|R2)" Vim — 1a)||? +puc || skew((Ry|Ra)"Vim)||?
shear-stretch energy first order drill energy
K+ pe — 2 — 2
+ (’Lf") (Rsoma)” + (Rsom,)’)
classical transverse shear energy

A —

+ 2;_'_ y tr [sym((R1|R2)" Vim — ]12)]2 ,

elongational stretch energy

1| skew((Ba | B2) TVm)|| = ((Ri,my) — (B2, ma))”
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and for the curvature energy

1+p

Lc
Wcurv(ﬁs) =M 12 (1 + oy Lg ||ﬁ8||q)

1+p
2

(a5 llsym 812 + ag || skew &2 + a7 tr[&,]7)
R, = (ET(V(Rel)m),ET(V(E.62)|0),ET(V(Reg)m)) ,
Rs = (ﬁi’ﬁgaﬁg) € 5(3) )

the reduced third order curvature tensor ,

Whena(R) = pull sym(8)|* + pee | skew ()| + or [sym(8)]”,

LA
20+ A
R, =R (VR3|0) = &2,

the second order non-symmetric bending tensor .

The (relative) thickness of the plate (shell) is h > 0. The total elastically
stored energy density due to membrane-strain, total plate-curvature and
specific plate-bending

h3
W= h me + h Wcurv + EWbEHd s (6)
membrane ~ curvature Tg—’
ending

depends on the midsurface deformation gradient Vm and microrotations
R together with their space derivatives only through the frame-indifferent
measures U and &,. The micropolar stretch tensor U of the plate is in
general non-symmetric, neither is the micropolar reduced third order cur-
vature tensor Rs. The three-dimensional plate deformation is supposed to
be reconstructed as

22 —
pula.2) = mien) + (20nle.0) + 5 0len) Rea)e, 0
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where

A
20+ A

(Nair, Rs)
2u+A)
(Nait, Rs)
u+A) 7
first order thickness change due to elongational stretch
A (Nies, R3)
2u+ A 2+ h
non-symmetric shift of the midsurface due to bending
(Nres, R3)
Cu+A)h

[(Vm|0), R) — 2] +

Om =1—

A _
= 1—2M+)\tr[U—]1]+

op = ((VRs|0), R) +

_—2M Y tr [Rp] +

and Ngig, Nyes given by

h h
Nres := [N($,y, 5) + N(J?,y, _5)] >

h

Ny, 1)~ Nz 2. (9)

Ni =
diff 2 2

1
2
To first order, the reconstructed deformationgradient is given by Fy =
(Vml|om R3). Here w C R? is a domain with boundary dw and vy C Ow
is that part of the boundary, where Dirichlet conditions gq for deforma-
tions and microrotations and/or consistent coupling conditions for microro-
tations, respectively, are prescribed. The reduced external loading func-
tional II(m, R3) is a linear form in (m, R3) in terms of the underlying
three-dimensional loads. The parameters g, A > 0 are the Lamé con-
stants of classical elasticity, p. > 0 is called the Cosserat couple modulus
and L. > 0 introduces the internal length. We assume throughout that
as > 0,a > 0,a7 > 0. We have included the so called shear correction
factor k (0 < k < 1) to keep in line with classical infinitesimal-displacement
plate models. In our formal derivation, however, we obtain k = 1. The
reduced model (1) is fully frame-indifferent, meaning that

VQeSOB): Wup(QF,QR) = Wupo(F,R), &.(QR) = 8&,(R). (10)

The non-invariant term g, is only needed to reconstruct the 3D-deformation,
which depends on the non-invariant loading.?° Strain and curvature parts

200¢f course, if the external tractions are rotated as well, we obtain invariance:
(Q.-Naifr, Q-R3) = (Naigt, R3).



350 Patrizio Neff

are additively decoupled, as in the underlying parent Cosserat bulk model
(1). We note the appearance of the harmonic mean H and arithmetic mean

A

__pA _
)_2114"_)\7 K’-A(/’LHU’C)_K’

1 A
2

+ e
SHn. Rl (11)

2

8.1 Mathematical results for the formal Cosserat thin plate model

For conciseness we state only the obtained results for the case without ex-
ternal loads. It can be shown directly, without recourse to three-dimensional
considerations Neff (2004b):

Theorem 8.1.1 (Existence for 2D-Cosserat thin plate with p. > 0 and
k > 0). Let w C R? be a bounded Lipschitz domain and assume for the
boundary data g4 € H'(w,R?) and Rq € W1*P(w,SO(3)). Then (1) with
e >0,6>0, a4 >0,p>1, ¢ >0 and either free or rigid prescription for
R on 7 admits at least one minimizing solution pair (m, R) € H'(w,R3) x
WP (b, SO(3)). O

Using the extended Korn’s inequality Neff (2002); Pompe (2003), the
following has been shown in Neff (2007):

Theorem 8.1.2 (Existence for 2D-Cosserat thin plate with py. = 0 and
k > 0). Let w C R? be a bounded Lipschitz domain and assume for the
boundary data gq € H'(w,R3) and Ry € WH1TP+4(w, SO(3)). Then (1)
with g, = 0,k > 0, a4 > 0, p > 1, ¢ > 0 and either free or rigid pre-
scription for R on vy admits at least one minimizing solution pair (m, R) €
HY(w,R?) x Whitrta(y SO(3)). O

9 The form of the transverse shear energy for non-
vanishing thickness and the shear correction factor

I'-convergence describes the thin shell limit, but misses of course the fact
that in actual computations of thin structures one wants to describe a ma-
terial with finite thickness, which certainly can sustain some amount of
transverse shear.

If we compare the two different limit models (26),(1) described herein,
we see that limy; o h%](m, R) in (1) coincides with the I'-limit Ig in (26)
as far as the local energy contribution Wiy, is concerned, apart from the
coefficient of the transverse shear energy. How then should the transverse
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shear contribution a priori look like, starting from a three-dimensional view-
point?2!

There is a large number of papers concerned with the effective (homog-
enized) coefficient of the transverse shear energy for isotropic linear elastic
bulk material. The transverse shear deformation in the finite-strain Cosserat
approach is proportional to ( (R3,my), (R3, my)). The corresponding trans-

verse shear energy is proportional to (Rs, mz>2 + (R3, my)Q. If we assume
no warping (transverse sections remain straight), i.e. an ansatz of the form
o(x,y,2) = m(z,y) + ot (2) R(z,y).e3 with o* : R — R* and a constant
director R.e3 over the thickness, the transverse shear energy is generally
over-estimated. This ansatz leads to a linear distribution of the transverse

shear-stresses in the plate.

From direct equilibrium considerations for the bulk it follows, however,
that the director should be S-shaped over the thickness. Including this effect
amounts to introduce warping. This corresponds to a ”weaker” kinematical
ansatz ¢(z,y, z) = m(x,y) + 0" (2) Q(2) R(z,y).e3 with an additional inde-
pendent rotation field @ € SO(3), depending only on the transverse variable
z Wisniewski and Turska (2001, 2002). It leads to a quadratic distribution
of the transverse shear stresses in thickness direction. In order to relieve
the effect of not including warping in the simpler ansatz, the introduction
of the shear correction factor x can be motivated.

For both presented models, the transverse shear energy in our notation
can be written in the form

G (Rsma)’ + (Raym,)’) | (12)

with a constitutive coefficient G’, the transverse shear modulus [G'] =
[N/m?].22 Summarizing, we have

G =rA(p, pc) = K % formal reduction (1),
He -
G’ =H(p, pe) = 2p I-limit (26) , (13
(1) = 21 b (26) , (13)
G =rA(p,0) = Iig classical linear Reissner-Mindlin ,

21 . . . . .
The possible difference between Weyry and Wchlf’ff,‘ is not our concern, since the consti-
tutive coefficients of Weury are rather a matter of convenience at present, as long as
coercivity of curvature is guaranteed.

22Mindlin’s notation (Mindlin, 1951, eq.7).
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with k£ > 0, the so called shear correction factor.?? There are various values
for the shear correction factor x proposed in the engineering literature,
among them prominently

2

K= 71T—2 ~ 0.8225, Mindlin’s value Mindlin (1951) |
K= % = 0.8700, Babuska’s value for v = 0.3,
K= _10 ~ 0.8772, Zhilin’s value for v = 0.3
12 —2v
Altenbach and Zhilin (2004) |,
10
K=15 ™ 0.8333, Reissner’s value Reissner (1945, 1985), (14)
10
=——=x1.01 Ossle’s value f =0.
K o7 0 Rossle’s value for v = 0.3,
2

71r_2 <k <1, Altenbach’s estimate Altenbach and Zhilin (2004) .

These values for k are proposed in terms of best fitting of certain simple
infinitesimal three-dimensional quasistatic or dynamic test cases. Mindlin’s
value k = 717—; is obtained from a best fit of the first eigenfrequency of the
linearized plate model as compared to the three-dimensional linear elas-
ticity solution. Reissner’s value appears through an additional assump-
tion regarding the stress distribution through the thickness (Reissner, 1945,
eq.10). Babuska’s value Babuska and Li (1992) is based on numerical ”ex-
periments”. By dimensional analysis it can be shown Altenbach and Zhilin
(2004) that x should depend on the Lamé constants only through the Pois-
son ratio 0 < v < % Another motivation for the introduction of k is
obtained by trying to optimize the rate of convergence of the linear Reissner-

Mindlin model to the solution of the linear elasticity model as h — 0. This is

28 »In the classical Reissner-Mindlin model, the shear stresses o13,023(=
(R3,mz), (R3,my)) are constant through the thickness of the plate. However, three-
dimensional traction free boundary conditions at the upper and lower face of the shell
imply that at these faces, the stresses have to be zero, hence also the shear stresses
have to be zero. An analysis of equilibrium for an elastic beam shows that the shear
stress should be quadratic through the thickness and vanish at the faces. A constant
shear stress distribution over the thickness overestimates therefore the shear energy.
A correction factor, known as the shear correction factor is often used to reduce the
energy associated with transverse shear and accurate estimates of this factor can be
made for elastic beams and shells. For nonlinear materials, however, it is difficult to
estimate a shear correction factor.” (Belytschko et al., 2000, p.554).
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the argument for Rossle’s value, Rossle (1999). The fact that there x might
be bigger than one cannot easily be accepted from a purely engineering
point of view.

For 0 < k = (74_1%%)2 < 1 it holds that s A(u, pc) = H(u, ptc). Hence, in
view of our deduction of the I'-limit as compared to the formal reduction and
the general inequality H(u, pie) < A(p, pe) together with the linearization
consistency of the T-limit (35) if . = 0 it is strongly suggested that x < 1,
in accordance with engineering practice, also in the finite strain case.

The question of the form of the homogenized transverse shear energy
is as well related to the observation, that the I'-limit energy functional for
e = 0 will necessarily loose coercivity, which can directly be traced to the
missing transverse shear contribution but this loss of coercivity is not due to
the missing drill-energy. In this respect, note that Wy, (U) in (5) leads to
a coercive formulation w.r.t. the midsurface deformation m also for p. = 0.
Moreover, in a linearized context, this energy is asymptotically correct for
e =0and k = 1.

For numerical calculations, the ”homogenized” energy Ig’o, which is in-
deed the I'-limit energy functional for u. = 0, can hardly be regarded as suit-
able in this case. From a more practical, computational viewpoint then, the
introduction of a strictly positive shear correction factor 0 < k < 1 is fully
justified and provides exactly that necessary minimal change of the local
energy used in Ioﬁ’o, in order to re-establish first strict Legendre-Hadamard
ellipticity w.r.t. m (but not local strict convexity) and second coercivity for
the midsurface in H?(w,R3). This underlines the salient features of the
formal derivation together with ., =0 and 0 < k < 1.

10 Consequences for the Cosserat couple modulus .

It is generally accepted in the engineering literature that really thin struc-
tures cannot support a non-vanishing transverse shear contribution. We
introduce therefore the postulate

Postulate 10.0.3 (Vanishing transverse shear). Regardless of material con-
stants, in the limit of arbitrarily thin, homogeneous isotropic structures, i.e.
for h — 0, transverse shear effects are altogether absent. O

Since the I'-limit faithfully describes the leading order term for vanishing
thickness, this postulate implies that the Cosserat couple modulus g, must
vanish as well, since otherwise one would have to deal with a remaining
homogenized transverse shear contribution in the thin plate limit.

This statement has far reaching consequences: it has never been possible
to unequivocally identify specific values for the Cosserat couple modulus
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Drill: in-plane
rotations

the plate in its deformed
present configuration
€3

. e‘
ﬂh:(DX[-;,l;]

the plate in its planar reference
configuration

Figure 1. The assumed Cosserat plate kinematics incorporating trans-
verse shear (R3 # fi,,), thickness stretch (o, # 1) and drill-rotations.
Reconstructed three-dimensional deformation ¢, : ) C R3 — R3, recon-
structed microrotation R : Qn C R? — SO(3), ESd(x,y,z) = R(z,y),
midsurface deformation m : w C R? — R?® and microrotation of the plate
R:w CR? SO(3).

tte > 0 in the experimentally oriented literature. In light of our development
it is suggested to resolve the problem in the following way: p. > 0 in the
finite-strain Cosserat bulk model is a numerical tuning or penalty parameter
but not a material constant. That u. should be zero as a material constant
has been conjectured in Neff (2004b). The unexpected formal proof of this
statement has been reached now by our I'-convergence result.

A striking consequence of this reasoning is that a linear Cosserat bulk
model describing faithfully the behaviour of a material body, does not exist,
since for . = 0 the linearized fields of infinitesimal displacement and in-
finitesimal microrotation decouple, see Neff (2003). In summary Postulate
10.0.3 implies that the infinitesimal Cauchy stress tensor o must always be
symmetric.
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11 Conclusion

We have justified the dimensional reduction of a geometrically exact Cosserat
bulk model to its two-dimensional counterpart by use of I" - convergence ar-
guments. The underlying Cosserat bulk model features already independent
rotations which may be identified with the averaged lattice rotations in de-
fective elastic crystals if gy, = 0. Thus the appearance of an independent
director field R3 is natural and not primarily due to the dimensional re-
duction/relaxation step. The argument is given for plates (flat reference
configuration) only, but it is straightforward to extend the result to gen-
uine shells with curvilinear reference configuration and it should be noted
that the extension to shells is independent of geometrical features of this
curvilinear reference configuration: the inclusion of transverse shear effects
makes the distinction between elliptic, parabolic and hyperbolic surfaces in
a certain sense obsolete. A welcome feature of the obtained I'-limit for the
defective crystal case . = 0 is its linearization consistency.

Apart for bending terms, the obtained I'-limit is similar to the previ-
ously given formal development in Neff (2004b) and constitutes therefore a
rigourous mathematical justification of Reissner-Mindlin type models. Fu-
ture work will discuss the engineering implications of our results as far as
the numerical value of the Cosserat couple modulus . and its relation to
the transverse shear modulus in classical Reissner-Mindlin type theories is
concerned.
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