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Kapitel 1

Einleitung

Die Beschreibung und Untersuchung hydrodynamischer Phidnomene mit mathematischen
Methoden ist eine interessante und fiir viele Bereiche in Industrie und Forschung bedeut-
same Aufgabe der Mathematik. Die bekanntesten Modellen in dieser Disziplin sind die
klassischen Stokesschen Gleichungen und ihr nichtlineares Pendant, die Navier-Stokes-
Gleichungen. Mit ihnen lésst sich aber nicht nur die Strémung von Fliissigkeiten, sondern
auch die Bewegung von Gasen etwa in der Luftfahrtindustrie untersuchen. Grundlegende

£

Abbildung 1.1: Wolken-Wirbel auf der Leeseite eines Berges auf den Juan Fernandez
[slands im Pazifik lings einer Karmanschen Wirbelstrasse (Satellitenaufnahme der durch
die Juan-Ferndndez-Inseln entstehenden Wirbel, NASA, landsat / Wikipedia)

Probleme dieser Theorien sind das Fehlen einer globalen Losungstheorie sowie die unzu-
reichende Beschreibung von Fliissigkeiten in denen sich mikroskopische Partikel mit der
Fliissigkeit mitbewegen!.

Die Theorie mikropolarer Flissigkeiten verallgemeinert die Navier-Stokes-Gleichungen
und versucht diesen Mangel auszugleichen. Physikalisch betrachtet, handelt es sich da-
bei um viskose Fliissigkeiten in denen sich zufélig orientierte, mikroskopisch kleine, star-
re Partikel mitbewegen, die um ihre eigene Achse rotieren kénnen. Beispiele dafiir sind

!Die Navier-Stokes-Gleichungen vernachlissigen zum Beispiel die Effekte, die durch die Eigenrotation
der Partikel auftreten.
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zum Beispiel das menschliche Blut, Schmiermittel in der Industrie oder auch die Na-
notechnologie in der Medizin. Mathematisch unterscheiden sich diese Fliissigkeiten von
klassischen Fluiden dadurch, dass man bei ihrer Beschreibung zusétzlich zur Bewegung
der Fliissigkeit, auch eine iiberlagerte Mikrorotation der Partikel beriicksichtigen muss.
Eine Konsequenz dieser Neuerung ist die Tatsache, dass der Spannungstensor, der die
auf die Fliissigkeit einwirkenden Krafte modelliert, im Gegensatz zum klassischen Fall
nicht notwendigerweise symmetrisch sein muss. Ausserdem muss man einen zusétzlichen
Momentenspannungstensor einfiihren, der die Wechselwirkung der rotierenden Partikel
untereinander und mit der Fliissigkeit beschreibt.

Das Ziel dieser Diplomarbeit ist es einen umfassenden Einblick in die mathematische
Theorie der mikropolaren Fliissigkeiten zu geben. Insbesondere untersuchen wir die kon-
stitutiven Beziehungen dieser Fluide, ihre Eigenschaften und ihre Wechselwirkung zwi-
schen der eigentlichen Bewegung des Fluids und der Partikelbewegung. Wir werden die
Differentialgleichungen, die die Bewegung der Fliissigkeit und der Mikropartikel in der
Fliissigkeit bestimmen, ableiten und analysieren. Dabei werden wir ausgehend von der
Theorie stokesscher Fliissigkeiten die Materialgesetze diskutieren, die die Natur , also die
Eigenschaften mikropolarer Fluide beschreiben und daraus fundamentale Erkenntnisse
iiber die Struktur der Spannungstensoren gewinnen. Anschlieffend werden wir die nétigen
mathematischen Werkzeuge bereitstellen um abschliefend ein mathematisch einfaches,
aber daher leider nicht sehr realistisches, Randwertproblem zu untersuchen. Wir werden
Bedingungen fiir die Existenz und Eindeutigkeit von Losungen dieses Problems ableiten.

1.1 Notation

In dieser Arbeit verwenden wir stets die Einsteinsche Summenkonvention, d. h. iiber dop-
pelt auftretende Indizes innerhalb eines Produktes wird summiert. So lautet zum Beispiel
das Matrixprodukt zweier n x n-Matrizen A = (a;;)1<ij<n und B = (b;;)1<ij<n in Kom-
ponenten

(A B = a@kbkj Z alkbkj

Wir definieren das Kronecker-Symbol 6;; und das Levz—C’wzta—Symbol €5, durch

5 1, falls i = j 1)
Yo, falls i # j ‘

und

1, falls (ijk) eine gerade Permutation von (123) ist.
€ijr = & —1, falls (ijk) eine ungerade Permutation von (123) ist. (1.2)

0, falls mindestens zwei Indizes gleich sind.

Vektoren werden wir mit Kleinbuchstaben, Tensoren zweiter Stufe mit Groftbuchstaben
bezeichnen. Sind u und w Elemente eines euklidischen oder unitdren Vektorraums, so be-
zeichnet (u, w) stets das Skalarprodukt der beiden Vektoren. Mit R**3 bezeichnen wir den
Raum der (reellen) Tensoren zweiter Stufe und schreiben AT bzw. A~! fiir den transpo-
nierten bzw. inversen Tensor zu A € R3*3. Die Gruppe der reguliiren (d. h. invertierbaren)
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Tensoren zweiter Stufe bezeichnen wir mit G L(3) und definieren die Gruppe der speziellen
orthogonalen Tensoren zweiter Stufe durch

SO3):={AecGLB)|A"A=1 und det A =1} (1 : Einheitstensor).

Die Lie-Algebra zur Gruppe SO(3) enthélt genau die schiefsymmetrischen Tensoren zwei-
ter Stufe und wird im Folgenden mit so0(3) := {W € SO(3) : W + W7 = 0} bezeichnet.
Fiir einen beliebigen Tensor W € M?*? definieren wir den axialen Vektor axlW durch

axlW xn=WnecR® VneR3 (1.3)

Da der axiale Vektor eines symmetrischen Tensors verschwindet ermdglicht die Abbildung
axl die kanonische Identifikation des s0(3) mit dem R?.

® stehe grundsétzlich fiir einen Differentialoperator, fiir dessen Anwendung auf ein Ele-
ment v des betreffenden Raumes wir ®v schreiben. Hangt v von mehreren Variablen
2,1, ... ab und bezieht sich der Differentialoperator ® lediglich auf die Variable x, so
bezeichnen wir ihn mit ®, und schreiben entsprechend ©,v. Die dadurch festgelegten
linearen Abbildungen ®v bzw. ©,v angewendet auf ein weiteres Element u schreiben
wir als Dv(u) bzw. D,v(u). Fir die Ableitung von v nach der Zeit ¢ verwenden wir die
Abkiirzung

dv
=—=9
v di tU
und werden fiir die Bezeichnung partieller Ableitungen auch die Schreibweise
0 "
8]26_17]7 8]- C:aj...aj

benutzen. Ferner iibernehmen wir aus der Vektoranalysis die Bezeichnungen

, _OF, L OF, OF, . 9

i
bzw.

82F3(:)3) — 83F2($) o
curl F(z) := [ 03F\(x) — 01 Fs(x) | = eijkTFk(x)
01 Fy(x) — 0o Fy ()

J

fiir die Divergenz bzw. die Rotation des Vektorfeldes F' = (F}, Fy, F3) : R® — R3.

1.2 Symbolverzeichnis

0ij Kronecker-Symbol
€ijk Levi-Civita-Symbol

aullere Einheitsnormale

St



GL(3)
SO(3)
50(3)

axl W

B=LT+W

=

FIQ)(JI

I w

S

dist(z, y)
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Gruppe der regulédren (d. h. invertierbaren) Tensoren zweiter Stufe
Gruppe der speziellen orthogonalen Tensoren zweiter Stufe
Gruppe der schiefsymmetrischen Tensoren zweiter Stufe

die kanonische Identifikation des s0(3) mit dem R?
Geschwindigkeitsgradient

rate of deformation tensor, symmetrischer Anteil des Geschwindigkeits-
gradienten

vorticity tensor, schiefsymmetrischer Anteil des Geschwindigkeitsgradi-
enten

Cauchy-Spannungstensor
Momentenspannungstensor

rate of microdeformation tensor
Einheitstensor
Deformationsgradient
Mikrorotationstensor
microgyration tensor
microgyration vector
orthogonale Transformation
Rand der Menge €2

Abstand von x zu y



Kapitel 2

Die Dynamik mikropolarer
Flissigkeiten

Der erste Schritt zur mathematischen Analyse und Untersuchung natiirlicher bzw. na-
turwissenschaftlicher Phanomene besteht in der Modellierung dieser Phénomene. Dabei
versuchen wir, basierend auf den bekannten Naturgesetzen, die wesentlichen Paramteter
eines Phédnomens zu erfassen und sie in Relation zueinander zu setzen. Die so entstehen-
den Zusammenhéinge ermoglichen uns dann Prognosen fiir die zukiinftige Entwicklung
des Phénomens zu erstellen. Im folgenden Kapitel werden wir daher, in Anlehnung an
[Luk99| und unter Beriicksichtigung fundamentaler physikalischer Gesetzméhigkeiten wie
der Massen- und Impulserhaltung, ein Modell in Form von Differentialgleichungen herlei-
ten, das die Bewegung von (mikropolaren) Flissigkeiten charakterisiert. Wir setzen dabei
grundsétzlich voraus, dass alle auftretenden Funktionen und Gebiete hinreichend glatt
sind.

2.1 Euler- und Lagrange Bild

Bezeichnet Q(t) C R? das von der Fliissigkeit zur Zeit ¢ eingenommene Gebiet, so heifst
Q= Q(0) Referenz- oder Ausgangskonfiguration. Jede Grofe, die den Zustand der Fliis-
sigkeit beschreibt, wie bspw. Temperatur, Dichte oder Geschwindigkeit, kann entweder
in

(1) materiellen Koordinaten (Lagrange-Bild):
Hierbei verfolgen wir die Bewegung eines Massenpunktes P, der zur Zeit ¢t = 0 am
Ort X in G war. Grofen, die sich auf diesen Massenpunkt beziehen, werden bei einer
Deformation von ihm mitgenommen, so dass z. B.

V(X,t) bzw. O(X, 1)

die Geschwindigkeit bzw. die Temperatur des Massenpunktes sind, der sich zur Zeit
t =0 am Ort X befand.

oder in

(2) rdumlichen Koordinaten (Euler-Bild):
Hier betrachten wir einen festen Punkt 2 € R? im Raum, an dem sich zu verschie-
denen Zeiten t, verschiedene Massenpunkte befinden kénnen. Die in diesem Punkt

7
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gemessenen Grofen, wie die Geschwindigkeit v(z, t) oder die Temperatur 6(z, t) haf-
ten also nicht mehr einem bestimmten Massenpunkt an, sondern beziehen sich auf
eben den Massenpunkt, der sich zur Zeit ¢ gerade an dieser Stelle im Raum befindet.

dargestellt werden. Bei den Bezeichnungen werden wir im Folgenden Funktionen in mate-
riellen Koordinaten mit Grofsbuchstaben und Funktionen in rdumlichen Koordinaten mit
Kleinbuchstaben bezeichnen. Beide Darstellungen sind dquivalent zueinander: Beschreibt

Abbildung 2.1: Q(¢) - Referenzkonfiguration

namlich @ die Transformation von Q zu €(t), so ist
x=ux(t) = (X, 1). (2.1)
Natiirlich sollte diese Transformation stetig invertierbar sein, so dass
X =0 () (2.2)
existiert. Aus dieser Forderung konnen wir sofort ableiten, dass

8@

X,

O<det©X@(X,t):det( ) <oo Vt>0
ij

gelten muss. Neben der mathematischen Notwendigkeit lassen sich diese Forderungen auch

physikalisch motivieren:

(1) @ sollte bijektiv sein, denn zwei unterschiedliche Massenpunkte kénnen sich nicht
gleichzeitig an ein und demselben Ort im Raum befinden und natiirlich war ein
Massenpunkt, der sich zur Zeit ¢ in €(¢) befindet auch schon in 2 vorhanden.

(2) Die Jacobi - Determinante det Vx®(X,t) sollte tiberall positiv sein, denn wegen

wol(QU1)(8)) = /Q R /Q | det VxB(X, 1)| dX

ist det Vx®(X,t) ein Maf fiir das Volumen von Q(t). Da sich das Volumen aus physi-
kalischer Sicht nicht auf einen einzigen Punkt zusammenziehen kann, muss demnach



2.1. EULER- UND LAGRANGE BILD 9

det Vx@(X,t) # 0 (aus mathematischer Sicht zumindest fast iiberall) sein.! Ferner
kann demnach det Vx®(X,t) < 0 ausgehend von einer Referenzkonfiguration mit
det Vx®(X,t) > 0 nicht durch einen stetigen Prozess erreicht werden, so dass wir
zu allen Zeiten det Vx@(X,t) > 0 fordern.

Im Folgenden werden wir uns, solange nicht ausdriicklich anders erwahnt, der Eulerschen
Darstellung anschliefen und einen beliebigen Punkt € R? im Raum betrachten. Fiir die
Geschwindigkeit v des Teilchens, dass sich zur Zeit ¢ im Punkt x befindet, gilt, wie aus
der Newton’schen Mechanik bekannt

d 0
V(X,t) = t)=x(t) = —x(t) = ==P(X,1). 2.3
(X,0) = ol 1) = i(0) = a(t) = S B(X. 1) (23)
Die Trajektorien des Geschwindigkeitsfeldes v(x,t) heifsen Stromlinien und sind fiir festes
t =ty die Integralkurven der gewohnlichen Differentialgleichung

t(s) = v(x(s),to).

Fiir eine stationare Stromung, d. h.

0

fallen offensichtlich die Bahn eines Teilchens und die entsprechende Stromlinie zusammen.
Ist das Geschwindigkeitsfeld v(z,t) bekannt, so ldsst sich die Transformation @ : Q@ —

/

—— Stromlinien

Abbildung 2.2: Stromlinien - Trajektorien des Geschwindigkeitsfeldes

Q(t) der Referenz- in die aktuelle Konfiguration prinzipiell durch Losen der gewohnlichen
Differentialgleichung
d
afﬁ(X,t) =V(X,t), ¢(X,0)=X
berechnen. Es reicht daher also die Geschwindigkeit “sfunktion v(z,t) zu berechnen um
die Bahnkurve der Fliissigkeitsteilchen ermitteln zu konnen.
Wie bereits erwahnt konnen wir jede Groke f, die die Bewegung der Fliissigkeit in der
Eulerschen Darstellung beschreibt, mit der Abbildung @ auch in die Lagrange’sche Dar-
stellung iiberfiihren:

flz,t) = f(x(X,1),t) = F(X,t),

!Das Integral existiert im Sinne eines Lebesque-Integrals. Daher konnte det Vx®(X,t) auf einer Null-
menge durchaus den Wert Null annehmen. Da wir die Beziehungen hier aber nur motivieren wollen,
vernachléssigen wir diesen Umstand.
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Stromlinien zur Zeit t = 0 Strom- und Bahnlinie des
Teilchens zur Zeit t = 2

Abbildung 2.3: Unterschied Stromlinie - Bahnlinie

so dass
SR = 2 fa(X, 1)1 (2.5)
= g;: ((X, t),t)cil? (X, 1) + % F(X,0),1) (2.6)
= Vo f(z,t) - &(t) + %f(x, t) (2.7)
= (05, 1) - o) Fst) -+ (0, ) 25)
ist. Den Differentialoperator
(1) = g f () + (oo 1) - Vi) (29)

werden wir im Folgenden als substantielle Ableitung oder materielle Ableitung bezeichnen.
Er setzt sich offensichtlich aus einer lokalen zeitlichen Anderung der Groke f an einem fes-
ten Ort z und einem konvektiven Anteil zusammen, der aus der Bewegung der Fliissigkeit
resultiert. Ein hierauf aufbauendes, wichtiges Werkzeug im Rahmen der Herleitung der
Erhaltungssétze mikropolarer Fliissigkeiten ist das Reynoldsche Transporttheorem, dass
wir in Kapitel 2.4 einfithren werden. Dieses gibt an, wie materielle Ableitungen von Inte-
gralen iiber zeitabhéngige Gebiete zu berechnen sind. im Einklang mit obiger Definition
ist nun zum Beispiel:
d D 0

V(X,t)= EX(x,t) = Ew(t) = a@(X, t) =v(z,t). (2.10)

2.2 Deformationsgradient und Deformationsrate

Betrachten wir einen Massenpunkt der sich in der Referenzkonfiguration 2 am Ort X be-
findet. Schalten wir nun die Zeit ¢ hinzu und unterwerfen die Fliissigkeit einer Deformation
@, so wird im Allgemeinen auch der Massenpunkt seine Position verdndern. Betrachten
wir nun eine Umgebung U(X) von X, so gilt fiir alle X’ in der Umgebung:

2(X', 1) — 2(X, 1) = (DX, 1) — B(X,t) = VxB(X, t)(X' — X) + O(X' — X).
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Die Deformation eines Linienelementes dX = X' — X wird also lokal durch den sogenann-
ten Deformationsgradienten

F(X,1) = Vx&(X,t) = (%(x, t)) - (gj{y (X, t)) (2.11)

i i

beschrieben. Fiir die Deformationsrate F' erhalten wir

PO = F = 4 (S ”)ij -4 ()

)

= (ax [ ve]), = (agn), = (g on)

= (g;}k (X, t)aﬂgg (X, t)) = L(X,t)F(X,1)

ij

2

mit dem raumlichen Geschwindigkeitsgradienten

8?&‘
L= (Ozvk)ik' (2.12)

Nach unseren bisherigen Uberlegungen ist J = det F' > 0 und daher F invertierbar. Somit
wird aus (2.12)

L=FF" (2.13)
Ferner konnen wir L orthogonal zerlegen in
1 1
L:§(L+LT)+§(L—LT): sym L + skew L. (2.14)

Den symmetrischen Anteil sym L werden wir im Folgenden den rate of deformation Ten-
sor D und den antisymmetrischen Anteil skew L wvorticity Tensor W nennen,

(L+L"), W= skewL = - (L—L"). (2.15)

DO | —
N | —

D:=symL =

2.3 Intrinsische Deformationen der Partikel

Die von der Fliissigkeit mitgefiihrten Partikel werden durch die Bewegung der Fliissig-
keit ebenfalls ihre Position und Orientierung, gegebenenfalls sogar ihre Form verédndern.
Um diese intrinsische Deformation zu untersuchen beschreiben wir ein Partikel in der
Referenzkonfiguration (in Analogie zu den Gitterstrukturen in Festkérpern) durch seinen
zentralen geometrischen Punkt P, an den wir Vektoren P anheften, die die Orientierung
und Form der materiellen Punkte in P kennzeichnen. Dieses Partikel konnen wir dann
durch seinen Ortsvektor X in der Referenzkonfiguration und eine Menge von Vektoren

P,a=1...,N,

die seine innere Struktur charakterisieren, identifizieren. Zur Vereinfachung werden wir
uns auf den Fall N = 1 mit P, = P beschrénken. Sowohl X, als auch P haben ihre eigenen
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g ‘K Gg(t)
7’ \ﬂ
P
X /
% x

Abbildung 2.4: Die intrinsische Deformation

Bewegungen
X —zx=9(X,1) (2.16)
P — p=9(X,Pt). (2.17)
Die Abbildung (2.16) wird die (Makro-)Bewegung, Abbildung (2.17) die Mikrobewegung
genannt. Da im Allgemeinen die von der Fliissigkeit mitbewegten Partikel sehr klein im
Vergleich zur Ausdehnung des Fliissigkeitsvolumen sind, ist es sicherlich sinnvoll, wenn

wir im Folgenden von einer in P affin linearen Approximation der Funktion ¢(X, P,t)
ausgehen, d. h.

p=p(X,Pt) =x(X,t)P (2.18)

setzen. In der Theorie der mikropolaren Fliissigkeiten beschranken wir uns auferdem auf
starre Partikel deren Deformation ausschliefslich einer Rotation des Partikels entspricht,
so dass

p=o(X,Pt)=R(X,t)P, ReO(3) (2.19)

ist. R wird der Mikrorotationstensor genannt und analog zum Geschwindigkeitsgradienten
konnen wir fiir die Mikrodeformationsrate R ableiten, dass

. 0 ( Op; _ i Opi
Opr

_ (2, _ (%
— (8—]Dj¢z(X,SD(X, P, t)’t)>ij = (apk (X, (X, P, t),t)apj (X, P, t)>

ij

— W(X, P,t)R(X, 1)

Der sogenannte raumliche microgyration tensor

W = <&pi),~k' (2.20)

Opi,
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erfiillt also

p=Wp
und beschreibt somit die Rotationsgeschwindigkeit der Partikel in der Fliissigkeit. Nach
unseren globalen Voraussetzungen ist R invertierbar und somit WV durch

W =RR™' = RR" (2.21)
darstellbar. Bedenkt man, dass der Mikrorotationstensor R orthogonal ist, so ist
RR =1 R-R+R-E"=0 = W=-WT,
und somit W schiefsymmetrisch. Insbesondere ist es moglich den microgyration tensor

mit (1.3) und (A.6) durch das sogenannte Mikrorotationsfeld w auszudriicken:

1
w=axlW = §ekﬂWij < Wij = €myiWm- (222)

2.4 Das Reynoldssche Transporttheorem

Wir betrachten nun die Bewegung eines beliebigen Teilvolumens G der Referenzkonfigu-
ration ) der Fliissigkeit. Sei G(t) das von G zur Zeit t > 0 eingenommene Volumen.

Lemma 2.4.1 (Eulersche Entwicklungsformel (vgl. [BurlQ])): Sei @ : R™ x Rsy —
R™; (X,t) — @(X,t) bijektiv und p; € C*(R™ x Rsg),i = 1,...,n, dann gilt:

% det F(X, 1) = divo(S(X, t),t) det F(X, t) (2.23)

Beweis. Mit dem Levi-Civita-Symbol ist

det F(X,t) = Ewk%%%
7 J

und man folgert
d
%<detF(X, t))
d ( 0Py 0Dy 8@3)

~at \""*OX; 0X, 90X,
L (Pa@l] 0Dy 0D; 0D, [ga@} 0Py 0, 0P, [gacpgD
R\ |otoX;| 0X;0X, ' 0X; |0t0X;| 0X,  0X,0X, |0t0X,|)"
Nun ist
0 0P, 0 0P vy Ov; Oy
ot0X; 90X, ot  0X; 0x,0X;
und somit

%(det F(X, t))

o ([000] 09; 005 | 0B [0 00, 0Ps 0P 0, [ D 0P
~ R\ 0toX; | 0X; 0X, | 0X, |0t0X;] 0X, | 0X;0X; |9t 0X,
o % 0x; Oxg O3 n 0ry % ox; Oxs n 0x, 0x9 % ox;

R\ 010X, 0X; 60X, | 0X; 0w, 0X; 80X, | 0X;0X; 01, 0X; )

(2.24)
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Nach Definition des Levi-Civita-Symbols ist
€ijr = 0 wenn mindestens zwei Indizes gleich sind,

wodurch sich obige Summe deutlich vereinfacht. Betrachten wir zum Beispiel den ersten
Term, so gilt:

_ Ov On O, Oy

ik (995; aXZ an an
vy 0x; Oxe Oxs 0vy Ox; Oxe Oxs vy 0x; Oxy Oxs

_ 6123%%%% +m%%%%+%%%%%
Oz, 0X, X5 0X 01, 0X, 0X30X, 011 0X5 X, 0X5
ovy Ox; Oxy Oxs ovy Ox; Oxy Oxs ovy Ox; Oxo Oxs

Wegen
€ijk = —€ik; V1,7, k

heben sich fiir [ = 2 nun gerade der erste und dritte, der zweite und fiinfte und der vierte
und sechste Term in dieser Summe gegeneinander auf. Analog sieht man, dass fiir [ = 3
der Ausdruck ebenfalls verschwindet. Fiir den ersten Term in (2.24) bleibt also nur ein
Beitrag fiir [ = 1 bestehen:

0vy Ox; Oxe Oxs 0vy Oxy Oxy Oxs

= 91, 0X, 0X, 0X),

Genauso sieht man, dass im zweiten und dritten Term von (2.24) nur Beitrége fiir [ = 2
bzw. | = 3 erhalten bleiben, so dass

i(det F(X, t))

dt
. (8@1 0xy Oxy O N Oxy Ovy Oy Oxs N Ox1 Oxy Ovs 8x3>
TR\ 0wy 0X,0X; 0X), | 90X, 0, 0X; 00X, 0X; 0X; 013 0X,,
_ (31}1 N OV N (9213) . (%%%)
dr, Oz,  Ory) P\ OX,0X,; 0X,
= divo(xz(X,t),t)det F(X,1).

Das auf den englischen Physiker Osborne Reynolds zuriickgehende Transporttheorem be-
schreibt die zeitliche Verédnderung des Integralwertes einer physikalischen Grofe bezogen
auf das sich mit der Stromung bewegende Volumen G(t).

Satz 2.4.1 (Reynolds’ Transporttheorem (vgl. [Burl0])): Sei® : R"xR>o — R™; (X, 1) —
D(X,t) bijektiv und ¢; € C*(R" X Rsg),i =1,...,n. Ferner sei

(x,t) — h(x,t)
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eine skalare oder vektorwertige stetig differenzierbare Funktion auf R™ x Rsq, dann gilt:

d oh |
dt /g(t) ha, 1) de = /g(t) { ot (2, 1) + (v(z,1) - Vo)h(z,t) + h(z,t) div v(m,t)} dx

und insbesondere fiir skalarwertiges h

_/ W 1) dx—/t){aah(x £) + div (h(x,t)v(x,t))} da.

Beweis. Erinnern wir uns an die Transformation
o:G—Gt), x=o(X,1),

aus (2.1) und gehen davon aus dass sie hinreichend glatt und invertierbar ist, so folgt mit
der Transformationsformel

/ W, 1) do = / sn (det F(X, 1)) h(®(X, ), 1) det F(X, 1) dX
G(t) G(0)
:/ sgn (det F'(X,t)) H(X,t)det F(X,t)dX,
G(0)

so dass

d

dt/ )h(a: t)dx

/ n (det F(X, ) H(X, ) det F(X, ) dX

J
_ / sen (det FI(X, 1)) - H(X, 1) det F(X, 1) dX
g

J/

v~

=1

d
+ / sgn (det F(X, 1)) H(X, 1) det F(X, 1) dX .
g

N J/

~
=1

Wegen

L rx,1) -

D
—h(z,t
dt (‘r7 )

Dt

ist dann
d
L = / sgn (det F/(X, 1)) {EH(XJ)} det F(X,t)dX
g

D
_ é sen (det F(X, 1)) {Eh(x,t)] det F(X, ) dX

_ /g(t) {E(x,t) b (v, t) - V)h(x,t)} .
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Fiir I, folgt mit (2.23)
I, = /g sgn (det F/(X,t)) H(X,t) {% detF(X,t)] dX
_ /g sen (det F(X, 1)) H(X, ) divo(@(X, ), 1) det F(X, 1) dX
:/ h(z,t)divo(z,t) de
G(t)

und daraus

d oh |
dt /g(t) ha,t) de = /g(t) {5@7 t) + (v(x,t) - V)h(x,t) 4+ h(z,t) div v(x,t)} dx.

Aus Gleichung (A.1) folgt dann die Behauptung fiir skalarwertiges h. |

Der durch die Vertauschung der Zeitableitung mit dem Integral entstehende Zusatzterm
div(h(z,t)v(z,t)) 1akt sich auch physikalisch interpretieren. Betrachten wir dazu ein sta-
oh

tiondres Strémungsfeld, d.h. 2 (x,t) = 0. Dann ist mit dem Gauf’schen Integralsatz

% /g(t) h(z,t)dx = /g(t) div(h(z, t)v(z,t)) dx = / h(z,t)(v(x,t) - 77) dS,

oG (t)

wobei 0G(t) den Rand des Volumens G(t) und 7 die nach aufen gerichtete Einheitsnorma-
le an 0G(t) ist. Stellen wir uns G nun als einen forminvarianten Quader vor, der von der
Fliissikgeit mitbewegt wird und durch den wir zu jederzeit das Volumen G(t) beobach-
ten. Dann bestitigt diese Gleichung unsere natiirliche Intuition, dass die Anderung des
Integralwertes dadurch bestimmt ist, wieviel wiahrend der Bewegung des Quaders durch
die Rénder hinein- respektive herausflieft. Offensichtlich hingt die Anderungsrate dabei
einerseits von der Geschwindigkeit v mit der der Quader bewegt wird, andererseits von
der rdumlichen Variation der Grofe h tiber den Rand des Quaders G(t) ab.

2.5 Die Erhaltungssatze der Hydrodynamik

Basierend auf unseren bisherigen Erkenntnissen wollen wir in diesem Kapitel nun die Dif-
ferentialgleichungen ableiten, die die dynamische Entwicklung einer mikropolaren Fliis-
sigkeit beschreiben. Dabei gehen wir von vier physikalisch begriindete Annahmen {iber
das Verhalten von Fliissigkeiten aus:

e die Massenerhaltung: ,Die Masse einer sich bewegenden Fliissigkeit bleibt zu allen
Zeiten konstant. Es wird keine Masse erzeugt oder vernichtet.”

e die Impulserhaltung: ,In einem abgeschlossenen System, d.h. in einem System das
keine Wechselwirkung mit seiner Umgebung aufweist, bleibt der Gesamtimpuls er-
halten.”

e die Drehimpulserhaltung: ,Der Drehimpuls eines abgeschlossenen Systems bleibt un-
verandert, egal welche Krafte und Wechselwirkungen zwischen den Bestandteilen des
Systems wirken.*
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e die Energieerhaltung: ,In einem abgeschlossenen System is es weder moglich Energie
zu erzeugen noch zu vernichten. Sie kann lediglich in verschiedene Formen umge-
wandelt werden.*

2.5.1 Die Kontinuititsgleichung (Massenerhaltung)

Sei p = p(x,t) die Dichte der Fliissigkeit am Ort = zur Zeit t. Dann ist die Masse in jedem
endlichen Raumvolumen G gegeben durch

/g plz, t)dz.

Die Massenerhaltung besagt nun gerade, dass sich die Masse der Fliissigkeit im Volumen
Q) nicht dndert, wenn sich das Volumen mit der Fliissigkeit weiterbewegt, d. h.

— plx,t) de = 0.
dt Jgw o

Mit dem Transporttheorem Satz 2.4.1 erhalten wir daraus

d ap )
0=— x,t d:r;:/ {— xr,t) +div |p(x, t)v(x,t }dx
7, petide= [ { G+ div [ple ez )]

und da G(t) beliebig wahlbar ist folgt daraus die Kontinuititsgleichung:

%(m,t) + div [p(x, t)v(x,t)] = 0.

Wegen (2.9) kann man diese mit (A.1) auch so formulieren

%f(x,t) + p(x,t)divo(z, t) = 0. (2.25)

Bleibt in einer Flissigkeit die Dichte p(x,t) entlang jeder Trajektorie konstant, d. h.
D
Dtp(m’ ) Y

so spricht man von inkompressiblen Fliissigkeiten. Die Kontinuitétsgleichung liefert dann
divo(z,t) = 0. (2.26)

Dagegen bedeutet dive = 0 nicht automatisch, dass die Fliissigkeit inkompressibel sein
muss. Aus dem Reynold’schen Transporttheorem (2.4.1) ldsst sich mit der Kontinuitéts-
gleichung aufserdem die niitzliche Formel

d D

— phdx:/ p—hdx. 2.27
dt Jg o) Dt 220
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ableiten. Dies sicht man mit (A.1) direkt aus (2.25):

d
/(t) p(x, t)h(x,t)dx
— /g(t % (:U,t)] + (v(z,t) - V) [p(x,t)h(x,t)} + p(z, t)h(z, t) divo(z, t) de
= /g(t p(x h(x,t) + h(z,t) @%p(:v,t) + div [p(x,t)v(x,t)} dx

g

=0

D
p—h dx.

I
m\

2.5.2 Impulserhaltung

Aus der Kontinuumsmechanik weifs man, das die Kréafte die auf ein kontinuierliches Me-
dium wirken, sich prinzipiell in zwei Klassen einteilen lassen, die externen Kréfte und die
internen Kréfte. Externe (oder Volumen-) Kréfte sind in der Natur beobachtete Krifte,
die eine grofe Reichweite haben, auf alle materiellen Teilchen im Kontinuum wirken und
ihre Ursache meist in Kraftfeldern wie der Gravitation haben. Ist K eine solche Kraft und
k die zugehorige Kraftdichte, so ist fiir ein Teilvolumen G der Fliissigkeit

K:/pkdx.
g

(a) Volumen- und Oberflachenkréfte (b) Zur Visualisierung der internen Krifte

Abbildung 2.5: Der Normalenvektor von 0G wird mit 77 bezeichnet und hat im Allge-
meinen eine von 7, abweichende Richtung. Zu (a): Die Externen Kréfte K haben eine
grofse Reichweite, wihrend die internen Kréfte 7,, unmittelbar von dem G umgebenden
Kontinuum €2 hervorgerufen werden. Zu(b): Wird ein Kontinuum  im Gleichgewicht auf-
geschnitten, so erfahrt die Schnittflache 0G eine interne Kraft T),, die vorher durch den
nun abgeschnittenen Teil kompensiert wurde.

Interne (oder Kontakt-) Kréfte miissen dagegen erst durch gedachte Schnitte durch den
Korper sichtbar gemacht werden. Es sind dann die in den Schnittflichen einzutragenden
Kriéfte. Sei also n die nach auften gerichtete Flacheneinheitsnormale an einem Punkt der
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Oberflache 0G, T,, die von der umgebenden Fliissigkeit auf 0G ausgeiibte Kraft und ¢,, die
zugehorige Kraftdichte, so gilt fiir die auf G ausgeiibte innere Kraft

T, :/ t, dS.
g

Wird nun ein Kontinuum wie unsere Fliissigkeit durch externe Kréfte belastet, etwa durch
ein Gravitationsfeld oder durch elektrische Felder, werden diese Kréfte auf jedes einzelne
Teilchen des Kontinuums wirken, so dass sich diese in Bewegung setzen und damit das
Kontinuum deformieren. Dabei &ndern sich die Teilchenabsténde und damit in Abhéngig-
keit der Materialeigenschaften die Starke der Wechselwirkungen zwischen den einzelnen
Teilchen, d.h. letztlich die inneren Kréfte. Sind die dufseren Krifte zeitunabhéngig, so
wird sich in der Regel ein neuer Gleichgewichtszustand einstellen, in dem die durch die
Deformation hervorgerufenen inneren Kréfte die dufseren gerade ausgleichen.

Materialgesetze

externe Def "’ g
Kraft eformation pannungen
1 kompensieren

Abbildung 2.6: Im Allgemeinen verformt sich das Kontinuum durch externe Kréfte. Da-
durch &ndern sich, abhéngig von den Materialeigenschaften, die Teilchenabstdnde und es
entstehen Spannungen (interne Kréfte). Sobald diese die dufkeren Krifte kompensieren,
ist ein neuer Gleichgewichtszustand erreicht.

Wir schliefsen uns bei der weiteren Analyse dem Cauchy Prinzip der Kontinuumsmechanik
an, dass besagt, das t, zu jeder Zeit nur von der Position und der Orientierung des
Oberflachenelementes dS abhéangt, d. h.

tn = ta(z,t,n).

Das zweite Newton’sche Axiom fordert nun, dass die Anderung des Gesamtimpulses in §
von den auf 2 wirkenden Kriften verursacht wird, also

d
— pv dx = / pk dx + / tndS . (2.28)
dt Jg( a(t) 89(1)
— —— v
,, Anderung des Gesamtimpulses“ ,, Auf das Volumen wirkende Kréfte
Mit (2.27) ist dann
D
P22 d = / pl dz + / t, dS. (2.29)
gy Dt 0 0G(t)

Diese Gleichung induziert nun das folgende Theorem iiber die Gestalt des Spannungsvek-
tors t,.
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Satz 2.5.1 (Cauchy-Theorem): Fir festes t € R sei t,(x,t,1) stetig in x. Dann hingt
tn(x,t, M) linear von il ab, d. h. es existiert ein von i unabhdingiger Tensor T 2-ter Stufe,
so dass

to(x,t,7) =T (x,t) -7 (2.30)

fir alle x € G(t) und beliebige Einheitsvektoren 7. Der Tensor T(x) wird der Cauchy-
Spannungstensor genannt.

Beweis. Fiir festes ¢ € R setzen wir t(x, 1) := t(x,t,7) und betrachten einen Tetraeder
T wie

in der Abbildung vollstédndig in G; = G(t) enthalten
ist und mit einer Ecke an einem beliebigen Punkt
xr € 0G; liegt. Ferner sei 1 die duflere Einheitsnor-
male der geneigten Fliche und A der Fldcheninhalt
dieser Flache. Die anderen Fliachen haben dann den
Flacheninhalt An; fir n; = n-¢; (i = 1,2,3). Fir
den zur geneigten Fliche gehdrenden Spannungsvek-
tor schreiben wir ¢(x, 77), fiir die anderen entsprechend
t(z, —ey), t(z, —ey) und t(x, —e3). Ist nun h die Ent-
fernung der geneigten Fldche vom Punkt x, so hat der
Tetraeder das Volumen

€3

1
V = Ah,
3

Wir setzen 0.B.d.A. voraus, dass %v und k£ auf dem Tetraeder beschrinkt sind, sodass
fir kleine h

Dv 1 Dv

— —k)lde 2 =p—=— -k | Ah
fo(Br—+) w30 (5 -1)
. 1 Dv
i:f%{z/f’(a”) d“f}—o-

ATtndS:A((x n) + t(x, —e;)n;) dS

konnen wir damit aus der Impulserhaltung (2.28) ableiten, dass der Tetraeder sich nicht
verformt, also im Gleichgewicht ist, falls sich die Kréfte, die an seinen vier Seitenflachen
angreifen, aufheben:

) 1 Dv
Ozflg%{Z/Tp<ﬁ_k) }_11113%14/ x, 1) + t(z, —e;)n;) dS.

Dabei haben wir die Integration iiber 97 in die Integration iiber die vier Oberflaichen
des Tetraeders zerlegt. Das A im obigen Integral entspricht also der geneigten Ebene des

und

Wegen
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Tetraeders. Nach Voraussetzung ist ¢(z,7) in x fiir beliebige 7 stetig, so dass aus obiger
Gleichung beim Grenziibergang A — 0 folgt, dass
t(z, 1) = —t(x, —e;)n,. (2.31)

Setzen wir in (2.31) statt 77, —7i ein so folgt

t(z,e;) = —t(z, —e;)
und somit

t(z,n) = t(x,e;)n;. (2.32)

Da die Basis {e;} zwar fest, aber vollkommen beliebig und unabhéngig von 7 gewahlt wur-
de, zeigt (2.32) das t(x,7) linear von den Komponenten n; des Einheitsnormalenvektors
77 abhéngt. Insbesondere definieren wir fiir festes ¢:

T(I,t) = (I_TZ])ZJ durch ,-Tz’j = t1($7 €j>.
|

Setzen wir voraus, dass 7 mindestens einmal stetig differenzierbar ist, folgt aus (2.29) mit
diesem Prinzip und dem Gauf’schen Satz

D
p— dz = / (pk + DivT) dS
gy Dt g(t)

wobei ‘

Ty Ty T3 div (Tn, Tio, T13)

Div T' = Div T21 TQQ T23 = div (Tgl, TQQ, T23> € RS

T31 T3 T33 div (T3, Ty, Ts3)

und da das Integrationsgebiet beliebig wahlbar ist
U~ pk+DivT (2.33)
p T p ivT. )

2.5.3 Drehimpulserhaltung

In der klassichen Newton’schen Mechanik fiir Punktmassen ist die Drehimpulserhaltung
ein direktes Korollar der Impulserhaltung. In der Kontinnumsmechanik dagegen stellt
sie eine von der Impulserhaltung vollkommen unabhéangige Hypothese dar, die durch die
Annahme impliziert wird, dass zumindest fiir Punktmassen die Anderung des Drehimpul-
ses dem wirkenden Drehmoment entspricht. Wenn wir uns dieser Hypothese anschliefien,
dann kénnen wir postulieren:

Axiom 1 (Drehimpulserhaltung):

4 plx xv)dr = / plx x k)dx —l—/ (x x t,)dS (2.34)
dt Jgw g(t) (1)
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Diese Vermutung trifft zu solange man davon ausgeht, dass alle Drehmomente aus ma-
kroskopischen Kréaften resultieren. Fiir polare Fliissigkeiten allerdings ist dem nicht so,
denn diese sind dazu fdhig, innere Spannungsdrehmomente zu iibertragen. Bevor wir na-
her auf dieses Problem eingehen, zeigen wir allerdings noch, dass unter der konstituiven
Voraussetzung (2.34) gilt, der Cauchy Spannungstensor symmetrisch ist.

Satz 2.5.2: Fir ein kontinuierliches Medium, dass die Kontinuitdtsgleichung (2.25) und
die Impulserhaltung (2.33) erfillt, sind die folgenden Aussagen dquivalent:

(a) Der Cauchy-Spannungstensor T(x,t) ist symmetrisch.

(b) Gleichung (2.34) ist erfillt.

Beweis. Nehmen wir zunéchst an, dass (b) gilt und zeigen (a). Aus (2.34) folgt mit (2.27)

d D
/ p(xxk)dx—i—/ (a:xtn)dS:—/ p(xxv)dx:/ p—(z X v)dx.
5(0) 0 dt Jg s Dt

Nun gilt (vgl. (A.2) im Anhang)

D(x)— " Dv
Dt T\ )

sodass
D
/ p(:vxk:)dx+/ (xxtn)dS:/ p(azx—v) dz.
(1) aG(t) G(1) Dt
Wegen
by =T 1= (Twnj)z
und

(I X tn)j = €1k (Tkjnj)k = (GjlkxlTki)i n; = (l’ X T)sz
folgt mit dem Satz von Gaufs
/ (acxtn)dS:/ Div (x x T) dz.
G (t) G(t)
Auch gilt nach Definition der Divergenz eines Tensors:
[Div (x x T')] 0 (exiziTiy)
v = 5 \Cklilili;
k= o kliT1d g
oT;;
= €i0y; 15 + Eklixla_xj
= Z[axl (skewT)} + (xz x DivT),
k

und daher

/ (x X t,)dS = / {2 axl (skew T') + x x Div T} dzx.
aG(t) G(t)
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Fassen wir die bisherigen Ergebnisse zusammen, so ist

D
/ x X (p—v — pk — Div T) dr = / 2 axl (skew T) dux.
a(t) Dt g(t)

Nach (2.33) ist die linke Seite null und somit verschwindet auch die rechte Seite fiir jedes
beliebige Volumen G(t), so dass

axl (skew T') = 0.

Die Komponenten von 2 axl (skew T') sind T3 —T39, T31 — 113, Th2— T und somit impliziert
die vorherige Uberlegung, dass

T somit also symmetrisch ist. Der Beweis, dass (a), (b) impliziert folgt nun direkt, in dem
man den obigen Beweis von hinten nach vorne durchgeht. [ ]

Fiir polare Fliissigkeiten miissen wir die in der Fliissigkeit mitbewegten Teilchen bertick-
sichtigen, so dass wir zusétzlich zur externen Kraftdichte k eine auf die Teilchen wirkende
externe Kraftdichte g und zur Normalspannung ¢,, eine zusétzliche, die Drehmomentdichte
der Teilchen symbolisierende, Spannung m,, einfithren. Ferner miissen wir aufgrund der
Rotation der Teilchen in der Fliissigkeit einen inneren Drehimpuls pl einfiihren, so dass
die Drehimpulserhaltung fiir polare Fliissigkeiten die Form

d
dt Jg

p(l+x><v)dx:/

plg+x x k)dr + / (my, +x X t,)dS (2.35)
g(®)

oG (t)

annimmt und nach Satz 2.5.2 der Cauchy-Spannungstensor 7" somit nicht notwendiger-
weise symmetrisch ist. Das Cauchy Prinzip (2.5.1) lésst sich auch auf die Spannung m,,
tbertragen (vgl. z. B. [Nos04]), sodass wir auch m,, in der Form

M, = M - ii (2.36)

schreiben konnen. Dabei ist M ebenfalls ein Tensor 2-ter Stufe, der sogennante Momen-
tenspannungstensor. Die Anwendung des Gaufs’schen Integralsatzes fithrt dann zu

d

7 p(l+ xv)de/ {pg+ pxr x k+DivM +x x DivT + 2 axl (skew T')} dx
g(®)

g(t)

und wir erhalten mit (2.27)

D
pﬁt(l—l—x X v) =pg+ prxk+DivM +x x DivT + 2axl (skew T) . (2.37)

Bilden wir das Vektorprodukt der Cauchy Gleichung (2.33) mit « folgt aus (A.2)

D D
pﬁ(x X V) =x X (sz) =x X (pk+DivT) = pr x k+a x DivT. (2.38)

und subtrahieren diese von obiger Gleichung erhalten wir

Dl
pD_t = pg + Div M + 2 axl (skew T') . (2.39)



24 KAPITEL 2. DIE DYNAMIK MIKROPOLARER FLUSSIGKEITEN

Bemerkung 1: Wegen
Div(z x T) =z x DivT + 2 axl (skew T')

folgt aus (2.38) fiir den duferen Drehimpuls

D

pE(a: X v) = pxr x k+ Div(zx x T') — 2 axl (skew T')

und fiir den Gesamt-Drehimpulserhaltung (2.37):

D

pE(H—xxv):pxxk+pg+Div(a;><T+M). (2.40)
Anschaulich besagen die Gleichungen nichts anderes als dass weder der innere noch der
auflere Drehimpuls erhalten bleibt, sondern nur der Gesamt-Drehimpuls. Tatsdchlich wird

der Verlust des dufferen Drehimpulses in (2.38) in einen Beitrag zum inneren Drehimpuls
(2.39) umgewandelt.

Wir gehen im Weiteren von der Annahme aus, dass wir die innere Drehimpulsdichte [,
die von den in der Fliissigkeit mitbewegten Teilchen erzeugt wird, als Vektor mit Kom-
ponenten

li (Z = 1, 2, 3) mit lz = ]ikwk = I5Z~kwk2

auffassen konnen, wobei I ein Skalar, der sogenannte Mikro-Trigheits-Koeffizient ist und
w das Microrotations-Feld aus (2.22) ist. Somit reduziert sich Gleichung (2.39) zu

D
1= = g + Div M + 2 axl (skew T) . 2.41
Pl =P

2.5.4 Energieerhaltung

In der klassichen Hydrodynamik besagt der erste Hauptsatz der Thermodynamik, dass
die Zunahme der Gesamtenergie (d.h. kinetischer und innerer Energie) eines Korpers die
Summe der am Korper verrichteten Arbeit und der {ibertragenen Wérme ist. Nennen wir
die Wiarmestromdichte q und die innere Energiedichte F, so ist

d 1,
— —pv°  + pE dz
dt Jgwy 2 ~~

kin. Energie

:/ plk,v) dx—i—/ (tn,v) dS—/ (q,1)dS. (2.42)
G(t) aG(t) oG (t)

Das erste und zweite Integral auf der rechten Seite entsprechen der Anderung der am
Korper von den externen Kréaften bzw. der Spannungen verrichteten Arbeit, wihrend das

innere Energie

?Die Eigenschaft I;;, = I6;, wird manchmal als Isotropie bezeichnet, hat aber mit der Isotropie des
Festkorpers nichts zu tun.
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dritte Integral den Warmestrom in den Koérper representiert. Mit dem Integralsatz von
Gaufs und (2.33) gilt nun:

d 1,
— pl v +E) dx

plk,v) dx +/

(v,T~ﬁ>dS—/ (g, 7) dS
oG (t)

oG (t)

aG(t) aG(t)

/
:/ p(k,v)dm+/ (T i@y dS — [ (g7 dS
G(¢)
/ {p(k,v) +div (T" -v) —divg } da. (2.43)
g
Aus (2.27) folgt mit der Impulserhaltung (2.33)
d 1, Dv  DE
— pl=v —|—E>dx—/ p<v—+—>dm
DE
:/ {(v,(pk+DivT)> —|—p—} dz,
70 Dt

so dass man durch Einsetzen in (2.43) und Umstellen

DE
/ {@, (DivT)) + p— —div (T -v) + divq} dr =0 (2.44)

erhélt. Es gilt

. . 9, 0
(v,DivT) —div (T" - v) = Uia—ijij — 8_37] (Tj5v;)
T.. .
1 (a ﬂ) b -T2
al’j 8:1:]- Z;
- —<T, L>R3><3 (245)

wobei
<., '>R3><3 : RSxS X RBXB — R, (A, B) — tI’(A : BT) = Az]sza

das Tensorskalarprodukt ist. Insgesamt ist also

DFE
/ (p— +divg — (T, L>]R3><3> dx =0
oo \ Dt

und daher

DE

pﬁ = — dlvq + <T, L>R3><3.

Gehen wir fiir die Warmeleitung der Einfachheit halber von Fourier’s Gesetz aus

q=—cVé, (¢ >0, 0 : Temperatur) (2.46)
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nimmt die Energieerhaltung die Form

DE
'OD_t = CdiV (VQ) + <T, L>R3><3 (247)
an. Fiir polare Fliissigkeiten miissen wir wegen der Rotation der Teilchen in der Fliissigkeit
weitere Terme berticksichtigen, so dass der erste Hauptsatz der Thermodynamik nun die

Form

d v? w
dt g(t) \,2-/ \/2'/ innere Energie

kin. Energie  Rotationsenergie

= k,v w,v)) dr n,0) dS
L et e des |

aG(t)

+ / (s ) dS — / (g, n) dS. (2.48)
oG (t) oG (t)

annimmt. Es treten zusétzliche Beitrage, verursacht durch das dufsere Drehmoment und
den Momentenspannungstensor auf, wobei wir voraussetzen, das beide ausschlieflich auf
das Mikrorotationsfeld w wirken. Mit dem Integralsatz von Gauls erhalten wir

/ <mn,w>d:v:/ (MT-w,ﬁ>dS:/ div (M" - w) dx
aG(t) aG(t) g(®)

und mit (2.27) bzw. (2.34) folgt aus (2.48):

d

2 D
il p]w_ dx:/ p[w_w dx:/ {(w,pg—i—DivM—l—2aXl (skewT))}d:c.
dt Jgu' 2 gy Dt g(t)

Analog zu (2.43) und (2.45) erhélt man daraus:

/g(t) {p% + divg — (T, Lygsxs — (M, Dw)gsxs + 2{w, axl (skew T))} dr =0
und somit

p—— = —divg + (T, L)gsxs + (M, Dw)gsxs — 2{(w, axl (skew T')).
Auch der Cauchy-Spannungstensor lasst sich in einen symmetrischen und einen schiefsym-

metrischen Anteil zerlegen und nach (A.7) verschwindet das Skalarprodukt eines schief-
symmetrischen Tensors mit einem symmetrischen Tensor, sodass

DE

pE = — dlvq + <SymT y D>]R3><3 + <skewT s W>]R3><3

+ (M, Dw)gsxs — 2{w, axl (skew T")).

(2.49)




Kapitel 3

Die Charakteristik von Materialien -
konstitutive Materialgesetze

Im letzten Kapitel haben wir fiir polare Fliissigkeiten das folgende System von Erhal-
tungslgleichungen abgeleitet:

Dp

Dr = —pdivo
D
pF: — pk+DivT
D
pIFL;:pg+DivM—i—2axl(skewT) (3.1)
DE :
Py =~ divg+ (symT', D)gsxs + (skew T', W)gsxs

+ (M, Dw)gsxs — 2(w, axl (skew T"))

Dieses Gleichungssystem enthélt insgesamt 28 unbekannte Grofen (die Energie, die drei
Komponenten der Geschwindigkeit v, drei Komponenten der Warmestromdichte ¢, drei
aus dem Mikrorotationsfeld w, 9 Komponenten des Spannungstensors 7" und 9 Komponen-
ten der Kopplungsspannung M ). Es umfasst aber nur acht Gleichungen, so dass weitere
Bedingungen notig sind, um die Bewegungsgleichungen eindeutig 16sen zu kénnen. Diese
Bedingungen resultieren aus den sogenannten Materialgesetzen, die die (makroskopische)
Natur, also die Eigenschaften der Fliissigkeit genauer beschreiben. Fiir eine physikalisch
sinnvolle Formulierung dieser Gesetze miissen folgende grundlegende Forderungen erfiillt
sein:

1. Prinzip des Determinismus:
Der momentane Spannungszustand 7'(x,t) in einem von der Fliissigkeit eingenom-
menen Punkt z ist durch die vergangene Bewegungsgeschichte der Fliissigkeit ein-
deutig bestimmt.

2. Prinzip der lokalen Wirkung:
Dieses Prinzip besagt, dass z.B. die Spannung an einem herausgegriffenen materiel-
len Teilchen X nur von der Bewegung aller in direkter Nachbarschaft befindlichen
Teilchen abhéngt. Ein Material, welches diesem Prinzip geniigt, heifst einfaches Ma-
terial.

27
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3. Prinzip der materiellen Objektivitat:
Dieses Prinzip fordert, daf die in einer Materialgleichung formulierten Eigenschaf-
ten eines Materials unabhéngig vom gewéahlten Bezugssystem sind. Folglich miissen
sie fiir einen ruhenden Beobachter und einen sich gegeniiber diesem bewegenden
Beobachter fiir ein und denselben Prozefs die gleiche Gestalt haben. Eine objektive
Grofse muss sich also beim Wechsel des Bezugssystems so transformieren, dass sich
die durch die Grofse beschriebene Eigenschaft des Korpers nicht éndert.

3.1 Zustandsgleichungen fiir Stokessche Fliissigkeiten

Bei der Untersuchung klassischer Stokesscher Fliissigkeiten gehen wir von der Annahme
aus, dass die Spannung in Fliissigkeiten nicht von der Verformung der Volumenelemente,
sondern von ihrer Geschwindigkeit, genauer gesagt ihrer Geschwindigkeitsdifferenz ab-
héngt. Die Unterschiede im Geschwindigkeitsfeld verursachen einen Impulsaustausch in
der Fliissigkeit, der so gerichtet ist, dass er den Gradienten des Geschwindigkeitsfeldes zu
verringern versucht. Nach dem Prinzip der lokalen Wirkung wird der Spannungszustand
der Fliissigkeit am Ort x nur von dem Geschwindigkeitsfeld v in einer Umgebung U(x)
von z abhéngen. Da wir von einem hinreichend glatten Geschwindigkeitsfeld v ausgehen,
ist

v(@,t) —v(z,t) = Dv(z, t)(2 — z) + O([2" — 2]?)
=L@ —x)+ O([2' —2]?), Va2’ €U(x).

Betrachten wir nun am Ort (X, ¢) zu einem festen Zeitpunkt ¢ das materielle Linienele-
ment

Y(t) = 2'(X', 1) — x(X, 1),

/

Stromlinien z(X,t)

\

Abbildung 3.1: Deformation der Linienelemente ()

so werden die Geschwindigkeiten

v(z,t) bzw. v(2,t)
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im Allgemeinen zu einer Dehnung dieses Linienelementes fithren, genauer:

d
dt
= ('(t) —=(t),#'(t) - ( )) + (@(t) — (1), 2 (t) — x(t))
= (vt ) (t) +O(()?) + (Lv(t) + O(b(1)*), v(t))
= (L"9(t), (1)) + (Lb(t),¥(t)) + . ..
=2 <(SymL)¢(f) w(t)> o
Die Verzerrung der Linienelemente in der Fliissigkeit wird also im wesentlichen durch den

Geschwindigkeitsgradienten L bestimmt.! Wir gehen daher im Folgenden davon aus, dass
fiir den Cauchy Spannungstensor (cauchy stress tensor) 7' gilt:

d :
2 @1 = = [l2/(X',1) - 2(X, t)[I°

T(xz,t) = G(Dv(x,t);x,t) = G(L;x,t) = G(L). (3.2)

Wir werden im Folgenden den Begrift der isotropen Tensorfunktion einfiihren und zeigen,
dass der Cauchy-Spannungstensor eine vom rate of deformation Tensor D abhingige, iso-
trope Tensorfunktion sein muss. Basierend auf dieser Erkenntnis werden wir anschlieffend
den Satz von Rivlin-Erickson beweisen, der uns eine spezielle Darstellung des Spannungs-
tensors ermoglicht und uns der Losung von (3.1) fiir Stokessche Fliissigkeiten erheblich
naher bringen wird.

3.1.1 Invarianz unter Galilei-Transformationen
Das Galileische Relativitéatsprinzip besagt:

, In jedem Koordinatensystem, in dem sich krdftefreie Korper geradlinig, gleichformig
bewegen, haben die Naturgesetze (Bewegungsgleichungen) dieselbe Form, d. h. sie sind
forminvariant. Solche Koordinatensysteme heiffen Inertialsysteme. “

Zur Illustration dieser Aussage gehen wir von einer beliebigen Bewegungsgleichung
K =m2

im Inertialsystem Z aus. Hierbei ist m die Masse eines Korpers, der durch dufsere Kraft
K mit & beschleunigt wird. Nun fordert das Relativitatsprinzip, dass in jedem anderen
Inertialsystem Z* die Bewegungsgleichung dieselbe Form in den transformierten Gréften

K*=mi*

hat. Welche Transformationen sind nun erlaubt, um von einem Inertialsystem in ein an-
deres zu gelangen? Dazu betrachten wir ein Koordinatensystem K*, dessen Ursprung bei
o(t) = o;e; in T liegt und dessen Koordinatenachsen mit denen von Z iibereinstimmen.
Ein Ortsvektor z* in K ist dann (bzgl. Z) gegeben durch

™ (t) = x(t) + o(t).

!Genauer gesagt kénnen wir hier sogar die Vermutung aufstellen, dass sie vorrangig durch seinen sym-
metrischen Anteil, den rate of deformation tensor D = sym L bestimmt wird. Im Abschnitt 3.1.2 werden
wir dieses Resultat basierend auf anderen Annahmen iiber die Beschaffenheit des Sapnnungstensors be-
kraftigen.
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Gehen wir von der Bewegungsgleichung
mi =0
aus, so gilt
0=mi" =m (& + o6(t)) = mo(t).

Damit K ein weiteres Inertialsystem ist, muss somit 6(¢) = 0 und daher
o(t)=v-t+e, fiirv, c€R? (3.3)

sein. Demnach darf sich K gegeniiber Z mit der Geschwindigkeit v bewegen und um einen
konstanten Vektor ¢ verschoben sein. Neben der Anderung des Ursprungs kénnen wir auch
die Koordinatenachsen von K gegeniiber denen von Z verdrehen. Ein Ortsvektor z(¢) in
KC ist dann (bzgl. Z) gegeben durch

x*(t) = Q(t)z(t) + o(t), fiir Q(t) € SO(3).

Fir diese Transformation gilt dann

0 = mi*(t) = m - % (QUo)z(t) + QUie) + o(1))
—m- (Q(t)x(t) +20i(t) + 6(t)> .

Da dies fiir jedes @ € SO(3) gilt und die Bewegungsgleichung in beiden Inertialsystemen
gleich sein soll, muss

Q(t) = Q(t) = o(t) = 0
sein und somit Q(t) = Q, Q € SO(3) sowie o(t) = v -t + ¢, v,c € R?® sein. Zusammen-
genommen haben wir damit gezeigt, dass die Transformationen von einem Inertialsystem
in ein anderes von der Form

z*(t) = Qu(t) + vt + ¢

fiir konstantes @ € SO(3) sein miissen.

Satz 3.1.1: Die (speziellen) Galileitransformationen
75 (t) = Q- z(t) + vt + ¢, fir SQ € O(3), v,c € R?

lassen die Newton’schen Bewegungsgleichungen invariant und tberfiihren somit Inertial-
systeme in Inertialsysteme.

Wir wollen nun unter Anwendung des Galileischen Relativitéatsprinzip die Beziehung zwi-
schen den kinematischen Variablen (insbesondere der Spannung und damit der wirkenden
Krifte), die von einem Beobachter O und einem, durch eine tiberlagerte Galileitransfor-
mation gegeniiber O verschobenen, Beobachter O* registriert werden, untersuchen. Aus-
gehend von

=0 (X, t) = QP(X,t) +c(t), mit ¢(t) =v-t+c, (3.4)
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fir @ € SO(3), transformieren sich der Deformationsgradient F' und der rdumliche Ge-
schwindigkeitsgradient L gemaf

b= (aXJ>ij_ (alEk an)ij_Q(an>ij_QF (3.5)
bzw.
L' = PP = (QF)(QF)™ = QFF Q" = QLQ". (3.6)

Ferner folgt aus (3.4) fir die Dichte p und die Oberflichennormale n
pr=p 3.7
n* = Q@n. (3.8)

Der néchste Schritt ist nun die Bestimmung des Tranformationsverhaltens des Spannungs-
tensors. Dabei gehen wir von der Annahme aus, dass der Betrag des Spannungsvektors ¢
durch eine Galileitransformation unveréndert bleibt und dass t* bzgl. n* dieselbe Orien-
tierung wie ¢ bzgl. n hat. Basierend auf diesen Erwartungen, kénnen wir ableiten, dass

t* = Qt. (3.9)
ist, denn in diesem Fall ist

1% = (7, ¢7) = (Qt, Qt) = (t,QQt) = (t,t) = |[t]|* = [|t"]| = |l

und
(t*,n*) = (Qt,Qn) = (t,Q"Qn) = (t,n).

Nach (2.30), ist
t =t(z,t;n) =T(x,t)-n

und damit auch
=tz t;n") =T (", t) - n".

Erinnern wir uns an die Transformationseigenschaften der duferen Einheitsnormalen n
(3.8) folgt daraus
t=T"(z",t)-Qn

und wegen (3.9)
QT (z,t) -n=T"(a",t)-Qn = (QT —T7Q) -n=0.

Da diese Gleichung fiir beliebiges n gilt, und der Ausdruck in der Klammer von n unab-
héngig ist, konnen wir folgern, dass

0=T"Q—-QT =T"QQ" — QTQ" =T* - QTQ"
ist und somit

GH(L) =T = QTQ" = QG(L)Q” (3.10)
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fir jedes L* und konstante @ € SO(3) gilt. Mit Beriicksichtigung von (3.6), erwarten wir
somit, dass der Spannungstensor

G(QLQ") = G*(L") = QG(L)Q" (3.11)

erfiillen mufs. Nach Satz 3.1.1 miissen Bewegungsgleichungen unter Galileitransformatio-
nen forminvariant und daher die beiden Funktionen G und G* dieselben sein, so dass
wir

G(QLQ") = QG(L)Q", (3.12)

folgern konnen.

Definition 3.1.1: Eine Tensorfunktion G : T — T heif$t isotrop, falls sie die Gleichung
G(RXQT) = QG(X)Q" Y Qe SO(3)
erfillt.

Das Galileische Relativitatsprinzip alleine fordert also schon, dass der Cauchy-Spannungstensor
der Fliissigkeit eine isotrope Tensorfunktion von L sein muss. Wir werden spéter sehen,
was das flir die Funktion G und damit den Spannungstensor 7" bedeutet.

3.1.2 Prinzip der materiellen Objektivitat

Die Forderung nach materieller Objektivitdat erweitert nun das Galilei’sche Relativitats-
prinzip und postuliert, dass eine Materialgleichung invariant gegeniiber einem beliebigen
Wechsel des Bezugssystems, also des Beobachters, ist und dass sie keinerlei Informationen
iiber die Bewegung dieses Bezugssystems relativ zu einem zugrundeliegenden Inertial-
system enthélt. Die zuldssigen Transformationen zwischen den Bezugssystemen zweier
verschiedener Beobachter O und O* sind dann von der Form

o = (X, 1) = QU)P(X, 1) + c(t) = Q) + c(t), Q€ SO3), (3.13)

d. h. statt @ = const. ist jetzt @@ = Q(t) erlaubt. Unter diesen Umsténden transformieren
sich der Deformationsgradient F' und der rdumliche Geschwindigkeitsgradiente L gemélfs

. [ 0xf (0% Dm\ 08,\
g _<8Xj)z‘j_(a$€k an)z‘j_Q(an)ij_QF (3.14)

bzw.
L'=FF = (QF)(QF) " =QQ" + QFF'Q" = QQ" + QLQ". (3.15)
Ferner folgt aus (3.13) fiir die Dichte p und die Oberflichennormale 7

pr=p (3.16)
7 = Q. (3.17)
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Ein Skalar, Vektor oder Tensor 2-ter Stufe, der sich unter einem Beobachterwechsel ge-
méfs (3.14), (3.16) bzw. (3.17) transformiert, wird objektiv genannt. Wie im vorherigen
Abschnitt gehen wir auch hier davon aus, dass der Spannungstensor

= Ot
erfiillt und konnen ableiten, dass
(L") = T* = QTQT = QG(L)Q (3.18)
fiir jedes L* und @ € SO(3) gilt. Wéhlen wir nun Q(¢) = I so muss
G*(L) = G*(L") = G(L)

und der Spannungstensor somit forminvariant (d.h. es gilt G = G*) gegebentiber einem
Wechsel des Bezugssystems sein. Dann folgt aus (3.18) mit (3.15)

QG(L)Q" = QTQ" =T" = G(L") = G(QQ" + QLQ"). (3.19)

Daraus konnen wir das folgende Lemma iiber die Gestalt des Spannungstensors ableiten.

Lemma 3.1.1: Unter der Voraussetzung, dass sich die Flissigkeit objektiv verhdlt und
der Spannungsvektor t die Transformationseigenschaft

= Qt

erfillt, hingt der Spannungstensor T(x,t) = G(L) nur vom symmetrischen Anteil des
Geschwindigkeitsgradienten, dem rate of Deformation Tensor D ab, d. h.

G(L)=G(D)=G (% (L+ LT)) : (3.20)

Beweis. Wir wihlen eine schiefsymmetrische Abbildung A € s0(3) (d.h. A+ AT = 0)
und setzen

Q(t) = exp(—t4) = Y (_nl')nt”A” teR.
n=0 ’

Wegen
AAT = —ATAT = —AT(—A) = ATA

kommutieren A und AT und aus den Potenzgesetzen fiir die Tensorexponentialfunktion
folgt damit:

QUQT = exp(—tA) exp(—tAT) = exp(~H(A + AT)) = exp(0) = I
Ferner folgt aus
det(Q(t))* = exp(—ttr (0)) =exp(0) =1 und det(Q(0)) = det() =1,

dass
det(Q(t)) =1 VteR
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ist und somit Q(t) fiir jedes t € R eine Drehung darstellt. Insbesondere sind die Koeffizi-
enten in Q(t) fiir A™ = (az(?) (t)) Potenzreihen der Form

o0

> e
' b
=0 n.
die wegen
el | < AT < [eA”
und
- <_1)n n
> Al =
n=0 :

fiir alle t € R konvergiert. Nach dem Satz iiber die Differenzierbarkeit von Potenzreihen
sind diese gliedweise differenzierbar mit Ableitung

d (o) 00 . . n
— Z <t” ! () t)+t Zaw aw - 1(t)>.
n=0 ’ n=1
Somit ist
d _ = (_1> n—1 gAn nn . k n—k—1
EQ(lﬁ)_;(n_l) (t A"+t ZA AA
I i (_1) a tnflAnfl A + Z tnnz_iAkAAnkl
(n—1)! (n—1)!
n=1 k=0
:exp(—tA)A—i-Z t”ZA’“ Ank-l
und daher J
Q) = ZQ()| _ =-A,

woraus mit (3.19) fiir ¢ =0
G(L) = Q(0)G(L)Q™(0) = G(Q0)QT(0) + Q(0)LQT(0)) = G(=A+ L) V¥ A € s0(3)
folgt. Wir kénnen nun jederzeit A = W = skew L wiihlen, so dass
G(L)=G(—-W + L) =G(D) = G(symL)
ist. Daraus folgt die Behauptung. |
Nun ist Q = Q(t) ein orthogonaler Tensor, d. h. es gilt
QQ" =1 <= QQ"+QQ" =0 = QQ" =-QQ" (3.21)

und nach Definition des ,, rate of Deformation tensors “ bzw. des ,, vorticity tensors “ (3.31)
folgt daraus mit (3.15)

D=L (1 1) = (007 +Q0") + @ (L+ L7)Q" = QDQ". (3.22)
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sowie

W — 1 (L*_L*T) _ % <QQT_QQT> —Ql

> > (L _ LT> QT = QWQ" +QQT. (3.23)

Dann folgt aus dem Lemma und (3.19), dass
QG(D)Q" = QG(L)Q" =QTQ" =T* = G(L") = G(D") = G(QDQ"),

d.h. der Spannungstensor 7" nach Definition 3.1.1 eine isotrope Tensorfunktion ist.

3.1.3 Die Forderung nach Isotropie

Die Abhéngikeit des Spannungstensors vom symmetrischen Anteil des Geschwindigkeits-
gradienten D lésst sich ebenso aus der Tatsache ableiten, dass viele Fliissigkeiten als iso-
trop beschrieben werden kénnen. Umgangssprachlich formuliert bedeutet das, dass sie sich
in jeder Richtung gleich verhalten; drehen wir die Referenzkonfiguration €2 und {iberfiih-
ren sie so in die Referenzkonfiguration §2'; so sollten die Materialgrofen davon unberiihrt
bleiben, d.h. die Reaktion der Fliissigkeit sollte invariant unter Drehungen sein. Diese
Uberlegung impliziert die folgende Definition

Definition 3.1.2: Ein Teilchen verhdlt sich isotrop bzgl. der Referenzkonfiguration G,
wenn seine resultierenden Materialgréfsen bei Auferlegung derselben beliebigen Deforma-
tionen ® nicht davon abhdngen, ob die Bewegung von G oder einer gedrehten Referenz-
konfiguration G' ausging, d.h. falls fir mindestens eine Referenzkonfiguration und jedes

Q=Q(t) € 03)

G'(F):=G(FQ)=G(F) fiir jede Deformation F (3.24)
qgilt.
==
Q
L

Abbildung 3.2: Isotropie

Wegen (3.21) ist (bei ,Vorschaltung‘einer Drehung Q)
= (FQ)FQ) ' =FQQ"F '+ FQQ'F ' = L+ FQQ'F ", (3.25)
so dass die Forderung nach Isotropie der Fliissigkeit wegen (3.24) zu

T(z,t)=G'(L)) =G (FF') =G'(F)=G(FQ) = G(L+ FQQTF™)
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fiir alle Q@ € So(3) und alle Deformationen F' fiihrt. Setzen wir mit (3.21) V := QQ” €
50(3) und wihlen als spezielle Deformation F' = Vv = Q € O(3) (vgl. Neff/Miinch:
Dann ist F' = Vo eine konstante, globale Rotation.), so muss der Spannungstensor 7 die
Gleichung

G(L)=G(L+QvQ" (3.26)
fiir alle V' € s0(3) erfiillen. Setzen wir nun
Vo= QT% (L" - L)Q =-Q"WQ € s0(3)
folgt wie schon vorher
T(x,t) = G(L) = G (L - QQTWQ@T> — G(L—W)=G(D).

Ferner wollen wir festhalten, dass nach Definition des rate of deformation tensors D =
D(F) bzw. des vorticity tensors W = W(F') (vgl. (2.14)) und Gleichung (3.21) sowie
(3.25)

D/: l(L/_i_L/T)

2
= %F (QQT + QQT> F'4 %(L + LT)
=D, (3.27)
sowie
W = %(L’ - L’T> (3.28)
-3 (@) (e
=W +QQ". (3.29)

ist. Die folgende Ubersicht zeigt schematisch die bisher von uns gewonnenen Erkenntnisse:

(1) Deformation der — T =G(L)=G(Vv).

Linienelemente

T ist forminvariant.
T ist eine isotrope Tensorfunktion.

(2) Galilei’s Relativitdtsprinzip —-
—
(3) Materielle Objektivitét T = G(D) = G(sym L) forminvariant.

T ist eine isotrope Tensorfunktion
in D=symL =%(L+L").

=
-
(4) Isotropie — T =G(D)=G(symL).

(5) Galilei’s Relativitatsprinzip == T ist eine forminvariante, isotrope
& Isotropie Tensorfunktion in D = sym L .
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3.1.4 Darstellung isotroper Tensorfunktionen

Im Wesentlichen haben wir uns im letzten Abschnitt bemiiht, detailliertere Informationen
iiber die Form und Struktur des Spannungstensors abzuleiten. Dabei sind wir ausgehend
von drei verschiedenen Gesichtspunkten zu der Erkenntnis gelangt, dass der Spannungs-
tensor T = G/(L) eine isotrope, forminvariante und (sofern wir uns der Hypothese der Dre-
himpulserhaltung anschliefen) nach Satz 2.5.2 symmetrische Tensorfunktion G abhéngig
vom symmetrischen Anteil des Geschwindigkeitsgradienten D sein sollte und somit

T* = G(D) = GQDQ") = QG(D)Q" = QTQT ¥ Q € SO(3)

erfiilllt. Basierend auf diesen Eigenschaften ermoglicht uns der folgende Satz nun eine
konkrete Darstellung des Spannungstensors.

Satz 3.1.2 (Darstellungssatz von Rivlin-Erickson): Fir eine tensorwertige Funktion
G : § ist symmetrisch } — {B ist symmetrisch }
sind daquivalent:
(a) G besitzt die Eigenschaft
G(QSQT) = QG(S)QT VO e SO(3). (3.30)

(b) G besitzt die Darstellung
G(S) = do(Is)I + ¢1(Is)S + ¢2(15)S?, (3.31)
wobei ¢g, ¢1 und ¢o Funktionen der skalaren Grundinvarianten Is von S sind.

Die skalaren Grundinvarianten Is = (11(5), I5(5), I3(S)) eines Tensors 2-ter Stufe sind
die Koeffizienten des charakteristischen Polynoms

xs = det(S — M) = —\* + [,(S)A* — L(S)A + I3(S).

Sind Ay, Ao und A3 die Figenwerte des Tensors S so gilt:

[1(5) = tT’(S) = )\1 + )\2 + )\3 (332)
]Q(S) = % (( t’f’(S))Q - tT’(SQ)) = /\1)\2 + )\1)\3 + /\2/\3 3 33)

Bewezs.

(b)==(a): Nehmen wir zunédchst an, dass G(S) die Darstellung (3.31) fiir skalare
Invariante ¢y, @1, ¢ hat, so ist
QG(S)Q" = pQIQ" + $1QSQT + 42QS5*Q"
= ¢ol + »1Q5Q" + $Q5Q"QSQ"
= ¢l +01QSQ" + $:(QSQ")? = G(QSQT)

und daher gilt (3.30).
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(a)==(b): Diesen Beweis fithren wir in drei Schritten.

Schritt 1: Zunéchst zeigen wir, dass vorausgesetzt (3.30) gilt, die Eigenwerte von
G(S) skalare Invarianten von S sind.

Seien dazu ¢(9) ein Eigenwert von G(S) und g(QSQT) der entsprechende Eigenwert
von G(QSQT). Dann lauten die zugehérigen Eigenwertprobleme

det (G(S) — g(S)[) =0 bzw. det (G(QSQ") — g(QSQ™)I) =0

Da G(9) eine isotrope Tensorfunktion ist kénnen wir dies mit (3.30) umschreiben
zu

0= det (QG(S)Q" — g(QSQ™)I) = det (QG(S)Q" — g(QSQM)QIQT)
= det @ - det (G(S) — g(QSQT)[) -det QT
= det (G(9) — g(QSQM)I).

Da diese Gleichung fiir jedes Q € O(3) gilt und sowohl g(S) als auch g(QSQT)
dieselbe Gleichung l16sen, muss

9(QSQ") = g(S5)

gelten. Die Eigenwerte von G(S) sind also skalare Invarianten von S.
Schritt 2: Nun zeigen wir, dass G(S) und S koaxial sind, also dieselben Eigenvekto-
ren haben.

Dazu betrachten wir einen Eigenvektor v von S zum Eigenwert A, d. h.
Sv = \v.
Ferner sei () ein orthogonaler Tensor der Form
Q=2v®v)—1.

fiir einen Vektor v mit |[v|| = 1 (Q beschreibt eine Drehung um den Winkel 7 um
v). Diese Darstellung ist erlaubt, da

T=Q2uvev)—I) 2wev)" —IT)

= 2vev)=1)2vev) 1)
=4(vev)-20vev)-20vev)+I=1I.

Insbesondere ist
Q=Q" und Quv=2v—v=n0.

Dann gilt
Sv=8QTQu =\Q"Qv = SQTv=XQTQQTv = \QTv = \Qv = \v

und daher
QSQTv = QM = AQu = = Sv = QSQT =
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Mit der Isotropieeigenschaft (3.30) erhalten wir daraus
QG(9)Q" = G(QSQ") = G(S).

Betrachten wir nun

G(V)v=QG(S)Q v = QG(S)Q"Qu = QG(S)v

erkennen wir, dass G(S)v ein Eigenvektor von ) zum Eigenwert 1 ist. Da ein ortho-
gonaler Tensor nur einen reellen Eigenwert und damit nur einen reellen Eigenvektor
haben kann, muss eine Zahl « existieren, so dass

G(S)v = av

ist. Somit ist gezeigt, dass die Eigenvektoren von G(S) und S dieselben Eigenvek-
toren haben, also koaxial sind.

Schritt 3: Zuletzt zeigen wir mit den Ergebnissen aus Schritt 1 und Schritt 2 das
G(S) die geforderte Darstellung haben muss.

Sei also S ein symmetrischer Tensor. Dann besitzt der zugrunde liegende Vektorraum
eine Orthogonalbasis aus Eigenvektoren bzgl. derer S orthogonal diagonalisierbar
ist. Sei

S =QSQ"
die entsprechende Transformation auf Diagonalform mit Diagonaltensor S und or-

thogonalem Tensor ). Unter der Annahme, dass (3.30) fiir Diagonaltensoren gilt,
folgt

G(S) = G(RSQ") = QG(S)Q"
= Q(dol + $1S + ¢252)QT
= ¢ol + 1.5 + $2.5°,

da ¢g, ¢1, ¢o skalare Invarianten sind. Es geniigt also die Behauptung fiir Diago-
naltensoren zu zeigen. Da G isotrop ist, folgt nach Schritt 2, dass G und S dieselben
Eigenvektoren vy, v9, v3 haben. Seien nun Ay, As, A3 und g1, g2, g3 die Eigenwerte
von S bzw. G(5), dann lassen sich S und G(S) auf die sogenannte Spektraldarstel-
lung

S = /\1’01 & v+ )\21)2 X Vg + )\31]3 X (%] (335)
G(S) = qiv1 ®@ v1 + gav2 @ v + g3v3 @ vy (3.36)

transformieren. Nach Schritt 1 sind die Eigenwerte g; von G skalare Invariante von
S. Daraus koénnen wir ableiten, dass G(S) geméf (3.31) darstellbar ist, falls das
Gleichungssystem

¢0+¢1>\i+¢2)‘? = Gi, (i: 17273)

losbar ist. Sind die \; untereinander verschieden, so ist dies der Fall und ¢, ¢1, ¢9
sind als Funktionen der A\; und g¢; darstellbar und somit skalare Invarianten. Sei nun
A1 = A2 =: A. Dann betrachten wir zwei orthonormale Eigenvektoren v; und vy von
S zum Eigenwert A, d.h.

SUl = )\’Ul bzw. SUQ)\UQ.
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Die Vektoren vy und v, sind aber auch Eigenvektoren von G(V') zu den Eigenwerten

g1 und gs, so dass
G(S)vy = g1v1 bzw. G(S)ve = gave

gilt. Mit v; und vy ist auch jeder Vektor der in der von v; und v, aufgespannten
Ebene Eigenvektor von S und dahr auch von G(S5). Insbesondere ist somit vy + vg
ein Eigenvektor von G(S), d. h. es gibt einen Eigenwert p, so dass
G(S) (v + v2) = p(vr + v2)
ist. Andererseits gilt
G(S)(v1 +v2) = g1v1 + G202
und somit
(b= g)vr + (1 — g2)v2 = 0.
Aufgrund der linearen Unabhéngigkeit von v; und vy folgt daraus
g1 = g2 = [
Wir kénnen dann (3.31) erfiillen indem wir ¢5(/g) = 0 wihlen. Dann ist
G(V) = ¢ol + ¢15,
wobei ¢ und ¢, geméf obigem Gleichungssystem eindeutig bestimmt und als Funk-
tionen der A\; und g; darstellbar sind. Im Fall A\; = Ay = A3 = X folgt wie oben, dass
g1 =92 = g3
ist. Wahlen wir ¢ = ¢ = 0, so ist das obige Gleichungssystem wieder 16sbar und
man kann (3.31) mit

G(S ) = ¢ol
erfiillen.

Zusammenfassend haben wir also gezeigt, dass fiir Stokessche Fliissigkeiten der Cauchy-
Spannungstensor die Gestalt

hat. Gehen wir insbesondere von einem linearen Zusammenhang aus, so ist

3.2 Verallgemeinerung auf mikropolare Fliissigkeiten

Anders als bei klassischen Stokesschen Fliissigkeiten konstituieren wir, dass die Spannung
in mikropolaren Fliissigkeiten nicht nur vom Geschwindigkeitsgradienten L, sondern auch
von der Rotationsgeschwindigkeit w der Fliissigkeitsteilchen, genauer dem microgyration
tensor abhangt

T(xz,t) = G(L,W;x,t)=G(L,W) bzw. M(z,t)=H(LW;z,t)=H(LW).

Unter dieser Voraussetzung werden wir nun die Prinzipien und Uberlegungen des vor-
angegangenen Abschnitts auf mikropolare Fliissigkeiten tibertragen und feststellen, dass
die Spannungstensoren auch fiir mikropolare Fliissigkeiten isotrope Tensorfunktionen sind
und sich ebenfalls in Polynome entwickeln lassen.
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3.2.1 Mikropolare Fliissigkeiten unter Galilei-Transformationen

Das Galilei’sche Relativitatsprinzip fordert die Invarianz der Bewegungsgleichungen unter
Galileitransformationen, d. h. sind O und O* zwei gegeneinander durch eine Transforma-
tion der Form

(X, t) = QP(X,t) + c(t) (Makrobewegung) (3.39)
" (X, P t) = Qu(X, P, t) + c(t) (Mikrobewegung). (3.40)
verschobene Beobachter, so miissen in beiden Bezugssystemen die Bewegungsgleichungen
dieselbe Form haben. Analog zum klassischen Fall fiihrt diese Forderung zu unterschiedli-
chen Beziehungen zwischen den kinematischen Variablen der mikropolaren Fliissigkeit, die

wir im Folgenden genauer analysieren werden. Der Mikrorotationstensor R transformiert
sich unter (3.40) geméfs

P 819*) (apyf 3pk> -
Re= (P} — (9P _ R,
(8Pj ij Opr OF; ) ¢

so dass fiir die Transformation des mycrogyration tensors nach (2.21)

W= LQRQR) = QRR'Q" = QW@ (3.41)

gelten muss. Sicherlich ist es auch fiir mikropolare Fliissigkeiten sinnvoll davon auszuge-
hen, dass sowohl der Betrag des Spannungsvektors ¢ als auch des Momentenspannungs-
tensors m durch eine Galileitransformation unveréndert und ihre Orientierungen bezgl.
der Normalen von der Transformation unberiihrt bleiben sollten. Dann folgt mit (3.9),
Satz 3.1.1 und analog zur Herleitung von (3.11), dass

M* = H*(L* W*) = QH(L,W)Q"

und mit (3.15) sowie (3.41), dass

G (QLQ".QWQ") = QG(L,W)Q"
H'(QLQ",QWQ") = QH(L,W)Q"

ist, also 7" und M isotrope Tensorfunktionen in L und W sind. Fiir () = [ erhalten wir
ferner auch die Forminvarianz der beiden Tensoren.

3.2.2 Isotropieeigenschaften mikropolarer Fliissigkeiten

Genauso wie klassische Fliissigkeiten sollten sich auch mikropolare Fliissigkeiten isotrop
verhalten, d. h. dass ihre Materialgréften unabhéngig davon sein sollten, ob die Bewegung
der Fliissigkeit von einer Referenzkonfiguration G oder einer gegeniiber dieser gedrehten
Referenzkonfiguration G’ ausging. Fiir die Spannungstensoren T = é(F 'R) und M =
H(F, R) bedeutet diese Forderung, dass fiir jedes Q = Q(t) € SO(3)

G'(F.R) = G(FQ,RQ) = G(F,R) bzw. H'(F,R):= H(FQ,RQ) = H(F,R)
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gelten muss. Wegen (3.25) und
d - B _ _ . _ _ . _
W = Z(RQ)(RQ) ™ = RQQTRT + RQQTR" =W + RQQ™R”
fiihrt die Forderung nach Isotropie zu

T(x,t)
M (z,t)

G(L,W) = G(F.R) = G(FQ,RQ) = G(L + FQQ"F~', W + RQQ"R")
H(L,W)=H(F,R) = H(FQ,RQ) = H(L + FQQ"F~*,W + RQQ"R™).

Diese Beziehung muss fiir beliebige Deformationen F', Rotationen R und Transformationen
@ erfiillt sein, also insbesondere auch fiir die spezielle Deformation bzw. Rotation F' =
R =@ € SO(3), d.h. die Spannungstensoren erfiillen fiir V := QQ7 € s0(3)

T(x,t) = G(L + QVOT, W + Qv Q)

M(z,t) = H(L +QVQ", W + QVQ™).
Setzen wir
V=07 (1T 0)@=-QW,
muss daher
T(z,t)=G(D,W—W)  baw. M(x,t) = HD,W - W) (3.42)
gelten.

3.2.3 DMaterielle Objektivitat mikropolarer Fliissigkeiten

Fiir beliebige Wechsel des Bezugssystems sind die Transformationen der Makro- und Mi-
krobewegung analog zu (3.13) gegeben durch

O*(X,t) = Q(t)P(X,t) + c(t) (Makrobewegung) (3.43)
O (X, P t) = Q(t)p(X, P,t) + c(t) (Mikrobewegung), (3.44)

fir Q(t) € SO(3) beliebig. Dann folgt aus (2.21) fiir die Transformation des microgyration
tensors

W= SQRIQR)T = QWQT + Q0" (3.45)

Nehmen wir die Transformationseigenschaft (3.15) des Geschwindigkeitsgradienten hinzu,
so muss fiir die Spannungstensoren nach dem Prinzip der materiellen Objektivitat

T* (2", 1) = G(QLQT + QQ",QWQT + QQT) = QG (L, W)Q"
M*(z*,t) = H(QLQT + QQ",QWQ" + QQ") = QH(L,W)Q".

gelten. Diese Beziehungen miissen fiir beliebige @ € SO(3) erfiillt sein, und daher insbe-
sondere auch fiir () = I, so dass

G*(z,t) = G*(«",t) = G(x,t) bzw. H*(z,t)= H"(z",t) = H(x,1),
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fiir beliebige x und t gelten muss, d. h. die Spannungstensoren 7" und M forminvariant
sind. Setzen wir ferner Q(t) = exp(—tW) fiir W = skew L, so ist (vgl. Beweis zu Lemma
3.1.1) Q(0) = —W und es folgt

G(L—W,W—W)=GD,W-W)

G(L,W) = Q(0)G(L,W)Q(0)"
Q G(L—W,W—W)=GDW-W).

H(L,W) = Q(0)H(L,W)Q(0)"

Nach (3.23) und (3.22) sind

QG(D,W —W)Q" = G(QDQ", QW — W)Q")
QH(D,W —W)Q" = H(QDQ",QW —W)Q"),
d.h. die Argumente der Spannungsfunktionen sind objektive Tensoren. Der Cauchy-

Spannungstensor 7" und der Momentenspannungstensor M miissen fiir mikropolare Fliis-
sigkeiten also die Beziehungen

T(z.t) = G(D,B—D) bzw. M(x,t) = H(D,B — D) (3.46)

erfiillen, wobei
B=L"+WwW (3.47)

der sogenannte rate of microdeformation tensor ist. Die folgende Ubersicht zeigt schema-
tisch die bisher gewonnenen Erkenntnisse:

(1) Deformation der = T =G(L)=G(Vv).

Linienelemente

(2) Galilei’s Relativitatsprinzip == 7T und M sind forminvariant.
= T und M sind isotrope

Tensorfunktionen.
(3) Materielle Objektivitét — T =G(D,B—D)und
= M = H(D,B — D) sind form-

invariante und isotrope Tensor-
funktionen in D = (L + LT)
und B = LT +W

(4) Isotropie —
(5) Galilei’s Relativitdtsprinzip = 7T und M sind forminvariante,

& Isotropie isotrope Tensorfunktionen in D
und B = LT +W




44 KAPITEL 3. KONSTITUTIVE MATERIALGESETZE

Gehen wir von der Annahme aus, dass die Spannungstensoren analog zum klassischen
Fall Polynome in B — D und D sind, lassen sich die Funktionen G und H (vgl. [Eri64],
[Riv60]) in eine endliche Anzahl von Termen entwickeln. Beschrdnken wir uns ferner auf
die linearen Terme, so sind die Spannungstensoren von der Form (vgl. [Eri64])

T(x,t)
M(z, 1)

G(D,B — D) = [ Y tr(D)] 1+ 2uD — 24°(B — D) (3.48)
H(D,B—D)=cy- tr(Qw) - 1 + 2¢cqsym Dw + 2¢, skew Dw. (3.49)

Der symmetrische Anteil des Spannungstensors 7" aus (3.48)
sym7T = [—p+ /\VtrD}]l + 2uD

entspricht gerade dem Spannungstensor in der klassischen Hydrodynamik, mit den tibli-
chen Viskositéten A und p. Die Konstante p? in (3.48) représentiert die dynamische Mikro-
rotationsviskositdt, wahrend co, ¢,, ¢q in (3.49) coefficients of angular viscosities genannt
werden. Im néchsten Abschnitt werden wir sehen, dass diese Konstanten nicht beliebig,
sondern thermodynamischen Restriktionen unterworfen sind. Zunéchst untersuchen wir
aber, wie sich die Ergebnisse fiir die Spannungstensoren 7' und M auf die Bewegungs-
gleichungen (3.1) auswirken. Unter Beachtung der Einstein’schen Summationskonvention
berechnen wir dafiir

(a) die Divergenz des Cauchy - Spannungstensors

9, v
DivT = - (| =»+rtD]6; + 20D — 2028 - D))
0 ov;  Ov; o [(Ovi  Ov;
== <[ p+ Atr(D )}5U+u(a% +8xi) + pe. (69@- —8$1+26kwwk>)

. 0 ; 0 w
{ 0331 m div v] + i (Avi + o tr(D)) + pe (Avi ~ og, tr(D) + 26ijka—;j)
[ Vp+ AV tr(D )] + p(Av+ Vir(D)) + po (Av — Vir(D) + 2 curlw)
=-Vp+ A+ pu—p)Vir(D)+ (pu+ pu2) Av + 2u? curl w.

(b) und die Divergenz des Momentenspannungstensors

Div M = E?i (co - tr(Dw) - 055 + 2¢4(sym Dw);; + 2¢,(skew @w)ij>
L

- 0 &uz (%)] &ui &uj

= 8—% (CO . tr(@(ﬂ) 513 + cq <8 + a{EZ) Ca (8_% a{p@))

= it(D )- 0 + Twi | Ow; ) (Fwi 0w
o O F) 0 T Cd dxs  Ox;0x; Ca dxs  Ox;0x;

=c- ai tr(Dw) + cq (sz‘ + 8?0‘ tr(Dw)) + Ca (sz‘ - 8i tr(Dw))

= (co +cq— ca>Vtr(Dw) + (cd + ca> Aw.
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Neben diesen beiden treten in den Bewegungsgleichungen ebenfalls die Terme
axl (skew T') , (M, Vw)gsxs, (symT, D)gsxs und (skew T, W )gsxs

auf, fiir die wir hier einfach nur das Ergebnis angeben und die Berechnung in den Anhang
A.1.4 stellen. Es gilt:

o (M, Duw)psxs = cotr(Dw)? + (Cd + ca> (Dw, Dw)gaxs

+ (Cd — ca> (Dw, Dw’ ) gaxs

e (symT, D)gsxs + (skew T, W)gsxs
= —ptr(D) 4+ Atr(D)? + 2u(D, D)gsxs + p'{curlv, curlv) — 2u"{curl v, w)

1
o axl(skewT) =2ul <w b curlv) = —2u. axl(B — D).

Zusammengenommen lassen sich nun die Bewegungsgleichungen (3.1) konkretisieren:
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Die Bewegungsgleichungen mikropolarer Fliissigkeiten

Massenerhaltung :
Dp
— = —ptr(D .
7y = —Pu(D) (3.50)
Impulserhaltung :
J — pk+DivT
Ppr — PP
=pk—Vp+ A+ p—p)Vir(D) + (u+ p) Av — 2u2 curlw (3.51)
Drehimpulserhaltung :
Dw _
plﬁ = pg + Div M + 2 axl (skew T') (3.52)

= pg + (co +cq— ca)V tr(Dw) + (cd + ca> Aw + 24 ( curlv — 2w> (3.53)

Energieerhaltung :
DE
p— = —ptr(D) + pI' — divq (3.54)
Dt
mait

2
pl' = M tr(D)? + ¢ tr(Dw)? + 2u(D, D)gsxs + 1 (2w — curlv)

+ (cd + ca) (Dw, Dw)gsxs + (cd — ca> (Dw, Dw’ ) gsxs (3.55)
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3.2.4 Thermodynamische Restriktionen fiir die Viskositatskon-
stanten

Aus thermodynamischer Sicht kénnen wir eine homogene Fliissigkeit durch eine Reihe ex-
pliziter Beziehungen zwischen einigen wenigen ,, Zustandsgréfien “ beschreiben. Die wich-
tigsten Zustandsgrofen sind dabei die Entropie S, die Volumendichte V' = 1/p, die innere
Energie E, der Druck p und die absolute Temperatur 6. Die Entropie beschreibt dabei die
Zahl der moglichen Mikrozusténde eines Systems, die zu dem beobachteten Makrozustand
fiihren und ist letztlich ein Maf fiir die Unordnung im System. Ausgehend von der Gibbs
Beziechung

E=E(S,V) (3.56)

sind Druck und Temperatur definiert durch:

Gehen wir im folgenden davon aus, dass V' = V(¢) und S = S(T) differenzierbare Funk-
tionen in der Zeit und p, 6 > 0 sind, ist die Ableitung von (3.56) nach ¢ durch

DE _OEDS  OEDV _ DS DV _ DS pDp
Dt aSDt " ovDr Dt YDt~ "Dt " 2Dt

Umgestellt gilt also fiir die lokale Anderung der Entropie S:

DS 1DE p Dp
> _ e P Ep 3.57
Dt 0 Dt 002Dt (3:57)

Gehen wir fiir die Wérmeleitung wie in Abschnitt 2.5.4 von Fourier’s Gesetz (2.46) aus,
folgt mit (3.54)
DFE

o = cdivVl —ptr(D) + pI.

Die innere Energie eines Volumenelementes G(t) in einer Fliissigkeit nimmt also in dem
Mafke zu, in dem Wérme hinein- oder herausstromt, die Fliissigkeit komprimiert oder die
Viskositét vergrofert wird. Die Kontinuitatsgleichung (3.50) liefert ferner
1D
tr(D) = dive = ———p,
p Dt
so dass wir eingesetzt in (3.57)

DS  pDE p(le)_c

Dt 9Dt 6\pDt) 6

1
ableiten konnen. Nach dem zweiten Hauptsatz der Thermodynamik kann die Entropie
eines abgeschlossenen Systems nie abnehmen, so dass also stets

d

DS
— dea::/ p—— dx >0 3.58
dt Jg o) Dt 9%
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gelten muss. Nach dem Satz von Gaufs muss demnach

DS c 1
p— dw:/ —divVe + —pl" dx
o) Dt gt 0 0

0 62

1 c 1
= ——{q,n) dS +/ —(V0)* + =pl dx
/BQ(t) 0 gt 0 0

und daher nach (3.55) lokal
0 < cdiv VO + pI' =cdiv VO + \(tr(D))? + co tr(Dw)? + 2u(D, D)gsxs

|
- / div (fv9> + S(VO? + - pl do
a1 0

2
+ 4p? <2w — curlv) + (cd + ca) (Dw, Dw)gsxs (3.59)
+ (cd — ca> (Dw, Dw’ ) psxs

gelten. Da D, ¢, 2w — curlv und Vw unabhéngig voneinander variieren konnen, kann
diese Ungleichung fiir beliebige Bewegungen der Fliissigkeit nur erfiillt werden, wenn
c
(1) (V62 >0
(2) A(tr(D))* + 2u(D, D)gsxs > 0

(3) cotr(Dw)? + (cd + ca> (Dw, Dw)psxs + (cd — ca> (Dw, Dw!)gsxs > 0
2
(4)  u? <2w - curlv) >0
gilt. Offensichtlich implizieren die erste und dritte Ungleichung, dass
c>0, bzw. o >0

erfiillt sein miissen. Die Bedingungen an die {ibrigen Koeffizienten erhalten wir, indem wir
sie als quadratische Formen in einem neun dimensionalen Raum auffassen, die dann die
Bedingungen

Qs >0 baw. byt > 0 (3.60)
erfiillen miissen. Dabei sind
51:2_;)1’ 5222—13 5322—27 ¢1=%7 1/122(2—(;27 ¢3=g—2,
Gm g G g = SR =g Ys= o2 Y= 22
5722—;)?, 5822_:;; 5922—;?7 ¢7—g—;}z, ¢8_g;)fa @/)9—2—2

und

a1 = Qo = a3z = A + 2/,
Q12 = A1 = (13 = A31] = A3 = A32 = A,
Q44 = Q55 = Qg = Q77 = Agg = Agg = [,
ey = Age = A94 = (49 = [,

Q57 Q75

a;; = 0 sonst.
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bzw.
bi1 = byy = bsz = co + 2¢y,
bia = ba1 = b1z = b3y = baz = b32 = o,
bag = bss = bgg = by = bgg = bgg = cq + Cq,
bas = bsy = bgr = brg = bgg = bog = ¢4 — ¢4,
b;j = 0 sonst.

Dann sind

s1=2p und sy = 3\ + 2u
die Eigenwerte von A = (a;;) bzw.
th = 2¢q4, ta = 2¢, und t3 = 3¢y + 2¢4

die Eigenwerte von B = (b;;). Die Forderungen (3.60) sind nun genau dann erfiillt wenn die

Eigenwerte nichtnegativ sind, so dass wir zusammengefasst den folgenden Satz bewiesen
haben.

Satz 3.2.1: Der zweite Hauptsatz der Thermodynamik ist fiir beliebige Bewegungen mi-
kropolarer Flissigkeiten genau dann erfillt, wenn

3co+2c4>0, ¢4>0, ¢>0, ¢>0 '
qgilt.
Im klassischen Fall Stokesscher Fliissigkeiten reduzieren sich die obigen Bedingungen auf

3N+24 >0, >0, c>0.



Kapitel 4

Mathematische Diskussion

Der folgende Abschnitt soll eine einheitliche Basis schaffen, um die Diskussion der Be-
wegungsgleichungen mikropolarer Fliissigkeiten mit (Funktional-) analytsichen Methoden
zu ermoglichen. Das fiir die Behandlung partieller Differnetialgleichungen enorm wichtige
Lemma von Lax - Milgram ebenso wie der Fixpunktsatz von Schauder und der Begriff der
schwachen Ableitung werden vorgestellt und die Theorie der Sobolevfunktionen umrissen.
Insbesondere die Poincare - Ungleichung und die Einbettungsséitze in Abschnitt (4.1.4)
werden bei der Untersuchung des Differentialgleichungssystems von Seite 46 eine tragende
Rolle spielen.

4.1 Grundlagen der Funktionalanalysis

Wir fithren zunéchst einige wesentliche Definitionen und Sédtze der Funktionalanalysis
ein, die wir bei unseren Untersuchungen im néchsten Kapitel bendtigen werden. Dabei
werden wir uns im Wesentlichen auf das Lemma von Peter D. Lax und Arthur N. Milgram
stiitzen, dessen Beweis der zentrale Punkt dieses Abschnitts ist.

Seien X und Y normierte R-Vektorrdume. Eine Abbildung 7': X — Y heifst (linearer)
Operator, wenn T'(ax + fy) = oT'(x) + ST (y) fiir alle z,y € X und «, 5 € K. Wir nennen
einen linearen Operator

(a) beschrankt, wenn er beschrankte Mengen in beschrinkte Mengen tiberfiihrt und

(b) kompakt, falls er beschrinkte Mengen in relativkompakte Mengen tiberfiihrt.
Dabei heifst A C X relativkompakt, wenn der Abschluf clos(A) in X kompakt ist.
Bemerkung 2: Man kann zeigen, dass ein Operator T € L(X,Y) genau dann kompakt

ist, wenn fir jede beschrinkte Folge (xp)nen in X, die Bildfolge (Txy)neny in Y eine
konvergente Teilfolge besitzt (vgl. z. B. [Alt06]).

Satz 4.1.1: Seien X, Y normierte Riume und T : X — Y ein linearer Operator. Dann
sind dquivalent:

(a) T ist beschrinkt

50
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(b) Es gibt eine Zahl ¢ > 0 mit

IT@), <cllzlly VaeeX (4.1)

(c) T ist gleichmdfig stetig auf X .
Beweis. (a) = (b): Fir x = 0 folgt die Behauptung direkt aus der Linearitdt des
Operators T'. Fiir z € X \ {0} ist nun
L 2 e B0)

— . 1 .

|z x
Nach Voraussetzung tiberfithrt 7" auch die Einheitskugel B;(0) := {z € X : ||z]y < 1}
in eine beschréankte Menge, sodass also fiir alle x € By (0):

I Tzfly < C,

fiir eine Konstante C' > 0. Daher gilt

<C = Ty <C-Jally. VoeX\{0}

"],

2l x

(b) = (c¢): Seii € > 0 vorgegeben. Aus (b) und der Linearitdt der Abbildung 7" folgt dann
fiir alle 7,y € X mit ||z —y[| <6 := &:

[Tw =Tyl = [Tz —y)| <Cllz -yl <e.

(¢) = (a): Da T linear und gleichméfig stetig also insbesondere in 0 stetig ist, existiert
zul=:e>0ein d > 0, sodass

Tz <e=1 VY |z| <.

Sei M C X beschrankt. Dann gibt es eine Konstante C' > 0, sodass ||z|| < C V2 e M
und somit insbesondere H%xH < 4. Dann gilt aber fiir alle x € M:

C

J
HTax <1 < ||Tz| < 5

also ist T'(M) beschrénkt. [

Definition 4.1.1: Sei T € L(X,Y). Die kleinste Zahl ¢ > 0 fiir die
Tally <cllaly Vaex,

heifft Norm von T und wird mit | T|| bezeichnet.

Man kann leicht zeigen, dass

Tl = sup ||Tzlly = sup [Tzl VzelX.

[zl x <1 [zl x =1



02 KAPITEL 4. MATHEMATISCHE DISKUSSION

Die Menge aller linearen beschréankten (und damit stetigen) Operatoren bezeichnen wir
mit L(X,Y). Statt L(X,X) schreiben wir auch L(X) und statt L(X,K) schreiben wir
X’. Der Raum X’ heift der zu X duale Raum und seine Elemente nennen wir linea-
re beschrankte Funktionale auf X. Einen normierten Raum X in dem jede Cauchyfolge
beziiglich der durch die Norm induzierten Metrik konvergiert, bezeichnen wir als Ba-
nachraum und wir nennen ihn separabel, falls er eine abzdihlbar dichte Teilmenge A C X
enthélt. Dabei heiflt A C X dicht, falls clos A = X.

Definition 4.1.2: Sei X ein normierter Raum, X' der Dualraum und X" = (X')" der
Bidualraum. X heifit reflexiv, falls die Abbildung

JU X — X" we— J(x) = J, mit J(T) =T(x) fir jedes T € X'

surjektiv ist.

Definition 4.1.3: Seien X und Y Banachriume.

(1) Eine Folge (x,)nen C X konvergiert schwach gegen x € X (dafir schreiben wir
T, — x flirn — o0), falls fir jedes lineare beschrankte Funktional T € X'

lim T'(x) = T(x).

k—00

(2) Eine MengeY C X heifst schwach folgenkompakt, falls jede Folge in'Y eine schwach
konvergente Teilfolge besitzt, deren Grenzwert wieder in'Y liegt.

(3) FEin Operator K : X — Y heifit vollstetig, falls fir jede schwach konvergente Folge
(Zn)nen C X die Bildfolge (K (xy,))nen C Y normkonvergent ist.

Satz 4.1.2: Seien X,Y Banachriume. Dann ist jeder kompakte Operator T € L(X,Y)
vollstetig. Ist X zudem reflexiv, so gilt die Aquivalenz.

Beweis. Sei zunichst T € L(X,Y’) ein kompakter Operator und =, — z fiir n — oo.
Dann gilt fiir alle T € X" und &k — oo

[T2]] «— Tzall < 1T - [zl

und daher
|Tal| < |7 - lminf |z,

Wihlen wir nun 7" mit |7|| = 1 und ||Tz| = ||z| (mdglich nach dem Satz von Hahn-
Banach vgl. [Alt06]) folgt, dass die Folge (,)nen beschriankt ist. Dann gibt es eine kon-
vergente Teilfolge (2(n))neny und ein y € Y, so dass T,y — y fiir n — oo. Aber aus
r, — x folgt bereits T'z,, — Tx und da die starke die schwache Konvergenz impliziert,
ergibt sich aus der Eindeutigkeit des schwachen Grenzwertes (vgl. [Wer07|) y = Tz, d. h.
Tz ist ein Haufungspunkt von (7T'z,),en. Wir zeigen nun, dass dieser der einzige Hau-
fungspunkt der Folge und damit der Grenzwert der Folge ist. Sei dazu z € Y ein weiterer

!Die Abbildung J wird auch kanonische Finbettung von X in den Bidualraum X' genannt.
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Haufungspunkt der Folge (Tz,)nen. Dann existiert eine Teilfolge (72 ,(n))nen, die gegen
z konvergiert und daher ist (2,n))nen schwach konvergent gegen x. Wiederum folgt aus
der Eindeutigkeit des schwachen Grenzwertes:

z="Tx.

Sei nun X reflexiv und 7' : X — Y vollstetig. Dann ist T" insbesondere linear. Ist nun
(n)nen eine beschrankte Folge in X, besitzt sie aufgrund der Reflexivitét von X eine
schwach konvergente Teilfolge (vgl. [Wer07]) (Zx(n))nen mit 2y — @ € X fiir n — oo.
Da T vollstetig ist erhalten wir

TIL’TF(,L) — Tz

fiir n — oo. Nach Bemerkung 2 ist T somit kompakt. [

Satz 4.1.3: Sei X ein reflexiver Banachraum. Dann ist jede abgeschlossene Kugel Br(x) C
X schwach folgenkompakt.

Beweis. Einen Beweis dazu findet man zum Beispiel in [Alt06]. |

4.1.1 Das Lemma von Lax-Milgram

Das Lemma von Lax-Milgram ist einer der zentralen Sétze, mit deren Hilfe die Existenz
und Eindeutigkeit (schwacher) Losungen von Randwertproblemen fiir lineare elliptische
partielle Differentialgleichungen gezeigt werden kann. Wir werden hier eine, speziell fiir
unsere Zwecke geeignete, Form dieses Satzes fiir seperable Hilbertrdume formulieren. Es
sei aber darauf hingewiesen, dass sowohl das Lemma von Lax-Milgram, als auch der
Riesz’sche Darstellungssatz als einfaches Korollar dieses Satzes, fiir allgemeine Hilber-
traume gelten (vgl. Anhang Kapitel A.2).

Sei H ein R-Vektorraum mit Skalarprodukt (.,.)y. Wir nennen H einen (reellen) Hilber-
traum, falls in ihm jede Cauchyfolge beziiglich der durch das Skalarprodukt induzierten
Norm konvergiert. Hilbertraume sind reflexiv und wegen ihrem hohen Grad an mathema-
tischer Struktur essentiell in der Losungstheorie partieller Differentialgleichungen.

Satz 4.1.4 (Das Lemma von Lax-Milgram fiir separable Hilbertrdume): Sei H ein se-
parabler Hilbertraum und B : H x H — R eine stetige und koerzive Bilinearform, d. h.
34 68,a >0 so dass

|B(u, )| < Bllull - [v]| und Blu,u) > alul® ¥ uveH. (4.2)
Dann existiert fiir jedes stetige lineare Funktional L : H — R ein eindeutiges uw € H mit
B(u,v) = L(v) YwveH. (4.3)

Beweis. Wir benutzen fiir den Beweis die sogenannte Galerkin-Methode. Im Zuge dessen
zeigen wir zunéchst fiir n € N die Existenz von Elementen u,, € H,,, die

B(up,v) = L(v) YveH, (4.4)
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erfilllen und gehen anschliefend zum Grenzwert n — oo iiber. Dabei sind die H,
endlich-dimensionale Unterrdume von H mit H C H, C ... C H, C ... und Uflo:l H
eine dichte Teilmenge von H. Seien wi, ws, ws, ... eine Basis von H und setze H, =
span{wy, ..., w,} fir n =1,2,3,.... Nach Definition ist dann H; C Hy C ... C H, C ...

und .
U
n=1

dicht in H.

(1) (Existenz der u, € H,:) Sei

n
= Zgiwi € H,,
i=1

dann ist (4.4) dquivalent zu dem linearen Gleichungssystem

i{iB(wi,wk) = L(wy) k=1,2,... n. (4.5)
i=1

Dieses System hat genau dann fiir jede rechte Seite eine eindeutige Losung & =
(&1,&2, ..., &), wenn die Matrix A = (B(w;, wg))1<ik<n invertierbar ist, also genau
dann, wenn ker(A) = {0} ist. Um dies zu zeigen multiplizieren wir die k-te Gleichung
des Gleichungssystems

D &B(wiwp) =0 k=1,2,...n (4.6)
=1

mit & und addieren die Gleichungen. Dann erhalten wir

Z fk Z gz wza wk <Z gk,‘wk‘a Z fﬂ%) = una un) =0 (47)

und wegen der Koerzivitat der Bilinearform B folgt daraus w,, = 0. Ferner sind die
Vektoren wy, wsy, . . ., w, nach Definition linear unabhéngig, sodass wir aus (4.7)

s =86=...=§=0

ableiten konnen. Also hat das Gleichungssystem (4.6) nur die eindeutige Losung
¢ =(0,...,0) und folglich existiert fiir jedes n € N eine Approzimation u, € H,.

(2) (Konvergenz der Folge (u,,), € N:) Mit Schritt 1 und (4.2) ist
o lJun® < Blun, wn) = L(un) < |IL] - [lua

und daher 1
lunll < — LIl V7 eN.

Nach Satz 4.1.3 existiert daher eine Teilfolge (u,),en von (u,)nen und ein Element
u € H, sodass
Uy — U
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Fiir pp > 7 ist
B(u,,v) =L(v) VveH; CH,,

und daher .
lim B(u,,v) = B(u,v) = L(v) Ywve U H,.

—00
K n=1

Da (J;2, H, eine dichte Teilmenge von H ist, folgt aus der Stetigkeit der Bilinear-
form B und des linearen Funktionals L, dass (4.3) fiir jedes v € H erfiillt ist.

(3) (Eindeutigkeit von u:) Sei v’ € H ein weiteres Element mit
B(u',v) = L(v) VYwveH.
Dann folgt aus der Bilinearitéit von B:
0= L(v) — L(v) = B(u,v) — B(u,v) = Blu —u',v) YveH
und aus (4.2) speziell fiir v =u—u' € H:

0=Bu—uv,u—u)>alu—u|" <= u=1u.

Satz 4.1.5 (Cauchy-Schwarz Ungleichung): Sei H ein (reeller) Hilbertraum mit Skalar-
produkt {.,.) . Dann gilt:

(e, 9)u < {w,2)uly,y)n Va,y € H. (4.8)
Beweis. Fiir alle z,y € H und a € R gilt:
0<(x—ay,z—ay)n = {(z,2)g —20{z,y) i + >y, y)n. (4.9)
Ist (z,2)g = (y,y)m = 0, setzen wir a := (z,y)y und erhalten
0< =2(x,y)y < (z,y)y <O0.

Sei nun o. E. (y,y)g # 0. Dann setzen wir

in (4.9) und erhalten

und damit die Behauptung (x, y)% < (z,2)g{y,y)n. |
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Satz 4.1.6 (Riesz-Fréchet fiir separable Hilbertraume): Sei H ein separabler Hilbertraum
mit Skalarprodukt (., .) g und Norm ||.|| ;. Ist ferner L € H' ein lineares stetiges Funktional
auf H, dann gibt es ein u € H, so dass

(u,v)y = L(v) YveH (4.10)
und ||ullp = [|L]-

Beweis. Die Existenz eines u € H fiir das (4.10) gilt, folgt direkt aus dem Lemma von
Lax-Milgram fiir B(u,v) = (u,v)y. Ferner ist nach (4.8) fiir dieses u

1Ll = sup [(uw,v)u| < sup [Ju] jv]| = [u]

[vl=1 lvll=1
und somit speziell fiir v =u € H
2 2
[ul|” = [L(w)| < [[L]] flull < flul”,

also || L] = ||ul|- |

4.1.2 Fixpunktsatze

Bei der Untersuchung partieller Differentialgleichungen sind Fixpunktsitze ein unver-
zichtbares Hilfsmittel. Beginnen werden wir mit dem besonders starken Banach’schen
Fixpunktsatz, der einen eindeutigen Fixpunkt garantiert. In den meisten Fillen werden
wir uns aber auf die Sétze von Juliusz P. Schauder und Jean Leray zuriickziehen, die
unter weniger starken Voraussetzungen, zumindest noch die Existenz eines Fixpunktes
garantieren.

Satz 4.1.7 (Banach’scher Fixpunktsatz): Sei X ein Banachraum und T : X — X eine
Kontraktion, d. h. es gibt ein q € [0,1) mit

|Tu—Tv|y <alu—v|y VuvelX. (4.11)
Dann existiert ein eindeutig bestimmtes Element ug € X, sodass Tug = uyg.
Bewezs.
1. (Existenz:) Sei u ein beliebiger Punkt in X und definiere die Folge (u,)y rekursiv
durch u; = u, u, = Tu,_; fiir n € N. Nach Voraussetzung folgt dann mit (4.11) fiir
i €N
i1 — will = [[Tu; — Tui || < qllus — wia|]

und induktiv

Ju; — i || < ¢ Jug — wa| -
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Daher gilt fir £ > n

k
g Ui — Uj—1

[, — un || =
i=n-+1
k
< Z i — w1 |
i=n+1
k
< fluz — | Z q?
i=n-+1
qnfl
< llug — us|| — 0, fiir n — o0

=14

d.h. (u,)y ist eine Cauchyfolge, die nach Voraussetzung in X konvergiert. Auch ist

T stetig, sodass fir v := lim u,
n—oo

u= lim v, = lim Tu, = Twu,
n—oo n—oo

d. h. u ein Fixpunkt ist.
2. (Eindeutigkeit:) Sei v € X ein weiterer Fixpunkt mit 7v = v. Dann ist wegen (4.11)
[ = vl = |Tu = Tol| < gllu— ]
und daher wegen ¢ < 1:

lu—v]|=0 <= wu=wo.

Satz 4.1.8 (Brouwer): Sei K C R™ nichtleer, konvex und kompakt. Ist T : K — K ein
stetiger Operator, dann gibt es mindestens ein u € K mit Tu = u.

Beweis. siche [Wer(7]. [ |

Satz 4.1.9 (Schauder): Sei X ein Banachraum und () # K C X abgeschlossen, beschrinkt
und konvex. Sei ferner T ein auf K definierter, stetiger und kompakter Operator mit

T(K)C K.
Dann gibt es mindestens ein u € K mit Tu = .

Beweis. Aufgrund der vorausgesetzten Kompaktheit des Operators T ist der Abschluss
der Menge T'(K) kompakt, d. h. fiir jedes n € N existieren 1, xs, ..., &y in T(K), sodass

r(n)
T(K)c | JB: mit B;=Bi(x).

=1
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Wihle nun n so grof, dass mindestens zwei verschiedene Kugeln zur Uberdeckung von K

notwendig sind und definiere K, := conv{zy,z,...,2,u) } als die konvexe Hiille der Ku-

gelmittelpunkte {xq,... ,xr(n)}, d. h. die Menge aller Linearkombinationen A\ + Aoxo +
T )\T(n)a:r(n) mit

n)
Ai=lund ; e RVi=1,...,r(n).

1

r

—

i

Dann sind die Mengen K,, C K nach Definition nichtleer, endlichdimensional und konvex.
Ferner sind sie als endliche Mengen in linearen normierten Rdumen abgeschlossen und
wegen
r(n)
2] = ||> Aizi|| € max |zl < oo Vx € K,

— 1<i<r(n)
auch beschrankt.

Betrachte nun die Funktion F), : K — K,,;

r(n)
dist(xz, K'\ B;) - x;
=1

Fo(r) = -

r(n)
dist(z, K \ B;)
=1

7

Fiir jedes n € N ist F),, wohldefiniert, da jedes z € K in mindestens einer Kugel B (x;)
liegt und nach Definition fiir hinreichend grofses n nicht in allen B; liegt. Ferner ist ﬁ’n(a:)
fiir z € K eine Linearkombination der Elemente zy, zs, ..., Z,¢,) und somit F.(K) C K,.
Auch ist F), ist als Komposition der stetigen Funktionen dist(., B;) selbst stetig und da
fir x € K entweder x € B; oder dist(z, K \ B;) = 0 gilt, folgt

r(n)
> dist(z, K\ B;) [lz; — |
=1

o) - ] < E

> dist(z, K\ B;)

>, dist(z, K\ By) [[2; — |
{ilz€B;}
> dist(z, K\ By)

{i|lz€B;}

1
< —. 4.12
. (112

Definiere nun die Operatoren
T,: K, — Ky; v+ (F,oT)x.

Offensichtlich ist 7}, eine stetige Selbstabbildung einer konvexen, endlichdimensionalen,
beschrankten und abgeschlossenen Menge, die homéomorph zum R"™ ist und erfiillt damit
die Voraussetzungen des Brouwer’schen Fixpunktsatzes. Daher gibt es fiir jedes n € N ein
Tn € K, mit T,,x,, = z,,. Da T kompakt, F}, stetig und K,, abgeschlossen ist, hat die Folge
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(Zp)nen C K, eine konvergente Teilfolge (Zx(n))neny mit Grenzwert € K,. Wir zeigen
nun, dass Z ein Fixpunkt von T ist. Mit (4.12) erhalten wir

P - - - ~ ~ 1
|Zx) = Tw || = [|Tarn) = Tt || = | En(TEn() = T || < = — 0,
fiir n — oo und aus der Stetigkeit von T folgt

TZrm — T, fir n — oo.

Satz 4.1.10 (Leray-Schauder): Seien X ein Banachraum und T : X — X kompakt.
Ferner gebe es ein r > 0, so dass fir alle v € X und o € (0,1), die x = oTx erfiillen,
gilt: ||z||x < 7. Dann hat T einen Fizpunkt.

Beweis. Setze B := By,.(0) und definiere die Abbildung S durch

Tx, fir ||Tx| <2r
St = Tx

2r - ———— fiir ||Txlly >2r"
1T *

Dann ist S sine stetige Abbildung der abgeschlossenen Kugel B in sich. Sei nun (x,,),en
eine Folge in B. Wir unterscheiden zwei Fille:

1. (2)nen hat eine Teilfolge (2;);eny mit ||Tz|| < 2r fiir alle I € N. Dann hat (S2;)ien
und damit auch (Sx,)n,en nach Definition von S eine konvergente Teilfolge, da T'
kompakt ist.

2. (xp)nen hat eine Teilfolge (2;)jeny mit ||Tz||y > 2r fiir alle [ € N. Dann ist Sz; =
(Ao T)x;, wobei A die auf X \ {0} stetige Abbildung

x
el x

ist. T ist kompakt, daher hat (Tx;)cy eine konvergente Teilfolge und wegen der
Stetigkeit von A damit auch (Sz;)ey = ((A o T)zy)en.

A X\{0} — X; z+——2r

In beiden Féllen hat (Sx;)en also eine konvergente Teilfolge und somit ist S eine kom-
pakte, stetige Selbstabbildung der konvexen abgeschlossenen und beschrankten Menge
B C X. Nach dem Schauder’schen Fixpunktsatz 4.1.9 hat S daher einen Fixpunkt z.
Angenommen, es wire ||T'Z|| > 2r, dann wére auch

Tz 2r

r— =ocTzr mit o= —~
172 |Tz]|

F=S8F=2 €(0,1)

und daher nach Vorraussetzung
T2 x = l2lx <
im Widerspruch zur Annahme. Also ist
T2 < 2r

und daher z = ST =Tz, d. h. 7 ist ein Fixpunkt von 7. [ |



60 KAPITEL 4. MATHEMATISCHE DISKUSSION

4.1.3 Sobolevraume und Distributionen

In vielen Bereichen der Analysis, insbesondere bei der Untersuchung partieller Differential-
gleichungen, gelangt man in Situationen, in denen man Funktionen differenzieren mochte,
die im klassischen Sinne nicht differenzierbar sind. Ein erster Schritt auf dem Weg zur
Losung diese Problems gelang Sergei L. Sobolev durch Einfiihrung der sogennanten Sobo-
levraume und dem Begriff der ,, schwachen Ableitung“. Motiviert durch die Untersuchung
hyperbolischer Differentialgleichungen erweiterte er diese Idee zu einer rigorosen Losung
des Problems durch Ubergang von den ,, gewthnlichen differenzierbaren Funktionen “zu ei-
ner groferen Klasse von Objekten, den sogenannten Distributionen oder verallgemeinerten
Funktionen. Die Kernidee dabei besteht darin, Funktionen nicht mehr als punktweise de-
finierte Objekte, sondern ihre ,, Wirkung “auf andere, gutartige Funktionen, sogenannten
Testfunktionen zu betrachten. Laurent Schwartz griff diese Idee auf und entwickelte die
Theorie der Distributionen mafsgeblich weiter und stellte damit Sobolev’s Kalkiil der ver-
allgemeinerten Funktionen auf solide Basis.

Der folgende Abschnitt gibt nur einen kurzen Einblick in diese umfassende Theorie und
wird die nétigen Begriffe und Sétze zur Verfiigung stellen um die Bewegungsgleichungen
mikropolarer Fliissigkeiten effektiv untersuchen zu kénnen. Beginnen werden wir mit den
Lebesque-integrierbaren Funktionen und uns Schritt fiir Schritt zur Definition der Sobo-
levfunktionen und Distributionen vorarbeiten. Sofern nichts anderes behauptet wird ist
2 im Folgenden eine nichtleere, offene Teilmenge des R™ und n € N.

Definition 4.1.4 (Lebesque Rdume): Fir 1 < p < oo bezeichnen wir mit LP(S)) den
linearen Raum der Aquivalenzklassen Lebesque-messbarer Funktionen f : Q — R, fiir die
|fP auf Q Lebesque-integrierbar ist. Dabei sind zwei Funktionen zueinander dquivalent,
wenn sie fast tiberall im Sinne des Lebesque-Mafles gleich sind. Das Funktional

F—= 1) = (/Q |f ()P dx)”

ist eine Norm auf LP($2).

Die Elemente in L?(€2) werden wir (wie tiblich, aber nicht korrekt) weiterhin als Funktio-
nen bezeichnen.

Lemma 4.1.1 (Héldersche Ungleichung): Seien p,q € [1, 00| mit ]l) + % =1, f e LP(Q)
und g € LY(Q). Dann ist f - g € L'(Q) und

1f- gHLl(Q) < ”fHLP(Q) : ||9HLq(Q)' (4.13)

Beweis. Der Beweis fufit auf der Young’schen Ungleichung. Siehe [Eva02]. [ |

Korollar 4.1.2 (Minkowski-Ungleichung): Fir 1 < p < oo und f,g € LP(QQ) ist auch
f+geLP(Q) und

1f+ g”LP(Q) < HfHLp(Q) + ||gHLP(Q) : (4.14)
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Beweis. Im Wesentlichen benutzt man die Hoélderungleichung um die Funktion |f +
glP7|f + g] geschickt abzuschiitzen. Siehe [Eva02]. |

Korollar 4.1.3 (Verallgemeinerte Holdersche Ungleichung): Seien 1 < py,...,pm < o0
mitpil+pi2+...—l—$:l und w; € LPi(Q) fir j=1,...,m. Dann ist

u= Huj e L"()
j=1
und es gilt:
[l ey < H il s ) - (4.15)

Beweis. Die Aussage folgt aus der Holderschen Ungleichung durch Induktion iiber m.
Siche zum Beispiel [Ada03]. |

Fiir 7 = 1,2 mit p; = py = 2 erhélt man als Spezialfall der Hélder’schen Ungleichung die
Cauchy-Schwarz-Ungleichung

(,0) g2y < Nl gy Wl g2y, ¥ v € LH(Q).

Satz 4.1.11 (Der Satz von Riesz-Fischer): Sei (f,)nen eine Cauchyfolge in LP(Q2), d. h.

im A fm = fall oy = 0-

Dann gibt es ein f € LP(Q)) und eine Teilfolge (f1)ien von (fn)nen, so dass
H [ fe = fll o) = 0

und fi(x) — f(x) fir fast alle x € Q.

Beweis. Sei (f,)nen eine Cauchyfolge in LP(£2). Dann gibt es zu jedem i € N ein n; € N,
sodass

ka - fm“LP(Q) < 270V k,m > n;. (4.16)

Die daraus entstehende Teilfolge ( f,,,)ien bezeichnen wir im Folgenden wieder mit (f,,)nen
und setzen

k
Ik = Z | fos1 — fal.-
n=1

Wir zeigen nun, dass die Folge (gi)ren fiir fast alle x € Q punktweise konvergiert. Fiir
diejenigen x, fiir die (gx(x))ren konvergiert, ist dann (f,(z))nen eine Cauchyfolge in R
und besitzt daher einen Grenzwert f(z). Wir zeigen dann, dass die so definierte Funktion
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f € LP(Q) ist und (fu)nen auch in der Norm |||, gegen f konvergiert. Nach dem
Lemma von Fatou, der Minkowski-Ungleichung (4.14) und (4.16) ist

/lim inf g% (x) do < lim inf/ gr(z) dx
0 0

k—00 k—o00

it e I?
iminf | ga[|7 o)

k p
S (h]gglogf; an+1 - anLP(Q)>
= (Z "fnJrl_fn"LP(Q)) <Z2 n) =1 < o0,

n=1

d. h. khm gp = h}gn inf g} existiert fiir fast alle z € Q. Dann ist
—00

k
| fe() Z|fn+1 ()] = |gr(x) — gm(x)| — 0 fiir k,m — oo

und daher (f,(z))nen fiir fast alle x € Q eine Cauchyfolge in R. Da R vollsténdig ist,
existiert somit fiir fast alle x € ) die punktweise Grenzfunktion

f(z) = lim f,.
n—oo

Wenden wir das Lemma von Fatou erneut an, folgt:

/ F(2) = fu(2)P do = / limind | o) — fu(2)]? do
9} —00
<11m1nf/ | fr(x) — fin(2)|P dz
p

= (timinf | () - fm<x>|\Lp(Q>)

s@gg}]mﬂw—n<mp) (Ep )<w.

Also ist f — f,, € LP(Q2) und damit nach der Minkowski-Ungleichung (4.14) auch f €
LP(2). Insbesondere folgt aus dieser Abschatzung

T
Hf_meLP(Q): </ ’f ‘p dﬂ?) < ZQﬁn—>0fﬁrm—>oo,

also f,, — fin LP(§2). [ |
Da

lwn — ul|| < ||tn — tn,|| + ||, — u|| — 0 fiir n — oo
konvergiert jede Cauchyfolge (u,)nen, die eine gegen u konvergente Teilfolge (u,, )ien hat,
selbst gegen denselben Grenzwert. Daher ist LP(€2) nach obigem Satz ein Banachraum und

wie man leicht nachrechnet fiir p = 2 insbesondere ein Hilbertraum mit Skalarprodukt

(9o = [ F@)
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Definition 4.1.5: Mit L=(Q) bezeichen wir den linearen Raum der Aquivalenzklassen
Lebesque-messbarer Funktionen f: Q) — R fir die
esssup{|f(z)| :x € Q} =inf{k > 0: p({x € Q:|f(x)| > k}) =0} < 0.
Definieren wir auf L>(2) die Norm
[ £l oo () = ess sup{|f(2)] : x € Q},
so wird L>(2) ebenfalls zu einem Banachraum.

Eine reellwertige Funktion f auf {2 nennen wir lokal integrierbar auf 2 und schreiben
f e Ll .(Q)falls f iiber jedes Kompaktum K C € integrierbar ist. Analog definieren wir
die Rdume LY (Q), fiir 1 < p < oo. Unter dem Tréger supp f einer Funktion f: 2 — R
versteht man den Abschluss der Menge {z € 2 : f(z) # 0}.

Fir o € Ny, a = (aq,...,a,) sei |a] == a; +az + ...+ «, und

olel

— —Oél .
0z) ... 0%

@Oé

Wir nennen f k-mal stetig differenzierbar auf € und schreiben f € C*(Q), falls die
partiellen Ableitungen D f fiir alle || < k existieren und stetig sind. Insbesondere ist

C=(Q) = ﬁ CH(Q)
k=1

und wir schreiben C§°(€2) fir die Menge aller Funktionen f € C° mit supp f C Q. Falls
) beschrankt ist, ist supp f eine kompakte Teilmenge von (2.

Lemma 4.1.4: C§°(R2) liegt dicht in LP(Q) fir 1 < p < oc.

Beweis. Einen Beweis findet man zum Beispiel in [Ada03]. |

Definition 4.1.6 (Holderrdume): Sei 0 < A\ < 1. Dann bezeichnen wir mit C**(Q) den
Raum aller Funktionen u € C*(Q) fiir die folgende Norm endlich ist

D« — D«
HUH(J’CJ(Q) = Z sup | D%l + Z Sup{| u(@) u(y)|

_ A
0<]al<m “€9 jal=m v =l

T,y € Q,x # y} .
Holderrdume sind beziiglich der sogenannten Héldernorm ||. | cx q) vollstindig.

Lemma 4.1.5 (Fundamentallemma der Variationsrechnung): Sei f € L} () und

/Q [(@)p(x) dz =0

fir jedes ¢ € C3°(Q2). Dann ist f =0 fast dberall in €.
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Beweis. Siche [Ada03]. [ |

Definition 4.1.7 (Schwache Ableitungen): Seien f,g € L} (Q) und o € Ni. Wir nen-
nen g die a-te schwache Ableitung der Funktion f auf S, falls fir alle ¢ € C§(2)

/Q f(@)Dp(x) dr = (~1) / 9()plz) d

ist. In diesem Fall setzen wir ®%f :=g.

Definition 4.1.8 (Sobolevraume): Seien m € N und 1 < p < oo. Mit H? (2) bezeichnen
wir den linearen Raum aller Funktionen f € LP(Q) fir die die schwache Ableitung D f
bis zur Ordnung |a| < m ezistieren und in LP(Q) liegen. Das Funktional

F = Wl = | Do 19°F 110 (4.17)

la<m

ist eine Norm auf H? ().

Satz 4.1.12: H? (Q) ist ein Banachraum und fir 1 < p < oo reflexiv.

Beweis. Sei (fn)nen € HP () eine Cauchyfolge. Zu jedem e > 0 gibt es dann ein ng € N
mit

1fe = fallgp ) <€ ¥V k.n>no.
Fiir jeden Multiindex o € Nj mit |a| < m ist daher
9% i = Dl ey < e — Fullim oy < &
also (Df,)nen eine Cauchyfolge in LP(Q2). Nach Satz 4.1.11 ist LP(Q2) vollstdndig und
daher gibt es f, f* € LP(Q)) mit
Jim (9% fn = o) =0 bzw. L [[fo = fll10) = 0.
Nun gilt fiir jedes ¢ € C§°(Q2):

/Q @) dr = lim | (D°1,)(@)e(x) de

n—oo

= lim (—1)""/an(x)©o‘<p(x) dx

n—00

— (1) / f(@)p() de,

d.h. nach Satz 4.1.5 ist f* die a-te Ableitung von f und somit f € HE (). Schlieklich
folgt

D=

Y (1f = fullgg oy = | D Jm £ = fallfoey | =0,

laj<m

also konvergiert (f,)neny in HP (€2) gegen f und somit ist HP () vollstédndig. Fir die
Reflexivitét siche [Alt06]. [ |
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Mit Satz 4.1.3 erhalten wir daraus:

Korollar 4.1.6: Fir 1 < p < oo enthdlt jede abgeschlossene Kugel in HP () eine
schwach konvergente Teilfolge.

Bei der Diskussion der Bewegungsgleichungen mikropolarer Fliissigkeiten wollen wir uns
in dieser Arbeit auf Dirichlet’sche Randbedingungen (d.h. v = 0 und w = 0 auf 90Q)
beschrénken. Daher ist es zweckméfig zur Losung des Randwertproblems nur Funktionen
zuzulassen, die am Rand von ) verschwinden.

Definition 4.1.9: Mit ;I%(Q) bezeichnen wir den Abschluf$ der Menge C3°(2) in der
H”H%(Q)'NO’/"m, d.h.:

H2(9Q) = Gy

m

= {1 € HL(@)] 3(puhnen € CF(Q) = on = Fllg ) =5 0}
Die Rdume HZ2 () und HZ/(€)? sind Hilbertrdume vermdge dem Skalarprodukt

D = 3 / D°f(x) - Dg(x) du

laf<m

und werden daher oft nur mit H,,(€2) bzw. ﬁm(ﬂ) bezeichnet. Auch kann man zeigen
(vgl. [Alt06]), dass fiir ein beschrénktes Gebiet Q der Klasse C%' (vgl. 4.1.14) gilt:

o

Hi () = {u € Hi(Q) : ulsq = 0}. (4.18)

Natiirlich ist H 1(2) auch reflexiv.

Definition 4.1.10: Seim >0, 1 < p < oo und % + % = 1. Mit H?, (Q) bezeichnen wir

den Raum der linearen, stetigen Funktionale auf dem Raum HP ().

Die Rdume H?, () bezeichnet man héufig auch mit H_,,(Q2). Im Folgenden verallgemei-
nern wir die Theorie der Sobolevfunktionen und widmen uns der Distributionentheorie.
Dazu fithren wir zunéchst im Raum C§°(€2), dem Raum der unendlich oft differenzierbaren
Funktionen mit kompaktem Tréger, einen Konvergenzbegriff ein.

Definition 4.1.11: Eine Folge (pn)nen C C§°(2) konvergiert gegen null, falls es eine
kompakte Teilmenge K C € gibt, so dass

(a) supp ¢, C K fir jedes n € N

(b) lim ®%p, = 0 gleichmdfig fir jedes o € N™.
n—ro0

2In anderen Biichern findet man auch oft die Bezeichnungen W™ () bzw. W;"?(Q) fiir HE,(Q2) bzw.
HE,().
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Den Raum C§° zusammen mit dem so definierten Konvergenzbegriff nennen wir den Raum
er ,, Testfunktionen “und bezeichnen ihn mit D.
der ,, Testfunkt “und b h h t D

Basierend auf dieser Definition kénnen wir nun den klassischen Funktionsbegriff erweitern
und fithren den Begriff der Distribution sowie die Ableitung im Distributionensinn ein.

Definition 4.1.12 (Distributionen): FEine Funktional T : D — R heifit Distribution auf
Q, falls T linear, d. h.

T(op+ Bp) = aT(p) + BT(Y) Va,BER, Vo, eD®)
ist und fir jede gegen null konvergente Folge (pn)nen C D(®) gilt:
lim T'(y,) = 0.
n—o0
Die Menge der Distributionen auf Q bezeichnen wir mit D'(2).

Die ,, klassischen Funktionen “sind in die Distributionen eingebettet, denn fiir jedes f €
L} () ist die Abbildung
1y(0) = [ 10+ pla) da
eine Distribution und definiert nach Lemrgrzla 4.1.5 eine lineare, injektive Abbildung
[ LL(Q) — D(Q); [ T},

Distributionen die lokal integrierbaren Funktionen entsprechen nennt man regulér. Ein
Beispiel fiir eine nicht regulére Distribution ist die Dirac-Delta-Distribution (vgl. [Her07])

d(xg) : D — R; p+— @(xg), fiir ein xy € Q.

Definition 4.1.13 (Ableitung von Distributionen): Seien T' € D'(2) und o € Njj. Dann
ist die Abbildung DT : D(Q2) — R definiert durch

DT(p) == (1) T(D%), €D

eine Distribution. Wir nennen DT die a-te distributionelle Ableitung von T .

Beispiel 1: Fir f:(—1,1) — R; x —— |z] ist

7y() = [ lelota) de

Dann st

210 = (1) [ lal foota) do

:/iw'@) dx—/o vo(x) do
:—/Olgo(x) dw—l—/olgo(x) do

1
:/ sgnzp(x) dr,

1
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d. h. die Signumfunktion sgn(z) die distributionelle Ableitung von f.

Definition 4.1.14 (Gebietsklassifizierung): Seien 0 < o < 1, k € N und Q C R" offen
und beschrinkt. Wir sagen Q ist von der Klasse C*, falls fiir jeden Punkt xq € 0S) eine
Kugel B,.(zg) und eine bijektive Abbildung v : B — D C R" existieren, sodass

(a) Y(BUQ) CR" ={z = (21,...,2,) € R": 2,, > 0}
(b) Y(BUIN) C ORY
(c) Y € CH(B), v~' € C**(D).

Ist der Rand von ) glatt genug, sagen wir 0 € C%!, konnen wir die in 4.1.8 eingefiihrten
Sobolevriume HP (Q) auch durch den AbschluR der Mengen C™(€) in der Norm (4.17)
definieren. Von diesem Standpunkt aus gesehen ist klar, dass, vorausgesetzt (2 ist glatt

genug, die Menge C™(€2) dicht in HP (£2) liegt.

4.1.4 Einige Einbettungssatze und wichtige Abschatzungen

Eine erfolgversprechende Herangehensweise zur Losung partieller Differentialgleichungen
besteht in der Idee zunéchst einen irgendwie gearteten schwachen Losungsbegriff einzufiih-
ren (also zum Beispiel Sobolevfunktionen oder Distributionen als Losungen zuzulassen)
und dann diese ,, Losungen “in ,, klassische “Funktionenrdume, wie Raume stetiger Funk-
tionen oder hoherer Regularitét einzubetten. Ein Schliisselinstrument bei dieser Methode
ist der Rellich’sche Auswahlsatz (vgl. [Ada03]). Dabei bezeichnen wir einen normierten
Raum X als (stetig) eingebettet in einen normierten Raum Y und schreiben

X =Y,

falls
(i) X ein Unterraum von Y und

(ii) I: X —Y; x+—— x stetig ist, d. h. es existiert eine Konstante M > 0, so dass

[ally < Mlzlly  Vee X

Ist der lineare Operator I kompakt, so nennen wir X kompakt eingebettet in Y. Der
Rellich’sche Auswahlsatz (vgl. [Ada03]) ermdoglicht es uns nun die Sobolevraume Hj (€2)
unter bestimmten Voraussetzungen in Lebesque, aber auch in stetige Funtkionenrédume
kompakt einzubetten. Zur Motivation dieser Einbettung betrachten wir zu gegebenem
f die partielle Differentialgleichung Lu = f und suchen eine Losung u € Hg(2). Ein
moglicher Ansatz ist sicher die Idee, die Losung u durch

Lu; = f; — f fur (uj)jen C Hi(2) beschrankt

zu approximieren. Schon wére jetzt, wenn zumindest eine Teilfolge der Folge (u;)jen in
einem gewissen Sinne gegen die Losung konvergieren wiirde. Genau hier setzt der Aus-
wahlsatz an.
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Satz 4.1.13: Sei Q C R™ offen, beschrinkt und von der Klasse C%'. Dann gilt:

(a) Ist kp < n und p* = ==, so ist HZ(Q) stetig eingebettet in LP" () und kompakt

eingebettet in L1(Q) fir g < p*.

(b) Ist0<m <k—n/p<m+1unda=Fk—m-—n/p, soist H;() stetig eingebettet
in C™(Q) und kompakt eingebettet in C™P(Q) fiir B < a.

Beweis. Siche [Eva02]. [ |

Lemma 4.1.7 (Spezialfall des Rellichen Auswahlsatzes): Sei @ C R™ offen und be-
schrinkt. Dann ist die Einbettung von Hy () in L*(Q) kompakt.

Beweis. Siehe [Mor66]. [ |

Satz 4.1.14: Sei Q) ein beschrinktes Gebiet im R™ der Klasse C™ und sei u eine Funktion
in HY ()N LYQ), 1 <r,q<oco. Fir jedes 0 < j <m und j/m <6 <1 sei

1 ' 1 m 1

—=i+9<———) T (1-6)-,

p m roomn q
dann gibt es eine Konstante C = C(2,r,q,m,j,0), so dass firm —j —n/r < 0:

- 0 1-6

HQJUHLP(Q) < Cllullay @ lullzag) - (4.19)
Firm—j—n/r >0 gilt (4.19) mit 0 = j/m.
Beweis. Einen Beweis findet man zum Beispiel in [Mazl11]. [ |

Eine besonders interessante und fiir viele Anwendungen aiifferst hilfreiche Abschétzung
liefert die folgende Ungleichung.

Satz 4.1.15 (Poincare-Ungleichung): Seien Q) eine offene, beschrinkte Teilmenge des

R™, n > 0 und d = diam(2) = sup{dist(z,y) : x,y € Q}. Dann gilt fir u ;11(9) und
ie{l,...,n}:

(4.20)

ou
&’ci

el oy < \
u L2 Q) = - = .
(Q) \/5 @)

Beweis. Sei u € C§°(Q2). Fixieren wir ¢ € {1,...,n}, so folgt aus dem Hauptsatz der
Differential- und Integralrechnung

U(Il, sy Lie1y Ty Lig 15 - - - 7:En)
“i Ou
= E(xlv"'7'ri—1>t7xi+17“'7xn> dt
ot

:/ a_zt(ajla'"axi—lat7$i+1""’$n) dt’
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wobei z* = inf{t : u(t,xq,...,2,) = 0, (t,29,...,2,) € Q}. Da Hi(2) ein (reeller)
Hilbertraum ist konnen wir die Cauchy-Schwarzsche Ungleichung (4.8) anwenden und
erhalten

u(z) = u(T1, .. T, Ty Tigts - -5 )
2

T Ou
/ — (1, T, b Ty, e, ) - L dE

.
i | 9 2

S/ _u(‘rlw"in717t7xi+17"'7xn) dt(‘rl_x:)
. |
< | 9 2

<[ || dn-@—an.

Integration dieser Ungleichung beziiglich x; liefert dann

[Loeran=[ [ [z

dx; - (x; — x}) dx;

) 2 o
:/OO a—;l(x) dxi-/ooxi—arfdwi
d? ou 2
T N e O
- 2 00 81’1 («'17) v
Integration dieser Ungleichung beziiglich xy, o, ..., x; 1, %41, . .., x, liefert dann (4.20)

firi e {1,...,n} und u € C§°. Nach Lemma 4.1.4 existiert nun zu jedem u € H;({2) eine
Folge (un)nen C C5°(§2) mit u, — u fiir n — oo. Gleichung (4.20) folgt nun fiir jedes
i € {1,...,n} durch Ubergang zum Grenzwert in

ou,,
0x;

u
H nHL2 \/—‘ 120
Insbesondere folgt aus diesem Satz:

[ull 2y < ClIDull 2y ¥ u € Hi(€2).

Korollar 4.1.8: Se: Q2 C R" offen und beschrinkt. Dann sind die Normen

1
2

lall gy = | el Ze@y + D 19%ul 72

laf=1

und

[NIES

2
lall= | D 19 ulZ2q)

jal=1

in H1(Q) dquivalent.
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Beweis. Die Bezichung ||ul| < C} - ||ul| folgt direkt aus der Definition der Normen; die
Beziehung ||u|| < Cs |Ju|| ist eine Konsequenz der Poincare Ungleichung. [ |

Insbesondere kénnen wir also H 1(€2) als den Abschluss der Menge C§°(€2) in der Norm

wwlz(lj©wwﬁcm);

definieren.

Lemma 4.1.9: Sei Q C R? offen und beschrinkt. Dann gilt fiir alle u € H,(Q):
1 1 1
[ull sy < 2% [Jull Zoiq) 1Dullf2q) - (4.21)
Beweis. Nach Lemma 4.1.4 liegt C3°(Q2) dicht in H;(2), daher geniigt es die Behauptung

fir u € C§°(£2) zu beweisen. Der Hauptsatz der Differential- und Integralrechnung liefert
nun:

1 a xr1 a
u?(z1, 12) = /OO auz(t,xg) dt = 2/ u(t,xg)a—ztt(t,xg) dt

2§ - To )
u?(z1, 1) = /OO Euz(xl,xg) dt = 2/OO u(a:l,t)a—?(xl,t) dt,
und daher
onan) <2 [ Ju(o) @) doe (k=12 (1.22)
max u”(z1, ¥2) < - u(x o x)| dxy =1,2). :
Mit (4.8) folgt
/ u'(z) de = //uZ(:U) ~u?(z) dryday
R2 RJR
< | maxu®(z) dz; | maxu®(z) dao
RmQGR RCE1ER
Ju ou
<4 — d — d
<i [ fulo)grte)| do [ fute) 5G] da
ou ? ou :
<4 u2xdx/—x dm-/ —(x)| dx | .
B /R2 ( ) ( R2 81’2( ) R2 8132< ) )

Fiir a,b > 0 gilt nun stets 2va - b < a + b, sodass

[t ac < [ oy ao ([ [0of ar- |
< 2/R2 u2(z) d:c/R2 D) (z) de,

und mithin die Abschéitzung (4.21) bewiesen ist. [ |

ou
0_1:2(96)
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Lemma 4.1.10: Sei Q C R3 offen und beschrinkt. Dann gilt fiir alle u € ﬁ]l(Q)

1 3
||u||L4(Q) = \/§”UHE2(Q) ||©u||i2(g) - (4.23)

Beweis. Wie im vorhergehenden Lemma reicht es (4.23) fir u € C5°(2) zu beweisen.
Mit dem Hauptsatz der Differential-und Integralrechnung folgt analog zu (4.22):

max u?(z) < 2/

:EgGR — 0

u(x)f—jg(w)

dl‘g,

sodass nach (4.21)

/ u4 :/ </ u? (21, T2, x3) dxld:c2> dxs
R3 R \JR2
ou 2 ou 2
/R(/ u?(z) dxydry /2 (8—;2 ($)+0_$u1 (x)) da:ldmg) dxs
/(/ ( ) dzydxs |@u(9&)|2 dxldx2> dxs
R RZ 2

<2 [ maxu®(z) deydzy | |Du(z)) do
R3

R2 xr3€R

<
R3

ist. Wenden wir nun wieder die Cauchy-Schwarzsche Ungleichung (4.8) an, erhalten wir:

[\]

| /\

u(e) 2 (2)

€3

Du(z)|” da

R3

1Du(x)]* dx

RS

<4 (/R u?(z) dm)% ( 5 g—g@) dm)é 5 Du(z)|* dx

<4 (/R w2(z) da:)é </R Du)|? dx)g

und daraus (4.23). |
Insbesondere folgt aus (4.23) fiir ein beschrinktes Gebiet 0 C R? der Klasse C':

3 1
[ull sy < C H“H;ﬁ(g) HUH;P(Q) : (4.24)

Lemma 4.1.11: Sei Q C R3 offen und beschrinkt. Dann gilt fiir alle u € Ic—)Il(Q)
”uHLG < 485 ||©U||L2 . (4.25)

Beweis. Siche [Lad87]. |

In den nachfolgenden Kapiteln werden wir vorwiegend einige Spezialfille der Satze 4.1.13
und 4.1.14 benétigen, die wir nun hier gesondert vorstellen.
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Fiir Q C R? wie in Satz 4.1.13 gilt
(1) Hy(Q) ist (stetig) eingebettet in L(2) mit
||U||L6(Q) <C ||u||H1(Q)
(vgl. Lemma 4.1.11)

(2) Hy () ist kompakt eingebettet in L*(2) mit

[ull 2@y < Cllullg, o
(vgl. (4.24) und (4.20))
(3) Hy(Q) ist (stetig) eingebettet in C%'/2(Q) und C*'/2(Q) kompakt einge-

bettet in C'(£2); tatséchlich gilt

€SS SUP,cq lu(x)] < C ||U’HH2(Q) :

4.2 Mogliche Randbedingungen mikropolarer Fliissig-
keiten

Die Theorie der mikropolaren Fliissigkeiten verallgemeinert die klassische Theorie der
Navier-Stokes-Gleichung und versucht ein wesentlich groferes Gebiet von Phenomenen zu
erkldren. Aufgrund dieser Tatsache ist nicht zu erwarten, dass man ein Standardreper-
toire von Rand- und Anfangsbedingungen fiir beliebige Situationen finden kann. Die aus
mathematischer Sicht einfachste Idee, die man bei der Wahl der Randwerte untersuchen
kann, ist zunéchst einmal die Dirichtlet’sche Randbedingung

v=0>0 bzw. w=0 auf 0f).

Betrachten wir zum Beispiel eine Fliissigkeit die sich mit konstanter Geschwindigkeit,
also stationdr, durch ein Rohr bewegt, so erscheinen diese Bedingungen auf den ersten
Blick durchaus sinnvoll, da die Fliissigkeitsteilchen am Rand des Rohres aufgrund der
Reibung haften bleiben. Bei genauerer Untersuchung muss man sich allerdings fragen,
ob die mitbewegten Partikel am Rand tatséchlich auch keine Eigenrotation aufweisen.
Durchaus denkbar wére, dass die Partikel durch den Geschwindigkeitsunterschied in der
Fliissigkeit die Innenwand des Rohres ,, entlang rollen“. Diese Tatsache wiirde eher einer
Randbedingung wie
v=20 w = Wy auf 0

entsprechen. Analog kénnen wir aber auch fiir freie Fliissigkeiten argumentieren. Auch
hier wird der Geschwindigkeitsunterschied der Fliissigkeit zwischen ihrem Rand und ihrem
Inneren im Allgemeinen zu einer Rotation der von der Fliissigkeit mitbewegten Partikel
am Rand fithren. Wéhrend also die Randbedingung an die Geschwindigkeit v physikalisch
motiviert durchaus sinnvoll erscheinen, ist die Bedingung an w;, eher undurchsichtig.
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Abbildung 4.1: Rohrstromung - Die Partikel am Rand der Fliissigkeit werden durch die
Reibung an der Innenwand des Rohres haften bleiben und durch den Geschwindigkeits-
unterschied an ihrer Ober- und Unterseite zu rotieren beginnen.

Ein moglicher Zugang zum Verstandnis der Randbedingungen ist die Beschreibung der
Kréfte und Momente am Rand der Fliissigkeit

T-n=t,, C-n=c¢, aufdg.

Sicherlich sollten die Normalkréfte auf dem Rand nach dem actio=reactio Prinzip ver-
schwinden, so dass die erste Bedingung auf

V="V

auf dem Rand fiihrt und somit ebenfalls unsere Vermutung bzgl. der Rohrstréomung stiitzt.
Fiir die Microrotation findet man eine ausfiihrliche Diskussion in [Aer64]. Dort werden
Bedingungen der Form

1
C-n=Aw-— gcurlvb

fiir eine Matrix A = (a;;) mit reellen Eintrdgen untersucht. Aus den beiden Grenzfillen
a;; — oo und a;; — 0 erhalten wir:

w = §curlvb bzw. C-n=0.

Diese Bedigung enthélt die Dirichlet’schen Randbedingungen als Spezialfall fiir v, =,
impliziert aber dariiber hinaus die starke Forderung, dass die Eigenrotation der Partikel
am Rand der Fliissigkeit nur durch die Bewegung des Randes verursacht werden. Eine
unseren Einwénden besser angepasste Randbedingung fiir die Mikrorotation wére zum
Beispiel (vgl. [Aer64])

«
w= —curlv.
2

Dahinter verbirgt sich die Annahme, dass die Mikrorotation der Partikel durch die Ro-
tation der Fliissigkeitsteilchen hervorgerufen wird. In der Suche nach passenden Rand-
und Anfangsbedingungen fiir mikropolare Fliissigkeiten liegt sowohl ein Segen, als auch
ein Fluch dieser Theorie. Zu Rechtfertigung einer Wahl von Randbedingung bleibt zu-
nachst keine andere Moglichkeit, als die Losung des zugehorigen Randwertproblems mit
dem realen Verhalten von mikropolaren Fliissigkeiten, wie etwa Blut, zu vergleichen. Wie
Kirwan und Newman in |[Kir69] an verschiedenen Beispielen zeigen, konnen verschiede-
ne Kombinationen von Rand- und Anfangsbedingungen bei festen Viskositatskoeffizienten
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und andersherum auch verschiedene Kombinationen der Viskositatskoeffizienten bei festen
Rand- und Anfangsbedingungen zu drastisch unterschiedlichen Geschwindigkeitsprofilen
fithren. Die Moglichkeit, die Randbedingungen unabhéngig von gegebenen Anfangsbe-
dingungen und Viskositétskoeffizienten an gegebene Phdnomene anzupassen, ist eine der
interessanten und spannenden Facetten dieser Theorie.

Im Folgenden werden wir uns trotz obiger Einwande zunéchst dem stationdren, inkom-
pressiblen Fall zusammen mit den klassischen Dirichlet’schen Randbedingungen

v=0, w=0, aufodg. (4.26)

widmen.
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4.3 Stationare Dirichlet’sche Randbedingungen

In diesem Abschnitt werden wir das zugegebener Mafsen einfachste Randwertproblem, das
homogene Dirichlet’sche Randwertproblem fiir inkompressible und isotherme mikropolare
Fliissigkeiten diskutieren und analysieren. Dabei ist das vorrangiges Ziel die Existenz
einer Losung mit moglichst hoher Regularitdt zu beweisen und Bedingungen abzuleiten
unter denen diese Losungen eindeutig sind. Wir werden uns dazu der Idee anschliefien,
zunachst eine schwache Formulierung des Randwertproblems zu konstruieren und zeigen,
dass unter geeigneten Voraussetzungen an die Viskositdtskoeffizienten, eine eindeutige
Losung dieser Formulierung existiert. Anschliefend werden wir mit Erkenntnissen aus
der Theorie partieller elliptischer Differentialgleichungen beweisen, dass diese Losung eine
durchaus hohere Regularitit aufweist. Bei unseren Untersuchungen gehen wir von einem
beschrinkten Gebiet 2 C R? mit hinreichend glattem Rand aus und wiederholen zunichst
einige Ergebnisse aus der Theorie klassischer stokesscher Fliissigkeiten, die wir bei unserer
Analyse benotigen werden.

4.3.1 Das Gleichungssystem von Stokes

Das Stokessche Randwertproblem

—vAv+Vp=kin Q (v>0),

dive = g in Q,

v = ¢ in 0.

Dabei sind v = v(x) = (vi(z),ve(x),v3(x)) und k = k(x) = (k1 (x), k2(z), k3(x)) vektor-
wertige und p = p(z) eine skalare Funktion fiir z € 2 C R? offen.

Proposition 1 (vgl. [Tem77], Chapter I, Proposition 1.1): Sei Q C R" offen und D'(Q2)
der Dualraum zum Raum der Testfunktionen D(S2). Ferner sei F = (fi,..., fn), fir
ieD(Q) (i=1,...,n), dann ist

T]:(U) =0

fir alleveV={u=(u,...,u,) :u; € D'(Q), i=1,...,n, divu =0} eine notwendige
und hinreichende Bedingung fiir

F=Vp
fiir einp € D'.

Proposition 2 (vgl. [Tem77|, Chapter I, Proposition 1.2): Sei Q C R™ von der Klasse
C%L. Gilt fiir eine Distribution p

Dp € L*(Q), fir alle « € N* mit 0 < |a| < 1,
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dann ist p € L*(Q) und es gilt

121l z2pr < Q) VPl 20 -
fiir
L*(Q)\ R = {p € L*(Q): /p(x) dr = 0} .
Q

Sind
D% € H_1(Q), fir alle « € N" mit 0 < |a] <1,

so gilt ebenfalls p € L*(Q2) mit
||p||L2(Q)\R < () [IVpl_; -

Ist Q lediglich eine offene Teilmenge des R™, so ist in beiden Fillen p € L2 ().

loc

Bemerkung 3: Aus den beiden vorhergehenden Propositionen folgt, dass fiir eine offene
Teilmenge Q C R™ der Klasse C%' und F € H_ () (oder F € L*(Q2)) mit Tr(v) =0 fiir
allev €V gqilt:

F=Vp
fiir ein p € L*(Q) (oder p € H_1(2)).
Satz 4.3.1: [vgl. [Tem77]] Sei Q@ C R", (n = 2,3), eine Menge der Klasse C" fiir

r = max(m + 2,2) und m > —1. Ferner seien f € HP(Q), g € H} . ,(Q) und ¢ €
H? (09) fir 1 < q < oo vorgegeben mit

m+2—1/q
/g(a:) dx:/ -1 ds.
Q o0

Dann gibt es eindeutige Funktion v und eine bis auf eine Konstante eindeutige Funktion
p, so dass (v,p) eine Lisung des Stokesschen Randwertproblems ist und

v e H! ,(Q) sowie p e HY ().

Insbesondere gilt

||U||H3n+2(g) + ”pHan_H(Q)\R < C{ ||f||H$n(Q) + HQHH;;H(Q) + ||90||an+271/(1(39) }7

fur eine von q, v, m und ) abhdngige Konstante C' > 0.

Fiir mehr Details zu den Stokesschen Gleichungen und ihrem nichtlinearen Pendant, den
Navier-Stokes Gleichungen verweisen wir den Leser an [Hut95], [Cho93], [Ari89], [Var07],
[Lio96] [Galll] und [Tem77], sowie die in diesen Biichern angegebene Literatur.
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4.3.2 Das stationare Dirichlet Problem ohne Warmeleitung

Wir konzentrieren uns in diesem Abschnitt auf stationére, viskose und inkompressible
mikropolare Fliissigkeiten ohne Warmeaustausch. Wie wir in Kapitel (a) unter (2.4) und
(2.26) bereits gesehen haben, entsprechen diese Eigenschaften den Bedingungen

0 0
8—::0bzw.a—j:0, >0, dive=0, divg=0,

sodass sich die Bewegungsgleichungen mikropolarer Fliissigkeiten (vgl. Seite 46) auf

dive =0,
p(v-V)v=—=Vp+ (u+ pl)Av+2p curlw + pk,
pl (¢ - V)w =2p. (curlv —2w) + (co + cqa — ¢o)Vdivw + (cq + ca) Aw + pg

reduzieren. Nehmen wir die (homogenen) Dirichlet’sche Randbedingungen hinzu und set-
zen v = pu/p, v¥ = pu¥/p, erhalten wir das Randwertproblem:

Das homogene Dirichlet’sche Randwertproblem

divev = 0, (4.27)

—(v+v))Av+ (v-V)v+ Vp =20 curlw + k, (4.28)

—(Ca+ co)Aw ~+ (w - V)w — (co + cqg — ¢,)Vdivw + 4viw

=2v. curlv +g¢ (4.29)
in €2 mit
v=0 (4.30)
w=0 (4.31)
auf 0€).

Zur Erinnerung: v(z) = v(xy, z2,x3), p(x) und w(x) = w(xy, z2,x3) sind die Geschwin-
digkeit, der Druck und die Mikrorotation der Partikel in der Fliissigkeit. Die Funktionen
k(x) = k(x1,29,23) und g(x) = g(x1, 22, x3) representieren die Volumen- und Oberfla-
chenkréfte, wahrend die positiven Konstanten v, v”, ¢y, ¢,, ¢4 die Materialeigenschaften
der Fliissigkeit charakterisieren; v entspricht der iiblichen Newton’schen Viskositat und
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Y. o, Cq, Cq sind neue Viskositdtskoeffizienten die letzlich auf das Mikrorotationsfeld w
zuriickgehen®. Im Folgenden gehen wir stets von der Annahme

V’U

Co+cqg >, (4.32)

aus.

Fiir p > 1 bezeichnen wir mit H? (Q2) den Abschluss der Menge C*(€2,R™) (n = 1,3) in
der Norm

P

Wl =1 D 1l

0<|al<m

und mit ]-;1(9) den Abschluss der Menge C5°(Q, R?) in der Norm

jul = ([ 10utor dx)é.

Ferner definieren wir V = {u € C5°(Q,R?) : dive = 0} und den Raum V als den Abschluss

von V in H;(€2). Insbesondere setzen wir fiir v, u,w € Hy(2)
b(v,u,w) = (v V) u,w) a2 - (4.33)
Wie man leicht nachrechnet ist
b, ) s Hi(Q) x Hi(Q) x Hi(Q) — R
eine multilineare Abbildung und es gilt:

b(v,w,w) = /Qvl(a:)giz (x)wj(x) dx

= —/Qvl(:v)w](x)gzj () dr = b(v,w,w)=0. (4.34)

Definition 4.3.1 (Schwache Losungen): Wir sagen das Tripel (v, p,w) ist eine schwache
Lésung des Randwertproblems (4.27)-(4.31), fallsv € V, p € L*(Q), w € H (),

/Qp(ff) dr =0,

und die folgenden Integralgleichungen erfillt sind:

v+ v2) (v, 0) b, () H0(0, 0, 90) — (P, div ) 12
=2v; (cwrlw, @) 121q) + (K, ©) 120 (4.35)

3Fiir ¥ = 0 entkoppeln die Differentialgleichungen und fiir vg = cyp = ¢, =cq=0und g = w =0
geht das System (4.27)-(4.29) in das klassische Navier-Stokes-System der Hydrodynamik iiber.



4.3. STATIONARE DIRICHLET’SCHE RANDBEDINGUNGEN 79

fiir alle p € C3°(Q,R?),
(0, VE) 2y = 0 (4.36)
fir alle £ € C3°(2,R) und

(Ca + €a) (W, V) () T0(v,w,¥) + (co + ca — ¢o) (divw, dive) o
+ 4Vc (wv w)LQ(Q) = 2”2) (Curlv ) 7#)LQ(Q) + <g7 1/})[2(9) (437>
fiir alle ¢ € C§° (2, R?).
Wie man leicht sieht, erfiillt jede klassische aber insbesondere auch jede Distributionslo-
sung (entsprechende Regularitét vorausgesetzt) von (4.27)-(4.31) die Bedingungen (4.35)-

(4.37). Fiir den eigentlichen Beweis zur Existenz einer Losung werden wir den Fixpunkt-
satz von Schauder (Satz 4.1.9) benutzen. Dazu konstruieren wir mit dem nachfolgenden

Hilfsproblem zunéchst eine Losung w € Hy(€2) fiir das Mikrorotationsfeld und definieren
basierend auf dieser Losung einen kompakten Operator A, der uns die Anwendung von
Satz 4.1.9 ermoglichen wird.

Lemma 4.3.1 (Hilfsproblem): Sei d = diam Q. Fiir g € L*(Q) und v € V hat

(Co + ca) (W, )y @) +b(v,w, ) + (co + cqg — ¢q) (divw, div @D)Lg + 4v? (w, ¢)L2(Q)
= 21/C (Curl v, QZJ)Lz(Q) -+ (g, ¢)L2(Q)

fiir alle ¥ € C§°(Q,R?) als schwache Formulierung des Randwertproblems (4.29),(4.31)
eine eindeutige Losung w € Hq(Q2). Insbesondere gelten die folgenden Abschdtzungen:

(ca + ca) [lwll; <20 ||v||L2(Q) +dgll > q) (4.38)

2 Wl 2y < wellvlly + ||g||L2(Q)' (4.39)

Beweis. Da alle Terme in (4.37) auf H 1(€2) stetige Formen in ¢ sind, kénnen wir in (4.37)
von ¢ € C*(Q) zu ¢ € Hl(Q) ibergehen. Dann setze fiir (w, ) € Hl(Q) x Hy ()
B(w7 w) = (Ca + Cd) (w7 2b)Hl(Q) + b(”? W, 77Z})
+ (co + ca — ¢a) (divw, div w)ﬂ(g) + vy (w, w)m(ﬂ)
so ist B nach Definition des Skalarprodukts, (3.61) in Satz 3.2.1, (4.33) und unserer

Annahme (4.32) eine positive Bilinearform. Mit der Cauchy-Schwarzschen Ungleichung
(4.8) und der Poincare-Ungleichung (4.20) folgt nun:

|B(w, ¥)] < (ca+ ca)l (W, ) gy | + (0 V)w,90) 12 |
+ (o + cq — ¢a)| (divw, div w)fﬁ(m |+ 4v] (w, w)LQ(Q) |
< (Ca +ca) [lwlly 11l + 1w - V) wll 2 191l 220
+(co + ca — ca) [ divw]| 2 ||d1V¢||L2 + 41/” ]l L2y 191l 20
< Blwly 11y,
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mit 8 > 0. Auch gilt (4.34) so dass mit Korollar 4.1.8
B(w,w) = (€a + ca)l (w,0) g0 | + 1 (V- V) w,0) 2 |
+ (co + ca — ¢o)| (divw, divw) 2q) | + 4| (W, ) p2(q) |

2 . 2 v 2 2
= (ca + ca) lwl[7 + (co + ca = ca) [|div W]l (q) + 407 [[wl[2() = allwlly

mit a > 0. Daher ist B eine stetige, koerzive Bilinearform auf H;(2) x H;(2). Ferner ist die

rechte Seite von (4.37) ein stetiges, lineares Funktional auf H;(£2), sodass die Existenz und
Eindeutigkeit einer schwachen Losung direkt aus dem Lemma von Lax-Milgram (4.1.4)
folgen.

Setzen wir ¢ = w in (4.37), dann ist mit (4.8)

2 v 2 v . 2
(ca + ca) [[w][y + 40¢ lwll72 ) = 20 (curlv,w) o) + (9, W) p2() — (co + €4 = ¢a) |divw]|72 g

<2 (curlv,w)Lz(Q) + (gyw)p(g)

2v ||v]|, |lw +llg w

[P Bl ol 1 "
20 [oll 2 llwlly + 19l L2 1ol L2y -

Die Abschétzungen folgen dann mit der Poincare-Ungleichung (4.20). [ |

Wir tétigen nun einen ersten Schritt zum Existenzbeweis einer Losung (v, p, w) von (4.35)-

(4.37). Dazu definieren wir fiir festes w € I;I(Q) die Abbildung A : V — V, v — Av
durch die folgende Beziehung

(v +v2) (Av.o)

Nach Satz 4.1.6 (Riesz-Fréchet) ist A wohldefiniert. Der von uns bereits angekiindigte

o b(v, ., v) + 2 (cwrlw, @) 12 + (K, 0) 120 - (4.41)
1

Operator A entspricht dem Operator A fiir die eindeutige schwache Losung w € H;(€2) des
Hilfsproblems aus Satz 4.3.1. Im Folgenden werden wir nun zwei Abschétzungen ableiten
und damit zeigen, dass A vollstetig ist und somit nach Satz 4.1.2, aufgrund der Reflexivitat

von Hy(w), kompakt ist.

Lemma 4.3.2: Fir jedes v; € V, w; € H1(Q2) (i = 1,2) mit
(v +v2) (Avi, )

fir alle p €'V, gilt:

@ b(vi, @, vi) + 20 (curlws, ) 2y + (K, ©) 120 (4.42)
1

(v +v)

‘A’Ul — AUQ

< (ol ey + el ) lor = vall g + 202 ooy = ),
Beweis. Durch Subtraktion der Gleichung (4.42) fiir v;,w;, (i = 1,2) erhalten wir
°) (Avy — Auw,, )
v+ 0) (Ao = Avno)

b(vla 2 Ul) - b(v27 2 U2) + 2Vg (CllI'l (wl - w2) ) ¢>L2(Q)
(v1, @, v1 = v2) 4+ b(v1, @, v2) — b(v2, @, v2) + 21, (cwrl (w1 — wa), ) 12
(v1, 0, v1 = v2) + b(v1 — V2, p,v2) + 20 (curl (w1 — wo) 7(:0)L2(Q) :

=b
=b
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Setzen wir nun speziell ¢ = Av; — Av, und benutzen die verallgemeinerte Holder- (4.15)
sowie die Poincare-Ungleichung (4.20) folgt

- _ 2
(v+v) ‘Avl — Avy ‘
1
= b(Ul, A?Jl — /Iv29, U — UQ) + b(Ul — Vg, flvl - A'UQ, UQ)
+ 207 (curl (w1 — wy) ,Avy — flvg)
12(0)
< onllpso ||V (Aer = Aw)]| - lon = vall a0
o= vllyagy | VA0 = Aw)| sl
+ 2 || curl (w1 — wa) [| 20 HAvl — Avg‘ o)
< (Il oy + 0l pacey ) | Ave = Aea| llor = 2ll e
+2d1° |Jwy — wal|, ||Avy — Avy X
Division mit HAM — A’UQH liefert nun die Behauptung. [ ]
1
Lemma 4.3.3: Sind v; € V, w; € Hi(Q) firi=1,2 so, dass
(Ca + ca) (Wi, ¥) g, () H0(vi wi, ) + (co + € — o) (divews, div ) o) + 4 (Wi, ¥) 20
= 2v; (v;, Curlw)m(ﬂ) + (97¢)L2(Q) (4.43)
fiir alle » € H1(Q2), dann gilt:
(Ca + €a) llwr = wslly; < [CQ) llwnlly + 202120 | o1 = 0] ey - (4.44)

Beweis. Der Beweis lauft analog zum vorhergehenden Lemma. Nach Subtraktion der
beiden Gleichungen (4.43) gilt:

(Ca + €a) (W1 + wo, ¢)H1(Q) + b(v1 — v, w1, Y) + b(vg, w1 — wa, )
+ (co + ca — ¢a) (div(wr — w2), dive)) o) + 405 (W1 — w2, 1) 12(q)

= 2v. (v1 — o, curlyy ) 5
Dabei haben wir ausgenutzt, dass b linear in jeder Komponente ist und daher

b(Ul,wlﬂ/J) - b(U2,w27¢) = b(Ul - U27w17¢) + b(%;mﬂﬁ) - b(U2,W2,¢)
= b(v1 — v, w1, ) + b(vy, Wi — wa, V).

Speziell fiir ¢ = w; —wy € ﬁl(ﬂ) folgt nun wegen b(v, w,w) = 0 fiir w € ﬁl(Q)

2 v
- 1= - ) ) - c - ) - .
(Ca+ca) lor — wall}] < [b(v1 — v2, w1, w1 — wa)| 4 207 (w1 — ug, curl (w1 — w2) ) 2
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Nun gilt nach (4.21) und (4.20)

[wlipay < COQ) [lwll, ¥V we Hi(Q) (4.45)
und daher folgt mit der verallgemeinerten Holder- (4.15) sowie (4.20)

2
(ca + ca) [Jwr — wall] < g — U2||L4(Q) ||VW1||L2(Q) Jwr — w2||L4(Q)
+ 21, ||1||L4(Q) lur — u2HL4(Q) | curl (w1 — wo) ”L2(Q)

< C(Q) lvr = vall paqy llenlly flwr — wall;
1
+ 20197 [|v1 = v2| pagq) lwn — w2l -

Die Behauptung folgt nun wieder durch Division mit |jw; — wsl|,. [ |

Lemma 4.3.4: Seien w € H,(Q2) die eindeutige Lisung von

(Ca + ca) (W, ) g, () H0(v,w, 1) + (o + ca — ¢a) (divw, div ) o) + 40 (W, ¥) 2(q)

(4.46)
= 2v¢ (curlv, ¥) 2q) + (9, ¥) 120 (4.47)
fiir alle ¢ € ]:OTI(Q) und A:V — V; v— Av definiert durch
(v +v7) (Av, 0) g, () = b(v, 0, v) + 20 (cwrlw , ©) 12 ) + (K, 0) 120 (4.48)
fur alle ¢ € V.. Dann gilt fir alle vi,v, € V
[Avy = Avsl|; < Cjor — U2||L4(Q) ; (4.49)

fuir
2v2d
Cq + Cq

v\ — v L
€ = 42 { Iy + oal + i (€O el + 22100 ) b (450)

Beweis. Folgt direkt aus Lemma 4.3.2 fiir A = A und Anwendung von Lemma 4.3.3. W

Lemma 4.3.5: Die Abbildung A :V — V definiert durch (4.48) ist vollstetig.

Beweis. Sei (v,)nen eine schwach konvergente Folge in Hi(£2). Nach Definition miis-

sen wir zeigen, dass die zugehorige Bildfolge (Avy,)nen C Hi(§2) normkonvergent ist. Da
schwach konvergente Folgen insbesondere normbeschrankt sind, folgt aus dem Spezialfall
des Rellichen Auswahlsatzes 4.1.7 und Abschétzung 4.1.10 offensichtlich, dass (v, )nen in
L*(Q)) normkonvergent ist. Setzen wir nun in (4.47) v = w erhalten wir mit (4.15) und
(4.20)

2 v
(€a + ca) wlly < 208 [vll 2y llly + 190l 120y @l 2@

o1y L
< (2010 lull oy + Al 2y ) ol
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also
2 . o1y L
lol? < (o + c)™ (202190 lullpagay + gl oy ) Il -

Kombinieren wir nun die Abschétzung (4.49) mit C' wie in (4.50) und unsere gewonnene
Abschétzung erhalten wir

[ Avy — Aval|; < €7 [[vr = val| (o) (4.51)

mit einer Konstanten C1, die linear von [[v1[[ g, » [|v2[|p4(q) und ebenso von v, v, ca, cq, g, |€]
und d abhéngt. Fiir die schwach konvergente Folge (v, )nen gilt somit:

[ Av, = Avplly < C"|vn = vl pagq)
1 3
< V2O ||vn = vl o 1D (0 = V)| 22y
S%@UWm—wwm@QggWD%hmn
< C'|vn = vl p2(gy — 0. fiix n,m — oo

nach Lemma 4.1.7 und 4.1.10. Also ist (Av,)nen eine Cauchyfolge im Hilbertraum H,(€2)
und daher normkonvergent. ]

Lemma 4.3.6: Fir A € [0,1] und A definiert durch (4.48) sei v € V die Losung der
Gleichung

v = Mv. (4.52)

Dann gilt
lll, < A@v) 7 llgll 2y + Adv™" 1Kl 2q) (4.53)
Beweis. Fiir A = 0 ist die Aussage trivial. Sei also A > 0. Da
8uk
(v, curly) o) = /Qv,(x)azjka—xj(x) dx
v,
=— g sz(x)ezjkuk(x) dx

8v,~
— /ngﬁa—%(x)uk(x) dr = (curlv,z/J)Lz(Q)

fir alle v € V und ¢ € ﬁl(ﬂ) ist, gilt fiir die eindeutige Losung w € H;(2) von (4.43)
nach Lemma 4.3.1 die Ungleichung (4.39). Setzen wir nun Av = A~'v und ¢ = v in (4.48),
erhalten wir mit (4.8) und (4.20)

AW +v) vl = 208 (curlw, 0) o) + (K, 0) 120
=2v; (w, CUFIU)B(Q) + (kav)LQ(Q)
< 2v/| curlv HL?(Q) HWHLQ(Q) +d Hka(Q) HuHLQ(Q)

< (202 1wl 2y + A 1l 2y ) ol
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mithin
(v +v2) vlly < 2007 [wl[ p20) + dA [El 12(q) -

Zusammen mit (4.39) folgt nun
v+ ve) ol < M2 ol + 27 M gl o) + dA 1l 2q)
und somit

vill, < (v+ve (L= llolly <27 Mgl 2y + dA 1] L2 gy

>0

Wir gelangen nun zum Kern dieses Abschnitts und zeigen die Existenz und unter ge-
eigneten Voraussetzungen an die Viskositatskoeffizienten, auch die Eindeutigkeit einer
schwachen Losung (v, p,w) von (4.35)-(4.37).

Satz 4.3.2 (Existenz einer schwachen Losung): Sind k, g € L*(Q2), dann hat das Dirich-
let’sche Randwertproblem (4.27) - (4.31) eine schwache Ldsung.

Beweis. Die Existenz einer Losung w € H'(Q) von (4.37) folgt aus Lemma 4.3.1. Zu
diesem w definiere nun A wie in (4.48), dann ist A nach Lemma 4.3.5 vollstetig und
wegen Satz 4.1.2 damit ein kompakter Operator auf V. Insbesondere folgt aus Lemma
4.3.6 fiir alle v € V und o € [0, 1] mit v = o Aw:

lolly < 20) " llgllra@) +dv " Ml o) =7 <= veB(0)CV.

Der Fixpunktsatz von Leray-Schauder (vgl. Satz 4.1.10) liefert daher ein v € V' mit
Av = v, fiur das

lolly < 20) " gl p2g) + dv " 1kl 2y (4.54)

Fiir die Existenz einer schwachen Losung (v, p,w) des Dirichlet’schen Randwertproblems
bleibt somit zu zeigen, dass es ein p € L*(Q) gibt mit

/Qp(x) der =0

fiir die (4.35) mit diesem v erfiillt ist. Dazu setzen wir (vgl. (4.28))

~

k(v) =2v)curlw + k+ (v +v))Av — (v- V) - 0.

Dann ist offensichtlich & € H_;(€) dem Dualraum zu }}1(9) und 7T (v) = 0 fiir alle v € V.
Nach Bemerkung 3 gibt es daher ein p € L?(2) mit

k=Vp und /p(:z:) dr = 0.
Q
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Satz 4.3.3 (Eindeutigkeit der schwachen Losung): Ist die Newton’sche Viskositit v grof§
genug, so ist die schwache Losung des Dirichlet’schen Randwertproblems aus Satz 4.3.2
eindeutig.

Beweis. Seien (vi,p1,wi) und (ve,pa,ws) zwel schwache Losungen von (4.27)-(4.31).
Dann gilt fiir i = 1,2 und alle ¢ € V

(v +v7) (v, @)Hl(n) + b(vs, vi, ) = 20 (curlw;, SO)LQ(Q) + (k, 90)L2(Q) ) (4.55)

sowie fiir alle ¢ € I—.(;l(Q)
(Ca + Cd) (wia ¢)H1(Q) +b<vi7 Wi, w) + (CO + Cqg — Ca) (le Wi, dlv,lvz))[ﬁ(ﬂ) + 4”};} (wh Q7D)H1(9)
= 2v; (curlv; aw)H(Q) + (9. ?/1)L2(Q) : (4.56)

Subtrahieren wir die ersten beiden Gleichungen (4.55) voneinander und setzen ¢ = vy —
vy € V erhalten wir mit der verallgemeinerten (4.15), Lemma 4.1.10 und (4.20)

(w+v2) v — valf:

= 2v! (w1 — wy, curl (v; — vy) )LZ(Q) — b(vy — vg,v9,v1 — Vg)
v 2
< 20 [l — UJ2||L2(Q) | curl (vy — v2) ||L2(Q) + ||VU2||L2(Q) o1 — "02||L4(Q)
Y 1 3 2
< 202d [l — sl lor = wall, (V2101 = wall ey 1001 = v2)l o)
< 2[ [v2l; lor = vally + vid [jwr — W2||1] 1 = val|;
d. h.
(v + ) lor = vally < 2||vally flor — vall; + 20¢d [Jwr — wal|; - (4.57)
Dabei haben wir ausgenutzt, dass (v, curlz/J)Lg(Q) = (Curlv,w)LQ(Q) fir allev € V, ¢ €

H{(Q) und b linear in jeder Komponente ist; mithin

b(Ul,Uh%U) - b(U27U27¢) = b(Ul - 02702,@/)) - b(vl,v2,¢) + b(vlavhw
= b(v1 — va, 2, ¢) + b(v1, V1 — V2, 7).

Subtraktion der letzten beiden Gleichungen (4.56) liefert nun fiir ¢ = w; — wy € H1(Q)
(ca + a) llor — wall§ +b(v1 — va, wa, w1 — ws) + 417 [|wr — wall72 (g
< 2v! (curlv; — vy, wy — WQ)LQ(Q)

Mit der verallgemeinerten Holderungleichung (4.15), der Poincareungleichung (4.20) und
(4.45) folgt nun:

(Ca + ca) lwn — wal}
= b(vy — vy, ws, wy — wa) — 4V ||lwy — wQHiQ(Q) +2v7 (curlvy — vg ,wy — wg)LQ(Q)
< [b(v1 — va,wa, w1 — wa)| 4 20 (curlvr — vy, W1 — W) 2o
< flor = U2HL4(Q) HVW2HL2(Q) [lwr = W2HL4(Q) + 2 || curl (v1 — v2) HL2(Q) lwr — W2HL2(Q)

< [C@ llwally + 202 lon = vl lor — el
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d.h.
(ca + ca) or —wally < [C(Q) lwnl, +2024] for — (1.58)
Kombinieren wir (4.57) und (4.58) folgt

(v+v7) o1 — o]
< 2f Yjosll, + v2d(ca + ca) ™ [C(Q) leally + 202 } lon = vl (4.59)

Auch gilt mit (4.38), (4.20) und (4.54)

1

Jeally < (ea + ca) {202 0ll 2y + 92 }
< (cat ) {2 oll, + gl 20 }
< (ca+ ) {202 (2 gLz + v Whll oy | + ooy |
< (a+ca)

ot ca) {200y ] 2y + v + 1) gl a0 - (4.60)
Zusammengenommen folgt aus (4.59), (4.60) und (4.54)
(v 4 v2) [Jor — vally < CJor — wal| (4.61)
mit
C= [Qdy’l +4d3C(9Q) (ca + ca) 2| v k] 2y
+ [+ 2O (e + ca) P )] Nl o + 200
Ist nun v so grof, dass v + v > C, impliziert (4.61)
Uy = Us.

Wie schon in Abschnitt 4.1.4 angekiindigt versuchen wir nun die gefundene Losung in
Réume hoherer Regularitéit einzubetten. Dabei erwenden wir einerseits die Erkenntnisse
aus 4.1.4 und andererseits bekannte Regularititseigenschaften elliptischer partieller Dif-
ferentialgleichungen zweiter Ordnung.

Satz 4.3.4 (Regularitdt der schwachen Losung): Unter den Voraussetzungen von Satz
4.83.2 qilt
u € H3(Q), p€ HF () und w € H3(Q).

Insbesondere gilt
[ull 20y + 1Pl a2i0) + 0l gz < F UK L2 5 1902 (0)s (4.62)

fiir eine stetige, monoton wachsende Funktion F', mit F(0,0) = 0.
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Beweis. Wir schreiben das Dirichlet’sche Randwertproblem (4.27)-(4.31) in der Form

v+ A+ Vp=k+2lcurlw — (v-V)v =k inQ,
dive =0 in €, (Prob 1)
L v=20 in 012,
—(Ca + ca)Aw — (co + ¢4 — )V divw + 4w
=g+2v curlv —(v-Viw=:§ inQ, (Prob 2)
w=20 in O0€).

Betrachten wir zunéchst das erste Problem (Prob 1) in (v, p) zu gegebenem w € I—}l(Q)

Als Spezialfall des Stokesschen Randwertproblems kénnen wir darauf Satz 4.3.1 anwenden
und erhalten

. sy < C Hk” , 463
[0l gy + 11PNl o) < o) (4.63)

fiir q >1lund k=k+2v¢ curlw — (v- V)v, mit w € hOTl(Q) und v € V. Wihlen wir nun

q = 2 in (4.63), folgt aus der Einbettung H;(Q) — L°(Q) (vgl. Lemma 4.1.11) und der
Holderunglemhung (4.13)

16 Vi@ de <0 [ p@)fivu@ a
gC(/Q lo(z)[° da:) (/vau(x)ﬁ da:)i
<C (/Q IVo(xz)[? dx)i (/Q |Vo(z)|? dx)i,

mithin

[0 V)l 0 < ClIVIEa0y = C ol (4.64)

Nun sind nach Voraussetzung k € L*(2) und w € P?l(Q) Dann ist k£ 4+ 2 curlw €
L3(Q) C L*?(Q) und somit k € L¥?(2). Aus (4.63) folgt daher

ve HY*(Q) und p € HB/Q(Q)

Auch gilt HY?(Q) < H3(Q) — L5(Q) (vgl. [Ada03]), sodass mit (4.13)

I(0 - V)ol3ey < C / [o(@)2IVo(2) dr < C ( / 0(@)]° dx)é ( / Vo) d)

und daher

10 - V)l 2y < C lollpsgoy V0l sy < Cllvlly 1oll g2 g, - (4.65)
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Zusammen mit k + 2v¢ curlw € L2(Q) folgt daraus k& € L*(Q) und nach (4.63) fiir ¢ = 2:
v e H;(Q) und p € HY(Q).

Betrachten wir nun das Problem (Prob 2) in w zu gegebenem v € H2(Q2). Dann gilt
(0 V)l < € [ @) ITe@) do < Coss supucn ula)? [ Voo do

und somit wegen H2(Q) — C%/2(Q)
10 - V)l 20y < Clloll ey Il < C loll gy Il - (4.66)

Dabher ist
Gg=g+22curlv — (v-V)w € L*().

Nun ist (Prob 2) ein elliptisches partielles Differentialgleichungssystem zweiter Ordnung
fiir deren eindeutige Losung (vgl. [Eva02|, Section 6.3, Theorem 4) w gilt:

w € H3(Q) und [[wl| 73y < C'll3l p2(q) - (4.67)

Kombinieren wir (4.63) fiir ¢ = 2 mit (4.65), (4.54) und nehmen (4.67), sowie (4.60) fur
w statt wo hinzu, erhalten wir direkt die Abschétzung (4.62). |



Anhang A

Anhang

A.1 Vektor- und Tensoridentitaten

In Teil A des Anhangs finden sich essentielle Nebenrechnungen und Identitidten, deren
Beweis mehr einer mathematischen Fingeriibung entspricht, als dass sie das Verstédndnis
der im Hauptteil behandelten Themen erleichtert. Im Wesentlichen werden dabei die
bei der Herleitung der Bewegungsgleichungen mikropolarer Fliissigkeiten auftretenden
Skalarprodukte berechnet.

A.1.1 Erganzungen zur Vektoranalysis

Fir f: R" x Ryg — R; (x,t) — f(x,t) und F' : R" x Ryg — R"; (x,t) — F(x,t)
ist

div (f(yc,t),F(x,t)) _ 0 (f(x,t)ﬂ(x))

X4

(/) F) 20 S R

F(z,t) - Vof(z,t) + f(z,t)div F(x,1). (A1)

Q

3

-
Il

In Kapitel 2 haben wir die substantielle Ableitung

_ 99

@(%t) — E(:p,t) + (v(z,t) - Vi) d(z,t)

Dt

einer skalaren oder vektoriellen Grofe ¢(x,t) eingefiihrt. Ist z : Rsg — R ¢ — z =
x(t) der Ort eines Teilchens und v = v(z,t) = &(t) die Geschwindigkeit des Teilchens am

89
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Ort x zur Zeit t, so gilt

D D
E (ZL‘ X U) = E(gijkmjvk>
DCBJ‘ ka
= Eijk Dt Vg + €5jkT; Dt

6 8:1:]- i 83:]- te D’Uk
= &5 —_— vV— | U ikl |\ ——
ot Ty ) R TR Dt

ka
= Eijk (Uj + ’Ul(Sﬂ>Uk + EijkT; Tlf

DUk
= €ijl<:vjvk + Eijkxj D_t

Dy, Dv

A.1.2 Das Levi-Civita-Symbol alias der s-Tensor

Bekanntlich ist das Levi-Civita Symbol definiert durch (vgl. (1.2))

1, falls (ijk) eine gerade Permutation von (123) ist.
gijk = & —1, falls (ijk) eine ungerade Permutation von (123) ist.

0, falls mindestens zwei Indizes gleich sind.

Durch direktes Nachrechnen zeigt man leicht, dass

S O O S 01 O
Eijk = (Sj (5]' 5]' = (Sig 5]' 5192 . (AB)
5]61 5]62 61@3 62'3 5]' 5]63
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Daraus folgt

0i1 O 0 on Omi O
(1) €ijk€lmn: 5]' (5]‘ (Sj . 512 5m2 5712
Okt Ok2 Oks 013 Om3  On3
51'1 51'2 5i3 5l1 5m1 6n1
= 5]’ 5j2 5j3 : 5l2 6m2 5712
5]{31 51{:2 51:3 5l3 5m3 5713
5is5ls 5i55ms 5i55ns 5il 5zm 5zn
= | 6,305 0;0ms OisOns | =| 61t Ojm Ojm (A4)
(5k55ls 5k55m3 5k55ns 5]6[ 6km 5kn
ou im0
(2) €ijk€imk = 5]' 5]' 5]'
61@1 5km 6kk

= 0i10imOkk + OimOjkOki + 0ik0j10km — O0k10jmOik — OkmO;k0it — Okk0;10im
= 30i10m + Oim0j1 + 0im0ji — 0it0jm — 0jmOi — 30;10im
= 0:0jm — 0;10im (A.5)

(3) 5ijk5ljk = 51‘5(5]'3‘ — 5]'[52']' = 3(515 — (51‘1 = 25zl (A6)

A.1.3 Das Tensorskalarprodukt (A, B)gsxs

Das in Kapitel 2 bei der Herleitung eingefiihrte Produkt
<A, B>R3X3 = tr(ABT)

zweier Tensoren A, B € R3*3 hat die schone Eigenschaft, dass bzgl. dieses Skalarproduktes
symmetrische und schiefsymmetrische Matrizen orthogonal zueinander stehen. Fiir einen
schiefsymmetrische Tensor W und einen symmetrischen Tensor S gilt ndmlich

(S, W)gsxs = tr(SWT) = tr(WST)
= tr(WS)
= tr(SW) = — tr(SWT)
= — (S, W)gsxs = (S, W)gsxs = 0. (A.7)

A.1.4 Erganzungen zu Kapitel 3

Die Ergebnisse zur Beschaffenheit der Spannungstensoren mikropolarer Fliissigkeiten ha-
ben wir in Kapitel 4.50 benutzt um die Bewegungsgleichungen (3.1) zu konkretisieren.
Dabei haben wir die Berechnung einiger autretender Terme {ibersprungen und reichen sie
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nun an dieser Stelle nach. Es ist

(1) 2 axl (skew T')
— i | = p+ Atr D] 0y + 2uDyp + 2412(B — D))

v, Ov ov,  0v;
= [L€;jk (8 + (%;) + [o€ijk ((%j 695; + 26mkjwm>

= _Eik'avk+€z kav +,u €ij ka +€zk a +4/~L 6zmwm
Ja J ax c J 8 Ja c

= ,u( — (Curlv)i + (Curlv)i> + by ((Curlv)i (curlv)i> + dppw;
= 4pu; (w - % curlv>

= —4p? axl (W + L) (A.8)

(2) (M,Vw>R3x3
Ow;  Ow; Ow; Ow;\ Ow;
_ . 1 9 ) j 9 i j 7
(co- tr(w) + 2¢q (a j_'_ 8@) + 2¢q (31’3 a ,)’axj>
o tr(w)? + o Ow; e (%)J Ow; N % (%;J Ow;
- d 890] 8@ Oz, Ox; 8xz Oz,
= cotr(w)? 4 (ca + ca)(Dw, Dw)gsxs + (cg — o) (Dw, Dw’ Y gsxs (A.9)

Auch gilt mit (A.5):

. 1 81)1' (%j (%i (%j
<I/V’ W>R5X3 N 4 (al'] 8:1:) <8$J 8:1:1>
l (%l- 2 _ 2(91)1 c%j 4 c%j 2 . l (%i 2 _ 81}@' (%j
4 8:15]- al'j (9.1'1 (9.1'1 N 2 8xj al’j (95EZ
oy, (%m
EZJkEzlma 837[
oy, 8vm
= (010km — OjmOk1) =— I 8951

_ Oug Ouy, B Oup Qvy [ Ov; 2 B 0v; Ov;
- Ox; 0x; Oxy, O Oz, Ox; Ox;

(curlv, curlv) =

— 2<W, W>R3><3
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Damit konnen wir nun auch den letzten Term berechnen:
(3) (symT, D)gsxs + (skew T, W)gsxs = (T, L)psxs
= <[—p+ AtrD}]l +2uD 4 20 (W + W), L)gsxs
— [ — p+ Adiv v] (1, L)gsxs + 20u(D, L)gsxs
+ 2pe ((W, L)gsxs + (W, L)gsxs)

dv;
= [ —p+ Adiv v] div o + 2u(D, D)gsxs + 2pe (W, W )gaxs — QMZijia—vwm
Lj
= —pdive + A(dive)? + 2u(D, D)gsxs
+ po{curlv, curlv) — 2ul( curlv , w). (A.10)

A.2 Weitergehende Satze

Bei der Untersuchung des Dirichlet’schen Randwertproblems fiir mikropolare Fliissigkei-
ten haben wir in Kapitel 4 insbesondere den Riesz’schen Darstellungssatz und das Lemma
von Lax-Milgramm auf separablen Hilbertrdumen eingefiihrt. Dabei hatten wir bereits be-
merkt, dass im Allgemeinen auf die Separabilitdt der Raume verzichtet werden kann. Zur
Bestétigung dieser Bemerkung werden wir in diesem Abschnitt eine allgemeine Formulie-
rung dieser Sitze geben.

A.2.1 Der Riesz’sche Darstellungssatz

Satz A.2.1 (Riesz’scher Darstellungssatz): Sei H ein Hilbertraum und L € H'. Dann
gibt es genau ein uw € H mit

L(v) = (u,v) VveH. (A.11)
Beweis.

(1) (Existenz:) Sei N := {v € H|L(v) = 0} der Kern von L. Da L : H — K stetig ist
gilt fiir (vy,)neny mit v, — v:

0= L(v,) — L(v),

d.h. v € N und daher ist N ein abgeschlossener, linearer Teilraum von H. Ist
N = H, so ist L das Nullfunktional und wir kbnnen v = 0 wahlen. Sei also N ein
echter Teilraum von H. Dann ist H = N @& N+ und wir wihlen ein z € N+ mit
L(z) = 1. Fiir beliebiges v € H gilt dann

L(v— L(v)z) = L(v) — L(v)L(z) =0, d.h. v—L(v)z € N.

Folglich ist

0= (z,v—L(v)z) <= (z,v)=L(v){z,2) <= Lv)= (ﬁ,v),
d.h. wir konnen .
TET

wahlen.



94 ANHANG A. ANHANG

(2) (Eindeutigkeit:) Sei v’ € H ein weiteres Element mit L(v) = (v, /). Dann ist
0=L(v)— L(v) = (u,v) — (u,v) = (u—u',v) YVveH
und wahlen wir speziell v := u — u’ folgt daraus

u—UP=0 = wu—-u=0 <— u=1.
| |

A.2.2 Das Lemma von Lax-Milgramm

Satz A.2.2 (Lax-Milgram): Sei H ein Hilbertraum, B : H x H — K eine stetige und
koerzive Bilinearform, d.h. 3 a > 0, sodass

|B(u, )| < alull - |lo]| und Blu,u) > Bllul* ¥ u,ve H. (A.12)
Dann gibt es fiir jedes stetige lineare Funktional L : H — R ein eindeutiges u € H mit
B(a,v) = L(v) YwveH. (A.13)

Beweis. Wir zeigen zunéchst die Existenz von @ € H. Fir u € H fest ist v — B(u,v)
ein stetiges lineares Funktional auf H. Nach dem Ries’zschen Darstellungssatz gibt es
daher fiir jedes u ein eindeutiges w € H mit

B(u,v) = (w,v) VwveH.

Dies definiert eine lineare Abbildung T': H — H; u +—— Tu := w, denn fiir alle v € H
ist

B(Auy + pug, v) = AB(uy,v) + B(us,v)
= MNTuy,v) + p(Tuz, v) = (ANTuy + pTug,v),

also nach Definition von T: T'(Auy + pug) = ATuy + pTug. Ferner ist T' beschrankt:
|Tull* = [(Tw, Tu)| = |B(u, Tu)| < alu]| - [Tu| <= |[Tul < allu]
und es gilt fiir alle u € H:
Blul® < Blu,u) = (Tu,u) < |Tull - ul| <= Bllull < | Tu],

d.h. T ist injektiv und stetig. Ist aukerdem (w,),en eine Folge in im{7} C H mit
w, = Tu, und w, — w, so gilt nach obigem:

luj — wrll < B7HIT(uy — wi)ll = B~ |w; — wi || — 0 fiir j, k — oo,

d.h. (up)nen C H ist eine Cauchyfolge die gegen ein Element u € H konvergiert. Dann
ist

w = lim w, = lim Tu, =Tu € im{T'}
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und daher im{7T'} abgeschlossen. Es gilt sogar im{7T'} = H, denn fiir w € im{T"} + folgt
aus (4.2)
0= (Tw,w) = B(w,w) > B||w|* >0,

also w = 0 und damit im{7}+ = {0} bzw.
im{7T} = {7} = (im{T}+)" = {0}" = H.

Insgesamt folgt somit, dass T linear, beschrinkt und bijektiv, also insbesondere invertier-
bar ist.

Sei nun L : H — K ein lineares stetiges Funktional. Nach dem Ries’zschen Darstellungs-
satz gibt es ein w € H mit (v, w(= L(v) fir alle v € H. Setze nun

0 =T,

dann gilt fiir alle v € H:
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