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Kapitel 1

Einleitung

Die Beschreibung und Untersuchung hydrodynamischer Phänomene mit mathematischen
Methoden ist eine interessante und für viele Bereiche in Industrie und Forschung bedeut-
same Aufgabe der Mathematik. Die bekanntesten Modellen in dieser Disziplin sind die
klassischen Stokesschen Gleichungen und ihr nichtlineares Pendant, die Navier-Stokes-
Gleichungen. Mit ihnen lässt sich aber nicht nur die Strömung von Flüssigkeiten, sondern
auch die Bewegung von Gasen etwa in der Luftfahrtindustrie untersuchen. Grundlegende

Abbildung 1.1: Wolken-Wirbel auf der Leeseite eines Berges auf den Juan Fernandez
Islands im Pazifik längs einer Kármánschen Wirbelstrasse (Satellitenaufnahme der durch
die Juan-Fernández-Inseln entstehenden Wirbel, NASA, landsat / Wikipedia)

Probleme dieser Theorien sind das Fehlen einer globalen Lösungstheorie sowie die unzu-
reichende Beschreibung von Flüssigkeiten in denen sich mikroskopische Partikel mit der
Flüssigkeit mitbewegen1.

Die Theorie mikropolarer Flüssigkeiten verallgemeinert die Navier-Stokes-Gleichungen
und versucht diesen Mangel auszugleichen. Physikalisch betrachtet, handelt es sich da-
bei um viskose Flüssigkeiten in denen sich zufälig orientierte, mikroskopisch kleine, star-
re Partikel mitbewegen, die um ihre eigene Achse rotieren können. Beispiele dafür sind

1Die Navier-Stokes-Gleichungen vernachlässigen zum Beispiel die Effekte, die durch die Eigenrotation
der Partikel auftreten.

3



4 KAPITEL 1. EINLEITUNG

zum Beispiel das menschliche Blut, Schmiermittel in der Industrie oder auch die Na-
notechnologie in der Medizin. Mathematisch unterscheiden sich diese Flüssigkeiten von
klassischen Fluiden dadurch, dass man bei ihrer Beschreibung zusätzlich zur Bewegung
der Flüssigkeit, auch eine überlagerte Mikrorotation der Partikel berücksichtigen muss.
Eine Konsequenz dieser Neuerung ist die Tatsache, dass der Spannungstensor, der die
auf die Flüssigkeit einwirkenden Kräfte modelliert, im Gegensatz zum klassischen Fall
nicht notwendigerweise symmetrisch sein muss. Ausserdem muss man einen zusätzlichen
Momentenspannungstensor einführen, der die Wechselwirkung der rotierenden Partikel
untereinander und mit der Flüssigkeit beschreibt.

Das Ziel dieser Diplomarbeit ist es einen umfassenden Einblick in die mathematische
Theorie der mikropolaren Flüssigkeiten zu geben. Insbesondere untersuchen wir die kon-
stitutiven Beziehungen dieser Fluide, ihre Eigenschaften und ihre Wechselwirkung zwi-
schen der eigentlichen Bewegung des Fluids und der Partikelbewegung. Wir werden die
Differentialgleichungen, die die Bewegung der Flüssigkeit und der Mikropartikel in der
Flüssigkeit bestimmen, ableiten und analysieren. Dabei werden wir ausgehend von der
Theorie stokesscher Flüssigkeiten die Materialgesetze diskutieren, die die Natur , also die
Eigenschaften mikropolarer Fluide beschreiben und daraus fundamentale Erkenntnisse
über die Struktur der Spannungstensoren gewinnen. Anschließend werden wir die nötigen
mathematischen Werkzeuge bereitstellen um abschließend ein mathematisch einfaches,
aber daher leider nicht sehr realistisches, Randwertproblem zu untersuchen. Wir werden
Bedingungen für die Existenz und Eindeutigkeit von Lösungen dieses Problems ableiten.

1.1 Notation

In dieser Arbeit verwenden wir stets die Einsteinsche Summenkonvention, d. h. über dop-
pelt auftretende Indizes innerhalb eines Produktes wird summiert. So lautet zum Beispiel
das Matrixprodukt zweier n × n-Matrizen A = (aij)1≤i,j≤n und B = (bij)1≤i,j≤n in Kom-
ponenten

(A ·B)ij = aikbkj =
n∑

k=1

aikbkj.

Wir definieren das Kronecker-Symbol δij und das Levi-Civita-Symbol ǫijk durch

δij =

{

1, falls i = j

0, falls i 6= j
(1.1)

und

ǫijk =







1, falls (ijk) eine gerade Permutation von (123) ist.

−1, falls (ijk) eine ungerade Permutation von (123) ist.

0, falls mindestens zwei Indizes gleich sind.

(1.2)

Vektoren werden wir mit Kleinbuchstaben, Tensoren zweiter Stufe mit Großbuchstaben
bezeichnen. Sind u und w Elemente eines euklidischen oder unitären Vektorraums, so be-
zeichnet 〈u, w〉 stets das Skalarprodukt der beiden Vektoren. Mit R3×3 bezeichnen wir den
Raum der (reellen) Tensoren zweiter Stufe und schreiben AT bzw. A−1 für den transpo-
nierten bzw. inversen Tensor zu A ∈ R

3×3. Die Gruppe der regulären (d. h. invertierbaren)
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Tensoren zweiter Stufe bezeichnen wir mit GL(3) und definieren die Gruppe der speziellen
orthogonalen Tensoren zweiter Stufe durch

SO(3) :=
{
A ∈ GL(3)|ATA = 1 und detA = 1

}
(1 : Einheitstensor).

Die Lie-Algebra zur Gruppe SO(3) enthält genau die schiefsymmetrischen Tensoren zwei-
ter Stufe und wird im Folgenden mit so(3) := {W ∈ SO(3) : W +W T = 0} bezeichnet.
Für einen beliebigen Tensor W ∈M

3×3 definieren wir den axialen Vektor axlW durch

axlW × η = Wη ∈ R
3 ∀ η ∈ R

3. (1.3)

Da der axiale Vektor eines symmetrischen Tensors verschwindet ermöglicht die Abbildung
axl die kanonische Identifikation des so(3) mit dem R

3.

D stehe grundsätzlich für einen Differentialoperator, für dessen Anwendung auf ein Ele-
ment v des betreffenden Raumes wir Dv schreiben. Hängt v von mehreren Variablen
x, y, . . . ab und bezieht sich der Differentialoperator D lediglich auf die Variable x, so
bezeichnen wir ihn mit Dx und schreiben entsprechend Dxv. Die dadurch festgelegten
linearen Abbildungen Dv bzw. Dxv angewendet auf ein weiteres Element u schreiben
wir als Dv(u) bzw. Dxv(u). Für die Ableitung von v nach der Zeit t verwenden wir die
Abkürzung

v̇ :=
dv

dt
= Dtv

und werden für die Bezeichnung partieller Ableitungen auch die Schreibweise

∂j :=
∂

∂xj
, ∂nj := ∂j . . . ∂j

︸ ︷︷ ︸

n

benutzen. Ferner übernehmen wir aus der Vektoranalysis die Bezeichnungen

divF (x) :=
∂F1

∂x1
(x) +

∂F2

∂x2
(x) +

∂F3

∂x3
(x) =

∂

∂xi
Fi(x)

bzw.

curlF (x) :=





∂2F3(x)− ∂3F2(x)
∂3F1(x)− ∂1F3(x)
∂1F2(x)− ∂2F1(x)



 = ǫijk
∂

∂xj
Fk(x)

für die Divergenz bzw. die Rotation des Vektorfeldes F = (F1, F2, F3) : R
3 −→ R

3.

1.2 Symbolverzeichnis

δij Kronecker-Symbol

ǫijk Levi-Civita-Symbol

~n äußere Einheitsnormale
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GL(3) Gruppe der regulären (d. h. invertierbaren) Tensoren zweiter Stufe

SO(3) Gruppe der speziellen orthogonalen Tensoren zweiter Stufe

so(3) Gruppe der schiefsymmetrischen Tensoren zweiter Stufe

axlW die kanonische Identifikation des so(3) mit dem R
3

L = Dxv Geschwindigkeitsgradient

D = 1
2
(L+ LT ) rate of deformation tensor, symmetrischer Anteil des Geschwindigkeits-

gradienten

W = 1
2
(L− LT ) vorticity tensor, schiefsymmetrischer Anteil des Geschwindigkeitsgradi-

enten

T Cauchy-Spannungstensor

M Momentenspannungstensor

B = LT +W rate of microdeformation tensor

1 Einheitstensor

F = DXx Deformationsgradient

R̄ Mikrorotationstensor

W microgyration tensor

ω microgyration vector

Q orthogonale Transformation

∂Ω Rand der Menge Ω

dist(x, y) Abstand von x zu y



Kapitel 2

Die Dynamik mikropolarer

Flüssigkeiten

Der erste Schritt zur mathematischen Analyse und Untersuchung natürlicher bzw. na-
turwissenschaftlicher Phänomene besteht in der Modellierung dieser Phänomene. Dabei
versuchen wir, basierend auf den bekannten Naturgesetzen, die wesentlichen Paramteter
eines Phänomens zu erfassen und sie in Relation zueinander zu setzen. Die so entstehen-
den Zusammenhänge ermöglichen uns dann Prognosen für die zukünftige Entwicklung
des Phänomens zu erstellen. Im folgenden Kapitel werden wir daher, in Anlehnung an
[Luk99] und unter Berücksichtigung fundamentaler physikalischer Gesetzmäßigkeiten wie
der Massen- und Impulserhaltung, ein Modell in Form von Differentialgleichungen herlei-
ten, das die Bewegung von (mikropolaren) Flüssigkeiten charakterisiert. Wir setzen dabei
grundsätzlich voraus, dass alle auftretenden Funktionen und Gebiete hinreichend glatt
sind.

2.1 Euler- und Lagrange Bild

Bezeichnet Ω(t) ⊂ R
3 das von der Flüssigkeit zur Zeit t eingenommene Gebiet, so heißt

Ω := Ω(0) Referenz- oder Ausgangskonfiguration. Jede Größe, die den Zustand der Flüs-
sigkeit beschreibt, wie bspw. Temperatur, Dichte oder Geschwindigkeit, kann entweder
in

(1) materiellen Koordinaten (Lagrange-Bild):
Hierbei verfolgen wir die Bewegung eines Massenpunktes P , der zur Zeit t = 0 am
Ort X in G war. Größen, die sich auf diesen Massenpunkt beziehen, werden bei einer
Deformation von ihm mitgenommen, so dass z. B.

V (X, t) bzw. Θ(X, t)

die Geschwindigkeit bzw. die Temperatur des Massenpunktes sind, der sich zur Zeit
t = 0 am Ort X befand.

oder in

(2) räumlichen Koordinaten (Euler-Bild):
Hier betrachten wir einen festen Punkt x ∈ R

3 im Raum, an dem sich zu verschie-
denen Zeiten t, verschiedene Massenpunkte befinden können. Die in diesem Punkt

7



8 KAPITEL 2. DIE DYNAMIK MIKROPOLARER FLÜSSIGKEITEN

gemessenen Größen, wie die Geschwindigkeit v(x, t) oder die Temperatur θ(x, t) haf-
ten also nicht mehr einem bestimmten Massenpunkt an, sondern beziehen sich auf
eben den Massenpunkt, der sich zur Zeit t gerade an dieser Stelle im Raum befindet.

dargestellt werden. Bei den Bezeichnungen werden wir im Folgenden Funktionen in mate-
riellen Koordinaten mit Großbuchstaben und Funktionen in räumlichen Koordinaten mit
Kleinbuchstaben bezeichnen. Beide Darstellungen sind äquivalent zueinander: Beschreibt

Abbildung 2.1: Ω(t) - Referenzkonfiguration

nämlich Φ die Transformation von Ω zu Ω(t), so ist

x = x(t) = Φ(X, t). (2.1)

Natürlich sollte diese Transformation stetig invertierbar sein, so dass

X = Φ−1(x) (2.2)

existiert. Aus dieser Forderung können wir sofort ableiten, dass

0 < detDXΦ(X, t) = det

(
∂xi
∂Xj

)

ij

<∞ ∀ t ≥ 0

gelten muss. Neben der mathematischen Notwendigkeit lassen sich diese Forderungen auch
physikalisch motivieren:

(1) Φ sollte bijektiv sein, denn zwei unterschiedliche Massenpunkte können sich nicht
gleichzeitig an ein und demselben Ort im Raum befinden und natürlich war ein
Massenpunkt, der sich zur Zeit t in Ω(t) befindet auch schon in Ω vorhanden.

(2) Die Jacobi - Determinante det∇XΦ(X, t) sollte überall positiv sein, denn wegen

vol(Ω(t)(t)) =

∫

Ω(t)

1 dx =

∫

Ω

| det∇XΦ(X, t)| dX

ist det∇XΦ(X, t) ein Maß für das Volumen von Ω(t). Da sich das Volumen aus physi-
kalischer Sicht nicht auf einen einzigen Punkt zusammenziehen kann, muss demnach
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det∇XΦ(X, t) 6= 0 (aus mathematischer Sicht zumindest fast überall) sein.1 Ferner
kann demnach det∇XΦ(X, t) < 0 ausgehend von einer Referenzkonfiguration mit
det∇XΦ(X, t) > 0 nicht durch einen stetigen Prozess erreicht werden, so dass wir
zu allen Zeiten det∇XΦ(X, t) > 0 fordern.

Im Folgenden werden wir uns, solange nicht ausdrücklich anders erwähnt, der Eulerschen
Darstellung anschließen und einen beliebigen Punkt x ∈ R

3 im Raum betrachten. Für die
Geschwindigkeit v des Teilchens, dass sich zur Zeit t im Punkt x befindet, gilt, wie aus
der Newton’schen Mechanik bekannt

V (X, t) = v(x, t) = ẋ(t) =
d

dt
x(t) =

∂

∂t
Φ(X, t). (2.3)

Die Trajektorien des Geschwindigkeitsfeldes v(x, t) heißen Stromlinien und sind für festes
t = t0 die Integralkurven der gewöhnlichen Differentialgleichung

ẋ(s) = v(x(s), t0).

Für eine stationäre Strömung, d. h.

∂

∂t
v = 0 (2.4)

fallen offensichtlich die Bahn eines Teilchens und die entsprechende Stromlinie zusammen.
Ist das Geschwindigkeitsfeld v(x, t) bekannt, so lässt sich die Transformation Φ : Ω −→

Stromlinien

v

Abbildung 2.2: Stromlinien - Trajektorien des Geschwindigkeitsfeldes

Ω(t) der Referenz- in die aktuelle Konfiguration prinzipiell durch Lösen der gewöhnlichen
Differentialgleichung

d

dt
Φ(X, t) = V (X, t), Φ(X, 0) = X

berechnen. Es reicht daher also die Geschwindigkeit´sfunktion v(x, t) zu berechnen um
die Bahnkurve der Flüssigkeitsteilchen ermitteln zu können.
Wie bereits erwähnt können wir jede Größe f , die die Bewegung der Flüssigkeit in der
Eulerschen Darstellung beschreibt, mit der Abbildung Φ auch in die Lagrange’sche Dar-
stellung überführen:

f(x, t) = f(x(X, t), t) = F (X, t),

1Das Integral existiert im Sinne eines Lebesque-Integrals. Daher könnte det∇XΦ(X, t) auf einer Null-
menge durchaus den Wert Null annehmen. Da wir die Beziehungen hier aber nur motivieren wollen,
vernachlässigen wir diesen Umstand.
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Stromlinien zur Zeit t = 0 Strom- und Bahnlinie des
Teilchens zur Zeit t = 2

Abbildung 2.3: Unterschied Stromlinie - Bahnlinie

so dass

d

dt
F (X, t) =

d

dt
f(x(X, t), t) (2.5)

=
∂f

∂xi
(x(X, t), t)

dxi
dt

(X, t) +
∂

∂t
f(x(X, t), t) (2.6)

= ∇xf(x, t) · ẋ(t) +
∂

∂t
f(x, t) (2.7)

= (v(x, t) · ∇x)f(x, t) ·+
∂

∂t
f(x, t) (2.8)

ist. Den Differentialoperator

D

Dt
f(x, t) :=

∂

∂t
f(x, t) + (v(x, t) · ∇x)f(x, t) (2.9)

werden wir im Folgenden als substantielle Ableitung oder materielle Ableitung bezeichnen.
Er setzt sich offensichtlich aus einer lokalen zeitlichen Änderung der Größe f an einem fes-
ten Ort x und einem konvektiven Anteil zusammen, der aus der Bewegung der Flüssigkeit
resultiert. Ein hierauf aufbauendes, wichtiges Werkzeug im Rahmen der Herleitung der
Erhaltungssätze mikropolarer Flüssigkeiten ist das Reynoldsche Transporttheorem, dass
wir in Kapitel 2.4 einführen werden. Dieses gibt an, wie materielle Ableitungen von Inte-
gralen über zeitabhängige Gebiete zu berechnen sind. im Einklang mit obiger Definition
ist nun zum Beispiel:

V (X, t) =
d

dt
X(x, t) =

D

Dt
x(t) =

∂

∂t
Φ(X, t) = v(x, t). (2.10)

2.2 Deformationsgradient und Deformationsrate

Betrachten wir einen Massenpunkt der sich in der Referenzkonfiguration Ω am Ort X be-
findet. Schalten wir nun die Zeit t hinzu und unterwerfen die Flüssigkeit einer Deformation
Φ, so wird im Allgemeinen auch der Massenpunkt seine Position verändern. Betrachten
wir nun eine Umgebung U(X) von X, so gilt für alle X ′ in der Umgebung:

x(X ′, t)− x(X, t) = (Φ(X ′, t)− Φ(X, t) = ∇XΦ(X, t)(X
′ −X) +O(X ′ −X).
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Die Deformation eines Linienelementes dX = X ′−X wird also lokal durch den sogenann-
ten Deformationsgradienten

F (X, t) := ∇XΦ(X, t) =

(
∂Φi

∂Xj

(X, t)

)

ij

=

(
∂xi
∂Xj

(X, t)

)

ij

(2.11)

beschrieben. Für die Deformationsrate Ḟ erhalten wir

Ḟ (X, t) =
d

dt
F (X, t) =

d

dt

(
∂Φi

∂Xj

(X, t)

)

ij

=
d

dt

(
∂xi
∂Xj

(X, t)

)

ij

=

(
∂

∂Xj

[
dxi
dt

(X, t)

])

ij

=

(
∂

∂Xj

Vi(X, t)

)

ij

=

(
∂

∂Xj

vi(Φ(X, t), t)

)

ij

=

(
∂vi
∂xk

(Φ(X, t), t)
∂xk
∂Xj

(X, t)

)

ij

= L(X, t)F (X, t)

mit dem räumlichen Geschwindigkeitsgradienten

L =

(
∂vi
∂xk

)

ik

. (2.12)

Nach unseren bisherigen Überlegungen ist J = detF > 0 und daher F invertierbar. Somit
wird aus (2.12)

L = ḞF−1. (2.13)

Ferner können wir L orthogonal zerlegen in

L =
1

2

(
L+ LT

)
+

1

2

(
L− LT

)
= symL + skewL . (2.14)

Den symmetrischen Anteil symL werden wir im Folgenden den rate of deformation Ten-
sor D und den antisymmetrischen Anteil skewL vorticity Tensor W nennen,

D := symL =
1

2

(
L+ LT

)
, W := skewL =

1

2

(
L− LT

)
. (2.15)

2.3 Intrinsische Deformationen der Partikel

Die von der Flüssigkeit mitgeführten Partikel werden durch die Bewegung der Flüssig-
keit ebenfalls ihre Position und Orientierung, gegebenenfalls sogar ihre Form verändern.
Um diese intrinsische Deformation zu untersuchen beschreiben wir ein Partikel in der
Referenzkonfiguration (in Analogie zu den Gitterstrukturen in Festkörpern) durch seinen
zentralen geometrischen Punkt P , an den wir Vektoren P anheften, die die Orientierung
und Form der materiellen Punkte in P kennzeichnen. Dieses Partikel können wir dann
durch seinen Ortsvektor X in der Referenzkonfiguration und eine Menge von Vektoren

Pα, α = 1, . . . , N,

die seine innere Struktur charakterisieren, identifizieren. Zur Vereinfachung werden wir
uns auf den Fall N = 1 mit P1 = P beschränken. Sowohl X, als auch P haben ihre eigenen
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Abbildung 2.4: Die intrinsische Deformation

Bewegungen

X −→ x = Φ(X, t) (2.16)

P −→ p = ϕ(X,P, t). (2.17)

Die Abbildung (2.16) wird die (Makro-)Bewegung, Abbildung (2.17) die Mikrobewegung
genannt. Da im Allgemeinen die von der Flüssigkeit mitbewegten Partikel sehr klein im
Vergleich zur Ausdehnung des Flüssigkeitsvolumen sind, ist es sicherlich sinnvoll, wenn
wir im Folgenden von einer in P affin linearen Approximation der Funktion ϕ(X,P, t)
ausgehen, d. h.

p = ϕ(X,P, t) = χ(X, t)P (2.18)

setzen. In der Theorie der mikropolaren Flüssigkeiten beschränken wir uns außerdem auf
starre Partikel deren Deformation ausschließlich einer Rotation des Partikels entspricht,
so dass

p = ϕ(X,P, t) = R̄(X, t)P, R̄ ∈ O(3) (2.19)

ist. R̄ wird der Mikrorotationstensor genannt und analog zum Geschwindigkeitsgradienten
können wir für die Mikrodeformationsrate ˙̄R ableiten, dass

˙̄R(X, t) =
∂

∂t

(
∂pi
∂Pj

(X,P, t)

)

ij

=

(
∂

∂Pj

[
∂pi
∂t

(X,P, t)

])

ij

=

(
∂

∂Pj

ϕ̇i(X,ϕ(X,P, t), t)

)

ij

=

(
∂ϕ̇i

∂pk
(X,ϕ(X,P, t), t)

∂pk
∂Pj

(X,P, t)

)

ij

=W(X,P, t)R̄(X, t)

Der sogenannte räumliche microgyration tensor

W =

(
∂ϕ̇i

∂pk

)

ik

. (2.20)
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erfüllt also
ṗ =Wp

und beschreibt somit die Rotationsgeschwindigkeit der Partikel in der Flüssigkeit. Nach
unseren globalen Voraussetzungen ist R̄ invertierbar und somit W durch

W = ˙̄RR̄−1 = ˙̄RR̄T (2.21)

darstellbar. Bedenkt man, dass der Mikrorotationstensor R̄ orthogonal ist, so ist

R̄ · R̄T = I ⇐⇒ ˙̄R · R̄T + R̄ · ṘT = 0 ⇐⇒ W = −WT ,

und somit W schiefsymmetrisch. Insbesondere ist es möglich den microgyration tensor
mit (1.3) und (A.6) durch das sogenannte Mikrorotationsfeld ω auszudrücken:

ω = axlW =
1

2
ǫkjiWij ⇐⇒ Wij = ǫmjiωm. (2.22)

2.4 Das Reynoldssche Transporttheorem

Wir betrachten nun die Bewegung eines beliebigen Teilvolumens G der Referenzkonfigu-
ration Ω der Flüssigkeit. Sei G(t) das von G zur Zeit t > 0 eingenommene Volumen.

Lemma 2.4.1 (Eulersche Entwicklungsformel (vgl. [Bur10])): Sei Φ : R
n × R≥0 −→

R
n; (X, t) 7→ Φ(X, t) bijektiv und ϕi ∈ C2(Rn × R≥0), i = 1, . . . , n, dann gilt:

∂

∂t
detF (X, t) = div v(Φ(X, t), t) detF (X, t) (2.23)

Beweis. Mit dem Levi-Civita-Symbol ist

detF (X, t) = ǫijk
∂Φ1

∂Xi

∂Φ2

∂Xj

∂Φ3

∂Xk

und man folgert

d

dt

(

detF (X, t)
)

=
d

dt

(

ǫijk
∂Φ1

∂Xi

∂Φ2

∂Xj

∂Φ3

∂Xk

)

= ǫijk

([
∂

∂t

∂Φ1

∂Xi

]
∂Φ2

∂Xj

∂Φ3

∂Xk

+
∂Φ1

∂Xi

[
∂

∂t

∂Φ2

∂Xj

]
∂Φ3

∂Xk

+
∂Φ1

∂Xi

∂Φ2

∂Xj

[
∂

∂t

∂Φ3

∂Xk

])

.

Nun ist
∂

∂t

∂Φi

∂Xj

=
∂

∂Xj

∂Φi

∂t
=

∂vi
∂Xj

=
∂vi
∂xl

∂xl
∂Xj

und somit
d

dt

(

detF (X, t)
)

= ǫijk

([
∂

∂t

∂Φ1

∂Xi

]
∂Φ2

∂Xj

∂Φ3

∂Xk

+
∂Φ1

∂Xi

[
∂

∂t

∂Φ2

∂Xj

]
∂Φ3

∂Xk

+
∂Φ1

∂Xi

∂Φ2

∂Xj

[
∂

∂t

∂Φ3

∂Xk

])

= ǫijk

(
∂v1
∂xl

∂xl
∂Xi

∂x2
∂Xj

∂x3
∂Xk

+
∂x1
∂Xi

∂v2
∂xl

∂xl
∂Xj

∂x3
∂Xk

+
∂x1
∂Xi

∂x2
∂Xj

∂v3
∂xl

∂xl
∂Xj

)

. (2.24)
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Nach Definition des Levi-Civita-Symbols ist

ǫijk = 0 wenn mindestens zwei Indizes gleich sind,

wodurch sich obige Summe deutlich vereinfacht. Betrachten wir zum Beispiel den ersten
Term, so gilt:

ǫijk
∂v1
∂xl

∂xl
∂Xi

∂x2
∂Xj

∂x3
∂Xk

= ǫ1jk
∂v1
∂xl

∂xl
∂X1

∂x2
∂Xj

∂x3
∂Xk

+ ǫ2jk
∂v1
∂xl

∂xl
∂X2

∂x2
∂Xj

∂x3
∂Xk

+ ǫ3jk
∂v1
∂xl

∂xl
∂X3

∂x2
∂Xj

∂x3
∂Xk

= ǫ123
∂v1
∂xl

∂xl
∂X1

∂x2
∂X2

∂x3
∂X3

+ ǫ132
∂v1
∂xl

∂xl
∂X1

∂x2
∂X3

∂x3
∂X2

+ ǫ213
∂v1
∂xl

∂xl
∂X2

∂x2
∂X1

∂x3
∂X3

+ ǫ231
∂v1
∂xl

∂xl
∂X2

∂x2
∂X3

∂x3
∂X1

+ ǫ312
∂v1
∂xl

∂xl
∂X3

∂x2
∂X1

∂x3
∂X2

+ ǫ321
∂v1
∂xl

∂xl
∂X3

∂x2
∂X2

∂x3
∂X1

.

Wegen
ǫijk = −ǫikj ∀ i, j, k

heben sich für l = 2 nun gerade der erste und dritte, der zweite und fünfte und der vierte
und sechste Term in dieser Summe gegeneinander auf. Analog sieht man, dass für l = 3
der Ausdruck ebenfalls verschwindet. Für den ersten Term in (2.24) bleibt also nur ein
Beitrag für l = 1 bestehen:

ǫijk
∂v1
∂xl

∂xl
∂Xi

∂x2
∂Xj

∂x3
∂Xk

= ǫijk
∂v1
∂x1

∂x1
∂Xi

∂x2
∂Xj

∂x3
∂Xk

.

Genauso sieht man, dass im zweiten und dritten Term von (2.24) nur Beiträge für l = 2
bzw. l = 3 erhalten bleiben, so dass

d

dt

(

detF (X, t)
)

= ǫijk

(
∂v1
∂x1

∂x1
∂Xi

∂x2
∂Xj

∂x3
∂Xk

+
∂x1
∂Xi

∂v2
∂x2

∂x2
∂Xj

∂x3
∂Xk

+
∂x1
∂Xi

∂x2
∂Xj

∂v3
∂x3

∂x3
∂Xk

)

=

(
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

)

ǫijk

(
∂x1
∂Xi

∂x2
∂Xj

∂x3
∂Xk

)

= div v(x(X, t), t) detF (X, t).

�

Das auf den englischen Physiker Osborne Reynolds zurückgehende Transporttheorem be-
schreibt die zeitliche Veränderung des Integralwertes einer physikalischen Größe bezogen
auf das sich mit der Strömung bewegende Volumen G(t).

Satz 2.4.1 (Reynolds’ Transporttheorem (vgl. [Bur10])): Sei Φ : Rn×R≥0 −→ R
n; (X, t) 7→

Φ(X, t) bijektiv und ϕi ∈ C2(Rn × R≥0), i = 1, . . . , n. Ferner sei

(x, t) 7→ h(x, t)
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eine skalare oder vektorwertige stetig differenzierbare Funktion auf Rn × R≥0, dann gilt:

d

dt

∫

G(t)

h(x, t) dx =

∫

G(t)

{
∂h

∂t
(x, t) + (v(x, t) · ∇x)h(x, t) + h(x, t) div v(x, t)

}

dx

und insbesondere für skalarwertiges h

d

dt

∫

G(t)

h(x, t) dx =

∫

G(t)

{
∂h

∂t
(x, t) + div (h(x, t)v(x, t))

}

dx.

Beweis. Erinnern wir uns an die Transformation

Φ : G −→ G(t), x = Φ(X, t),

aus (2.1) und gehen davon aus dass sie hinreichend glatt und invertierbar ist, so folgt mit
der Transformationsformel

∫

G(t)

h(x, t) dx =

∫

G(0)

sgn (detF (X, t))h(Φ(X, t), t) detF (X, t) dX

=

∫

G(0)

sgn (detF (X, t))H(X, t) detF (X, t) dX,

so dass

d

dt

∫

G(t)

h(x, t) dx

=
d

dt

∫

G

sgn (detF (X, t))H(X, t) detF (X, t) dX

=

∫

G

sgn (detF (X, t))
d

dt
H(X, t) detF (X, t) dX

︸ ︷︷ ︸

:=I1

+

∫

G

sgn (detF (X, t))H(X, t)
d

dt
detF (X, t) dX

︸ ︷︷ ︸

:=I2

.

Wegen
d

dt
H(X, t) =

D

Dt
h(x, t)

ist dann

I1 =

∫

G

sgn (detF (X, t))

[
d

dt
H(X, t)

]

detF (X, t) dX

=

∫

G

sgn (detF (X, t))

[
D

Dt
h(x, t)

]

detF (X, t) dX

=

∫

G(t)

{
∂h

∂t
(x, t) + (v(x, t) · ∇)h(x, t)

}

dx.
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Für I2 folgt mit (2.23)

I2 =

∫

G

sgn (detF (X, t))H(X, t)

[
d

dt
detF (X, t)

]

dX

=

∫

G

sgn (detF (X, t))H(X, t) div v(Φ(X, t), t) detF (X, t) dX

=

∫

G(t)

h(x, t) div v(x, t) dx

und daraus

d

dt

∫

G(t)

h(x, t) dx =

∫

G(t)

{
∂h

∂t
(x, t) + (v(x, t) · ∇)h(x, t) + h(x, t) div v(x, t)

}

dx.

Aus Gleichung (A.1) folgt dann die Behauptung für skalarwertiges h. �

Der durch die Vertauschung der Zeitableitung mit dem Integral entstehende Zusatzterm
div(h(x, t)v(x, t)) läßt sich auch physikalisch interpretieren. Betrachten wir dazu ein sta-
tionäres Strömungsfeld, d. h. ∂h

∂t
(x, t) = 0. Dann ist mit dem Gauß’schen Integralsatz

d

dt

∫

G(t)

h(x, t) dx =

∫

G(t)

div(h(x, t)v(x, t)) dx =

∫

∂G(t)

h(x, t)(v(x, t) · ~n) dS,

wobei ∂G(t) den Rand des Volumens G(t) und ~n die nach außen gerichtete Einheitsnorma-
le an ∂G(t) ist. Stellen wir uns G nun als einen forminvarianten Quader vor, der von der
Flüssikgeit mitbewegt wird und durch den wir zu jederzeit das Volumen G(t) beobach-
ten. Dann bestätigt diese Gleichung unsere natürliche Intuition, dass die Änderung des
Integralwertes dadurch bestimmt ist, wieviel während der Bewegung des Quaders durch
die Ränder hinein- respektive herausfließt. Offensichtlich hängt die Änderungsrate dabei
einerseits von der Geschwindigkeit v mit der der Quader bewegt wird, andererseits von
der räumlichen Variation der Größe h über den Rand des Quaders G(t) ab.

2.5 Die Erhaltungssätze der Hydrodynamik

Basierend auf unseren bisherigen Erkenntnissen wollen wir in diesem Kapitel nun die Dif-
ferentialgleichungen ableiten, die die dynamische Entwicklung einer mikropolaren Flüs-
sigkeit beschreiben. Dabei gehen wir von vier physikalisch begründete Annahmen über
das Verhalten von Flüssigkeiten aus:

• die Massenerhaltung : „Die Masse einer sich bewegenden Flüssigkeit bleibt zu allen
Zeiten konstant. Es wird keine Masse erzeugt oder vernichtet.“

• die Impulserhaltung : „In einem abgeschlossenen System, d. h. in einem System das
keine Wechselwirkung mit seiner Umgebung aufweist, bleibt der Gesamtimpuls er-
halten.“

• die Drehimpulserhaltung : „Der Drehimpuls eines abgeschlossenen Systems bleibt un-
verändert, egal welche Kräfte und Wechselwirkungen zwischen den Bestandteilen des
Systems wirken.“
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• die Energieerhaltung : „In einem abgeschlossenen System is es weder möglich Energie
zu erzeugen noch zu vernichten. Sie kann lediglich in verschiedene Formen umge-
wandelt werden.“

2.5.1 Die Kontinuitätsgleichung (Massenerhaltung)

Sei ρ = ρ(x, t) die Dichte der Flüssigkeit am Ort x zur Zeit t. Dann ist die Masse in jedem
endlichen Raumvolumen G gegeben durch

∫

G

ρ(x, t)dx.

Die Massenerhaltung besagt nun gerade, dass sich die Masse der Flüssigkeit im Volumen
Ω nicht ändert, wenn sich das Volumen mit der Flüssigkeit weiterbewegt, d. h.

d

dt

∫

G(t)

ρ(x, t) dx = 0.

Mit dem Transporttheorem Satz 2.4.1 erhalten wir daraus

0 =
d

dt

∫

G(t)

ρ(x, t) dx =

∫

G(t)

{
∂ρ

∂t
(x, t) + div

[

ρ(x, t)v(x, t)
]}

dx

und da G(t) beliebig wählbar ist folgt daraus die Kontinuitätsgleichung :

∂ρ

∂t
(x, t) + div

[

ρ(x, t)v(x, t)
]

= 0.

Wegen (2.9) kann man diese mit (A.1) auch so formulieren

Dρ

Dt
(x, t) + ρ(x, t) div v(x, t) = 0. (2.25)

Bleibt in einer Flüssigkeit die Dichte ρ(x, t) entlang jeder Trajektorie konstant, d. h.

D

Dt
ρ(x, t) = 0,

so spricht man von inkompressiblen Flüssigkeiten. Die Kontinuitätsgleichung liefert dann

div v(x, t) = 0. (2.26)

Dagegen bedeutet div v = 0 nicht automatisch, dass die Flüssigkeit inkompressibel sein
muss. Aus dem Reynold’schen Transporttheorem (2.4.1) lässt sich mit der Kontinuitäts-
gleichung außerdem die nützliche Formel

d

dt

∫

G(t)

ρh dx =

∫

G(t)

ρ
D

Dt
h dx. (2.27)
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ableiten. Dies sieht man mit (A.1) direkt aus (2.25):

d

dt

∫

G(t)

ρ(x, t)h(x, t) dx

=

∫

G(t)

∂

∂t

[

ρ(x, t)h(x, t)
]

+ (v(x, t) · ∇x)
[

ρ(x, t)h(x, t)
]

+ ρ(x, t)h(x, t) div v(x, t) dx

=

∫

G(t)

ρ(x, t)
D

Dt
h(x, t) + h(x, t)







∂

∂t
ρ(x, t) + div

[

ρ(x, t)v(x, t)
]

︸ ︷︷ ︸

=0







dx

=

∫

G(t)

ρ
D

Dt
h dx.

2.5.2 Impulserhaltung

Aus der Kontinuumsmechanik weiß man, das die Kräfte die auf ein kontinuierliches Me-
dium wirken, sich prinzipiell in zwei Klassen einteilen lassen, die externen Kräfte und die
internen Kräfte. Externe (oder Volumen-) Kräfte sind in der Natur beobachtete Kräfte,
die eine große Reichweite haben, auf alle materiellen Teilchen im Kontinuum wirken und
ihre Ursache meist in Kraftfeldern wie der Gravitation haben. Ist K eine solche Kraft und
k die zugehörige Kraftdichte, so ist für ein Teilvolumen G der Flüssigkeit

K =

∫

G

ρk dx.

(a) Volumen- und Oberflächenkräfte

dS

(b) Zur Visualisierung der internen Kräfte

Abbildung 2.5: Der Normalenvektor von ∂G wird mit ~n bezeichnet und hat im Allge-
meinen eine von Tn abweichende Richtung. Zu (a): Die Externen Kräfte K haben eine
große Reichweite, während die internen Kräfte Tn unmittelbar von dem G umgebenden
Kontinuum Ω hervorgerufen werden. Zu(b): Wird ein Kontinuum Ω im Gleichgewicht auf-
geschnitten, so erfährt die Schnittfläche ∂G eine interne Kraft Tn, die vorher durch den
nun abgeschnittenen Teil kompensiert wurde.

Interne (oder Kontakt-) Kräfte müssen dagegen erst durch gedachte Schnitte durch den
Körper sichtbar gemacht werden. Es sind dann die in den Schnittflächen einzutragenden
Kräfte. Sei also n die nach außen gerichtete Flächeneinheitsnormale an einem Punkt der
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Oberfläche ∂G, Tn die von der umgebenden Flüssigkeit auf ∂G ausgeübte Kraft und tn die
zugehörige Kraftdichte, so gilt für die auf G ausgeübte innere Kraft

Tn =

∫

∂G

tn dS.

Wird nun ein Kontinuum wie unsere Flüssigkeit durch externe Kräfte belastet, etwa durch
ein Gravitationsfeld oder durch elektrische Felder, werden diese Kräfte auf jedes einzelne
Teilchen des Kontinuums wirken, so dass sich diese in Bewegung setzen und damit das
Kontinuum deformieren. Dabei ändern sich die Teilchenabstände und damit in Abhängig-
keit der Materialeigenschaften die Stärke der Wechselwirkungen zwischen den einzelnen
Teilchen, d. h. letztlich die inneren Kräfte. Sind die äußeren Kräfte zeitunabhängig, so
wird sich in der Regel ein neuer Gleichgewichtszustand einstellen, in dem die durch die
Deformation hervorgerufenen inneren Kräfte die äußeren gerade ausgleichen.

externe

 Kraft
Deformation

Materialgesetze

kompensieren

Spannungen

Abbildung 2.6: Im Allgemeinen verformt sich das Kontinuum durch externe Kräfte. Da-
durch ändern sich, abhängig von den Materialeigenschaften, die Teilchenabstände und es
entstehen Spannungen (interne Kräfte). Sobald diese die äußeren Kräfte kompensieren,
ist ein neuer Gleichgewichtszustand erreicht.

Wir schließen uns bei der weiteren Analyse dem Cauchy Prinzip der Kontinuumsmechanik
an, dass besagt, das tn zu jeder Zeit nur von der Position und der Orientierung des
Oberflächenelementes dS abhängt, d. h.

tn = tn(x, t, n).

Das zweite Newton’sche Axiom fordert nun, dass die Änderung des Gesamtimpulses in Ω
von den auf Ω wirkenden Kräften verursacht wird, also

d

dt

∫

G(t)

ρv dx

︸ ︷︷ ︸

„ Änderung des Gesamtimpulses “

=

∫

G(t)

ρk dx+

∫

∂G(t)

tn dS

︸ ︷︷ ︸

„ Auf das Volumen wirkende Kräfte “

. (2.28)

Mit (2.27) ist dann
∫

G(t)

ρ
Dv

Dt
dx =

∫

G(t)

ρk dx+

∫

∂G(t)

tn dS. (2.29)

Diese Gleichung induziert nun das folgende Theorem über die Gestalt des Spannungsvek-
tors tn.
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Satz 2.5.1 (Cauchy-Theorem): Für festes t ∈ R sei tn(x, t, ~n) stetig in x. Dann hängt
tn(x, t, ~n) linear von ~n ab, d. h. es existiert ein von ~n unabhängiger Tensor T 2-ter Stufe,
so dass

tn(x, t, ~n) = T (x, t) · ~n (2.30)

für alle x ∈ G(t) und beliebige Einheitsvektoren ~n. Der Tensor T (x) wird der Cauchy-
Spannungstensor genannt.

Beweis. Für festes t ∈ R setzen wir t(x, ~n) := t(x, t, ~n) und betrachten einen Tetraeder
T wie
in der Abbildung vollständig in Gt = G(t) enthalten
ist und mit einer Ecke an einem beliebigen Punkt
x ∈ ∂Gt liegt. Ferner sei ~n die äußere Einheitsnor-
male der geneigten Fläche und A der Flächeninhalt
dieser Fläche. Die anderen Flächen haben dann den
Flächeninhalt Ani für ni = ~n · ei (i = 1, 2, 3). Für
den zur geneigten Fläche gehörenden Spannungsvek-
tor schreiben wir t(x, ~n), für die anderen entsprechend
t(x,−e1), t(x,−e2) und t(x,−e3). Ist nun h die Ent-
fernung der geneigten Fläche vom Punkt x, so hat der
Tetraeder das Volumen

V =
1

3
Ah.

Wir setzen o.B.d.A. voraus, dass D
Dt
v und k auf dem Tetraeder beschränkt sind, sodass

für kleine h
∫

T

ρ

(
Dv

Dt
− k
)

dx ∼= 1

3
ρ

(
Dv

Dt
− k
)

Ah

und

lim
h→0

{
1

A

∫

T

ρ

(
Dv

Dt
− k
)

dx

}

= 0.

Wegen
∫

∂T

tn dS =

∫

A

(t(x, ~n) + t(x,−ei)ni) dS

können wir damit aus der Impulserhaltung (2.28) ableiten, dass der Tetraeder sich nicht
verformt, also im Gleichgewicht ist, falls sich die Kräfte, die an seinen vier Seitenflächen
angreifen, aufheben:

0 = lim
h→0

{
1

A

∫

T

ρ

(
Dv

Dt
− k
)

dx

}

= lim
h→0

1

A

∫

A

(t(x, ~n) + t(x,−ei)ni) dS.

Dabei haben wir die Integration über ∂T in die Integration über die vier Oberflächen
des Tetraeders zerlegt. Das A im obigen Integral entspricht also der geneigten Ebene des
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Tetraeders. Nach Voraussetzung ist t(x, ~n) in x für beliebige ~n stetig, so dass aus obiger
Gleichung beim Grenzübergang A→ 0 folgt, dass

t(x, ~n) = −t(x,−ei)ni. (2.31)

Setzen wir in (2.31) statt ~n, −~n ein so folgt

t(x, ei) = −t(x,−ei)

und somit

t(x, ~n) = t(x, ei)ni. (2.32)

Da die Basis {ei} zwar fest, aber vollkommen beliebig und unabhängig von ~n gewählt wur-
de, zeigt (2.32) das t(x, ~n) linear von den Komponenten ni des Einheitsnormalenvektors
~n abhängt. Insbesondere definieren wir für festes t:

T (x, t) = (Tij)ij durch Tij = ti(x, ej).

�

Setzen wir voraus, dass T mindestens einmal stetig differenzierbar ist, folgt aus (2.29) mit
diesem Prinzip und dem Gauß’schen Satz

∫

G(t)

ρ
Dv

Dt
dx =

∫

G(t)

(ρk +Div T ) dS

wobei

Div T = Div





T11 T12 T13
T21 T22 T23
T31 T32 T33



 =





div (T11, T12, T13)
div (T21, T22, T23)
div (T31, T32, T33)



 ∈ R
3

und da das Integrationsgebiet beliebig wählbar ist

ρ
Dv

Dt
= ρk +Div T. (2.33)

2.5.3 Drehimpulserhaltung

In der klassichen Newton’schen Mechanik für Punktmassen ist die Drehimpulserhaltung
ein direktes Korollar der Impulserhaltung. In der Kontinnumsmechanik dagegen stellt
sie eine von der Impulserhaltung vollkommen unabhängige Hypothese dar, die durch die
Annahme impliziert wird, dass zumindest für Punktmassen die Änderung des Drehimpul-
ses dem wirkenden Drehmoment entspricht. Wenn wir uns dieser Hypothese anschließen,
dann können wir postulieren:

Axiom 1 (Drehimpulserhaltung):

d

dt

∫

G(t)

ρ(x× v) dx =

∫

G(t)

ρ(x× k) dx+
∫

∂G(t)

(x× tn) dS (2.34)
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Diese Vermutung trifft zu solange man davon ausgeht, dass alle Drehmomente aus ma-
kroskopischen Kräften resultieren. Für polare Flüssigkeiten allerdings ist dem nicht so,
denn diese sind dazu fähig, innere Spannungsdrehmomente zu übertragen. Bevor wir nä-
her auf dieses Problem eingehen, zeigen wir allerdings noch, dass unter der konstituiven
Voraussetzung (2.34) gilt, der Cauchy Spannungstensor symmetrisch ist.

Satz 2.5.2: Für ein kontinuierliches Medium, dass die Kontinuitätsgleichung (2.25) und
die Impulserhaltung (2.33) erfüllt, sind die folgenden Aussagen äquivalent:

(a) Der Cauchy-Spannungstensor T (x, t) ist symmetrisch.

(b) Gleichung (2.34) ist erfüllt.

Beweis. Nehmen wir zunächst an, dass (b) gilt und zeigen (a). Aus (2.34) folgt mit (2.27)
∫

G(t)

ρ(x× k) dx+
∫

∂G(t)

(x× tn) dS =
d

dt

∫

G(t)

ρ(x× v) dx =

∫

G(t)

ρ
D

Dt
(x× v) dx.

Nun gilt (vgl. (A.2) im Anhang)

D

Dt
(x× v) = x×

(
Dv

Dt

)

,

sodass
∫

G(t)

ρ(x× k) dx+
∫

∂G(t)

(x× tn) dS =

∫

G(t)

ρ

(

x× D

Dt
v

)

dx.

Wegen
tn = T · ~n = (Tijnj)i

und
(x× tn)j = ǫjlkxl (Tkjnj)k = (ǫjlkxlTki)i ni = (x× T )jini

folgt mit dem Satz von Gauß
∫

∂G(t)

(x× tn) dS =

∫

G(t)

Div (x× T ) dx.

Auch gilt nach Definition der Divergenz eines Tensors:

[Div (x× T )]k =
∂

∂xj
(ǫklixlTij)

= ǫkliδljTij + ǫklixl
∂Tij
∂xj

= 2
[

axl (skew T )
]

k
+ (x×Div T )k

und daher
∫

∂G(t)

(x× tn) dS =

∫

G(t)

{

2 axl (skew T ) + x×Div T
}

dx.
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Fassen wir die bisherigen Ergebnisse zusammen, so ist
∫

G(t)

x×
(

ρ
Dv

Dt
− ρk −Div T

)

dx =

∫

G(t)

2 axl (skew T ) dx.

Nach (2.33) ist die linke Seite null und somit verschwindet auch die rechte Seite für jedes
beliebige Volumen G(t), so dass

axl (skew T ) = 0.

Die Komponenten von 2 axl (skew T ) sind T23−T32, T31−T13, T12−T21 und somit impliziert
die vorherige Überlegung, dass

Tij = Tji,

T somit also symmetrisch ist. Der Beweis, dass (a), (b) impliziert folgt nun direkt, in dem
man den obigen Beweis von hinten nach vorne durchgeht. �

Für polare Flüssigkeiten müssen wir die in der Flüssigkeit mitbewegten Teilchen berück-
sichtigen, so dass wir zusätzlich zur externen Kraftdichte k eine auf die Teilchen wirkende
externe Kraftdichte g und zur Normalspannung tn eine zusätzliche, die Drehmomentdichte
der Teilchen symbolisierende, Spannung mn einführen. Ferner müssen wir aufgrund der
Rotation der Teilchen in der Flüssigkeit einen inneren Drehimpuls ρl einführen, so dass
die Drehimpulserhaltung für polare Flüssigkeiten die Form

d

dt

∫

G(t)

ρ(l + x× v) dx =

∫

G(t)

ρ(g + x× k) dx+
∫

∂G(t)

(mn + x× tn) dS (2.35)

annimmt und nach Satz 2.5.2 der Cauchy-Spannungstensor T somit nicht notwendiger-
weise symmetrisch ist. Das Cauchy Prinzip (2.5.1) lässt sich auch auf die Spannung mn

übertragen (vgl. z. B. [Nos04]), sodass wir auch mn in der Form

mn =M · ~n (2.36)

schreiben können. Dabei ist M ebenfalls ein Tensor 2-ter Stufe, der sogennante Momen-
tenspannungstensor. Die Anwendung des Gauß’schen Integralsatzes führt dann zu

d

dt

∫

G(t)

ρ(l + x× v) dx =

∫

G(t)

{ρg + ρx× k +DivM + x×Div T + 2axl (skew T )} dx

und wir erhalten mit (2.27)

ρ
D

Dt
(l + x× v) = ρg + ρx× k +DivM + x×Div T + 2axl (skew T ) . (2.37)

Bilden wir das Vektorprodukt der Cauchy Gleichung (2.33) mit x folgt aus (A.2)

ρ
D

Dt
(x× v) = x×

(

ρ
Dv

Dt

)

= x× (ρk +Div T ) = ρx× k + x×Div T. (2.38)

und subtrahieren diese von obiger Gleichung erhalten wir

ρ
Dl

Dt
= ρg +DivM + 2axl (skew T ) . (2.39)
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Bemerkung 1: Wegen

Div(x× T ) = x×Div T + 2axl (skew T )

folgt aus (2.38) für den äußeren Drehimpuls

ρ
D

Dt
(x× v) = ρx× k +Div(x× T )− 2 axl (skew T )

und für den Gesamt-Drehimpulserhaltung (2.37):

ρ
D

Dt
(l + x× v) = ρx× k + ρg +Div(x× T +M). (2.40)

Anschaulich besagen die Gleichungen nichts anderes als dass weder der innere noch der
äußere Drehimpuls erhalten bleibt, sondern nur der Gesamt-Drehimpuls. Tatsächlich wird
der Verlust des äußeren Drehimpulses in (2.38) in einen Beitrag zum inneren Drehimpuls
(2.39) umgewandelt.

Wir gehen im Weiteren von der Annahme aus, dass wir die innere Drehimpulsdichte l,
die von den in der Flüssigkeit mitbewegten Teilchen erzeugt wird, als Vektor mit Kom-
ponenten

li (i = 1, 2, 3) mit li = Iikωk = Iδikωk
2

auffassen können, wobei I ein Skalar, der sogenannte Mikro-Trägheits-Koeffizient ist und
ω das Microrotations-Feld aus (2.22) ist. Somit reduziert sich Gleichung (2.39) zu

ρI
Dω

Dt
= ρg +DivM + 2axl (skew T ) . (2.41)

2.5.4 Energieerhaltung

In der klassichen Hydrodynamik besagt der erste Hauptsatz der Thermodynamik, dass
die Zunahme der Gesamtenergie (d.h. kinetischer und innerer Energie) eines Körpers die
Summe der am Körper verrichteten Arbeit und der übertragenen Wärme ist. Nennen wir
die Wärmestromdichte q und die innere Energiedichte E, so ist

d

dt

∫

G(t)

1

2
ρv2

︸ ︷︷ ︸

kin. Energie

+ ρE
︸︷︷︸

innere Energie

dx

=

∫

G(t)

ρ〈k, v〉 dx+
∫

∂G(t)

〈tn, v〉 dS −
∫

∂G(t)

〈q, ~n〉 dS. (2.42)

Das erste und zweite Integral auf der rechten Seite entsprechen der Änderung der am
Körper von den externen Kräften bzw. der Spannungen verrichteten Arbeit, während das

2Die Eigenschaft Iik = Iδik wird manchmal als Isotropie bezeichnet, hat aber mit der Isotropie des
Festkörpers nichts zu tun.
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dritte Integral den Wärmestrom in den Körper representiert. Mit dem Integralsatz von
Gauß und (2.33) gilt nun:

d

dt

∫

G(t)

ρ

(
1

2
v2 + E

)

dx

=

∫

G(t)

ρ〈k, v〉 dx+
∫

∂G(t)

〈v, T · ~n〉 dS −
∫

∂G(t)

〈q, ~n〉 dS

=

∫

G(t)

ρ〈k, v〉 dx+
∫

∂G(t)

〈T T · v, ~n〉 dS −
∫

∂G(t)

〈q, ~n〉 dS

=

∫

G(t)

{
ρ〈k, v〉+ div

(
T T · v

)
− div q

}
dx. (2.43)

Aus (2.27) folgt mit der Impulserhaltung (2.33)

d

dt

∫

G(t)

ρ

(
1

2
v2 + E

)

dx =

∫

G(t)

ρ

(

v
Dv

Dt
+
DE

Dt

)

dx

=

∫

G(t)

{

〈v, (ρk +Div T )〉+ ρ
DE

Dt

}

dx,

so dass man durch Einsetzen in (2.43) und Umstellen

∫

G(t)

{

〈v, (Div T )〉+ ρ
DE

Dt
− div

(
T T · v

)
+ div q

}

dx = 0 (2.44)

erhält. Es gilt

〈v,Div T 〉 − div
(
T T · v

)
= vi

∂

∂xj
Tij −

∂

∂xj
(Tjivi)

= vi
∂

∂xj
Tij −

(
∂Tji
∂xj

)

vi − Tji
vi
xj

= −〈T, L〉R3×3 (2.45)

wobei
〈., .〉R3×3 : R3×3 × R

3×3 −→ R; (A,B) 7−→ tr(A · BT ) = AijBij ,

das Tensorskalarprodukt ist. Insgesamt ist also

∫

G(t)

(

ρ
DE

Dt
+ div q − 〈T, L〉R3×3

)

dx = 0

und daher

ρ
DE

Dt
= − div q + 〈T, L〉R3×3 .

Gehen wir für die Wärmeleitung der Einfachheit halber von Fourier’s Gesetz aus

q = −c∇θ, (c ≥ 0, θ : Temperatur) (2.46)
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nimmt die Energieerhaltung die Form

ρ
DE

Dt
= c div (∇θ) + 〈T, L〉R3×3 (2.47)

an. Für polare Flüssigkeiten müssen wir wegen der Rotation der Teilchen in der Flüssigkeit
weitere Terme berücksichtigen, so dass der erste Hauptsatz der Thermodynamik nun die
Form

d

dt

∫

G(t)

ρ
v2

2
︸︷︷︸

kin. Energie

+ ρI
ω2

2
︸ ︷︷ ︸

Rotationsenergie

+ ρE
︸︷︷︸

innere Energie

dx

=

∫

G(t)

ρ (〈k, v〉+ 〈ω, v〉) dx+
∫

∂G(t)

〈tn, v〉 dS

+

∫

∂G(t)

〈mn, ω〉 dS −
∫

∂G(t)

〈q, n〉 dS. (2.48)

annimmt. Es treten zusätzliche Beiträge, verursacht durch das äußere Drehmoment und
den Momentenspannungstensor auf, wobei wir voraussetzen, das beide ausschließlich auf
das Mikrorotationsfeld ω wirken. Mit dem Integralsatz von Gauß erhalten wir

∫

∂G(t)

〈mn, ω〉 dx =

∫

∂G(t)

〈MT · ω,~n〉 dS =

∫

G(t)

div
(
MT · ω

)
dx

und mit (2.27) bzw. (2.34) folgt aus (2.48):

d

dt

∫

G(t)

ρI
ω2

2
dx =

∫

G(t)

ρIω
Dω

Dt
dx =

∫

G(t)

{

〈ω, ρg +DivM + 2axl (skew T )〉
}

dx.

Analog zu (2.43) und (2.45) erhält man daraus:

∫

G(t)

{

ρ
DE

Dt
+ div q − 〈T, L〉R3×3 − 〈M,Dω〉R3×3 + 2〈ω, axl (skew T )〉

}

dx = 0

und somit

ρ
DE

Dt
= − div q + 〈T, L〉R3×3 + 〈M,Dω〉R3×3 − 2〈ω, axl (skew T )〉.

Auch der Cauchy-Spannungstensor lässt sich in einen symmetrischen und einen schiefsym-
metrischen Anteil zerlegen und nach (A.7) verschwindet das Skalarprodukt eines schief-
symmetrischen Tensors mit einem symmetrischen Tensor, sodass

ρ
DE

Dt
= − div q + 〈 symT ,D〉R3×3 + 〈 skewT ,W 〉R3×3

+ 〈M,Dω〉R3×3 − 2〈ω, axl ( skewT )〉.
(2.49)



Kapitel 3

Die Charakteristik von Materialien -

konstitutive Materialgesetze

Im letzten Kapitel haben wir für polare Flüssigkeiten das folgende System von Erhal-
tungslgleichungen abgeleitet:

Dρ

Dt
= −ρ div v

ρ
Dv

Dt
= ρk +Div T

ρI
Dω

Dt
= ρg +DivM + 2axl ( skewT )

ρ
DE

Dt
= − div q + 〈 symT ,D〉R3×3 + 〈 skewT ,W 〉R3×3

+ 〈M,Dω〉R3×3 − 2〈ω, axl ( skewT )〉

(3.1)

Dieses Gleichungssystem enthält insgesamt 28 unbekannte Größen (die Energie, die drei
Komponenten der Geschwindigkeit v, drei Komponenten der Wärmestromdichte q, drei
aus dem Mikrorotationsfeld ω, 9 Komponenten des Spannungstensors T und 9 Komponen-
ten der Kopplungsspannung M). Es umfasst aber nur acht Gleichungen, so dass weitere
Bedingungen nötig sind, um die Bewegungsgleichungen eindeutig lösen zu können. Diese
Bedingungen resultieren aus den sogenannten Materialgesetzen, die die (makroskopische)
Natur, also die Eigenschaften der Flüssigkeit genauer beschreiben. Für eine physikalisch
sinnvolle Formulierung dieser Gesetze müssen folgende grundlegende Forderungen erfüllt
sein:

1. Prinzip des Determinismus:
Der momentane Spannungszustand T (x, t) in einem von der Flüssigkeit eingenom-
menen Punkt x ist durch die vergangene Bewegungsgeschichte der Flüssigkeit ein-
deutig bestimmt.

2. Prinzip der lokalen Wirkung:
Dieses Prinzip besagt, dass z.B. die Spannung an einem herausgegriffenen materiel-
len Teilchen X nur von der Bewegung aller in direkter Nachbarschaft befindlichen
Teilchen abhängt. Ein Material, welches diesem Prinzip genügt, heißt einfaches Ma-
terial.

27
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3. Prinzip der materiellen Objektivität:
Dieses Prinzip fordert, daß die in einer Materialgleichung formulierten Eigenschaf-
ten eines Materials unabhängig vom gewählten Bezugssystem sind. Folglich müssen
sie für einen ruhenden Beobachter und einen sich gegenüber diesem bewegenden
Beobachter für ein und denselben Prozeß die gleiche Gestalt haben. Eine objektive
Größe muss sich also beim Wechsel des Bezugssystems so transformieren, dass sich
die durch die Größe beschriebene Eigenschaft des Körpers nicht ändert.

3.1 Zustandsgleichungen für Stokessche Flüssigkeiten

Bei der Untersuchung klassischer Stokesscher Flüssigkeiten gehen wir von der Annahme
aus, dass die Spannung in Flüssigkeiten nicht von der Verformung der Volumenelemente,
sondern von ihrer Geschwindigkeit, genauer gesagt ihrer Geschwindigkeitsdifferenz ab-
hängt. Die Unterschiede im Geschwindigkeitsfeld verursachen einen Impulsaustausch in
der Flüssigkeit, der so gerichtet ist, dass er den Gradienten des Geschwindigkeitsfeldes zu
verringern versucht. Nach dem Prinzip der lokalen Wirkung wird der Spannungszustand
der Flüssigkeit am Ort x nur von dem Geschwindigkeitsfeld v in einer Umgebung U(x)
von x abhängen. Da wir von einem hinreichend glatten Geschwindigkeitsfeld v ausgehen,
ist

v(x′, t)− v(x, t) = Dxv(x, t)(x
′ − x) +O([x′ − x]2)

= L(x′ − x) +O([x′ − x]2), ∀ x′ ∈ U(x).

Betrachten wir nun am Ort x(X, t) zu einem festen Zeitpunkt t das materielle Linienele-
ment

ψ(t) = x′(X ′, t)− x(X, t),

Abbildung 3.1: Deformation der Linienelemente ψ(t)

so werden die Geschwindigkeiten

v(x, t) bzw. v(x′, t)
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im Allgemeinen zu einer Dehnung dieses Liníenelementes führen, genauer:

d

dt
‖ψ(t)‖2 = d

dt
‖x′(X ′, t)− x(X, t)‖2

= 〈x′(t)− x(t), ẋ′(t)− ẋ(t)〉+ 〈ẋ′(t)− ẋ(t), x′(t)− x(t)〉
=
〈
ψ(t), Lψ(t) +O(ψ(t)2)

〉
+
〈
Lψ(t) +O(ψ(t)2), ψ(t)

〉

=
〈
LTψ(t), ψ(t)

〉
+ 〈Lψ(t), ψ(t)〉+ . . .

= 2 〈( symL )ψ(t), ψ(t)〉+ . . .

Die Verzerrung der Linienelemente in der Flüssigkeit wird also im wesentlichen durch den
Geschwindigkeitsgradienten L bestimmt.1 Wir gehen daher im Folgenden davon aus, dass
für den Cauchy Spannungstensor (cauchy stress tensor) T gilt:

T (x, t) = G(Dxv(x, t); x, t) = G(L; x, t) = G(L). (3.2)

Wir werden im Folgenden den Begriff der isotropen Tensorfunktion einführen und zeigen,
dass der Cauchy-Spannungstensor eine vom rate of deformation Tensor D abhängige, iso-
trope Tensorfunktion sein muss. Basierend auf dieser Erkenntnis werden wir anschließend
den Satz von Rivlin-Erickson beweisen, der uns eine spezielle Darstellung des Spannungs-
tensors ermöglicht und uns der Lösung von (3.1) für Stokessche Flüssigkeiten erheblich
näher bringen wird.

3.1.1 Invarianz unter Galilei-Transformationen

Das Galileische Relativitätsprinzip besagt:

„ In jedem Koordinatensystem, in dem sich kräftefreie Körper geradlinig, gleichförmig
bewegen, haben die Naturgesetze (Bewegungsgleichungen) dieselbe Form, d. h. sie sind

forminvariant. Solche Koordinatensysteme heißen Inertialsysteme. “

Zur Illustration dieser Aussage gehen wir von einer beliebigen Bewegungsgleichung

K = mẍ

im Inertialsystem I aus. Hierbei ist m die Masse eines Körpers, der durch äußere Kräft
K mit ẍ beschleunigt wird. Nun fordert das Relativitätsprinzip, dass in jedem anderen
Inertialsystem I∗ die Bewegungsgleichung dieselbe Form in den transformierten Größen

K∗ = mẍ∗

hat. Welche Transformationen sind nun erlaubt, um von einem Inertialsystem in ein an-
deres zu gelangen? Dazu betrachten wir ein Koordinatensystem K∗, dessen Ursprung bei
o(t) = oiei in I liegt und dessen Koordinatenachsen mit denen von I übereinstimmen.
Ein Ortsvektor x∗ in K ist dann (bzgl. I) gegeben durch

x∗(t) = x(t) + o(t).

1Genauer gesagt können wir hier sogar die Vermutung aufstellen, dass sie vorrangig durch seinen sym-
metrischen Anteil, den rate of deformation tensor D = symL bestimmt wird. Im Abschnitt 3.1.2 werden
wir dieses Resultat basierend auf anderen Annahmen über die Beschaffenheit des Sapnnungstensors be-
kräftigen.
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Gehen wir von der Bewegungsgleichung

mẍ = 0

aus, so gilt
0 = mẍ∗ = m (ẍ+ ö(t)) = mö(t).

Damit K ein weiteres Inertialsystem ist, muss somit ö(t) = 0 und daher

o(t) = v · t+ c, für v, c ∈ R
3 (3.3)

sein. Demnach darf sich K gegenüber I mit der Geschwindigkeit v bewegen und um einen
konstanten Vektor c verschoben sein. Neben der Änderung des Ursprungs können wir auch
die Koordinatenachsen von K gegenüber denen von I verdrehen. Ein Ortsvektor x(t) in
K ist dann (bzgl. I) gegeben durch

x∗(t) = Q(t)x(t) + o(t), für Q(t) ∈ SO(3).

Für diese Transformation gilt dann

0 = mẍ∗(t) = m · d
dt

(

Q̇(t)x(t) +Q(t)ẋ(t) + ȯ(t)
)

= m ·
(

Q̈(t)x(t) + 2Q̇ẋ(t) + ö(t)
)

.

Da dies für jedes Q ∈ SO(3) gilt und die Bewegungsgleichung in beiden Inertialsystemen
gleich sein soll, muss

Q̈(t) = Q̇(t) = ö(t) = 0

sein und somit Q(t) = Q, Q ∈ SO(3) sowie o(t) = v · t + c, v, c ∈ R
3 sein. Zusammen-

genommen haben wir damit gezeigt, dass die Transformationen von einem Inertialsystem
in ein anderes von der Form

x∗(t) = Qx(t) + vt+ c

für konstantes Q ∈ SO(3) sein müssen.

Satz 3.1.1: Die (speziellen) Galileitransformationen

x∗(t) = Q · x(t) + vt+ c, für SQ ∈ O(3), v, c ∈ R
3

lassen die Newton’schen Bewegungsgleichungen invariant und überführen somit Inertial-
systeme in Inertialsysteme.

Wir wollen nun unter Anwendung des Galileischen Relativitätsprinzip die Beziehung zwi-
schen den kinematischen Variablen (insbesondere der Spannung und damit der wirkenden
Kräfte), die von einem Beobachter O und einem, durch eine überlagerte Galileitransfor-
mation gegenüber O verschobenen, Beobachter O∗ registriert werden, untersuchen. Aus-
gehend von

x∗ = Φ∗(X, t) = QΦ(X, t) + c(t), mit c(t) = v · t+ c, (3.4)
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für Q ∈ SO(3), transformieren sich der Deformationsgradient F und der räumliche Ge-
schwindigkeitsgradient L gemäß

F ∗ =

(
∂x∗i
∂Xj

)

ij

=

(
∂Φ∗

i

∂xk
· ∂xk
∂Xj

)

ij

= Q

(
∂Φi

∂Xj

)

ij

= QF (3.5)

bzw.

L∗ = Ḟ ∗F ∗−1 = ˙(QF )(QF )−1 = QḞF−1QT = QLQT . (3.6)

Ferner folgt aus (3.4) für die Dichte ρ und die Oberflächennormale n

ρ∗ = ρ (3.7)

n∗ = Qn. (3.8)

Der nächste Schritt ist nun die Bestimmung des Tranformationsverhaltens des Spannungs-
tensors. Dabei gehen wir von der Annahme aus, dass der Betrag des Spannungsvektors t
durch eine Galileitransformation unverändert bleibt und dass t∗ bzgl. n∗ dieselbe Orien-
tierung wie t bzgl. n hat. Basierend auf diesen Erwartungen, können wir ableiten, dass

t∗ = Qt. (3.9)

ist, denn in diesem Fall ist

‖t∗‖2 = 〈t∗, t∗〉 = 〈Qt,Qt〉 = 〈t, QTQt〉 = 〈t, t〉 = ‖t‖2 =⇒ ‖t∗‖ = ‖t‖

und
〈t∗, n∗〉 = 〈Qt,Qn〉 = 〈t, QTQn〉 = 〈t, n〉.

Nach (2.30), ist
t = t(x, t;n) = T (x, t) · n

und damit auch
t∗ = t∗(x∗, t;n∗) = T ∗(x∗, t) · n∗.

Erinnern wir uns an die Transformationseigenschaften der äußeren Einheitsnormalen n
(3.8) folgt daraus

t∗ = T ∗(x∗, t) ·Qn
und wegen (3.9)

QT (x, t) · n = T ∗(x∗, t) ·Qn ⇐⇒ (QT − T ∗Q) · n = 0.

Da diese Gleichung für beliebiges n gilt, und der Ausdruck in der Klammer von n unab-
hängig ist, können wir folgern, dass

0 = T ∗Q−QT = T ∗QQT −QTQT = T ∗ −QTQT

ist und somit

G∗(L∗) = T ∗ = QTQT = QG(L)QT (3.10)
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für jedes L∗ und konstante Q ∈ SO(3) gilt. Mit Berücksichtigung von (3.6), erwarten wir
somit, dass der Spannungstensor

G∗(QLQT ) = G∗(L∗) = QG(L)QT (3.11)

erfüllen muß. Nach Satz 3.1.1 müssen Bewegungsgleichungen unter Galileitransformatio-
nen forminvariant und daher die beiden Funktionen G und G∗ dieselben sein, so dass
wir

G(QLQT ) = QG(L)QT , (3.12)

folgern können.

Definition 3.1.1: Eine Tensorfunktion G : T −→ T heißt isotrop, falls sie die Gleichung

G(QXQT ) = QG(X)QT ∀ Q ∈ SO(3)

erfüllt.

Das Galileische Relativitätsprinzip alleine fordert also schon, dass der Cauchy-Spannungstensor
der Flüssigkeit eine isotrope Tensorfunktion von L sein muss. Wir werden später sehen,
was das für die Funktion G und damit den Spannungstensor T bedeutet.

3.1.2 Prinzip der materiellen Objektivität

Die Forderung nach materieller Objektivität erweitert nun das Galilei’sche Relativitäts-
prinzip und postuliert, dass eine Materialgleichung invariant gegenüber einem beliebigen
Wechsel des Bezugssystems, also des Beobachters, ist und dass sie keinerlei Informationen
über die Bewegung dieses Bezugssystems relativ zu einem zugrundeliegenden Inertial-
system enthält. Die zulässigen Transformationen zwischen den Bezugssystemen zweier
verschiedener Beobachter O und O∗ sind dann von der Form

x∗ = Φ∗(X, t) = Q(t)Φ(X, t) + c(t) = Q(t)x+ c(t), Q ∈ SO(3), (3.13)

d. h. statt Q = const. ist jetzt Q = Q(t) erlaubt. Unter diesen Umständen transformieren
sich der Deformationsgradient F und der räumliche Geschwindigkeitsgradiente L gemäß

F ∗ =

(
∂x∗i
∂Xj

)

ij

=

(
∂Φ∗

i

∂xk
· ∂xk
∂Xj

)

ij

= Q

(
∂Φi

∂Xj

)

ij

= QF (3.14)

bzw.

L∗ = Ḟ ∗F ∗−1 = ˙(QF )(QF )−1 = Q̇QT +QḞF−1QT = Q̇QT +QLQT . (3.15)

Ferner folgt aus (3.13) für die Dichte ρ und die Oberflächennormale ~n

ρ∗ = ρ (3.16)

~n∗ = Q~n. (3.17)
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Ein Skalar, Vektor oder Tensor 2-ter Stufe, der sich unter einem Beobachterwechsel ge-
mäß (3.14), (3.16) bzw. (3.17) transformiert, wird objektiv genannt. Wie im vorherigen
Abschnitt gehen wir auch hier davon aus, dass der Spannungstensor

t∗ = Qt

erfüllt und können ableiten, dass

G∗(L∗) = T ∗ = QTQT = QG(L)QT (3.18)

für jedes L∗ und Q ∈ SO(3) gilt. Wählen wir nun Q(t) = I so muss

G∗(L) = G∗(L∗) = G(L)

und der Spannungstensor somit forminvariant (d. h. es gilt G = G∗) gegebenüber einem
Wechsel des Bezugssystems sein. Dann folgt aus (3.18) mit (3.15)

QG(L)QT = QTQT = T ∗ = G(L∗) = G(Q̇QT +QLQT ). (3.19)

Daraus können wir das folgende Lemma über die Gestalt des Spannungstensors ableiten.

Lemma 3.1.1: Unter der Voraussetzung, dass sich die Flüssigkeit objektiv verhält und
der Spannungsvektor t die Transformationseigenschaft

t∗ = Qt

erfüllt, hängt der Spannungstensor T (x, t) = G(L) nur vom symmetrischen Anteil des
Geschwindigkeitsgradienten, dem rate of Deformation Tensor D ab, d. h.

G(L) = G(D) = G

(
1

2

(
L+ LT

)
)

. (3.20)

Beweis. Wir wählen eine schiefsymmetrische Abbildung A ∈ so(3) (d. h. A + AT = 0)
und setzen

Q(t) = exp(−tA) =
∞∑

n=0

(−1)n
n!

tnAn t ∈ R.

Wegen
AAT = −ATAT = −AT (−A) = ATA

kommutieren A und AT und aus den Potenzgesetzen für die Tensorexponentialfunktion
folgt damit:

Q(t)Q(t)T = exp(−tA) exp(−tAT ) = exp(−t(A+ AT )) = exp(0) = I.

Ferner folgt aus

det(Q(t))2 = exp(−t tr (0)) = exp(0) = 1 und det(Q(0)) = det(I) = 1,

dass
det(Q(t)) = 1 ∀ t ∈ R
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ist und somit Q(t) für jedes t ∈ R eine Drehung darstellt. Insbesondere sind die Koeffizi-
enten in Q(t) für An = (a

(n)
ij (t)) Potenzreihen der Form

∞∑

n=0

(−1)n
n!

a
(n)
ij (t)tn,

die wegen
|tna(n)ij | ≤ ‖tnAn‖ ≤ ‖tA‖n

und
∞∑

n=0

(−1)n
n!
‖tA‖n = e‖tA‖

für alle t ∈ R konvergiert. Nach dem Satz über die Differenzierbarkeit von Potenzreihen
sind diese gliedweise differenzierbar mit Ableitung

d

dt

∞∑

n=0

(−1)n
n!

tna
(n)
ij (t) =

∞∑

n=1

(−1)n
(n− 1)!

(

tn−1a
(n)
ij (t) + tn

n−1∑

k=0

a
(k)
ij (t) ˙aij(t)a

n−k−1
ij (t)

)

.

Somit ist

d

dt
Q(t) =

∞∑

n=1

(−1)n
(n− 1)!

(

tn−1An + tn
n−1∑

k=0

AkȦAn−k−1

)

=

(

−
∞∑

n=1

(−1)n−1

(n− 1)!
tn−1An−1

)

A+
∞∑

n=1

(−1)n
(n− 1)!

tn
n−1∑

k=0

AkȦAn−k−1

= exp(−tA)A+
∞∑

n=1

(−1)n
(n− 1)!

tn
n−1∑

k=0

AkȦAn−k−1

und daher

Q̇(0) =
d

dt
Q(t)

∣
∣
∣
t=0

= −A,

woraus mit (3.19) für t = 0

G(L) = Q(0)G(L)QT (0) = G(Q̇(0)QT (0) +Q(0)LQT (0)) = G(−A+ L) ∀ A ∈ so(3)

folgt. Wir können nun jederzeit A = W = skewL wählen, so dass

G(L) = G(−W + L) = G(D) = G( symL )

ist. Daraus folgt die Behauptung. �

Nun ist Q = Q(t) ein orthogonaler Tensor, d. h. es gilt

QQT = 1 ⇐⇒ Q̇QT +QQ̇T = 0 ⇐⇒ Q̇QT = −QQ̇T (3.21)

und nach Definition des „ rate of Deformation tensors “ bzw. des „ vorticity tensors “ (3.31)
folgt daraus mit (3.15)

D∗ =
1

2

(
L∗ + L∗T

)
=

1

2

(

Q̇QT +QQ̇T
)

+Q
1

2

(

L+ LT
)

QT = QDQT , (3.22)
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sowie

W ∗ =
1

2

(
L∗ − L∗T

)
=

1

2

(

Q̇QT −QQ̇T
)

−Q1

2

(

L− LT
)

QT = QWQT + Q̇QT . (3.23)

Dann folgt aus dem Lemma und (3.19), dass

QG(D)QT = QG(L)QT = QTQT = T ∗ = G(L∗) = G(D∗) = G(QDQT ),

d. h. der Spannungstensor T nach Definition 3.1.1 eine isotrope Tensorfunktion ist.

3.1.3 Die Forderung nach Isotropie

Die Abhängikeit des Spannungstensors vom symmetrischen Anteil des Geschwindigkeits-
gradienten D lässt sich ebenso aus der Tatsache ableiten, dass viele Flüssigkeiten als iso-
trop beschrieben werden können. Umgangssprachlich formuliert bedeutet das, dass sie sich
in jeder Richtung gleich verhalten; drehen wir die Referenzkonfiguration Ω und überfüh-
ren sie so in die Referenzkonfiguration Ω′, so sollten die Materialgrößen davon unberührt
bleiben, d. h. die Reaktion der Flüssigkeit sollte invariant unter Drehungen sein. Diese
Überlegung impliziert die folgende Definition

Definition 3.1.2: Ein Teilchen verhält sich isotrop bzgl. der Referenzkonfiguration G,
wenn seine resultierenden Materialgrößen bei Auferlegung derselben beliebigen Deforma-
tionen Φ nicht davon abhängen, ob die Bewegung von G oder einer gedrehten Referenz-
konfiguration G ′ ausging, d. h. falls für mindestens eine Referenzkonfiguration und jedes
Q = Q(t) ∈ O(3)

G′(F ) := G(FQ) = G(F ) für jede Deformation F (3.24)

gilt.

Abbildung 3.2: Isotropie

Wegen (3.21) ist (bei „Vorschaltung“einer Drehung Q)

L′ = ˙(FQ)(FQ)−1 = ḞQQTF−1 + FQ̇Q−1F−1 = L+ FQ̇Q−1F−1, (3.25)

so dass die Forderung nach Isotropie der Flüssigkeit wegen (3.24) zu

T (x, t) = G′(L′) = G′(ḞF−1) = G′(F ) = G(FQ) = G(L+ FQ̇QTF−1)
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für alle Q ∈ So(3) und alle Deformationen F führt. Setzen wir mit (3.21) V := Q̇QT ∈
so(3) und wählen als spezielle Deformation F = ∇v = Q̃ ∈ O(3) (vgl. Neff/Münch:
Dann ist F = ∇v eine konstante, globale Rotation.), so muss der Spannungstensor T die
Gleichung

G(L) = G(L+ Q̃V Q̃T ) (3.26)

für alle V ∈ so(3) erfüllen. Setzen wir nun

V := Q̃T 1

2

(
LT − L

)
Q̃ = −Q̃TWQ̃ ∈ so(3)

folgt wie schon vorher

T (x, t) = G(L) = G
(

L− Q̃Q̃TWQ̃Q̃T
)

= G (L−W ) = G(D).

Ferner wollen wir festhalten, dass nach Definition des rate of deformation tensors D =
D(F ) bzw. des vorticity tensors W = W (F ) (vgl. (2.14)) und Gleichung (3.21) sowie
(3.25)

D′ =
1

2

(

L′ + L′T
)

=
1

2
F
(

Q̇QT +QQ̇T
)

F−1 +
1

2

(

L+ LT
)

= D, (3.27)

sowie

W ′ =
1

2

(

L′ − L′T
)

(3.28)

=
1

2
F
(

Q̇QT −QQ̇T
)

F−1 +
1

2

(

L′ − L′T
)

= W + Q̇QT . (3.29)

ist. Die folgende Übersicht zeigt schematisch die bisher von uns gewonnenen Erkenntnisse:

(1) Deformation der =⇒ T = G(L) = G(∇v).
Linienelemente

(2) Galilei’s Relativitätsprinzip =⇒ T ist forminvariant.
=⇒ T ist eine isotrope Tensorfunktion.

(3) Materielle Objektivität =⇒ T = G(D) = G( symL ) forminvariant.
=⇒ T ist eine isotrope Tensorfunktion

in D = symL = 1
2
(L+ LT ).

(4) Isotropie =⇒ T = G(D) = G( symL ).

(5) Galilei’s Relativitätsprinzip =⇒ T ist eine forminvariante, isotrope
& Isotropie Tensorfunktion in D = symL .
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3.1.4 Darstellung isotroper Tensorfunktionen

Im Wesentlichen haben wir uns im letzten Abschnitt bemüht, detailliertere Informationen
über die Form und Struktur des Spannungstensors abzuleiten. Dabei sind wir ausgehend
von drei verschiedenen Gesichtspunkten zu der Erkenntnis gelangt, dass der Spannungs-
tensor T = G(L) eine isotrope, forminvariante und (sofern wir uns der Hypothese der Dre-
himpulserhaltung anschließen) nach Satz 2.5.2 symmetrische Tensorfunktion G abhängig
vom symmetrischen Anteil des Geschwindigkeitsgradienten D sein sollte und somit

T ∗ = G(D∗) = G(QDQT ) = QG(D)QT = QTQT ∀ Q ∈ SO(3)

erfüllt. Basierend auf diesen Eigenschaften ermöglicht uns der folgende Satz nun eine
konkrete Darstellung des Spannungstensors.

Satz 3.1.2 (Darstellungssatz von Rivlin-Erickson): Für eine tensorwertige Funktion

G : § ist symmetrisch } −→ {B ist symmetrisch }

sind äquivalent:

(a) G besitzt die Eigenschaft

G(QSQT ) = QG(S)QT ∀ O ∈ SO(3). (3.30)

(b) G besitzt die Darstellung

G(S) = φ0(IS)I + φ1(IS)S + φ2(IS)S
2, (3.31)

wobei φ0, φ1 und φ2 Funktionen der skalaren Grundinvarianten IS von S sind.

Die skalaren Grundinvarianten IS = (I1(S), I2(S), I3(S)) eines Tensors 2-ter Stufe sind
die Koeffizienten des charakteristischen Polynoms

χS = det(S − λI) = −λ3 + I1(S)λ
2 − I2(S)λ+ I3(S).

Sind λ1, λ2 und λ3 die Eigenwerte des Tensors S so gilt:

I1(S) = tr(S) = λ1 + λ2 + λ3 (3.32)

I2(S) =
1

2

(
( tr(S))2 − tr(S2)

)
= λ1λ2 + λ1λ3 + λ2λ3 (3.33)

I3(S) = det(S) = λ1λ2λ3 (3.34)

Beweis.

(b)=⇒(a): Nehmen wir zunächst an, dass G(S) die Darstellung (3.31) für skalare
Invariante φ0, φ1, φ2 hat, so ist

QG(S)QT = φ0QIQ
T + φ1QSQ

T + φ2QS
2QT

= φ0I + φ1QSQ
T + φ2QSQ

TQSQT

= φ0I + φ1QSQ
T + φ2(QSQ

T )2 = G(QSQT )

und daher gilt (3.30).



38 KAPITEL 3. KONSTITUTIVE MATERIALGESETZE

(a)=⇒(b): Diesen Beweis führen wir in drei Schritten.

Schritt 1: Zunächst zeigen wir, dass vorausgesetzt (3.30) gilt, die Eigenwerte von
G(S) skalare Invarianten von S sind.

Seien dazu g(S) ein Eigenwert von G(S) und g(QSQT ) der entsprechende Eigenwert
von G(QSQT ). Dann lauten die zugehörigen Eigenwertprobleme

det (G(S)− g(S)I) = 0 bzw. det
(
G(QSQT )− g(QSQT )I

)
= 0.

Da G(S) eine isotrope Tensorfunktion ist können wir dies mit (3.30) umschreiben
zu

0 = det
(
QG(S)QT − g(QSQT )I

)
= det

(
QG(S)QT − g(QSQT )QIQT

)

= detQ · det
(
G(S)− g(QSQT )I

)
· detQT

= det
(
G(S)− g(QSQT )I

)
.

Da diese Gleichung für jedes Q ∈ O(3) gilt und sowohl g(S) als auch g(QSQT )
dieselbe Gleichung lösen, muss

g(QSQT ) = g(S)

gelten. Die Eigenwerte von G(S) sind also skalare Invarianten von S.
Schritt 2: Nun zeigen wir, dass G(S) und S koaxial sind, also dieselben Eigenvekto-
ren haben.

Dazu betrachten wir einen Eigenvektor v von S zum Eigenwert λ, d. h.

Sv = λv.

Ferner sei Q ein orthogonaler Tensor der Form

Q = 2(v ⊗ v)− I.

für einen Vektor v mit ‖v‖ = 1 (Q beschreibt eine Drehung um den Winkel π
2

um
v). Diese Darstellung ist erlaubt, da

QQT = (2(v ⊗ v)− I)
(
2(v ⊗ v)T − IT

)

= (2(v ⊗ v)− I) (2(v ⊗ v)− I)
= 4(v ⊗ v)− 2(v ⊗ v)− 2(v ⊗ v) + I = I.

Insbesondere ist
Q = QT und Qv = 2v − v = v.

Dann gilt

Sv = SQTQv = λQTQv =⇒ SQTv = λQTQQTv = λQTv = λQv = λv

und daher
QSQTv = Qλv = λQv = λv = Sv =⇒ QSQT = S.
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Mit der Isotropieeigenschaft (3.30) erhalten wir daraus

QG(S)QT = G(QSQT ) = G(S).

Betrachten wir nun

G(V )v = QG(S)QTv = QG(S)QTQv = QG(S)v

erkennen wir, dass G(S)v ein Eigenvektor von Q zum Eigenwert 1 ist. Da ein ortho-
gonaler Tensor nur einen reellen Eigenwert und damit nur einen reellen Eigenvektor
haben kann, muss eine Zahl α existieren, so dass

G(S)v = αv

ist. Somit ist gezeigt, dass die Eigenvektoren von G(S) und S dieselben Eigenvek-
toren haben, also koaxial sind.
Schritt 3: Zuletzt zeigen wir mit den Ergebnissen aus Schritt 1 und Schritt 2 das
G(S) die geforderte Darstellung haben muss.

Sei also S ein symmetrischer Tensor. Dann besitzt der zugrunde liegende Vektorraum
eine Orthogonalbasis aus Eigenvektoren bzgl. derer S orthogonal diagonalisierbar
ist. Sei

S = QSQT

die entsprechende Transformation auf Diagonalform mit Diagonaltensor S und or-
thogonalem Tensor Q. Unter der Annahme, dass (3.30) für Diagonaltensoren gilt,
folgt

G(S) = G(QSQT ) = QG(S)QT

= Q(φ0I + φ1S + φ2S2)QT

= φ0I + φ1S + φ2S
2,

da φ0, φ1, φ2 skalare Invarianten sind. Es genügt also die Behauptung für Diago-
naltensoren zu zeigen. Da G isotrop ist, folgt nach Schritt 2, dass G und S dieselben
Eigenvektoren v1, v2, v3 haben. Seien nun λ1, λ2, λ3 und g1, g2, g3 die Eigenwerte
von S bzw. G(S), dann lassen sich S und G(S) auf die sogenannte Spektraldarstel-
lung

S = λ1v1 ⊗ v1 + λ2v2 ⊗ v2 + λ3v3 ⊗ v3 (3.35)

G(S) = g1v1 ⊗ v1 + g2v2 ⊗ v2 + g3v3 ⊗ v3 (3.36)

transformieren. Nach Schritt 1 sind die Eigenwerte gi von G skalare Invariante von
S. Daraus können wir ableiten, dass G(S) gemäß (3.31) darstellbar ist, falls das
Gleichungssystem

φ0 + φ1λi + φ2λ
2
i = gi, (i = 1, 2, 3)

lösbar ist. Sind die λi untereinander verschieden, so ist dies der Fall und φ0, φ1, φ2

sind als Funktionen der λi und gi darstellbar und somit skalare Invarianten. Sei nun
λ1 = λ2 =: λ. Dann betrachten wir zwei orthonormale Eigenvektoren v1 und v2 von
S zum Eigenwert λ, d. h.

Sv1 = λv1 bzw. Sv2λv2.
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Die Vektoren v1 und v2 sind aber auch Eigenvektoren von G(V ) zu den Eigenwerten
g1 und g2, so dass

G(S)v1 = g1v1 bzw. G(S)v2 = g2v2

gilt. Mit v1 und v2 ist auch jeder Vektor der in der von v1 und v2 aufgespannten
Ebene Eigenvektor von S und dahr auch von G(S). Insbesondere ist somit v1 + v2
ein Eigenvektor von G(S), d. h. es gibt einen Eigenwert µ, so dass

G(S)(v1 + v2) = µ(v1 + v2)

ist. Andererseits gilt
G(S)(v1 + v2) = g1v1 + g2v2

und somit
(µ− g1)v1 + (µ− g2)v2 = 0.

Aufgrund der linearen Unabhängigkeit von v1 und v2 folgt daraus

g1 = g2 = µ.

Wir können dann (3.31) erfüllen indem wir φ2(IS) = 0 wählen. Dann ist

G(V ) = φ0I + φ1S,

wobei φ0 und φ1 gemäß obigem Gleichungssystem eindeutig bestimmt und als Funk-
tionen der λi und gi darstellbar sind. Im Fall λ1 = λ2 = λ3 = λ folgt wie oben, dass

g1 = g2 = g3

ist. Wählen wir φ1 = φ2 = 0 , so ist das obige Gleichungssystem wieder lösbar und
man kann (3.31) mit

G(S) = φ0I

erfüllen.

�

Zusammenfassend haben wir also gezeigt, dass für Stokessche Flüssigkeiten der Cauchy-
Spannungstensor die Gestalt

T (x, t) = G(D; x, t) = φ0(ID)I + φ1(ID)D + φ2(ID)D
2 (3.37)

hat. Gehen wir insbesondere von einem linearen Zusammenhang aus, so ist

T (x, t) = φ0(ID)I + φ1(ID)D. (3.38)

3.2 Verallgemeinerung auf mikropolare Flüssigkeiten

Anders als bei klassischen Stokesschen Flüssigkeiten konstituieren wir, dass die Spannung
in mikropolaren Flüssigkeiten nicht nur vom Geschwindigkeitsgradienten L, sondern auch
von der Rotationsgeschwindigkeit ω der Flüssigkeitsteilchen, genauer dem microgyration
tensor abhängt

T (x, t) = G(L,W ; x, t) = G(L,W) bzw. M(x, t) = H(L,W ; x, t) = H(L,W).

Unter dieser Voraussetzung werden wir nun die Prinzipien und Überlegungen des vor-
angegangenen Abschnitts auf mikropolare Flüssigkeiten übertragen und feststellen, dass
die Spannungstensoren auch für mikropolare Flüssigkeiten isotrope Tensorfunktionen sind
und sich ebenfalls in Polynome entwickeln lassen.
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3.2.1 Mikropolare Flüssigkeiten unter Galilei-Transformationen

Das Galilei’sche Relativitätsprinzip fordert die Invarianz der Bewegungsgleichungen unter
Galileitransformationen, d. h. sind O und O∗ zwei gegeneinander durch eine Transforma-
tion der Form

Φ∗(X, t) = QΦ(X, t) + c(t) (Makrobewegung) (3.39)

ϕ∗(X,P, t) = Qϕ(X,P, t) + c(t) (Mikrobewegung). (3.40)

verschobene Beobachter, so müssen in beiden Bezugssystemen die Bewegungsgleichungen
dieselbe Form haben. Analog zum klassischen Fall führt diese Forderung zu unterschiedli-
chen Beziehungen zwischen den kinematischen Variablen der mikropolaren Flüssigkeit, die
wir im Folgenden genauer analysieren werden. Der Mikrorotationstensor R̄ transformiert
sich unter (3.40) gemäß

R̄∗ =

(
∂p∗i
∂Pj

)

ij

=

(
∂p∗i
∂pk
· ∂pk
∂Pj

)

ij

= QR̄,

so dass für die Transformation des mycrogyration tensors nach (2.21)

W∗ =
d

dt
(QR̄)(QR̄)T = Q ˙̄RR̄TQT = QWQT (3.41)

gelten muss. Sicherlich ist es auch für mikropolare Flüssigkeiten sinnvoll davon auszuge-
hen, dass sowohl der Betrag des Spannungsvektors t als auch des Momentenspannungs-
tensors m durch eine Galileitransformation unverändert und ihre Orientierungen bezgl.
der Normalen von der Transformation unberührt bleiben sollten. Dann folgt mit (3.9),
Satz 3.1.1 und analog zur Herleitung von (3.11), dass

T ∗ = G∗(L∗,W∗) = QG(L,W)QT

M∗ = H∗(L∗,W∗) = QH(L,W)QT

und mit (3.15) sowie (3.41), dass

G∗(QLQT , QWQT ) = QG(L,W)QT

H∗(QLQT , QWQT ) = QH(L,W)QT

ist, also T und M isotrope Tensorfunktionen in L und W sind. Für Q = I erhalten wir
ferner auch die Forminvarianz der beiden Tensoren.

3.2.2 Isotropieeigenschaften mikropolarer Flüssigkeiten

Genauso wie klassische Flüssigkeiten sollten sich auch mikropolare Flüssigkeiten isotrop
verhalten, d. h. dass ihre Materialgrößen unabhängig davon sein sollten, ob die Bewegung
der Flüssigkeit von einer Referenzkonfiguration G oder einer gegenüber dieser gedrehten
Referenzkonfiguration G ′ ausging. Für die Spannungstensoren T = G̃(F, R̄) und M =
H̃(F, R̄) bedeutet diese Forderung, dass für jedes Q = Q(t) ∈ SO(3)

G′(F, R̄) := G(FQ, R̄Q) = G(F, R̄) bzw. H ′(F, R̄) := H(FQ, R̄Q) = H(F, R̄)



42 KAPITEL 3. KONSTITUTIVE MATERIALGESETZE

gelten muss. Wegen (3.25) und

W ′ =
d

dt
(R̄Q)(RQ)−1 = ˙̄RQQT R̄T + R̄Q̇QT R̄T =W + R̄Q̇QT R̄T

führt die Forderung nach Isotropie zu

T (x, t) = G(L,W) = G(F, R̄) = G(FQ, R̄Q) = G(L+ FQ̇QTF−1,W + R̄Q̇QT R̄T )

M(x, t) = H(L,W) = H(F, R̄) = H(FQ, R̄Q) = H(L+ FQ̇QTF−1,W + R̄Q̇QT R̄T ).

Diese Beziehung muss für beliebige Deformationen F , RotationenR und Transformationen
Q erfüllt sein, also insbesondere auch für die spezielle Deformation bzw. Rotation F =
R = Q̃ ∈ SO(3), d. h. die Spannungstensoren erfüllen für V := Q̇QT ∈ so(3)

T (x, t) = G(L+ Q̃V Q̃T ,W + Q̃V Q̃T )

M(x, t) = H(L+ Q̃V Q̃T ,W + Q̃V Q̃T ).

Setzen wir

V = Q̃−11

2

(
LT − L

)
Q̃ = −Q̃−1WQ̃,

muss daher

T (x, t) = G(D,W −W ) bzw. M(x, t) = H(D,W −W ) (3.42)

gelten.

3.2.3 Materielle Objektivität mikropolarer Flüssigkeiten

Für beliebige Wechsel des Bezugssystems sind die Transformationen der Makro- und Mi-
krobewegung analog zu (3.13) gegeben durch

Φ∗(X, t) = Q(t)Φ(X, t) + c(t) (Makrobewegung) (3.43)

ϕ∗(X,P, t) = Q(t)ϕ(X,P, t) + c(t) (Mikrobewegung), (3.44)

für Q(t) ∈ SO(3) beliebig. Dann folgt aus (2.21) für die Transformation des microgyration
tensors

W∗ =
d

dt
(QR̄)(QR̄)T = QWQT + Q̇QT . (3.45)

Nehmen wir die Transformationseigenschaft (3.15) des Geschwindigkeitsgradienten hinzu,
so muss für die Spannungstensoren nach dem Prinzip der materiellen Objektivität

T ∗(x∗, t) = G∗(QLQT + Q̇QT , QWQT + Q̇QT ) = QG(L,W)QT

M∗(x∗, t) = H∗(QLQT + Q̇QT , QWQT + Q̇QT ) = QH(L,W)QT .

gelten. Diese Beziehungen müssen für beliebige Q ∈ SO(3) erfüllt sein, und daher insbe-
sondere auch für Q = I, so dass

G∗(x, t) = G∗(x∗, t) = G(x, t) bzw. H∗(x, t) = H∗(x∗, t) = H(x, t),
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für beliebige x und t gelten muss, d. h. die Spannungstensoren T und M forminvariant
sind. Setzen wir ferner Q(t) = exp(−tW ) für W = skewL , so ist (vgl. Beweis zu Lemma
3.1.1) Q̇(0) = −W und es folgt

G(L,W) = Q(0)G(L,W)Q(0)T = G(L−W,W −W ) = G(D,W −W )

H(L,W) = Q(0)H(L,W)Q(0)T = G(L−W,W −W ) = G(D,W −W ).

Nach (3.23) und (3.22) sind

QG(D,W −W )QT = G(QDQT , Q(W −W )QT )

QH(D,W −W )QT = H(QDQT , Q(W −W )QT ),

d. h. die Argumente der Spannungsfunktionen sind objektive Tensoren. Der Cauchy-
Spannungstensor T und der Momentenspannungstensor M müssen für mikropolare Flüs-
sigkeiten also die Beziehungen

T (x, t) = G(D,B −D) bzw. M(x, t) = H(D,B −D) (3.46)

erfüllen, wobei

B = LT +W (3.47)

der sogenannte rate of microdeformation tensor ist. Die folgende Übersicht zeigt schema-
tisch die bisher gewonnenen Erkenntnisse:

(1) Deformation der =⇒ T = G(L) = G(∇v).
Linienelemente

(2) Galilei’s Relativitätsprinzip =⇒ T und M sind forminvariant.
=⇒ T und M sind isotrope

Tensorfunktionen.

(3) Materielle Objektivität =⇒ T = G(D,B −D) und
=⇒ M = H(D,B −D) sind form-

invariante und isotrope Tensor-
funktionen in D = 1

2
(L+ LT )

und B = LT +W

(4) Isotropie =⇒ T = G(D,B −D) und
M = H(D,B −D).

(5) Galilei’s Relativitätsprinzip =⇒ T und M sind forminvariante,
& Isotropie isotrope Tensorfunktionen in D

und B = LT +W
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Gehen wir von der Annahme aus, dass die Spannungstensoren analog zum klassischen
Fall Polynome in B − D und D sind, lassen sich die Funktionen G und H (vgl. [Eri64],
[Riv60]) in eine endliche Anzahl von Termen entwickeln. Beschränken wir uns ferner auf
die linearen Terme, so sind die Spannungstensoren von der Form (vgl. [Eri64])

T (x, t) = G(D,B −D) =
[

− p+ λν tr(D)
]

1+ 2µD − 2µv
c(B −D) (3.48)

M(x, t) = H(D,B −D) = c0 · tr(Dω) · 1+ 2cd symDω + 2ca skewDω. (3.49)

Der symmetrische Anteil des Spannungstensors T aus (3.48)

symT =
[

− p+ λν trD
]

1+ 2µD

entspricht gerade dem Spannungstensor in der klassischen Hydrodynamik, mit den übli-
chen Viskositäten λ und µ. Die Konstante µv

c in (3.48) repräsentiert die dynamische Mikro-
rotationsviskosität, während c0, ca, cd in (3.49) coefficients of angular viscosities genannt
werden. Im nächsten Abschnitt werden wir sehen, dass diese Konstanten nicht beliebig,
sondern thermodynamischen Restriktionen unterworfen sind. Zunächst untersuchen wir
aber, wie sich die Ergebnisse für die Spannungstensoren T und M auf die Bewegungs-
gleichungen (3.1) auswirken. Unter Beachtung der Einstein’schen Summationskonvention
berechnen wir dafür

(a) die Divergenz des Cauchy - Spannungstensors

Div T =
∂

∂xj

([

− p+ λ trD
]

δij + 2µDij − 2µv
c(B −D)ij

)

=
∂

∂xj

([

− p+ λ tr(D)
]

δij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)

+ µv
c

(
∂vi
∂xj
− ∂vj
∂xi

+ 2ǫkijωk

))

=

[

− ∂p

∂xi
+ λ

∂

∂xi
div v

]

+ µ

(

∆vi +
∂

∂xi
tr(D)

)

+ µv
c

(

∆vi −
∂

∂xi
tr(D) + 2ǫijk

ωk

∂xj

)

=
[

−∇p+ λ∇ tr(D)
]

+ µ (∆v +∇ tr(D)) + µv
c (∆v −∇ tr(D) + 2 curlω)

= −∇p+ (λ+ µ− µv
c)∇ tr(D) + (µ+ µv

c)∆v + 2µv
c curlω.

(b) und die Divergenz des Momentenspannungstensors

DivM =
∂

∂xj

(

c0 · tr(Dω) · δij + 2cd(symDω)ij + 2ca(skewDω)ij

)

=
∂

∂xj

(

c0 · tr(Dω) · δij + cd

(
∂ωi

∂xj
+
∂ωj

∂xi

)

+ ca

(
∂ωi

∂xj
− ∂ωj

∂xi

))

= c0 ·
∂

∂xj
tr(Dω) · δij + cd

(
∂2ωi

∂x2j
+

∂2ωj

∂xj∂xi

)

+ ca

(
∂2ωi

∂x2j
− ∂2ωj

∂xj∂xi

)

= c0 ·
∂

∂xi
tr(Dω) + cd

(

∆ωi +
∂

∂xi
tr(Dω)

)

+ ca

(

∆ωi −
∂

∂xi
tr(Dω)

)

=
(

c0 + cd − ca
)

∇ tr(Dω) +
(

cd + ca

)

∆ω.
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Neben diesen beiden treten in den Bewegungsgleichungen ebenfalls die Terme

axl (skew T ) , 〈M,∇ω〉R3×3 , 〈 symT ,D〉R3×3 und 〈 skewT ,W 〉R3×3

auf, für die wir hier einfach nur das Ergebnis angeben und die Berechnung in den Anhang
A.1.4 stellen. Es gilt:

• 〈M,Dω〉R3×3 = c0 tr(Dω)2 +
(

cd + ca

)

〈Dω,Dω〉R3×3

+
(

cd − ca
)

〈Dω,DωT 〉R3×3

• 〈 symT ,D〉R3×3 + 〈 skewT ,W 〉R3×3

= −p tr(D) + λ tr(D)2 + 2µ〈D,D〉R3×3 + µv
c〈curl v, curl v〉 − 2µv

c〈curl v, ω〉

• axl (skew T ) = 2µv
c

(

ω − 1

2
curl v

)

= −2µv
c axl(B −D).

Zusammengenommen lassen sich nun die Bewegungsgleichungen (3.1) konkretisieren:
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Die Bewegungsgleichungen mikropolarer Flüssigkeiten

Massenerhaltung :

Dρ

Dt
= −ρ tr(D) (3.50)

Impulserhaltung :

ρ
Dv

Dt
= ρk +Div T

= ρk −∇p+ (λ+ µ− µv
c)∇ tr(D) + (µ+ µv

c)∆v − 2µv
c curlω (3.51)

Drehimpulserhaltung :

ρI
Dω

Dt
= ρg +DivM + 2axl (skew T ) (3.52)

= ρg +
(

c0 + cd − ca
)

∇ tr(Dω) +
(

cd + ca

)

∆ω + 2µv
c

(

curl v − 2w
)

(3.53)

Energieerhaltung :

ρ
DE

Dt
= −p tr(D) + ρΓ− div q (3.54)

mit

ρΓ = λ tr(D)2 + c0 tr(Dω)2 + 2µ〈D,D〉R3×3 + µv
c

(

2ω − curl v
)2

+
(

cd + ca

)

〈Dω,Dω〉R3×3 +
(

cd − ca
)

〈Dω,DωT 〉R3×3

(3.55)
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3.2.4 Thermodynamische Restriktionen für die Viskositätskon-
stanten

Aus thermodynamischer Sicht können wir eine homogene Flüssigkeit durch eine Reihe ex-
pliziter Beziehungen zwischen einigen wenigen „ Zustandsgrößen “ beschreiben. Die wich-
tigsten Zustandsgrößen sind dabei die Entropie S, die Volumendichte V = 1/ρ, die innere
Energie E, der Druck p und die absolute Temperatur θ. Die Entropie beschreibt dabei die
Zahl der möglichen Mikrozustände eines Systems, die zu dem beobachteten Makrozustand
führen und ist letztlich ein Maß für die Unordnung im System. Ausgehend von der Gibbs
Beziehung

E = E(S, V ) (3.56)

sind Druck und Temperatur definiert durch:

p = −∂E
∂V

bzw. θ =
∂E

∂S
.

Gehen wir im folgenden davon aus, dass V = V (t) und S = S(T ) differenzierbare Funk-
tionen in der Zeit und p, θ > 0 sind, ist die Ableitung von (3.56) nach t durch

DE

Dt
=
∂E

∂S

DS

Dt
+
∂E

∂V

DV

DT
= θ

DS

Dt
− pDV

Dt
= θ

DS

Dt
+

p

ρ2
Dρ

Dt
.

Umgestellt gilt also für die lokale Änderung der Entropie S:

DS

Dt
=

1

θ

DE

Dt
− p

θρ2
Dρ

Dt
. (3.57)

Gehen wir für die Wärmeleitung wie in Abschnitt 2.5.4 von Fourier’s Gesetz (2.46) aus,
folgt mit (3.54)

ρ
DE

Dt
= c div∇θ − p tr(D) + ρΓ.

Die innere Energie eines Volumenelementes G(t) in einer Flüssigkeit nimmt also in dem
Maße zu, in dem Wärme hinein- oder herausströmt, die Flüssigkeit komprimiert oder die
Viskosität vergrößert wird. Die Kontinuitätsgleichung (3.50) liefert ferner

tr(D) = div v = −1

ρ

Dρ

Dt
,

so dass wir eingesetzt in (3.57)

ρ
DS

Dt
=
ρ

θ

DE

Dt
− p

θ

(
1

ρ

Dρ

Dt

)

=
c

θ
div∇θ + 1

θ
ρΓ

ableiten können. Nach dem zweiten Hauptsatz der Thermodynamik kann die Entropie
eines abgeschlossenen Systems nie abnehmen, so dass also stets

d

dt

∫

G(t)

ρS dx =

∫

G(t)

ρ
DS

Dt
dx ≥ 0 (3.58)
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gelten muss. Nach dem Satz von Gauß muss demnach
∫

G(t)

ρ
DS

Dt
dx =

∫

G(t)

c

θ
div∇θ + 1

θ
ρΓ dx

=

∫

G(t)

div
( c

θ
∇θ
)

+
c

θ2
(∇θ)2 + 1

θ
ρΓ dx

=

∫

∂G(t)

−1

θ
〈q, n〉 dS +

∫

G(t)

c

θ2
(∇θ)2 + 1

θ
ρΓ dx

und daher nach (3.55) lokal

0 ≤ c div∇θ + ρΓ =c div∇θ + λ( tr(D))2 + c0 tr(Dω)2 + 2µ〈D,D〉R3×3

+ 4µv
c

(

2ω − curl v
)2

+
(

cd + ca

)

〈Dω,Dω〉R3×3

+
(

cd − ca
)

〈Dω,DωT 〉R3×3

(3.59)

gelten. Da D, q, 2ω − curl v und ∇ω unabhängig voneinander variieren können, kann
diese Ungleichung für beliebige Bewegungen der Flüssigkeit nur erfüllt werden, wenn

(1)
c

θ2
(∇θ)2 ≥ 0

(2) λ( tr(D))2 + 2µ〈D,D〉R3×3 ≥ 0

(3) c0 tr(Dω)2 +
(

cd + ca

)

〈Dω,Dω〉R3×3 +
(

cd − ca
)

〈Dω,DωT 〉R3×3 ≥ 0

(4) µv
c

(

2ω − curl v
)2

≥ 0

gilt. Offensichtlich implizieren die erste und dritte Ungleichung, dass

c ≥ 0, bzw. µv
c ≥ 0

erfüllt sein müssen. Die Bedingungen an die übrigen Koeffizienten erhalten wir, indem wir
sie als quadratische Formen in einem neun dimensionalen Raum auffassen, die dann die
Bedingungen

aijξiξj ≥ 0 bzw. bijψiψj ≥ 0 (3.60)

erfüllen müssen. Dabei sind

ξ1 =
∂v1
∂x1

, ξ2 =
∂v2
∂x2

, ξ3 =
∂v3
∂x3

, ψ1 =
∂ω1

∂x1
, ψ2 =

∂ω2

∂x2
, ψ3 =

∂ω3

∂x3
,

ξ4 =
∂v1
∂x2

, ξ5 =
∂v1
∂x3

, ξ6 =
∂v2
∂x3

, ψ4 =
∂ω1

∂x2
, ψ5 =

∂ω2

∂x1
, ψ6 =

∂ω2

∂x3
,

ξ7 =
∂v3
∂x1

, ξ8 =
∂v3
∂x2

, ξ9 =
∂v2
∂x1

, ψ7 =
∂ω3

∂x2
, ψ8 =

∂ω3

∂x1
, ψ9 =

∂ω1

∂x3

und

a11 = a22 = a33 = λ+ 2µ,

a12 = a21 = a13 = a31 = a23 = a32 = λ,

a44 = a55 = a66 = a77 = a88 = a99 = µ,

a57 = a75 = a68 = a86 = a94 = a49 = µ,

aij = 0 sonst.
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bzw.

b11 = b22 = b33 = c0 + 2cd,

b12 = b21 = b13 = b31 = b23 = b32 = c0,

b44 = b55 = b66 = b77 = b88 = b99 = cd + ca,

b45 = b54 = b67 = b76 = b89 = b98 = cd − ca,
bij = 0 sonst.

Dann sind
s1 = 2µ und s2 = 3λ+ 2µ

die Eigenwerte von A = (aij) bzw.

t1 = 2cd, t2 = 2ca und t3 = 3c0 + 2cd

die Eigenwerte von B = (bij). Die Forderungen (3.60) sind nun genau dann erfüllt wenn die
Eigenwerte nichtnegativ sind, so dass wir zusammengefasst den folgenden Satz bewiesen
haben.

Satz 3.2.1: Der zweite Hauptsatz der Thermodynamik ist für beliebige Bewegungen mi-
kropolarer Flüssigkeiten genau dann erfüllt, wenn

3λ+ 2µ ≥ 0, µ ≥ 0, µv
c ≥ 0,

3c0 + 2cd ≥ 0, cd ≥ 0, ca ≥ 0, c ≥ 0
(3.61)

gilt.

Im klassischen Fall Stokesscher Flüssigkeiten reduzieren sich die obigen Bedingungen auf

3λ+ 2µ ≥ 0, µ ≥ 0, c ≥ 0.



Kapitel 4

Mathematische Diskussion

Der folgende Abschnitt soll eine einheitliche Basis schaffen, um die Diskussion der Be-
wegungsgleichungen mikropolarer Flüssigkeiten mit (Funktional-) analytsichen Methoden
zu ermöglichen. Das für die Behandlung partieller Differnetialgleichungen enorm wichtige
Lemma von Lax - Milgram ebenso wie der Fixpunktsatz von Schauder und der Begriff der
schwachen Ableitung werden vorgestellt und die Theorie der Sobolevfunktionen umrissen.
Insbesondere die Poincare - Ungleichung und die Einbettungssätze in Abschnitt (4.1.4)
werden bei der Untersuchung des Differentialgleichungssystems von Seite 46 eine tragende
Rolle spielen.

4.1 Grundlagen der Funktionalanalysis

Wir führen zunächst einige wesentliche Definitionen und Sätze der Funktionalanalysis
ein, die wir bei unseren Untersuchungen im nächsten Kapitel benötigen werden. Dabei
werden wir uns im Wesentlichen auf das Lemma von Peter D. Lax und Arthur N. Milgram
stützen, dessen Beweis der zentrale Punkt dieses Abschnitts ist.

Seien X und Y normierte R-Vektorräume. Eine Abbildung T : X −→ Y heißt (linearer)
Operator, wenn T (αx+βy) = αT (x)+βT (y) für alle x, y ∈ X und α, β ∈ K. Wir nennen
einen linearen Operator

(a) beschränkt, wenn er beschränkte Mengen in beschränkte Mengen überführt und

(b) kompakt, falls er beschränkte Mengen in relativkompakte Mengen überführt.

Dabei heißt A ⊂ X relativkompakt, wenn der Abschluß clos(A) in X kompakt ist.

Bemerkung 2: Man kann zeigen, dass ein Operator T ∈ L(X, Y ) genau dann kompakt
ist, wenn für jede beschränkte Folge (xn)n∈N in X, die Bildfolge (Txn)n∈N in Y eine
konvergente Teilfolge besitzt (vgl. z. B. [Alt06]).

Satz 4.1.1: Seien X, Y normierte Räume und T : X −→ Y ein linearer Operator. Dann
sind äquivalent:

(a) T ist beschränkt

50
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(b) Es gibt eine Zahl c > 0 mit

‖T (x)‖y ≤ c ‖x‖X ∀ x ∈ X (4.1)

(c) T ist gleichmäßig stetig auf X.

Beweis. (a) =⇒ (b): Für x = 0 folgt die Behauptung direkt aus der Linearität des
Operators T . Für x ∈ X \ {0} ist nun

1

|x‖X
· x ∈ B1(0).

Nach Voraussetzung überführt T auch die Einheitskugel B1(0) := {x ∈ X : ‖x‖X ≤ 1}
in eine beschränkte Menge, sodass also für alle x ∈ B1(0):

‖Tx‖Y ≤ C,

für eine Konstante C > 0. Daher gilt
∥
∥
∥
∥
T

x

‖x‖X

∥
∥
∥
∥
Y

≤ C ⇐⇒ ‖Tx‖Y ≤ C · ‖x‖X . ∀ x ∈ X \ {0}

(b) =⇒ (c): Seii ε > 0 vorgegeben. Aus (b) und der Linearität der Abbildung T folgt dann
für alle x, y ∈ X mit ‖x− y‖ ≤ δ := ε

C
:

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C ‖x− y‖ ≤ ε.

(c) =⇒ (a): Da T linear und gleichmäßig stetig also insbesondere in 0 stetig ist, existiert
zu 1 =: ε > 0 ein δ > 0, sodass

‖Tx‖ ≤ ε = 1 ∀ ‖x‖ < δ.

Sei M ⊂ X beschränkt. Dann gibt es eine Konstante C > 0, sodass ‖x‖ < C ∀ x ∈ M
und somit insbesondere

∥
∥ δ
C
x
∥
∥ ≤ δ. Dann gilt aber für alle x ∈M :

∥
∥
∥
∥
T
δ

C
x

∥
∥
∥
∥
≤ 1 ⇐⇒ ‖Tx‖ ≤ C

δ
,

also ist T (M) beschränkt. �

Definition 4.1.1: Sei T ∈ L(X, Y ). Die kleinste Zahl c > 0 für die

‖Tx‖Y ≤ c ‖x‖X ∀ x ∈ X,

heißt Norm von T und wird mit ‖T‖ bezeichnet.

Man kann leicht zeigen, dass

‖T‖ = sup
‖x‖X≤1

‖Tx‖Y = sup
‖x‖X=1

‖Tx‖Y ∀ x ∈ X.
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Die Menge aller linearen beschränkten (und damit stetigen) Operatoren bezeichnen wir
mit L(X, Y ). Statt L(X,X) schreiben wir auch L(X) und statt L(X,K) schreiben wir
X ′. Der Raum X ′ heißt der zu X duale Raum und seine Elemente nennen wir linea-
re beschränkte Funktionale auf X. Einen normierten Raum X in dem jede Cauchyfolge
bezüglich der durch die Norm induzierten Metrik konvergiert, bezeichnen wir als Ba-
nachraum und wir nennen ihn separabel, falls er eine abzählbar dichte Teilmenge A ⊂ X
enthält. Dabei heißt A ⊂ X dicht, falls closA = X.

Definition 4.1.2: Sei X ein normierter Raum, X ′ der Dualraum und X ′′ := (X ′)′ der
Bidualraum. X heißt reflexiv, falls die Abbildung

J1 : X −→ X ′′; x 7−→ J(x) = Jx mit Jx(T ) = T (x) für jedes T ∈ X ′

surjektiv ist.

Definition 4.1.3: Seien X und Y Banachräume.

(1) Eine Folge (xn)n∈N ⊂ X konvergiert schwach gegen x ∈ X (dafür schreiben wir
xn ⇀ x für n→∞), falls für jedes lineare beschränkte Funktional T ∈ X ′

lim
k→∞

T (xk) = T (x).

(2) Eine Menge Y ⊂ X heißt schwach folgenkompakt, falls jede Folge in Y eine schwach
konvergente Teilfolge besitzt, deren Grenzwert wieder in Y liegt.

(3) Ein Operator K : X −→ Y heißt vollstetig, falls für jede schwach konvergente Folge
(xn)n∈N ⊂ X die Bildfolge (K(xn))n∈N ⊂ Y normkonvergent ist.

Satz 4.1.2: Seien X, Y Banachräume. Dann ist jeder kompakte Operator T ∈ L(X, Y )
vollstetig. Ist X zudem reflexiv, so gilt die Äquivalenz.

Beweis. Sei zunächst T ∈ L(X, Y ) ein kompakter Operator und xn ⇀ x für n → ∞.
Dann gilt für alle T ∈ X ′ und k −→∞

‖Tx‖ ←− ‖Txn‖ ≤ ‖T‖ · ‖xn‖

und daher
‖Tx‖ ≤ ‖T‖ · lim inf

n→∞
‖xn‖ .

Wählen wir nun T mit ‖T‖ = 1 und ‖Tx‖ = ‖x‖ (möglich nach dem Satz von Hahn-
Banach vgl. [Alt06]) folgt, dass die Folge (xn)n∈N beschränkt ist. Dann gibt es eine kon-
vergente Teilfolge (xπ(n))n∈N und ein y ∈ Y , so dass Txπ(n) −→ y für n −→ ∞. Aber aus
xn ⇀ x folgt bereits Txn ⇀ Tx und da die starke die schwache Konvergenz impliziert,
ergibt sich aus der Eindeutigkeit des schwachen Grenzwertes (vgl. [Wer07]) y = Tx, d. h.
Tx ist ein Häufungspunkt von (Txn)n∈N. Wir zeigen nun, dass dieser der einzige Häu-
fungspunkt der Folge und damit der Grenzwert der Folge ist. Sei dazu z ∈ Y ein weiterer

1Die Abbildung J wird auch kanonische Einbettung von X in den Bidualraum X ′′ genannt.



4.1. GRUNDLAGEN DER FUNKTIONALANALYSIS 53

Häufungspunkt der Folge (Txn)n∈N. Dann existiert eine Teilfolge (Txµ(n))n∈N, die gegen
z konvergiert und daher ist (xµ(n))n∈N schwach konvergent gegen x. Wiederum folgt aus
der Eindeutigkeit des schwachen Grenzwertes:

z = Tx.

Sei nun X reflexiv und T : X −→ Y vollstetig. Dann ist T insbesondere linear. Ist nun
(xn)n∈N eine beschränkte Folge in X, besitzt sie aufgrund der Reflexivität von X eine
schwach konvergente Teilfolge (vgl. [Wer07]) (xπ(n))n∈N mit xπ(n) ⇀ x ∈ X für n → ∞.
Da T vollstetig ist erhalten wir

Txπ(n) −→ Tx

für n→∞. Nach Bemerkung 2 ist T somit kompakt. �

Satz 4.1.3: Sei X ein reflexiver Banachraum. Dann ist jede abgeschlossene Kugel BR(x) ⊂
X schwach folgenkompakt.

Beweis. Einen Beweis dazu findet man zum Beispiel in [Alt06]. �

4.1.1 Das Lemma von Lax-Milgram

Das Lemma von Lax-Milgram ist einer der zentralen Sätze, mit deren Hilfe die Existenz
und Eindeutigkeit (schwacher) Lösungen von Randwertproblemen für lineare elliptische
partielle Differentialgleichungen gezeigt werden kann. Wir werden hier eine, speziell für
unsere Zwecke geeignete, Form dieses Satzes für seperable Hilberträume formulieren. Es
sei aber darauf hingewiesen, dass sowohl das Lemma von Lax-Milgram, als auch der
Riesz’sche Darstellungssatz als einfaches Korollar dieses Satzes, für allgemeine Hilber-
träume gelten (vgl. Anhang Kapitel A.2).

Sei H ein R-Vektorraum mit Skalarprodukt 〈., .〉H . Wir nennen H einen (reellen) Hilber-
traum, falls in ihm jede Cauchyfolge bezüglich der durch das Skalarprodukt induzierten
Norm konvergiert. Hilberträume sind reflexiv und wegen ihrem hohen Grad an mathema-
tischer Struktur essentiell in der Lösungstheorie partieller Differentialgleichungen.

Satz 4.1.4 (Das Lemma von Lax-Milgram für separable Hilberträume): Sei H ein se-
parabler Hilbertraum und B : H ×H −→ R eine stetige und koerzive Bilinearform, d. h.
∃ β, α > 0 so dass

|B(u, v)| ≤ β ‖u‖ · ‖v‖ und B(u, u) ≥ α ‖u‖2 ∀ u, v ∈ H. (4.2)

Dann existiert für jedes stetige lineare Funktional L : H −→ R ein eindeutiges u ∈ H mit

B(u, v) = L(v) ∀ v ∈ H. (4.3)

Beweis. Wir benutzen für den Beweis die sogenannte Galerkin-Methode. Im Zuge dessen
zeigen wir zunächst für n ∈ N die Existenz von Elementen un ∈ Hn, die

B(un, v) = L(v) ∀ v ∈ Hn (4.4)
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erfüllen und gehen anschließend zum Grenzwert n −→ ∞ über. Dabei sind die Hn

endlich-dimensionale Unterräume von H mit H1 ⊂ H2 ⊂ . . . ⊂ Hn ⊂ . . . und
⋃∞

n=1Hn

eine dichte Teilmenge von H. Seien w1, w2, w3, . . . eine Basis von H und setze Hn =
span{w1, . . . , wn} für n = 1, 2, 3, . . . . Nach Definition ist dann H1 ⊂ H2 ⊂ . . . ⊂ Hn ⊂ . . .
und

∞⋃

n=1

Hn

dicht in H.

(1) (Existenz der un ∈ Hn:) Sei

un =
n∑

i=1

ξiwi ∈ Hn,

dann ist (4.4) äquivalent zu dem linearen Gleichungssystem

n∑

i=1

ξiB(wi, wk) = L(wk) k = 1, 2, . . . , n. (4.5)

Dieses System hat genau dann für jede rechte Seite eine eindeutige Lösung ξ =
(ξ1, ξ2, . . . , ξn),wenn die Matrix A = (B(wi, wk))1≤i,k≤n invertierbar ist, also genau
dann, wenn ker(A) = {0} ist. Um dies zu zeigen multiplizieren wir die k-te Gleichung
des Gleichungssystems

n∑

i=1

ξiB(wi, wk) = 0 k = 1, 2, . . . , n (4.6)

mit ξk und addieren die Gleichungen. Dann erhalten wir

n∑

k=1

ξk

n∑

i=1

ξiB(wi, wk) = B

(
n∑

k=1

ξkwk,
n∑

i=1

ξiwi

)

= B(un, un) = 0 (4.7)

und wegen der Koerzivität der Bilinearform B folgt daraus un = 0. Ferner sind die
Vektoren w1, w2, . . . , wn nach Definition linear unabhängig, sodass wir aus (4.7)

ξ1 = ξ2 = . . . = ξn = 0

ableiten können. Also hat das Gleichungssystem (4.6) nur die eindeutige Lösung
ξ = (0, . . . , 0) und folglich existiert für jedes n ∈ N eine Approximation un ∈ Hn.

(2) (Konvergenz der Folge (un)n ∈ N:) Mit Schritt 1 und (4.2) ist

α ‖un‖2 ≤ B(un, un) = L(un) ≤ ‖L‖ · ‖un‖

und daher

‖un‖ ≤
1

α
‖L‖ ∀ n ∈ N.

Nach Satz 4.1.3 existiert daher eine Teilfolge (uµ)µ∈N von (un)n∈N und ein Element
u ∈ H, sodass

uµ ⇀ u.
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Für µ ≥ j ist
B(uµ, v) = L(v) ∀ v ∈ Hj ⊂ Hµ,

und daher

lim
µ→∞

B(uµ, v) = B(u, v) = L(v) ∀ v ∈
∞⋃

n=1

Hn.

Da
⋃∞

n=1Hn eine dichte Teilmenge von H ist, folgt aus der Stetigkeit der Bilinear-
form B und des linearen Funktionals L, dass (4.3) für jedes v ∈ H erfüllt ist.

(3) (Eindeutigkeit von u:) Sei u′ ∈ H ein weiteres Element mit

B(u′, v) = L(v) ∀ v ∈ H.

Dann folgt aus der Bilinearität von B:

0 = L(v)− L(v) = B(u, v)−B(u′, v) = B(u− u′, v) ∀ v ∈ H

und aus (4.2) speziell für v = u− u′ ∈ H:

0 = B(u− u′, u− u′) ≥ α ‖u− u′‖2 ⇐⇒ u = u′.

�

Satz 4.1.5 (Cauchy-Schwarz Ungleichung): Sei H ein (reeller) Hilbertraum mit Skalar-
produkt 〈., .〉H . Dann gilt:

〈x, y〉2H ≤ 〈x, x〉H〈y, y〉H ∀ x, y ∈ H. (4.8)

Beweis. Für alle x, y ∈ H und α ∈ R gilt:

0 ≤ 〈x− αy, x− αy〉H = 〈x, x〉H − 2α〈x, y〉H + α2〈y, y〉H . (4.9)

Ist 〈x, x〉H = 〈y, y〉H = 0, setzen wir α := 〈x, y〉H und erhalten

0 ≤ −2〈x, y〉H ⇐⇒ 〈x, y〉H ≤ 0.

Sei nun o. E. 〈y, y〉H 6= 0. Dann setzen wir

α =
〈x, y〉H
〈y, y〉H

in (4.9) und erhalten

0 ≤ 〈x, x〉H − 2
〈x, y〉2H
〈x, x〉H

+
〈x, y〉2H
〈y, y〉H

= 〈x, x〉H −
〈x, y〉2H
〈x, x〉H

und damit die Behauptung 〈x, y〉2H ≤ 〈x, x〉H〈y, y〉H . �
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Satz 4.1.6 (Riesz-Fréchet für separable Hilberträume): Sei H ein separabler Hilbertraum
mit Skalarprodukt 〈., .〉H und Norm ‖.‖H . Ist ferner L ∈ H ′ ein lineares stetiges Funktional
auf H, dann gibt es ein u ∈ H, so dass

〈u, v〉H = L(v) ∀ v ∈ H (4.10)

und ‖u‖H = ‖L‖.

Beweis. Die Existenz eines u ∈ H für das (4.10) gilt, folgt direkt aus dem Lemma von
Lax-Milgram für B(u, v) = 〈u, v〉H . Ferner ist nach (4.8) für dieses u

‖L‖ = sup
‖v‖=1

|〈u, v〉H | ≤ sup
‖v‖=1

‖u‖ ‖v‖ = ‖u‖

und somit speziell für v = u ∈ H

‖u‖2 = |L(u)| ≤ ‖L‖ ‖u‖ ≤ ‖u‖2 ,

also ‖L‖ = ‖u‖. �

4.1.2 Fixpunktsätze

Bei der Untersuchung partieller Differentialgleichungen sind Fixpunktsätze ein unver-
zichtbares Hilfsmittel. Beginnen werden wir mit dem besonders starken Banach’schen
Fixpunktsatz, der einen eindeutigen Fixpunkt garantiert. In den meisten Fällen werden
wir uns aber auf die Sätze von Juliusz P. Schauder und Jean Leray zurückziehen, die
unter weniger starken Voraussetzungen, zumindest noch die Existenz eines Fixpunktes
garantieren.

Satz 4.1.7 (Banach’scher Fixpunktsatz): Sei X ein Banachraum und T : X −→ X eine
Kontraktion, d. h. es gibt ein q ∈ [0, 1) mit

‖Tu− Tv‖X ≤ α ‖u− v‖X ∀ u, v ∈ X. (4.11)

Dann existiert ein eindeutig bestimmtes Element u0 ∈ X, sodass Tu0 = u0.

Beweis.

1. (Existenz:) Sei u ein beliebiger Punkt in X und definiere die Folge (un)N rekursiv
durch u1 = u, un = Tun−1 für n ∈ N. Nach Voraussetzung folgt dann mit (4.11) für
i ∈ N

‖ui+1 − ui‖ = ‖Tui − Tui−1‖ ≤ q ‖ui − ui−1‖

und induktiv

‖ui − ui−1‖ ≤ qi−2 ‖u2 − u1‖ .



4.1. GRUNDLAGEN DER FUNKTIONALANALYSIS 57

Daher gilt für k ≥ n

‖uk − un‖ =
∥
∥
∥
∥
∥

k∑

i=n+1

ui − ui−1

∥
∥
∥
∥
∥

≤
k∑

i=n+1

‖ui − ui−1‖

≤ ‖u2 − u1‖
k∑

i=n+1

qi−2

≤ qn−1

1− q ‖u2 − u1‖ −→ 0, für n −→∞

d. h. (un)N ist eine Cauchyfolge, die nach Voraussetzung in X konvergiert. Auch ist
T stetig, sodass für u := lim

n→∞
un

u = lim
n→∞

un+1 = lim
n→∞

Tun = Tu,

d. h. u ein Fixpunkt ist.

2. (Eindeutigkeit:) Sei v ∈ X ein weiterer Fixpunkt mit Tv = v. Dann ist wegen (4.11)

‖u− v‖ = ‖Tu− Tv‖ ≤ q ‖u− v‖

und daher wegen q < 1:

‖u− v‖ = 0 ⇐⇒ u = v.

�

Satz 4.1.8 (Brouwer): Sei K ⊂ R
n nichtleer, konvex und kompakt. Ist T : K −→ K ein

stetiger Operator, dann gibt es mindestens ein u ∈ K mit Tu = u.

Beweis. siehe [Wer07]. �

Satz 4.1.9 (Schauder): Sei X ein Banachraum und ∅ 6= K ⊂ X abgeschlossen, beschränkt
und konvex. Sei ferner T ein auf K definierter, stetiger und kompakter Operator mit

T (K) ⊂ K.

Dann gibt es mindestens ein u ∈ K mit Tu = u.

Beweis. Aufgrund der vorausgesetzten Kompaktheit des Operators T ist der Abschluss
der Menge T (K) kompakt, d. h. für jedes n ∈ N existieren x1, x2, . . . , xr(n) in T (K), sodass

T (K) ⊂
r(n)
⋃

i=1

Bi mit Bi = B 1

n
(xi).
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Wähle nun n so groß, dass mindestens zwei verschiedene Kugeln zur Überdeckung von K
notwendig sind und definiere Kn := conv{x1, x2, . . . , xr(n)} als die konvexe Hülle der Ku-
gelmittelpunkte {x1, . . . , xr(n)}, d. h. die Menge aller Linearkombinationen λ1x1 + λ2x2 +
. . .+ . . . λr(n)xr(n) mit

r(n)
∑

i=1

λi = 1 und λi ∈ R ∀ i = 1, . . . , r(n).

Dann sind die Mengen Kn ⊂ K nach Definition nichtleer, endlichdimensional und konvex.
Ferner sind sie als endliche Mengen in linearen normierten Räumen abgeschlossen und
wegen

‖x‖ =

∥
∥
∥
∥
∥
∥

r(n)
∑

i=1

λixi

∥
∥
∥
∥
∥
∥

≤ max
1≤i≤r(n)

‖xi‖ <∞ ∀x ∈ Kn

auch beschränkt.

Betrachte nun die Funktion Fn : K −→ Kn;

Fn(x) =

r(n)∑

i=1

dist(x,K \Bi) · xi
r(n)∑

i=1

dist(x,K \Bi)

.

Für jedes n ∈ N ist Fn wohldefiniert, da jedes x ∈ K in mindestens einer Kugel B 1

n
(xi)

liegt und nach Definition für hinreichend großes n nicht in allen Bi liegt. Ferner ist Fn(x)
für x ∈ K eine Linearkombination der Elemente x1, x2, . . . , xr(n) und somit Fn(K) ⊂ Kn.
Auch ist Fn ist als Komposition der stetigen Funktionen dist(., Bi) selbst stetig und da
für x ∈ K entweder x ∈ Bi oder dist(x,K \Bi) = 0 gilt, folgt

‖Fn(x)− x‖ ≤

r(n)∑

i=1

dist(x,K \Bi) ‖xi − x‖
r(n)∑

i=1

dist(x,K \Bi)

≤

∑

{i|x∈Bi}

dist(x,K \Bi) ‖xi − x‖
∑

{i|x∈Bi}

dist(x,K \Bi)
<

1

n
. (4.12)

Definiere nun die Operatoren

Tn : Kn −→ Kn; x 7−→ (Fn ◦ T )x.

Offensichtlich ist Tn eine stetige Selbstabbildung einer konvexen, endlichdimensionalen,
beschränkten und abgeschlossenen Menge, die homöomorph zum R

n ist und erfüllt damit
die Voraussetzungen des Brouwer’schen Fixpunktsatzes. Daher gibt es für jedes n ∈ N ein
x̃n ∈ Kn mit Tnx̃n = x̃n. Da T kompakt, Fn stetig und Kn abgeschlossen ist, hat die Folge
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(x̃n)n∈N ⊂ Kn eine konvergente Teilfolge (x̃π(n))n∈N mit Grenzwert x̃ ∈ Kn. Wir zeigen
nun, dass x̃ ein Fixpunkt von T ist. Mit (4.12) erhalten wir

∥
∥x̃π(n) − T x̃π(n)

∥
∥ =

∥
∥Tnx̃π(n) − T x̃π(n)

∥
∥ =

∥
∥Fn(T x̃π(n))− T x̃π(n)

∥
∥ <

1

n
−→ 0,

für n −→∞ und aus der Stetigkeit von T folgt

T x̃π(n) −→ T x̃, für n −→∞.
�

Satz 4.1.10 (Leray-Schauder): Seien X ein Banachraum und T : X −→ X kompakt.
Ferner gebe es ein r > 0, so dass für alle x ∈ X und σ ∈ (0, 1), die x = σTx erfüllen,
gilt: ‖x‖X ≤ r. Dann hat T einen Fixpunkt.

Beweis. Setze B := B2r(0) und definiere die Abbildung S durch

Sx =







Tx, für ‖Tx‖X ≤ 2r

2r · Tx

‖Tx‖X
, für ‖Tx‖X ≥ 2r

.

Dann ist S sine stetige Abbildung der abgeschlossenen Kugel B in sich. Sei nun (xn)n∈N
eine Folge in B. Wir unterscheiden zwei Fälle:

1. (xn)n∈N hat eine Teilfolge (xl)l∈N mit ‖Tx‖X ≤ 2r für alle l ∈ N. Dann hat (Sxl)l∈N
und damit auch (Sxn)n∈N nach Definition von S eine konvergente Teilfolge, da T
kompakt ist.

2. (xn)n∈N hat eine Teilfolge (xl)l∈N mit ‖Tx‖X > 2r für alle l ∈ N. Dann ist Sxl =
(A ◦ T )xl, wobei A die auf X \ {0} stetige Abbildung

A : X \ {0} −→ X; x 7−→ 2r
x

‖x‖X
ist. T ist kompakt, daher hat (Txl)l∈N eine konvergente Teilfolge und wegen der
Stetigkeit von A damit auch (Sxl)l∈N = ((A ◦ T )xl)l∈N.

In beiden Fällen hat (Sxl)l∈N also eine konvergente Teilfolge und somit ist S eine kom-
pakte, stetige Selbstabbildung der konvexen abgeschlossenen und beschränkten Menge
B ⊂ X. Nach dem Schauder’schen Fixpunktsatz 4.1.9 hat S daher einen Fixpunkt x̃.
Angenommen, es wäre ‖T x̃‖ > 2r, dann wäre auch

x̃ = Sx̃ = 2r
T x̃

‖T x̃‖X
= σTx mit σ =

2r

‖T x̃‖X
∈ (0, 1)

und daher nach Vorraussetzung

‖T x̃‖X = ‖x̃‖X ≤ r

im Widerspruch zur Annahme. Also ist

‖T x̃‖X ≤ 2r

und daher x̃ = Sx̃ = T x̃, d. h. x̃ ist ein Fixpunkt von T . �
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4.1.3 Sobolevräume und Distributionen

In vielen Bereichen der Analysis, insbesondere bei der Untersuchung partieller Differential-
gleichungen, gelangt man in Situationen, in denen man Funktionen differenzieren möchte,
die im klassischen Sinne nicht differenzierbar sind. Ein erster Schritt auf dem Weg zur
Lösung diese Problems gelang Sergei L. Sobolev durch Einführung der sogennanten Sobo-
levräume und dem Begriff der „ schwachen Ableitung “. Motiviert durch die Untersuchung
hyperbolischer Differentialgleichungen erweiterte er diese Idee zu einer rigorosen Lösung
des Problems durch Übergang von den „ gewöhnlichen differenzierbaren Funktionen “zu ei-
ner größeren Klasse von Objekten, den sogenannten Distributionen oder verallgemeinerten
Funktionen. Die Kernidee dabei besteht darin, Funktionen nicht mehr als punktweise de-
finierte Objekte, sondern ihre „ Wirkung “auf andere, gutartige Funktionen, sogenannten
Testfunktionen zu betrachten. Laurent Schwartz griff diese Idee auf und entwickelte die
Theorie der Distributionen maßgeblich weiter und stellte damit Sobolev’s Kalkül der ver-
allgemeinerten Funktionen auf solide Basis.

Der folgende Abschnitt gibt nur einen kurzen Einblick in diese umfassende Theorie und
wird die nötigen Begriffe und Sätze zur Verfügung stellen um die Bewegungsgleichungen
mikropolarer Flüssigkeiten effektiv untersuchen zu können. Beginnen werden wir mit den
Lebesque-integrierbaren Funktionen und uns Schritt für Schritt zur Definition der Sobo-
levfunktionen und Distributionen vorarbeiten. Sofern nichts anderes behauptet wird ist
Ω im Folgenden eine nichtleere, offene Teilmenge des R

n und n ∈ N.

Definition 4.1.4 (Lebesque Räume): Für 1 ≤ p < ∞ bezeichnen wir mit Lp(Ω) den
linearen Raum der Äquivalenzklassen Lebesque-messbarer Funktionen f : Ω −→ R, für die
|f |p auf Ω Lebesque-integrierbar ist. Dabei sind zwei Funktionen zueinander äquivalent,
wenn sie fast überall im Sinne des Lebesque-Maßes gleich sind. Das Funktional

f 7−→ ‖f‖Lp(Ω) =

(∫

Ω

|f(x)|p dx
) 1

p

ist eine Norm auf Lp(Ω).

Die Elemente in Lp(Ω) werden wir (wie üblich, aber nicht korrekt) weiterhin als Funktio-
nen bezeichnen.

Lemma 4.1.1 (Höldersche Ungleichung): Seien p, q ∈ [1,∞] mit 1
p
+ 1

q
= 1, f ∈ Lp(Ω)

und g ∈ Lq(Ω). Dann ist f · g ∈ L1(Ω) und

‖f · g‖L1(Ω) ≤ ‖f‖Lp(Ω) · ‖g‖Lq(Ω) . (4.13)

Beweis. Der Beweis fußt auf der Young’schen Ungleichung. Siehe [Eva02]. �

Korollar 4.1.2 (Minkowski-Ungleichung): Für 1 ≤ p ≤ ∞ und f, g ∈ Lp(Ω) ist auch
f + g ∈ Lp(Ω) und

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω) . (4.14)
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Beweis. Im Wesentlichen benutzt man die Hölderungleichung um die Funktion |f +
g|p−1|f + g| geschickt abzuschätzen. Siehe [Eva02]. �

Korollar 4.1.3 (Verallgemeinerte Höldersche Ungleichung): Seien 1 ≤ p1, . . . , pm ≤ ∞
mit 1

p1
+ 1

p2
+ . . .+ 1

pm
= 1

r
und uj ∈ Lpj(Ω) für j = 1, . . . ,m. Dann ist

u =
m∏

j=1

uj ∈ Lr(Ω)

und es gilt:

‖u‖Lr(Ω) ≤
m∏

j=1

‖uj‖Lpj (Ω) . (4.15)

Beweis. Die Aussage folgt aus der Hölderschen Ungleichung durch Induktion über m.
Siehe zum Beispiel [Ada03]. �

Für j = 1, 2 mit p1 = p2 = 2 erhält man als Spezialfall der Hölder’schen Ungleichung die
Cauchy-Schwarz-Ungleichung

(u, v)L2(Ω) ≤ ‖u‖L2(Ω) ‖v‖L2(Ω) , ∀ u, v ∈ L2(Ω).

Satz 4.1.11 (Der Satz von Riesz-Fischer): Sei (fn)n∈N eine Cauchyfolge in Lp(Ω), d. h.

lim
m,n→∞

‖fm − fn‖Lp(Ω) = 0.

Dann gibt es ein f ∈ Lp(Ω) und eine Teilfolge (fl)l∈N von (fn)n∈N, so dass

lim
l→∞
‖fl − f‖Lp(Ω) = 0

und fl(x) −→ f(x) für fast alle x ∈ Ω.

Beweis. Sei (fn)n∈N eine Cauchyfolge in Lp(Ω). Dann gibt es zu jedem i ∈ N ein ni ∈ N,
sodass

‖fk − fm‖Lp(Ω) ≤ 2−i ∀ k,m ≥ ni. (4.16)

Die daraus entstehende Teilfolge (fni
)i∈N bezeichnen wir im Folgenden wieder mit (fn)n∈N

und setzen

gk :=
k∑

n=1

|fn+1 − fn| .

Wir zeigen nun, dass die Folge (gk)k∈N für fast alle x ∈ Ω punktweise konvergiert. Für
diejenigen x, für die (gk(x))k∈N konvergiert, ist dann (fn(x))n∈N eine Cauchyfolge in R

und besitzt daher einen Grenzwert f(x). Wir zeigen dann, dass die so definierte Funktion
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f ∈ Lp(Ω) ist und (fn)n∈N auch in der Norm ‖.‖Lp(Ω) gegen f konvergiert. Nach dem
Lemma von Fatou, der Minkowski-Ungleichung (4.14) und (4.16) ist

∫

Ω

lim inf
k→∞

gpk(x) dx ≤ lim inf
k→∞

∫

Ω

gpk(x) dx

= lim inf
k→∞

‖gk‖pLp(Ω)

≤
(

lim inf
k→∞

k∑

n=1

‖fn+1 − fn‖Lp(Ω)

)p

=

(
∞∑

n=1

‖fn+1 − fn‖Lp(Ω)

)p

≤
(

∞∑

n=1

2−n

)p

= 1 <∞,

d. h. lim
k→∞

gpk = lim inf
k→∞

gpk existiert für fast alle x ∈ Ω. Dann ist

|fk(x)− fm(x)| ≤
k∑

n=m

|fn+1(x)− fn(x)| = |gk(x)− gm(x)| −→ 0 für k,m→∞

und daher (fn(x))n∈N für fast alle x ∈ Ω eine Cauchyfolge in R. Da R vollständig ist,
existiert somit für fast alle x ∈ Ω die punktweise Grenzfunktion

f(x) := lim
n→∞

fn.

Wenden wir das Lemma von Fatou erneut an, folgt:
∫

Ω

|f(x)− fm(x)|p dx =

∫

Ω

lim inf
k→∞

|fk(x)− fm(x)|p dx

≤ lim inf
k→∞

∫

Ω

|fk(x)− fm(x)|p dx

=
(

lim inf
k→∞

‖fk(x)− fm(x)‖Lp(Ω)

)p

≤
(

lim inf
k→∞

k−1∑

n=m

‖fn+1(x)− fn(x)‖Lp(Ω)

)p

=

(
∞∑

n=m

2−n

)p

<∞.

Also ist f − fm ∈ Lp(Ω) und damit nach der Minkowski-Ungleichung (4.14) auch f ∈
Lp(Ω). Insbesondere folgt aus dieser Abschätzung

‖f − fm‖Lp(Ω) =

(∫

Ω

|f(x)− fm(x)|p dx
) 1

p

≤
∞∑

n=m

2−n −→ 0 für m→∞,

also fm −→ f in Lp(Ω). �

Da
‖un − u‖ ≤ ‖un − uni

‖+ ‖uni
− u‖ −→ 0 für n→∞

konvergiert jede Cauchyfolge (un)n∈N, die eine gegen u konvergente Teilfolge (uni
)i∈N hat,

selbst gegen denselben Grenzwert. Daher ist Lp(Ω) nach obigem Satz ein Banachraum und
wie man leicht nachrechnet für p = 2 insbesondere ein Hilbertraum mit Skalarprodukt

(f, g)L2(Ω) =

∫

Ω

f(x)g(x) dx.
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Definition 4.1.5: Mit L∞(Ω) bezeichen wir den linearen Raum der Äquivalenzklassen
Lebesque-messbarer Funktionen f : Ω −→ R für die

ess sup{|f(x)| : x ∈ Ω} ≡ inf{k > 0 : µ({x ∈ Ω : |f(x)| > k}) = 0} <∞.

Definieren wir auf L∞(Ω) die Norm

‖f‖L∞(Ω) = ess sup{|f(x)| : x ∈ Ω},

so wird L∞(Ω) ebenfalls zu einem Banachraum.

Eine reellwertige Funktion f auf Ω nennen wir lokal integrierbar auf Ω und schreiben
f ∈ L1

Loc(Ω), falls f über jedes Kompaktum K ⊂ Ω integrierbar ist. Analog definieren wir
die Räume Lp

Loc(Ω), für 1 < p <∞. Unter dem Träger supp f einer Funktion f : Ω −→ R

versteht man den Abschluss der Menge {x ∈ Ω : f(x) 6= 0}.

Für α ∈ N
n
0 , α = (α1, . . . , αn) sei |α| := α1 + α2 + . . .+ αn und

D
α =

∂|α|

∂α1
x1 . . . ∂αn

xn

.

Wir nennen f k-mal stetig differenzierbar auf Ω und schreiben f ∈ Ck(Ω), falls die
partiellen Ableitungen D

αf für alle |α| ≤ k existieren und stetig sind. Insbesondere ist

C∞(Ω) =
∞⋂

k=1

Ck(Ω)

und wir schreiben C∞
0 (Ω) für die Menge aller Funktionen f ∈ C∞ mit supp f ⊂ Ω. Falls

Ω beschränkt ist, ist supp f eine kompakte Teilmenge von Ω.

Lemma 4.1.4: C∞
0 (Ω) liegt dicht in Lp(Ω) für 1 ≤ p <∞.

Beweis. Einen Beweis findet man zum Beispiel in [Ada03]. �

Definition 4.1.6 (Hölderräume): Sei 0 < λ ≤ 1. Dann bezeichnen wir mit Ck,λ(Ω) den
Raum aller Funktionen u ∈ Ck(Ω) für die folgende Norm endlich ist

‖u‖Ck,λ(Ω) :=
∑

0≤|α|≤m

sup
x∈Ω
|Dαu|+

∑

|α|=m

sup

{ |Dαu(x)−D
αu(y)|

|x− y|λ
∣
∣
∣x, y ∈ Ω, x 6= y

}

.

Hölderräume sind bezüglich der sogenannten Höldernorm ‖.‖Ck,λ(Ω) vollständig.

Lemma 4.1.5 (Fundamentallemma der Variationsrechnung): Sei f ∈ L1
Loc(Ω) und

∫

Ω

f(x)ϕ(x) dx = 0

für jedes ϕ ∈ C∞
0 (Ω). Dann ist f = 0 fast überall in Ω.
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Beweis. Siehe [Ada03]. �

Definition 4.1.7 (Schwache Ableitungen): Seien f, g ∈ L1
Loc(Ω) und α ∈ N

n
0 . Wir nen-

nen g die α-te schwache Ableitung der Funktion f auf Ω, falls für alle ϕ ∈ C∞
0 (Ω)

∫

Ω

f(x)Dαϕ(x) dx = (−1)|α|
∫

Ω

g(x)ϕ(x) dx

ist. In diesem Fall setzen wir D
αf := g.

Definition 4.1.8 (Sobolevräume): Seien m ∈ N und 1 ≤ p <∞. Mit Hp
m(Ω) bezeichnen

wir den linearen Raum aller Funktionen f ∈ Lp(Ω) für die die schwache Ableitung D
αf

bis zur Ordnung |α| ≤ m existieren und in Lp(Ω) liegen. Das Funktional

f 7−→ ‖f‖Hp
m(Ω) =




∑

|α|≤m

‖Dαf‖pLp(Ω)





1

p

(4.17)

ist eine Norm auf Hp
m(Ω).

Satz 4.1.12: Hp
m(Ω) ist ein Banachraum und für 1 < p <∞ reflexiv.

Beweis. Sei (fn)n∈N ⊂ Hp
m(Ω) eine Cauchyfolge. Zu jedem ε > 0 gibt es dann ein n0 ∈ N

mit
‖fk − fn‖Hp

m(Ω) < ε ∀ k, n ≥ n0.

Für jeden Multiindex α ∈ N
n
0 mit |α| ≤ m ist daher

‖Dαfk −D
αfn‖Lp(Ω) ≤ ‖fk − fn‖Hp

m(Ω) < ε,

also (Dαfn)n∈N eine Cauchyfolge in Lp(Ω). Nach Satz 4.1.11 ist Lp(Ω) vollständig und
daher gibt es f, fα ∈ Lp(Ω) mit

lim
n→∞

‖Dαfn − fα‖Lp(Ω) = 0 bzw. lim
n→∞

‖fn − f‖Lp(Ω) = 0.

Nun gilt für jedes ϕ ∈ C∞
0 (Ω):

∫

Ω

fα(x)ϕ(x) dx = lim
n→∞

∫

Ω

(Dαfn)(x)ϕ(x) dx

= lim
n→∞

(−1)|α|
∫

Ω

fn(x)D
αϕ(x) dx

= (−1)|α|
∫

Ω

f(x)ϕ(x) dx,

d. h. nach Satz 4.1.5 ist fα die α-te Ableitung von f und somit f ∈ Hp
m(Ω). Schließlich

folgt

lim
n→∞

‖f − fn‖Hp
m(Ω) =




∑

|α|≤m

lim
n→∞

‖fα − fn‖pLp(Ω)





1

p

= 0,

also konvergiert (fn)n∈N in Hp
m(Ω) gegen f und somit ist Hp

m(Ω) vollständig. Für die
Reflexivität siehe [Alt06]. �
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Mit Satz 4.1.3 erhalten wir daraus:

Korollar 4.1.6: Für 1 < p < ∞ enthält jede abgeschlossene Kugel in Hp
m(Ω) eine

schwach konvergente Teilfolge.

Bei der Diskussion der Bewegungsgleichungen mikropolarer Flüssigkeiten wollen wir uns
in dieser Arbeit auf Dirichlet’sche Randbedingungen (d. h. v = 0 und ω = 0 auf ∂Ω)
beschränken. Daher ist es zweckmäßig zur Lösung des Randwertproblems nur Funktionen
zuzulassen, die am Rand von Ω verschwinden.

Definition 4.1.9: Mit
◦

Hp
m(Ω) bezeichnen wir den Abschluß der Menge C∞

0 (Ω) in der
‖.‖Hp

m(Ω)-Norm, d. h.:

◦

Hp
m(Ω) = C∞

0 (Ω)
Hp

m(Ω)
=
{

f ∈ Hp
m(Ω)

∣
∣
∣ ∃(ϕn)n∈N ⊂ C∞

0 (Ω) : ‖ϕn − f‖Hp
m(Ω)

n→∞−−−→ 0
}

.

Die Räume H2
m(Ω) und

◦

H2
m(Ω)

2 sind Hilberträume vermöge dem Skalarprodukt

(f, g)Hm(Ω) =
∑

|α|≤m

∫

Ω

D
αf(x) ·Dαg(x) dx

und werden daher oft nur mit Hm(Ω) bzw.
◦

Hm(Ω) bezeichnet. Auch kann man zeigen
(vgl. [Alt06]), dass für ein beschränktes Gebiet Ω der Klasse C0,1 (vgl. 4.1.14) gilt:

◦

H1(Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}. (4.18)

Natürlich ist
◦

H1(Ω) auch reflexiv.

Definition 4.1.10: Sei m > 0, 1 < p < ∞ und 1
p
+ 1

q
= 1. Mit Hp

−m(Ω) bezeichnen wir

den Raum der linearen, stetigen Funktionale auf dem Raum
◦

Hp
m(Ω).

Die Räume H2
−m(Ω) bezeichnet man häufig auch mit H−m(Ω). Im Folgenden verallgemei-

nern wir die Theorie der Sobolevfunktionen und widmen uns der Distributionentheorie.
Dazu führen wir zunächst im Raum C∞

0 (Ω), dem Raum der unendlich oft differenzierbaren
Funktionen mit kompaktem Träger, einen Konvergenzbegriff ein.

Definition 4.1.11: Eine Folge (ϕn)n∈N ⊂ C∞
0 (Ω) konvergiert gegen null, falls es eine

kompakte Teilmenge K ⊂ Ω gibt, so dass

(a) suppϕn ⊂ K für jedes n ∈ N

(b) lim
n→∞

D
αϕn = 0 gleichmäßig für jedes α ∈ N

n.

2In anderen Büchern findet man auch oft die Bezeichnungen Wm,p(Ω) bzw. Wm,p
0

(Ω) für Hp
m(Ω) bzw.

◦

Hp
m(Ω).
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Den Raum C∞
0 zusammen mit dem so definierten Konvergenzbegriff nennen wir den Raum

der „ Testfunktionen “und bezeichnen ihn mit D.

Basierend auf dieser Definition können wir nun den klassischen Funktionsbegriff erweitern
und führen den Begriff der Distribution sowie die Ableitung im Distributionensinn ein.

Definition 4.1.12 (Distributionen): Eine Funktional T : D −→ R heißt Distribution auf
Ω, falls T linear, d. h.

T (αϕ+ βψ) = αT (ϕ) + βT (ψ) ∀ α, β ∈ R, ∀ ϕ, ψ ∈ D(⊗)
ist und für jede gegen null konvergente Folge (ϕn)n∈N ⊂ D(⊗) gilt:

lim
n→∞

T (ϕn) = 0.

Die Menge der Distributionen auf Ω bezeichnen wir mit D′(Ω).

Die „ klassischen Funktionen “sind in die Distributionen eingebettet, denn für jedes f ∈
L1
loc(Ω) ist die Abbildung

Tf (ϕ) =

∫

Ω

f(x) · ϕ(x) dx

eine Distribution und definiert nach Lemma 4.1.5 eine lineare, injektive Abbildung

Γ : L1
loc(Ω) −→ D′(Ω); f 7−→ Tf .

Distributionen die lokal integrierbaren Funktionen entsprechen nennt man regulär. Ein
Beispiel für eine nicht reguläre Distribution ist die Dirac-Delta-Distribution (vgl. [Her07])

δ(x0) : D −→ R; ϕ 7−→ ϕ(x0), für ein x0 ∈ Ω.

Definition 4.1.13 (Ableitung von Distributionen): Seien T ∈ D′(Ω) und α ∈ N
n
0 . Dann

ist die Abbildung D
αT : D(Ω) −→ R definiert durch

D
αT (ϕ) := (−1)|α|T (Dαϕ), ϕ ∈ D

eine Distribution. Wir nennen D
αT die α-te distributionelle Ableitung von T .

Beispiel 1: Für f : (−1, 1) −→ R; x 7−→ |x| ist

Tf (ϕ) =

∫ 1

−1

|x|ϕ(x) dx.

Dann ist
d

dx
Tf (ϕ) = (−1)

∫ 1

−1

|x| d
dx
ϕ(x) dx

=

∫ 0

−1

xϕ′(x) dx−
∫ 1

0

xϕ(x) dx

= −
∫ 0

−1

ϕ(x) dx+

∫ 1

0

ϕ(x) dx

=

∫ 1

−1

sgn xϕ(x) dx,
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d. h. die Signumfunktion sgn(x) die distributionelle Ableitung von f .

Definition 4.1.14 (Gebietsklassifizierung): Seien 0 ≤ α ≤ 1, k ∈ N und Ω ⊂ R
n offen

und beschränkt. Wir sagen Ω ist von der Klasse Ck,α, falls für jeden Punkt x0 ∈ ∂Ω eine
Kugel Br(x0) und eine bijektive Abbildung ψ : B −→ D ⊂ R

n existieren, sodass

(a) ψ(B ∪ Ω) ⊂ R
n = {x = (x1, . . . , xn) ∈ R

n : xn > 0}

(b) ψ(B ∪ ∂Ω) ⊂ ∂Rn
+

(c) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).

Ist der Rand von Ω glatt genug, sagen wir Ω ∈ C0,1, können wir die in 4.1.8 eingeführten
Sobolevräume Hp

m(Ω) auch durch den Abschluß der Mengen Cm(Ω) in der Norm (4.17)
definieren. Von diesem Standpunkt aus gesehen ist klar, dass, vorausgesetzt Ω ist glatt
genug, die Menge Cm(Ω) dicht in Hp

m(Ω) liegt.

4.1.4 Einige Einbettungssätze und wichtige Abschätzungen

Eine erfolgversprechende Herangehensweise zur Lösung partieller Differentialgleichungen
besteht in der Idee zunächst einen irgendwie gearteten schwachen Lösungsbegriff einzufüh-
ren (also zum Beispiel Sobolevfunktionen oder Distributionen als Lösungen zuzulassen)
und dann diese „ Lösungen “in „ klassische “Funktionenräume, wie Räume stetiger Funk-
tionen oder höherer Regularität einzubetten. Ein Schlüsselinstrument bei dieser Methode
ist der Rellich’sche Auswahlsatz (vgl. [Ada03]). Dabei bezeichnen wir einen normierten
Raum X als (stetig) eingebettet in einen normierten Raum Y und schreiben

X →֒ Y,

falls

(i) X ein Unterraum von Y und

(ii) I : X −→ Y ; x 7−→ x stetig ist, d. h. es existiert eine Konstante M > 0, so dass

‖Ix‖Y ≤M ‖x‖X ∀x ∈ X.

Ist der lineare Operator I kompakt, so nennen wir X kompakt eingebettet in Y . Der
Rellich’sche Auswahlsatz (vgl. [Ada03]) ermöglicht es uns nun die Sobolevräume Hp

k(Ω)
unter bestimmten Voraussetzungen in Lebesque, aber auch in stetige Funtkionenräume
kompakt einzubetten. Zur Motivation dieser Einbettung betrachten wir zu gegebenem
f die partielle Differentialgleichung Lu = f und suchen eine Lösung u ∈ Hk(Ω). Ein
möglicher Ansatz ist sicher die Idee, die Lösung u durch

Luj = fj −→ f für (uj)j∈N ⊂ Hk(Ω) beschränkt

zu approximieren. Schön wäre jetzt, wenn zumindest eine Teilfolge der Folge (uj)j∈N in
einem gewissen Sinne gegen die Lösung konvergieren würde. Genau hier setzt der Aus-
wahlsatz an.
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Satz 4.1.13: Sei Ω ⊂ R
n offen, beschränkt und von der Klasse C0,1. Dann gilt:

(a) Ist kp < n und p∗ = np
n−kp

, so ist Hp
k(Ω) stetig eingebettet in Lp∗(Ω) und kompakt

eingebettet in Lq(Ω) für q < p∗.

(b) Ist 0 ≤ m < k − n/p < m+ 1 und α = k −m− n/p, so ist Hp
k(Ω) stetig eingebettet

in Cm,α(Ω) und kompakt eingebettet in Cm,β(Ω) für β < α.

Beweis. Siehe [Eva02]. �

Lemma 4.1.7 (Spezialfall des Rellichen Auswahlsatzes): Sei Ω ⊂ R
n offen und be-

schränkt. Dann ist die Einbettung von
◦

H1(Ω) in L2(Ω) kompakt.

Beweis. Siehe [Mor66]. �

Satz 4.1.14: Sei Ω ein beschränktes Gebiet im R
n der Klasse Cm und sei u eine Funktion

in Hr
m(Ω) ∩ Lq(Ω), 1 ≤ r, q ≤ ∞. Für jedes 0 ≤ j < m und j/m ≤ θ ≤ 1 sei

1

p
=

j

m
+ θ

(
1

r
− m

n

)

+ (1− θ)1
q
,

dann gibt es eine Konstante C = C(Ω, r, q,m, j, θ), so dass für m− j − n/r < 0:
∥
∥D

ju
∥
∥
Lp(Ω)

≤ C ‖u‖θHr
m(Ω) ‖u‖

1−θ
Lq(Ω) . (4.19)

Für m− j − n/r ≥ 0 gilt (4.19) mit θ = j/m.

Beweis. Einen Beweis findet man zum Beispiel in [Maz11]. �

Eine besonders interessante und für viele Anwendungen aüßerst hilfreiche Abschätzung
liefert die folgende Ungleichung.

Satz 4.1.15 (Poincare-Ungleichung): Seien Ω eine offene, beschränkte Teilmenge des

R
n, n > 0 und d = diam(Ω) = sup{dist(x, y) : x, y ∈ Ω}. Dann gilt für u ∈

◦

H1(Ω) und
i ∈ {1, . . . , n}:

‖u‖L2(Ω) ≤
d√
2

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥
L2(Ω)

. (4.20)

Beweis. Sei u ∈ C∞
0 (Ω). Fixieren wir i ∈ {1, . . . , n}, so folgt aus dem Hauptsatz der

Differential- und Integralrechnung

u(x1, . . ., xi−1, xi, xi+1, . . . , xn)

=

∫ xi

x∗

i

∂u

∂t
(x1, . . . , xi−1, t, xi+1, . . . , xn) dt

=

∫ xi

−∞

∂u

∂t
(x1, . . . , xi−1, t, xi+1, . . . , xn) dt,
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wobei x∗ = inf{t : u(t, x2, . . . , xn) = 0, (t, x2, . . . , xn) ∈ Ω}. Da H1(Ω) ein (reeller)
Hilbertraum ist können wir die Cauchy-Schwarzsche Ungleichung (4.8) anwenden und
erhalten

u2(x) = u2(x1, . . ., xi−1, xi, xi+1, . . . , xn)

=

∣
∣
∣
∣
∣

∫ xi

x∗

i

∂u

∂t
(x1, . . . , xi−1, t, xi+1, . . . , xn) · 1 dt

∣
∣
∣
∣
∣

2

≤
∫ xi

x∗

i

∣
∣
∣
∣

∂u

∂t
(x1, . . . , xi−1, t, xi+1, . . . , xn)

∣
∣
∣
∣

2

dt · (xi − x∗i )

≤
∫ ∞

−∞

∣
∣
∣
∣

∂u

∂x1
(x)

∣
∣
∣
∣

2

dxi · (xi − x∗i ).

Integration dieser Ungleichung bezüglich xi liefert dann
∫ ∞

−∞

u2(x) dxi =

∫ ∞

−∞

∫ ∞

−∞

∣
∣
∣
∣

∂u

∂x1
(x)

∣
∣
∣
∣

2

dxi · (xi − x∗i ) dxi

=

∫ ∞

−∞

∣
∣
∣
∣

∂u

∂x1
(x)

∣
∣
∣
∣

2

dxi ·
∫ ∞

−∞

xi − x∗i dxi

≤ d2

2
·
∫ ∞

−∞

∣
∣
∣
∣

∂u

∂x1
(x)

∣
∣
∣
∣

2

dxi.

Integration dieser Ungleichung bezüglich x1, x2, . . . , xi−1, xi+1, . . . , xn liefert dann (4.20)

für i ∈ {1, . . . , n} und u ∈ C∞
0 . Nach Lemma 4.1.4 existiert nun zu jedem u ∈

◦

H1(Ω) eine
Folge (un)n∈N ⊂ C∞

0 (Ω) mit un −→ u für n → ∞. Gleichung (4.20) folgt nun für jedes
i ∈ {1, . . . , n} durch Übergang zum Grenzwert in

‖un‖L2(Ω) ≤
d√
2

∥
∥
∥
∥

∂un
∂xi

∥
∥
∥
∥
L2(Ω)

.

�

Insbesondere folgt aus diesem Satz:

‖u‖L2(Ω) ≤ C ‖Du‖L2(Ω) ∀ u ∈ H1(Ω).

Korollar 4.1.8: Sei Ω ⊂ R
n offen und beschränkt. Dann sind die Normen

‖u‖H1(Ω) =



‖u‖2L2(Ω) +
∑

|α|=1

‖Dαu‖2L2(Ω)





1

2

und

‖u‖=




∑

|α|=1

‖Dαu‖2L2(Ω)





1

2

in
◦

H1(Ω) äquivalent.
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Beweis. Die Beziehung ‖u‖ ≤ C1 · ‖u‖ folgt direkt aus der Definition der Normen; die
Beziehung ‖u‖ ≤ C2 ‖u‖ ist eine Konsequenz der Poincare Ungleichung. �

Insbesondere können wir also
◦

H1(Ω) als den Abschluss der Menge C∞
0 (Ω) in der Norm

‖u‖1 =
(∫

Ω

|Du(x)|2 dx

) 1

2

definieren.

Lemma 4.1.9: Sei Ω ⊂ R
2 offen und beschränkt. Dann gilt für alle u ∈

◦

H1(Ω):

‖u‖L4(Ω) ≤ 2
1

4 ‖u‖
1

2

L2(Ω) ‖Du‖
1

2

L2(Ω) . (4.21)

Beweis. Nach Lemma 4.1.4 liegt C∞
0 (Ω) dicht in

◦

H1(Ω), daher genügt es die Behauptung
für u ∈ C∞

0 (Ω) zu beweisen. Der Hauptsatz der Differential- und Integralrechnung liefert
nun:

u2(x1, x2) =

∫ x1

−∞

∂

∂t
u2(t, x2) dt = 2

∫ x1

−∞

u(t, x2)
∂u

∂t
(t, x2) dt

u2(x1, x2) =

∫ x2

−∞

∂

∂t
u2(x1, x2) dt = 2

∫ x2

−∞

u(x1, t)
∂u

∂t
(x1, t) dt,

und daher

max
xk∈R

u2(x1, x2) ≤ 2

∫ ∞

−∞

∣
∣
∣
∣
u(x)

∂u

∂xk
(x)

∣
∣
∣
∣
dxk (k = 1, 2). (4.22)

Mit (4.8) folgt
∫

R2

u4(x) dx =

∫

R

∫

R

u2(x) · u2(x) dx1dx2

≤
∫

R

max
x2∈R

u2(x) dx1

∫

R

max
x1∈R

u2(x) dx2

≤ 4

∫

R2

∣
∣
∣
∣
u(x)

∂u

∂x2
(x)

∣
∣
∣
∣
dx

∫

R2

∣
∣
∣
∣
u(x)

∂u

∂x1
(x)

∣
∣
∣
∣
dx

≤ 4

∫

R2

u2(x) dx

(
∫

R2

∣
∣
∣
∣

∂u

∂x2
(x)

∣
∣
∣
∣

2

dx ·
∫

R2

∣
∣
∣
∣

∂u

∂x2
(x)

∣
∣
∣
∣
dx

) 1

2

.

Für a, b > 0 gilt nun stets 2
√
a · b ≤ a+ b, sodass

∫

R2

u4(x) dx ≤ 4

∫

R2

u2(x) dx

(
∫

R2

∣
∣
∣
∣

∂u

∂x2
(x)

∣
∣
∣
∣

2

dx ·
∫

R2

∣
∣
∣
∣

∂u

∂x2
(x)

∣
∣
∣
∣
dx

) 1

2

≤ 2

∫

R2

u2(x) dx

∫

R2

|Du(x)|2 (x) dx,

und mithin die Abschätzung (4.21) bewiesen ist. �
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Lemma 4.1.10: Sei Ω ⊂ R
3 offen und beschränkt. Dann gilt für alle u ∈

◦

H1(Ω)

‖u‖L4(Ω) ≤
√
2 ‖u‖

1

4

L2(Ω) ‖Du‖
3

4

L2(Ω) . (4.23)

Beweis. Wie im vorhergehenden Lemma reicht es (4.23) für u ∈ C∞
0 (Ω) zu beweisen.

Mit dem Hauptsatz der Differential-und Integralrechnung folgt analog zu (4.22):

max
x3∈R

u2(x) ≤ 2

∫ ∞

−∞

∣
∣
∣
∣
u(x)

∂u

∂x3
(x)

∣
∣
∣
∣
dx3,

sodass nach (4.21)
∫

R3

u4(x) dx =

∫

R

(∫

R2

u4(x1, x2, x3) dx1dx2

)

dx3

≤ 2

∫

R

(∫

R2

u2(x) dx1dx2

∫

R2

(
∂u

∂x2

2

(x) +
∂u

∂x1

2

(x)

)

dx1dx2

)

dx3

≤ 2

∫

R

(∫

R2

u2(x) dx1dx2

∫

R2

|Du(x)|2 dx1dx2

)

dx3

≤ 2

∫

R2

max
x3∈R

u2(x) dx1dx2

∫

R3

|Du(x)|2 dx

≤ 4

∫

R3

∣
∣
∣
∣
u(x)

∂u

∂x3
(x)

∣
∣
∣
∣
dx

∫

R3

|Du(x)|2 dx

ist. Wenden wir nun wieder die Cauchy-Schwarzsche Ungleichung (4.8) an, erhalten wir:
∫

R3

u4(x) dx ≤ 4

∫

R3

∣
∣
∣
∣
u(x)

∂u

∂x3
(x)

∣
∣
∣
∣
dx

∫

R3

|Du(x)|2 dx

≤ 4

(∫

R3

u2(x) dx

) 1

2
(∫

R3

∂u

∂x3

2

(x) dx

) 1

2
∫

R3

|Du(x)|2 dx

≤ 4

(∫

R3

u2(x) dx

) 1

2
(∫

R3

|Du(x)|2 dx

) 3

2

und daraus (4.23). �

Insbesondere folgt aus (4.23) für ein beschränktes Gebiet Ω ⊂ R
3 der Klasse C1:

‖u‖L4(Ω) ≤ C ‖u‖
3

4

H1(Ω) ‖u‖
1

4

L2(Ω) . (4.24)

Lemma 4.1.11: Sei Ω ⊂ R
3 offen und beschränkt. Dann gilt für alle u ∈

◦

H1(Ω)

‖u‖L6(Ω) ≤ 48
1

6 ‖Du‖L2(Ω) . (4.25)

Beweis. Siehe [Lad87]. �

In den nachfolgenden Kapiteln werden wir vorwiegend einige Spezialfälle der Sätze 4.1.13
und 4.1.14 benötigen, die wir nun hier gesondert vorstellen.
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Für Ω ⊂ R
3 wie in Satz 4.1.13 gilt

(1) H1(Ω) ist (stetig) eingebettet in L6(Ω) mit

‖u‖L6(Ω) ≤ C ‖u‖H1(Ω)

(vgl. Lemma 4.1.11)

(2) H1(Ω) ist kompakt eingebettet in L4(Ω) mit

‖u‖L4(Ω) ≤ C ‖u‖H1(Ω)

(vgl. (4.24) und (4.20))

(3) H2(Ω) ist (stetig) eingebettet in C0,1/2(Ω) und C0,1/2(Ω) kompakt einge-
bettet in C(Ω); tatsächlich gilt

ess supx∈Ω |u(x)| ≤ C ‖u‖H2(Ω) .

4.2 Mögliche Randbedingungen mikropolarer Flüssig-

keiten

Die Theorie der mikropolaren Flüssigkeiten verallgemeinert die klassische Theorie der
Navier-Stokes-Gleichung und versucht ein wesentlich größeres Gebiet von Phenomenen zu
erklären. Aufgrund dieser Tatsache ist nicht zu erwarten, dass man ein Standardreper-
toire von Rand- und Anfangsbedingungen für beliebige Situationen finden kann. Die aus
mathematischer Sicht einfachste Idee, die man bei der Wahl der Randwerte untersuchen
kann, ist zunächst einmal die Dirichtlet’sche Randbedingung

v = 0 bzw. ω = 0 auf ∂Ω.

Betrachten wir zum Beispiel eine Flüssigkeit die sich mit konstanter Geschwindigkeit,
also stationär, durch ein Rohr bewegt, so erscheinen diese Bedingungen auf den ersten
Blick durchaus sinnvoll, da die Flüssigkeitsteilchen am Rand des Rohres aufgrund der
Reibung haften bleiben. Bei genauerer Untersuchung muss man sich allerdings fragen,
ob die mitbewegten Partikel am Rand tatsächlich auch keine Eigenrotation aufweisen.
Durchaus denkbar wäre, dass die Partikel durch den Geschwindigkeitsunterschied in der
Flüssigkeit die Innenwand des Rohres „ entlang rollen “. Diese Tatsache würde eher einer
Randbedingung wie

v = 0 ω = ω0 auf ∂Ω

entsprechen. Analog können wir aber auch für freie Flüssigkeiten argumentieren. Auch
hier wird der Geschwindigkeitsunterschied der Flüssigkeit zwischen ihrem Rand und ihrem
Inneren im Allgemeinen zu einer Rotation der von der Flüssigkeit mitbewegten Partikel
am Rand führen. Während also die Randbedingung an die Geschwindigkeit v physikalisch
motiviert durchaus sinnvoll erscheinen, ist die Bedingung an ωb eher undurchsichtig.
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Abbildung 4.1: Rohrströmung - Die Partikel am Rand der Flüssigkeit werden durch die
Reibung an der Innenwand des Rohres haften bleiben und durch den Geschwindigkeits-
unterschied an ihrer Ober- und Unterseite zu rotieren beginnen.

Ein möglicher Zugang zum Verständnis der Randbedingungen ist die Beschreibung der
Kräfte und Momente am Rand der Flüssigkeit

T · n = tb, C · n = cb, auf ∂G.

Sicherlich sollten die Normalkräfte auf dem Rand nach dem actio=reactio Prinzip ver-
schwinden, so dass die erste Bedingung auf

v = vb

auf dem Rand führt und somit ebenfalls unsere Vermutung bzgl. der Rohrströmung stützt.
Für die Microrotation findet man eine ausführliche Diskussion in [Aer64]. Dort werden
Bedingungen der Form

C · n = A(ω − 1

2
curl vb

für eine Matrix A = (aij) mit reellen Einträgen untersucht. Aus den beiden Grenzfällen
aij →∞ und aij → 0 erhalten wir:

ω =
1

2
curl vb bzw. C · n = 0.

Diese Bedigung enthält die Dirichlet’schen Randbedingungen als Spezialfall für vb =,
impliziert aber darüber hinaus die starke Forderung, dass die Eigenrotation der Partikel
am Rand der Flüssigkeit nur durch die Bewegung des Randes verursacht werden. Eine
unseren Einwänden besser angepasste Randbedingung für die Mikrorotation wäre zum
Beispiel (vgl. [Aer64])

ω =
α

2
curl v .

Dahinter verbirgt sich die Annahme, dass die Mikrorotation der Partikel durch die Ro-
tation der Flüssigkeitsteilchen hervorgerufen wird. In der Suche nach passenden Rand-
und Anfangsbedingungen für mikropolare Flüssigkeiten liegt sowohl ein Segen, als auch
ein Fluch dieser Theorie. Zu Rechtfertigung einer Wahl von Randbedingung bleibt zu-
nächst keine andere Möglichkeit, als die Lösung des zugehörigen Randwertproblems mit
dem realen Verhalten von mikropolaren Flüssigkeiten, wie etwa Blut, zu vergleichen. Wie
Kirwan und Newman in [Kir69] an verschiedenen Beispielen zeigen, können verschiede-
ne Kombinationen von Rand- und Anfangsbedingungen bei festen Viskositätskoeffizienten
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und andersherum auch verschiedene Kombinationen der Viskositätskoeffizienten bei festen
Rand- und Anfangsbedingungen zu drastisch unterschiedlichen Geschwindigkeitsprofilen
führen. Die Möglichkeit, die Randbedingungen unabhängig von gegebenen Anfangsbe-
dingungen und Viskositätskoeffizienten an gegebene Phänomene anzupassen, ist eine der
interessanten und spannenden Facetten dieser Theorie.

Im Folgenden werden wir uns trotz obiger Einwände zunächst dem stationären, inkom-
pressiblen Fall zusammen mit den klassischen Dirichlet’schen Randbedingungen

v = 0, ω = 0, auf ∂G. (4.26)

widmen.
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4.3 Stationäre Dirichlet’sche Randbedingungen

In diesem Abschnitt werden wir das zugegebener Maßen einfachste Randwertproblem, das
homogene Dirichlet’sche Randwertproblem für inkompressible und isotherme mikropolare
Flüssigkeiten diskutieren und analysieren. Dabei ist das vorrangiges Ziel die Existenz
einer Lösung mit möglichst hoher Regularität zu beweisen und Bedingungen abzuleiten
unter denen diese Lösungen eindeutig sind. Wir werden uns dazu der Idee anschließen,
zunächst eine schwache Formulierung des Randwertproblems zu konstruieren und zeigen,
dass unter geeigneten Voraussetzungen an die Viskositätskoeffizienten, eine eindeutige
Lösung dieser Formulierung existiert. Anschließend werden wir mit Erkenntnissen aus
der Theorie partieller elliptischer Differentialgleichungen beweisen, dass diese Lösung eine
durchaus höhere Regularität aufweist. Bei unseren Untersuchungen gehen wir von einem
beschränkten Gebiet Ω ⊂ R

3 mit hinreichend glattem Rand aus und wiederholen zunächst
einige Ergebnisse aus der Theorie klassischer stokesscher Flüssigkeiten, die wir bei unserer
Analyse benötigen werden.

4.3.1 Das Gleichungssystem von Stokes

Das Stokessche Randwertproblem

−ν∆v +∇p = k in Ω (ν > 0),

div v = g in Ω,

v = φ in ∂Ω.

Dabei sind v = v(x) = (v1(x), v2(x), v3(x)) und k = k(x) = (k1(x), k2(x), k3(x)) vektor-
wertige und p = p(x) eine skalare Funktion für x ∈ Ω ⊂ R

3 offen.

Proposition 1 (vgl. [Tem77], Chapter I, Proposition 1.1): Sei Ω ⊂ R
n offen und D′(Ω)

der Dualraum zum Raum der Testfunktionen D(Ω). Ferner sei F = (f1, . . . , fn), für
fi ∈ D′(Ω) (i = 1, . . . , n), dann ist

TF(v) = 0

für alle v ∈ V = {u = (u1, . . . , un) : ui ∈ D′(Ω), i = 1, . . . , n, div u = 0} eine notwendige
und hinreichende Bedingung für

F = ∇p
für ein p ∈ D′.

Proposition 2 (vgl. [Tem77], Chapter I, Proposition 1.2): Sei Ω ⊂ R
n von der Klasse

C0,1. Gilt für eine Distribution p

D
αp ∈ L2(Ω), für alle α ∈ N

n mit 0 ≤ |α| ≤ 1,
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dann ist p ∈ L2(Ω) und es gilt

‖p‖L2(Ω)\R ≤ c(Ω) ‖∇p‖L2(Ω) ,

für

L2(Ω) \R =

{

p ∈ L2(Ω) :

∫

Ω

p(x) dx = 0

}

.

Sind

D
αp ∈ H−1(Ω), für alle α ∈ N

n mit 0 ≤ |α| ≤ 1,

so gilt ebenfalls p ∈ L2(Ω) mit

‖p‖L2(Ω)\R ≤ c(Ω) ‖∇p‖−1 .

Ist Ω lediglich eine offene Teilmenge des R
n, so ist in beiden Fällen p ∈ L2

loc(Ω).

Bemerkung 3: Aus den beiden vorhergehenden Propositionen folgt, dass für eine offene
Teilmenge Ω ⊂ R

n der Klasse C0,1 und F ∈ H−1(Ω) (oder F ∈ L2(Ω)) mit TF(v) = 0 für
alle v ∈ V gilt:

F = ∇p

für ein p ∈ L2(Ω) (oder p ∈ H−1(Ω)).

Satz 4.3.1: [vgl. [Tem77]] Sei Ω ⊂ R
n, (n = 2, 3), eine Menge der Klasse Cr für

r = max(m + 2, 2) und m ≥ −1. Ferner seien f ∈ Hp
m(Ω), g ∈ Hq

m+1(Ω) und ϕ ∈
Hq

m+2−1/q(∂Ω) für 1 < q <∞ vorgegeben mit

∫

Ω

g(x) dx =

∫

∂Ω

ϕ · ~n ds.

Dann gibt es eindeutige Funktion v und eine bis auf eine Konstante eindeutige Funktion
p, so dass (v, p) eine Lösung des Stokesschen Randwertproblems ist und

v ∈ Hq
m+2(Ω) sowie p ∈ Hq

m+1(Ω).

Insbesondere gilt

‖u‖Hq
m+2

(Ω) + ‖p‖Hq
m+1

(Ω)\R ≤ C
{

‖f‖Hq
m(Ω) + ‖g‖Hq

m+1
(Ω) + ‖ϕ‖Hq

m+2−1/q
(∂Ω)

}

,

für eine von q, ν, m und Ω abhängige Konstante C ≥ 0.

Für mehr Details zu den Stokesschen Gleichungen und ihrem nichtlinearen Pendant, den
Navier-Stokes Gleichungen verweisen wir den Leser an [Hut95], [Cho93], [Ari89], [Var07],
[Lio96] [Gal11] und [Tem77], sowie die in diesen Büchern angegebene Literatur.
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4.3.2 Das stationäre Dirichlet Problem ohne Wärmeleitung

Wir konzentrieren uns in diesem Abschnitt auf stationäre, viskose und inkompressible
mikropolare Flüssigkeiten ohne Wärmeaustausch. Wie wir in Kapitel (a) unter (2.4) und
(2.26) bereits gesehen haben, entsprechen diese Eigenschaften den Bedingungen

∂v

∂t
= 0 bzw.

∂ω

∂t
= 0, µ > 0, div v = 0, div q = 0,

sodass sich die Bewegungsgleichungen mikropolarer Flüssigkeiten (vgl. Seite 46) auf

div v = 0,

ρ (v · ∇) v = −∇p+ (µ+ µv
c)∆v + 2µv

c curlω + ρk,

ρI (c · ∇)ω = 2µv
c ( curl v − 2ω) + (c0 + cd − ca)∇ divω + (cd + ca)∆ω + ρg

reduzieren. Nehmen wir die (homogenen) Dirichlet’sche Randbedingungen hinzu und set-
zen ν = µ/ρ, νvc = µv

c/ρ, erhalten wir das Randwertproblem:

Das homogene Dirichlet’sche Randwertproblem

div v = 0, (4.27)

−(ν + νvc )∆v + (v · ∇) v +∇p = 2νvc curlω + k, (4.28)

−(cd + ca)∆ω + (ω · ∇)ω − (c0 + cd − ca)∇ divω + 4νvcω

= 2νvc curl v + g (4.29)

in Ω mit

v = 0 (4.30)

ω = 0 (4.31)

auf ∂Ω.

Zur Erinnerung: v(x) = v(x1, x2, x3), p(x) und ω(x) = ω(x1, x2, x3) sind die Geschwin-
digkeit, der Druck und die Mikrorotation der Partikel in der Flüssigkeit. Die Funktionen
k(x) = k(x1, x2, x3) und g(x) = g(x1, x2, x3) representieren die Volumen- und Oberflä-
chenkräfte, während die positiven Konstanten ν, νvc , c0, ca, cd die Materialeigenschaften
der Flüssigkeit charakterisieren; ν entspricht der üblichen Newton’schen Viskosität und
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νvc , c0, ca, cd sind neue Viskositätskoeffizienten die letzlich auf das Mikrorotationsfeld ω
zurückgehen3. Im Folgenden gehen wir stets von der Annahme

c0 + cd > ca (4.32)

aus.

Für p ≥ 1 bezeichnen wir mit Hp
m(Ω) den Abschluss der Menge C∞(Ω,Rn) (n = 1, 3) in

der Norm

‖f‖Hp
m(Ω) =




∑

0≤|α|≤m

‖f‖pLp(Ω)





1

p

und mit
◦

H1(Ω) den Abschluss der Menge C∞
0 (Ω,R3) in der Norm

‖u‖1 =
(∫

Ω

|Du(x)|2 dx

) 1

2

.

Ferner definieren wir V = {u ∈ C∞
0 (Ω,R3) : div v = 0} und den Raum V als den Abschluss

von V in
◦

H1(Ω). Insbesondere setzen wir für v, u, ω ∈
◦

H1(Ω)

b(v, u, ω) := ((v · ∇) u, ω)L2(Ω) . (4.33)

Wie man leicht nachrechnet ist

b(., ., .) :
◦

H1(Ω)×
◦

H1(Ω)×
◦

H1(Ω) −→ R

eine multilineare Abbildung und es gilt:

b(v, ω, ω) =

∫

Ω

vi(x)
∂ωj

∂xi
(x)ωj(x) dx

= −
∫

Ω

vi(x)ωj(x)
∂ωj

∂xi
(x) dx =⇒ b(v, ω, ω) = 0. (4.34)

Definition 4.3.1 (Schwache Lösungen): Wir sagen das Tripel (v, p, ω) ist eine schwache

Lösung des Randwertproblems (4.27)-(4.31), falls v ∈ V , p ∈ L2(Ω), ω ∈
◦

H1(Ω),

∫

Ω

p(x) dx = 0,

und die folgenden Integralgleichungen erfüllt sind:

(ν + νvc ) (v, ϕ)H1(Ω)+b(v, v, ϕ)− (p, divϕ)L2(Ω)

= 2νvc ( curlω , ϕ)L2(Ω) + (k, ϕ)L2(Ω) (4.35)

3Für νvc = 0 entkoppeln die Differentialgleichungen und für νR = c0 = ca = cd = 0 und g = ω = 0
geht das System (4.27)-(4.29) in das klassische Navier-Stokes-System der Hydrodynamik über.
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für alle ϕ ∈ C∞
0 (Ω,R3),

(v,∇ξ)L2(Ω) = 0 (4.36)

für alle ξ ∈ C∞
0 (Ω,R) und

(ca + cd) (ω, ψ)H1(Ω)+b(v, ω, ψ) + (c0 + cd − ca) (divω, divψ)L2(Ω)

+ 4νvc (ω, ψ)L2(Ω) = 2νvc ( curl v , ψ)L2(Ω) + (g, ψ)L2(Ω) (4.37)

für alle ψ ∈ C∞
0 (Ω,R3).

Wie man leicht sieht, erfüllt jede klassische aber insbesondere auch jede Distributionslö-
sung (entsprechende Regularität vorausgesetzt) von (4.27)-(4.31) die Bedingungen (4.35)-
(4.37). Für den eigentlichen Beweis zur Existenz einer Lösung werden wir den Fixpunkt-
satz von Schauder (Satz 4.1.9) benutzen. Dazu konstruieren wir mit dem nachfolgenden

Hilfsproblem zunächst eine Lösung ω ∈
◦

H1(Ω) für das Mikrorotationsfeld und definieren
basierend auf dieser Lösung einen kompakten Operator A, der uns die Anwendung von
Satz 4.1.9 ermöglichen wird.

Lemma 4.3.1 (Hilfsproblem): Sei d = diamΩ. Für g ∈ L2(Ω) und v ∈ V hat

(ca + cd) (ω, ψ)H1(Ω)+b(v, ω, ψ) + (c0 + cd − ca) (divω, divψ)L2(Ω) + 4νvc (ω, ψ)L2(Ω)

= 2νvc ( curl v , ψ)L2(Ω) + (g, ψ)L2(Ω)

für alle ψ ∈ C∞
0 (Ω,R3) als schwache Formulierung des Randwertproblems (4.29),(4.31)

eine eindeutige Lösung ω ∈
◦

H1(Ω). Insbesondere gelten die folgenden Abschätzungen:

(ca + cd) ‖ω‖1 ≤ 2νvc ‖v‖L2(Ω) + d ‖g‖L2(Ω) (4.38)

2νvc ‖ω‖L2(Ω) ≤ νvc ‖v‖1 +
1

2
‖g‖L2(Ω) . (4.39)

Beweis. Da alle Terme in (4.37) auf
◦

H1(Ω) stetige Formen in ψ sind, können wir in (4.37)

von ψ ∈ C∞
0 (Ω) zu ψ ∈

◦

H1(Ω) übergehen. Dann setze für (ω, ψ) ∈
◦

H1(Ω)×
◦

H1(Ω)

B(ω, ψ) := (ca + cd) (ω, ψ)H1(Ω) + b(v, ω, ψ)

+ (c0 + cd − ca) (divω, divψ)L2(Ω) + 4νvc (ω, ψ)L2(Ω)

so ist B nach Definition des Skalarprodukts, (3.61) in Satz 3.2.1, (4.33) und unserer
Annahme (4.32) eine positive Bilinearform. Mit der Cauchy-Schwarzschen Ungleichung
(4.8) und der Poincare-Ungleichung (4.20) folgt nun:

|B(ω, ψ)| ≤ (ca + cd)| (ω, ψ)H1(Ω) |+ | ((v · ∇)ω, ψ)L2(Ω) |
+ (c0 + cd − ca)| (divω, divψ)L2(Ω) |+ 4νvc | (ω, ψ)L2(Ω) |

≤ (ca + cd) ‖ω‖1 ‖ψ‖1 + ‖(v · ∇)ω‖L2(Ω) ‖ψ‖L2(Ω)

+ (c0 + cd − ca) ‖divω‖L2(Ω) ‖divψ‖L2(Ω) + 4νvc ‖ω‖L2(Ω) ‖ψ‖L2(Ω)

≤ β ‖ω‖1 ‖ψ‖1 ,
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mit β > 0. Auch gilt (4.34) so dass mit Korollar 4.1.8

B(ω, ω) = (ca + cd)| (ω, ω)H1(Ω) |+ | ((v · ∇)ω, ω)L2(Ω) |
+ (c0 + cd − ca)| (divω, divω)L2(Ω) |+ 4νvc | (ω, ω)L2(Ω) |

= (ca + cd) ‖ω‖21 + (c0 + cd − ca) ‖divω‖2L2(Ω) + 4νvc ‖ω‖2L2(Ω) ≥ α ‖ω‖21

mit α > 0. Daher ist B eine stetige, koerzive Bilinearform auf
◦

H1(Ω)×
◦

H1(Ω). Ferner ist die

rechte Seite von (4.37) ein stetiges, lineares Funktional auf
◦

H1(Ω), sodass die Existenz und
Eindeutigkeit einer schwachen Lösung direkt aus dem Lemma von Lax-Milgram (4.1.4)
folgen.
Setzen wir ψ = ω in (4.37), dann ist mit (4.8)

(ca + cd) ‖ω‖21 + 4νvc ‖ω‖2L2(Ω) = 2νvc ( curl v , ω)L2(Ω) + (g, ω)L2(Ω) − (c0 + cd − ca) ‖divω‖2L2(Ω)

≤ 2νvc ( curl v , ω)L2(Ω) + (g, ω)L2(Ω)

≤
{
2νvc ‖v‖1 ‖ω‖L2(Ω) + ‖g‖L2(Ω) ‖ω‖L2(Ω)

2νvc ‖v‖L2(Ω) ‖ω‖1 + ‖g‖L2(Ω) ‖ω‖L2(Ω) .
(4.40)

Die Abschätzungen folgen dann mit der Poincare-Ungleichung (4.20). �

Wir tätigen nun einen ersten Schritt zum Existenzbeweis einer Lösung (v, p, ω) von (4.35)-

(4.37). Dazu definieren wir für festes ω ∈
◦

H1(Ω) die Abbildung Ã : V −→ V, v 7−→ Ãv
durch die folgende Beziehung

(ν + νvc )
(

Ãv, ϕ
)

H1(Ω)
= b(v, ϕ, v) + 2νvc ( curlω , ϕ)L2(Ω) + (k, ϕ)L2(Ω) . (4.41)

Nach Satz 4.1.6 (Riesz-Fréchet) ist Ã wohldefiniert. Der von uns bereits angekündigte

Operator A entspricht dem Operator Ã für die eindeutige schwache Lösung ω ∈
◦

H1(Ω) des
Hilfsproblems aus Satz 4.3.1. Im Folgenden werden wir nun zwei Abschätzungen ableiten
und damit zeigen, dass A vollstetig ist und somit nach Satz 4.1.2, aufgrund der Reflexivität

von
◦

H1(ω), kompakt ist.

Lemma 4.3.2: Für jedes vi ∈ V , ωi ∈
◦

H1(Ω) (i = 1, 2) mit

(ν + νvc )
(

Ãvi, ϕ
)

H1(Ω)
= b(vi, ϕ, vi) + 2νvc ( curlωi , ϕ)L2(Ω) + (k, ϕ)L2(Ω) (4.42)

für alle ϕ ∈ V , gilt:

(ν + νvc )
∥
∥
∥Ãv1 − Ãv2

∥
∥
∥
1
≤
(

‖v1‖L4(Ω) + ‖v2‖L4(Ω)

)

‖v1 − v2‖L4(Ω) + 2νvc d ‖ω1 − ω2‖1 .

Beweis. Durch Subtraktion der Gleichung (4.42) für vi, ωi, (i = 1, 2) erhalten wir

(ν + νvc )
(

Ãv1 − Ãv2, ϕ
)

H1(Ω)

= b(v1, ϕ, v1)− b(v2, ϕ, v2) + 2νvc ( curl (ω1 − ω2) , ϕ)L2(Ω)

= b(v1, ϕ, v1 − v2) + b(v1, ϕ, v2)− b(v2, ϕ, v2) + 2νvc ( curl (ω1 − ω2) , ϕ)L2(Ω)

= b(v1, ϕ, v1 − v2) + b(v1 − v2, ϕ, v2) + 2νvc ( curl (ω1 − ω2) , ϕ)L2(Ω) .
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Setzen wir nun speziell ϕ = Ãv1 − Ãv2 und benutzen die verallgemeinerte Hölder- (4.15)
sowie die Poincare-Ungleichung (4.20) folgt

(ν + νvc )
∥
∥
∥Ãv1 − Ãv2

∥
∥
∥

2

1

= b(v1, Ãv1 − Ãv29, v1 − v2) + b(v1 − v2, Ãv1 − Ãv2, v2)
+ 2νvc

(

curl (ω1 − ω2) , Ãv1 − Ãv2
)

L2(Ω)

≤ ‖v1‖L4(Ω)

∥
∥
∥∇(Ãv1 − Ãv2)

∥
∥
∥
L2(Ω)

‖v1 − v2‖L1(Ω)

+ ‖v1 − v2‖L4(Ω)

∥
∥
∥∇(Ãv1 − Ãv2)

∥
∥
∥
L2(Ω)

‖v2‖L1(Ω)

+ 2νvc ‖ curl (ω1 − ω2) ‖L2(Ω)

∥
∥
∥Ãv1 − Ãv2

∥
∥
∥
L2(Ω)

≤
(

‖v1‖L4(Ω) + ‖v2‖L4(Ω)

)∥
∥
∥Ãv1 − Ãv2

∥
∥
∥
1
‖v1 − v2‖L4(Ω)

+ 2dνvc ‖ω1 − ω2‖1
∥
∥
∥Ãv1 − Ãv2

∥
∥
∥
1
.

Division mit
∥
∥
∥Ãv1 − Ãv2

∥
∥
∥
1

liefert nun die Behauptung. �

Lemma 4.3.3: Sind vi ∈ V, ωi ∈
◦

H1(Ω) für i = 1, 2 so, dass

(ca + cd) (ωi, ψ)H1(Ω)+b(vi, ωi, ψ) + (c0 + cd − ca) (divωi, divψ)L2(Ω) + 4νvc (ωi, ψ)L2(Ω)

= 2νvc (vi, curlψ )L2(Ω) + (g, ψ)L2(Ω) (4.43)

für alle ψ ∈
◦

H1(Ω), dann gilt:

(ca + cd) ‖ω1 − ω2‖1 ≤
[

C(Ω) ‖ω1‖1 + 2νvc |Ω|
1

4

]

‖v1 − v2‖L4(Ω) . (4.44)

Beweis. Der Beweis läuft analog zum vorhergehenden Lemma. Nach Subtraktion der
beiden Gleichungen (4.43) gilt:

(ca + cd) (ω1 + ω2, ψ)H1(Ω) + b(v1 − v2, ω1, ψ) + b(v2, ω1 − ω2, ψ)

+ (c0 + cd − ca) (div(ω1 − ω2), divψ)L2(Ω) + 4νvc (ω1 − ω2, ψ)L2(Ω)

= 2νvc (v1 − v2, curlψ )L2(Ω)

Dabei haben wir ausgenutzt, dass b linear in jeder Komponente ist und daher

b(v1, ω1, ψ)− b(v2, ω2, ψ) = b(v1 − v2, ω1, ψ) + b(v2, ω1, ψ)− b(v2, ω2, ψ)

= b(v1 − v2, ω1, ψ) + b(v2, ω1 − ω2, ψ).

Speziell für ψ = ω1 − ω2 ∈
◦

H1(Ω) folgt nun wegen b(v, ω, ω) = 0 für ω ∈
◦

H1(Ω)

(ca + cd) ‖ω1 − ω2‖21 ≤ |b(v1 − v2, ω1, ω1 − ω2)|+ 2νvc (u1 − u2, curl (ω1 − ω2) )L2(Ω) .
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Nun gilt nach (4.21) und (4.20)

‖ω‖L4(Ω) ≤ C(Ω) ‖ω‖1 ∀ ω ∈
◦

H1(Ω) (4.45)

und daher folgt mit der verallgemeinerten Hölder- (4.15) sowie (4.20)

(ca + cd) ‖ω1 − ω2‖21 ≤ ‖v1 − v2‖L4(Ω) ‖∇ω1‖L2(Ω) ‖ω1 − ω2‖L4(Ω)

+ 2νvc ‖1‖L4(Ω) ‖u1 − u2‖L4(Ω) ‖ curl (ω1 − ω2) ‖L2(Ω)

≤ C(Ω) ‖v1 − v2‖L4(Ω) ‖ω1‖1 ‖ω1 − ω2‖1
+ 2νvc |Ω|

1

4 ‖v1 − v2‖L4(Ω) ‖ω1 − ω2‖1 .

Die Behauptung folgt nun wieder durch Division mit ‖ω1 − ω2‖1. �

Lemma 4.3.4: Seien ω ∈
◦

H1(Ω) die eindeutige Lösung von

(ca + cd) (ω, ψ)H1(Ω)+b(v, ω, ψ) + (c0 + cd − ca) (divω, divψ)L2(Ω) + 4νvc (ω, ψ)L2(Ω)

(4.46)

= 2νvc ( curl v , ψ)L2(Ω) + (g, ψ)L2(Ω) (4.47)

für alle ψ ∈
◦

H1(Ω) und A : V −→ V ; v 7−→ Av definiert durch

(ν + νvc ) (Av, ϕ)H1(Ω) = b(v, ϕ, v) + 2νvc ( curlω , ϕ)L2(Ω) + (k, ϕ)L2(Ω) (4.48)

für alle ϕ ∈ V . Dann gilt für alle v1, v2 ∈ V

‖Av1 − Av2‖1 ≤ C ‖v1 − v2‖L4(Ω) , (4.49)

für

C = (ν + νvc )
−1

{

‖v1‖L4(Ω) + ‖v2‖L4(Ω) +
2νvc d

ca + cd

(

C(Ω) ‖ω1‖1 + 2νvc |Ω|
1

4

)}

. (4.50)

Beweis. Folgt direkt aus Lemma 4.3.2 für Ã = A und Anwendung von Lemma 4.3.3. �

Lemma 4.3.5: Die Abbildung A : V −→ V definiert durch (4.48) ist vollstetig.

Beweis. Sei (vn)n∈N eine schwach konvergente Folge in
◦

H1(Ω). Nach Definition müs-

sen wir zeigen, dass die zugehörige Bildfolge (Avn)n∈N ⊂
◦

H1(Ω) normkonvergent ist. Da
schwach konvergente Folgen insbesondere normbeschränkt sind, folgt aus dem Spezialfall
des Rellichen Auswahlsatzes 4.1.7 und Abschätzung 4.1.10 offensichtlich, dass (vn)n∈N in
L4(Ω) normkonvergent ist. Setzen wir nun in (4.47) ψ = ω erhalten wir mit (4.15) und
(4.20)

(ca + cd) ‖ω‖21 ≤ 2νvc ‖v‖L2(Ω) ‖ω‖1 + ‖g‖L2(Ω) ‖ω‖L2(Ω)

≤
(

2νvc |Ω|
1

4 ‖u‖L4(Ω) + d ‖g‖L2(Ω)

)

‖ω‖1 ,
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also

‖ω‖21 ≤ (ca + cd)
−1
(

2νvc |Ω|
1

4 ‖u‖L4(Ω) + d ‖g‖L2(Ω)

)

‖ω‖1 .

Kombinieren wir nun die Abschätzung (4.49) mit C wie in (4.50) und unsere gewonnene
Abschätzung erhalten wir

‖Av1 − Av2‖1 ≤ C ′ ‖v1 − v2‖L4(Ω) (4.51)

mit einer Konstanten C1, die linear von ‖v1‖L4(Ω) , ‖v2‖L4(Ω) und ebenso von ν, νvc , ca, cd, g, |Ω|
und d abhängt. Für die schwach konvergente Folge (vn)n∈N gilt somit:

‖Avn − Avm‖1 ≤ C ′ ‖vn − vm‖L4(Ω)

≤
√
2C ′ ‖vn − vm‖

1

4

L2(Ω) ‖D(vn − vm)‖
3

4

L2(Ω)

≤ 2
√
2C ′ ‖vn − vm‖L2(Ω) lim inf

n→∞
‖Dvn‖L2(Ω)

≤ C̃ ‖vn − vm‖L2(Ω) −→ 0, für n,m −→∞

nach Lemma 4.1.7 und 4.1.10. Also ist (Avn)n∈N eine Cauchyfolge im Hilbertraum
◦

H1(Ω)
und daher normkonvergent. �

Lemma 4.3.6: Für λ ∈ [0, 1] und A definiert durch (4.48) sei v ∈ V die Lösung der
Gleichung

v = λAv. (4.52)

Dann gilt

‖v‖1 ≤ λ(2ν)−1 ‖g‖L2(Ω) + λdν−1 ‖k‖L2(Ω) . (4.53)

Beweis. Für λ = 0 ist die Aussage trivial. Sei also λ > 0. Da

(v, curlψ )L2(Ω) =

∫

Ω

vi(x)εijk
∂uk
∂xj

(x) dx

= −
∫

Ω

∂vi
∂xj

(x)εijkuk(x) dx

=

∫

Ω

εkji
∂vi
∂xj

(x)uk(x) dx = ( curl v , ψ)L2(Ω)

für alle v ∈ V und ψ ∈
◦

H1(Ω) ist, gilt für die eindeutige Lösung ω ∈
◦

H1(Ω) von (4.43)
nach Lemma 4.3.1 die Ungleichung (4.39). Setzen wir nun Av = λ−1v und ψ = v in (4.48),
erhalten wir mit (4.8) und (4.20)

λ(ν + νvc ) ‖v‖21 = 2νvc ( curlω , v)L2(Ω) + (k, v)L2(Ω)

= 2νvc (ω, curl v )L2(Ω) + (k, v)L2(Ω)

≤ 2νvc ‖ curl v ‖L2(Ω) ‖ω‖L2(Ω) + d ‖k‖L2(Ω) ‖u‖L2(Ω)

≤
(

2νvc ‖ω‖L2(Ω) + d ‖k‖L2(Ω)

)

‖v‖1 ,
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mithin
(ν + νvc ) ‖v‖1 ≤ 2λνvc ‖ω‖L2(Ω) + dλ ‖k‖L2(Ω) .

Zusammen mit (4.39) folgt nun

(ν + νvc ) ‖v‖1 ≤ λνvc ‖v‖1 + 2−1λ ‖g‖L2(Ω) + dλ ‖k‖L2(Ω)

und somit

ν ‖v‖1 ≤ (ν + νvc (1− λ)
︸ ︷︷ ︸

≥0

) ‖v‖1 ≤ 2−1λ ‖g‖L2(Ω) + dλ ‖k‖L2(Ω) .

�

Wir gelangen nun zum Kern dieses Abschnitts und zeigen die Existenz und unter ge-
eigneten Voraussetzungen an die Viskositätskoeffizienten, auch die Eindeutigkeit einer
schwachen Lösung (v, p, ω) von (4.35)-(4.37).

Satz 4.3.2 (Existenz einer schwachen Lösung): Sind k, g ∈ L2(Ω), dann hat das Dirich-
let’sche Randwertproblem (4.27) - (4.31) eine schwache Lösung.

Beweis. Die Existenz einer Lösung ω ∈
◦

H1(Ω) von (4.37) folgt aus Lemma 4.3.1. Zu
diesem ω definiere nun A wie in (4.48), dann ist A nach Lemma 4.3.5 vollstetig und
wegen Satz 4.1.2 damit ein kompakter Operator auf V . Insbesondere folgt aus Lemma
4.3.6 für alle v ∈ V und σ ∈ [0, 1] mit v = σAv:

‖v‖1 ≤ (2ν)−1 ‖g‖L2(Ω) + dν−1 ‖k‖L2(Ω) =: r ⇐⇒ v ∈ Br(0) ⊂ V.

Der Fixpunktsatz von Leray-Schauder (vgl. Satz 4.1.10) liefert daher ein v ∈ V mit
Av = v, für das

‖v‖1 ≤ (2ν)−1 ‖g‖L2(Ω) + dν−1 ‖k‖L2(Ω) . (4.54)

Für die Existenz einer schwachen Lösung (v, p, ω) des Dirichlet’schen Randwertproblems
bleibt somit zu zeigen, dass es ein p ∈ L2(Ω) gibt mit

∫

Ω

p(x) dx = 0

für die (4.35) mit diesem v erfüllt ist. Dazu setzen wir (vgl. (4.28))

k̂(v) = 2νvc curlω + k + (ν + νvc )∆v − (v · ∇) · v.

Dann ist offensichtlich k̂ ∈ H−1(Ω) dem Dualraum zu
◦

H1(Ω) und Tk̂(v) = 0 für alle v ∈ V .
Nach Bemerkung 3 gibt es daher ein p ∈ L2(Ω) mit

k̂ = ∇p und
∫

Ω

p(x) dx = 0.

�
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Satz 4.3.3 (Eindeutigkeit der schwachen Lösung): Ist die Newton’sche Viskosität ν groß
genug, so ist die schwache Lösung des Dirichlet’schen Randwertproblems aus Satz 4.3.2
eindeutig.

Beweis. Seien (v1, p1, ω1) und (v2, p2, ω2) zwei schwache Lösungen von (4.27)-(4.31).
Dann gilt für i = 1, 2 und alle ϕ ∈ V

(ν + νvc ) (vi, ϕ)H1(Ω) + b(vi, vi, ϕ) = 2νvc ( curlωi , ϕ)L2(Ω) + (k, ϕ)L2(Ω) , (4.55)

sowie für alle ψ ∈
◦

H1(Ω)

(ca + cd) (ωi, ψ)H1(Ω)+b(vi, ωi, ψ) + (c0 + cd − ca) (divωi, divψ)L2(Ω) + 4νvc (ωi, ψ)H1(Ω)

= 2νvc ( curl vi , ψ)L2(Ω) + (g, ψ)L2(Ω) . (4.56)

Subtrahieren wir die ersten beiden Gleichungen (4.55) voneinander und setzen ϕ = v1 −
v2 ∈ V erhalten wir mit der verallgemeinerten (4.15), Lemma 4.1.10 und (4.20)

(ν+νvc ) ‖v1 − v2‖21
= 2νvc (ω1 − ω2, curl (v1 − v2) )L2(Ω) − b(v1 − v2, v2, v1 − v2)
≤ 2νvc ‖ω1 − ω2‖L2(Ω) ‖ curl (v1 − v2) ‖L2(Ω) + ‖∇v2‖L2(Ω) ‖v1 − v2‖

2
L4(Ω)

≤ 2νvc d ‖ω1 − ω2‖1 ‖v1 − v2‖+
(√

2 ‖v1 − v2‖
1

4

L2(Ω) ‖D(v1 − v2)‖
3

4

L2(Ω)

)2

≤ 2
[

‖v2‖1 ‖v1 − v2‖1 + νvc d ‖ω1 − ω2‖1
]

‖v1 − v2‖1 ,

d. h.

(ν + νvc ) ‖v1 − v2‖1 ≤ 2 ‖v2‖1 ‖v1 − v2‖1 + 2νvc d ‖ω1 − ω2‖1 . (4.57)

Dabei haben wir ausgenutzt, dass (v, curlψ )L2(Ω) = ( curl v , ψ)L2(Ω) für alle v ∈ V, ψ ∈
◦

H1(Ω) und b linear in jeder Komponente ist; mithin

b(v1, v1, ψ)− b(v2, v2, ψ) = b(v1 − v2, v2, ψ)− b(v1, v2, ψ) + b(v1, v1, ψ)

= b(v1 − v2, v2, ψ) + b(v1, v1 − v2, ψ).

Subtraktion der letzten beiden Gleichungen (4.56) liefert nun für ψ = ω1 − ω2 ∈
◦

H1(Ω)

(ca + cd) ‖ω1 − ω2‖21 +b(v1 − v2, ω2, ω1 − ω2) + 4νvc ‖ω1 − ω2‖2L2(Ω)

≤ 2νvc ( curl v1 − v2 , ω1 − ω2)L2(Ω)

Mit der verallgemeinerten Hölderungleichung (4.15), der Poincareungleichung (4.20) und
(4.45) folgt nun:

(ca + cd) ‖ω1 − ω2‖21
= b(v2 − v1, ω2, ω1 − ω2)− 4νvc ‖ω1 − ω2‖2L2(Ω) + 2νvc ( curl v1 − v2 , ω1 − ω2)L2(Ω)

≤ |b(v1 − v2, ω2, ω1 − ω2)|+ 2νvc ( curl v1 − v2 , ω1 − ω2)L2(Ω)

≤ ‖v1 − v2‖L4(Ω) ‖∇ω2‖L2(Ω) ‖ω1 − ω2‖L4(Ω) + 2νvc ‖ curl (v1 − v2) ‖L2(Ω) ‖ω1 − ω2‖L2(Ω)

≤
[

C(Ω) ‖ω2‖1 + 2νvc d
]

‖v1 − v2‖1 ‖ω1 − ω2‖1 ,
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d. h.

(ca + cd) ‖ω1 − ω2‖1 ≤
[

C(Ω) ‖ω2‖1 + 2νvc d
]

‖v1 − v2‖1 . (4.58)

Kombinieren wir (4.57) und (4.58) folgt

(ν+νvc ) ‖v1 − v2‖
≤ 2
{

‖v2‖1 + νvc d(ca + cd)
−1
[

C(Ω) ‖ω2‖1 + 2νvc d
]}

‖v1 − v2‖1 . (4.59)

Auch gilt mit (4.38), (4.20) und (4.54)

‖ω2‖1 ≤ (ca + cd)
−1
{

2νvc ‖v‖L2(Ω) + d ‖g‖L2(Ω)

}

≤ (ca + cd)
−1
{

2νvc d ‖v‖1 + d ‖g‖L2(Ω)

}

≤ (ca + cd)
−1
{

2νvc d
[

(2ν)−1 ‖g‖L2(Ω) + dν−1 ‖k‖L2(Ω)

]

+ d ‖g‖L2(Ω)

}

≤ (ca + cd)
−1
{

2νvc d
2ν−1 ‖k‖L2(Ω) + d(νvc ν

−1 + 1) ‖g‖L2(Ω)

}

. (4.60)

Zusammengenommen folgt aus (4.59), (4.60) und (4.54)

(ν + νvc ) ‖v1 − v2‖1 ≤ C ‖v1 − v2‖1 (4.61)

mit

C =
[

2dν−1 + 4d3C(Ω)(ca + cd)
−2
]

ν−1 ‖k‖L2(Ω)

+
[

ν−1 + 2νvc d
2C(Ω)(ca + cd)

−2(νvc ν
−1 + 1)

]

‖g‖L2(Ω) + 2νvc d.

Ist nun ν so groß, dass νvc + ν > C, impliziert (4.61)

u1 = u2.

�

Wie schon in Abschnitt 4.1.4 angekündigt versuchen wir nun die gefundene Lösung in
Räume höherer Regularität einzubetten. Dabei erwenden wir einerseits die Erkenntnisse
aus 4.1.4 und andererseits bekannte Regularitätseigenschaften elliptischer partieller Dif-
ferentialgleichungen zweiter Ordnung.

Satz 4.3.4 (Regularität der schwachen Lösung): Unter den Voraussetzungen von Satz
4.3.2 gilt

u ∈ H2
2 (Ω), p ∈ H2

1 (Ω) und ω ∈ H2
2 (Ω).

Insbesondere gilt

‖u‖H2
2
(Ω) + ‖p‖H2

1
(Ω) + ‖ω‖H2

2
(Ω) ≤ F (‖k‖L2(Ω) , ‖g‖L2(Ω)), (4.62)

für eine stetige, monoton wachsende Funktion F , mit F (0, 0) = 0.
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Beweis. Wir schreiben das Dirichlet’sche Randwertproblem (4.27)-(4.31) in der Form







−(ν + νvc )∆v +∇p = k + 2νvc curlω − (v · ∇)v =: k̃ in Ω,

div v = 0 in Ω,

v = 0 in ∂Ω,

(Prob 1)







−(ca + cd)∆ω − (c0 + cd − ca)∇ divω + 4νvcω

= g + 2νvc curl v − (v · ∇)ω =: g̃ in Ω,

ω = 0 in ∂Ω.

(Prob 2)

Betrachten wir zunächst das erste Problem (Prob 1) in (v, p) zu gegebenem ω ∈
◦

H1(Ω).
Als Spezialfall des Stokesschen Randwertproblems können wir darauf Satz 4.3.1 anwenden
und erhalten

‖v‖Hq
2
(Ω) + ‖p‖Hq

1
(Ω) ≤ C

∥
∥
∥k̃
∥
∥
∥
Lq(Ω)

, (4.63)

für q > 1 und k̃ = k + 2νvc curlω − (v · ∇)v, mit ω ∈
◦

H1(Ω) und v ∈ V . Wählen wir nun

q = 3
2

in (4.63), folgt aus der Einbettung
◦

H1(Ω) →֒ L6(Ω) (vgl. Lemma 4.1.11) und der
Hölderungleichung (4.13)

∫

Ω

|(v(x) · ∇)v(x)| 32 dx ≤ C

∫

Ω

|v(x)| 32 |∇v(x)| 32 dx

≤ C

(∫

Ω

|v(x)|6 dx
) 1

4
(∫

Ω

|∇v(x)|2 dx
) 3

4

≤ C̃

(∫

Ω

|∇v(x)|2 dx
) 3

4
(∫

Ω

|∇v(x)|2 dx
) 3

4

,

mithin

‖(v · ∇)v‖
L

3
2 (Ω)
≤ C̃ ‖∇v‖2L2(Ω) = C̃ ‖v‖21 . (4.64)

Nun sind nach Voraussetzung k ∈ L2(Ω) und ω ∈
◦

H1(Ω). Dann ist k + 2νvc curlω ∈
L2(Ω) ⊂ L3/2(Ω) und somit k̃ ∈ L3/2(Ω). Aus (4.63) folgt daher

v ∈ H3/2
2 (Ω) und p ∈ H3/2

1 (Ω).

Auch gilt H3/2
2 (Ω) →֒ H3

1 (Ω) →֒ L6(Ω) (vgl. [Ada03]), sodass mit (4.13)

‖(v · ∇)v‖2L2(Ω) ≤ C

∫

Ω

|v(x)|2|∇v(x)|2 dx ≤ C

(∫

Ω

|v(x)|6 dx
) 1

3
(∫

Ω

|∇v(x)|3 dx
) 2

3

und daher

‖(v · ∇)v‖L2(Ω) ≤ C ‖v‖L6(Ω) ‖∇v‖L3(Ω) ≤ C̃ ‖v‖1 ‖v‖H3/2
2

(Ω)
. (4.65)
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Zusammen mit k + 2νvc curlω ∈ L2(Ω) folgt daraus k̃ ∈ L2(Ω) und nach (4.63) für q = 2:

v ∈ H2
2 (Ω) und p ∈ H2

1 (Ω).

Betrachten wir nun das Problem (Prob 2) in ω zu gegebenem v ∈ H2
2 (Ω). Dann gilt

‖(v · ∇)ω‖2L2(Ω) ≤ C

∫

Ω

|v(x)|2|∇ω(x)|2 dx ≤ C ess supx∈Ω |u(x)|2
∫

Ω

|∇ω(x)|2 dx

und somit wegen H2
2 (Ω) →֒ C0,1/2(Ω)

‖(v · ∇)ω‖L2(Ω) ≤ C ‖v‖L∞(Ω) ‖ω‖1 ≤ C̃ ‖v‖H2
2
(Ω) ‖ω‖1 . (4.66)

Daher ist
g̃ = g + 2νvc curl v − (v · ∇)ω ∈ L2(Ω).

Nun ist (Prob 2) ein elliptisches partielles Differentialgleichungssystem zweiter Ordnung
für deren eindeutige Lösung (vgl. [Eva02], Section 6.3, Theorem 4) ω gilt:

ω ∈ H2
2 (Ω) und ‖ω‖H2

2
(Ω) ≤ C ‖g̃‖L2(Ω) . (4.67)

Kombinieren wir (4.63) für q = 2 mit (4.65), (4.54) und nehmen (4.67), sowie (4.60) für
ω statt ω2 hinzu, erhalten wir direkt die Abschätzung (4.62). �



Anhang A

Anhang

A.1 Vektor- und Tensoridentitäten

In Teil A des Anhangs finden sich essentielle Nebenrechnungen und Identitäten, deren
Beweis mehr einer mathematischen Fingerübung entspricht, als dass sie das Verständnis
der im Hauptteil behandelten Themen erleichtert. Im Wesentlichen werden dabei die
bei der Herleitung der Bewegungsgleichungen mikropolarer Flüssigkeiten auftretenden
Skalarprodukte berechnet.

A.1.1 Ergänzungen zur Vektoranalysis

Für f : Rn × R≥0 −→ R; (x, t) 7−→ f(x, t) und F : Rn × R≥0 −→ R
n; (x, t) 7−→ F (x, t)

ist

div
(

f(x, t), F (x, t)
)

=
∂

∂xi

(

f(x, t)Fi(x)
)

=
n∑

i=1

(
∂

∂xi
f(x, t)

)

F (x, t) + f(x, t)
n∑

i=1

∂

∂xi
Fi(x)

= F (x, t) · ∇xf(x, t) + f(x, t) divF (x, t). (A.1)

In Kapitel 2 haben wir die substantielle Ableitung

Dφ

Dt
(x, t) =

∂φ

∂t
(x, t) + (v(x, t) · ∇x)φ(x, t)

einer skalaren oder vektoriellen Größe φ(x, t) eingeführt. Ist x : R≥0 −→ R
3; t 7−→ x =

x(t) der Ort eines Teilchens und v = v(x, t) = ẋ(t) die Geschwindigkeit des Teilchens am

89
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Ort x zur Zeit t, so gilt

D

Dt

(

x× v
)

=
D

Dt

(

εijkxjvk

)

= εijk

(
Dxj
Dt

)

vk + εijkxj

(
Dvk
Dt

)

= εijk

(
∂xj
∂t

+ vl
∂xj
xl

)

vk + εijkxj

(
Dvk
Dt

)

= εijk

(

vj + vlδjl

)

vk + εijkxj

(
Dvk
Dt

)

= εijkvjvk + εijkxj

(
Dvk
Dt

)

= εijkxj

(
Dvk
Dt

)

= x×
(
Dv

Dt

)

. (A.2)

A.1.2 Das Levi-Civita-Symbol alias der ε-Tensor

Bekanntlich ist das Levi-Civita Symbol definiert durch (vgl. (1.2))

εijk =







1, falls (ijk) eine gerade Permutation von (123) ist.

−1, falls (ijk) eine ungerade Permutation von (123) ist.

0, falls mindestens zwei Indizes gleich sind.

Durch direktes Nachrechnen zeigt man leicht, dass

εijk =

∣
∣
∣
∣
∣
∣

δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

δi1 δj1 δk1
δi2 δj2 δk2
δi3 δj3 δk3

∣
∣
∣
∣
∣
∣

. (A.3)
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Daraus folgt

(1) εijkεlmn =

∣
∣
∣
∣
∣
∣

δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

∣
∣
∣
∣
∣
∣

·

∣
∣
∣
∣
∣
∣

δl1 δm1 δn1
δl2 δm2 δn2
δl3 δm3 δn3

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3



 ·





δl1 δm1 δn1
δl2 δm2 δn2
δl3 δm3 δn3





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

δisδls δisδms δisδns
δjsδls δjsδms δjsδns
δksδls δksδms δksδns

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

δil δim δin
δjl δjm δjn
δkl δkm δkn

∣
∣
∣
∣
∣
∣

(A.4)

(2) εijkεlmk =

∣
∣
∣
∣
∣
∣

δil δim δik
δjl δjm δjk
δkl δkm δkk

∣
∣
∣
∣
∣
∣

= δilδjmδkk + δimδjkδkl + δikδjlδkm − δklδjmδik − δkmδjkδil − δkkδjlδim
= 3δilδjm + δimδjl + δimδjl − δilδjm − δjmδil − 3δjlδim

= δilδjm − δjlδim (A.5)

(3) εijkεljk = δilδjj − δjlδij = 3δil − δil = 2δil. (A.6)

A.1.3 Das Tensorskalarprodukt 〈A,B〉R3×3

Das in Kapitel 2 bei der Herleitung eingeführte Produkt

〈A,B〉R3×3 = tr(ABT )

zweier Tensoren A,B ∈ R
3×3 hat die schöne Eigenschaft, dass bzgl. dieses Skalarproduktes

symmetrische und schiefsymmetrische Matrizen orthogonal zueinander stehen. Für einen
schiefsymmetrische Tensor W und einen symmetrischen Tensor S gilt nämlich

〈S,W 〉R3×3 = tr(SW T ) = tr(WST )

= tr(WS)

= tr(SW ) = − tr(SW T )

= −〈S,W 〉R3×3 =⇒ 〈S,W 〉R3×3 = 0. (A.7)

A.1.4 Ergänzungen zu Kapitel 3

Die Ergebnisse zur Beschaffenheit der Spannungstensoren mikropolarer Flüssigkeiten ha-
ben wir in Kapitel 4.50 benutzt um die Bewegungsgleichungen (3.1) zu konkretisieren.
Dabei haben wir die Berechnung einiger autretender Terme übersprungen und reichen sie
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nun an dieser Stelle nach. Es ist

(1) 2 axl (skew T )

= ǫijk

([

− p+ λ trD
]

δkj + 2µDjk + 2µv
c(B −D)kj

)

= µǫijk

(
∂vk
∂xj

+
∂vj
∂xk

)

+ µv
cǫijk

(
∂vk
∂xj
− ∂vj
∂xk

+ 2ǫmkjωm

)

= µ

(

−ǫikj
∂vk
∂xj

+ ǫijk
∂vj
∂xk

)

+ µv
c

(

ǫijk
∂vk
∂xj

+ ǫikj
∂vj
∂xk

)

+ 4µv
cδimωm

= µ
(

− (curl v)i + (curl v)i

)

+ µv
c

(

(curl v)i + (curl v)i

)

+ 4µv
cωi

= 4µv
c

(

ω − 1

2
curl v

)

= −4µv
c axl

(

W + L
)

(A.8)

(2) 〈M,∇ω〉R3×3

= 〈c0 · tr(ω) · 1+ 2cd

(
∂ωi

∂xj
+
∂ωj

∂xi

)

+ 2ca

(
∂ωi

∂xj
− ∂ωj

∂xi

)

,
∂ωi

∂xj
〉

= c0 tr(ω)2 + cd

(
∂ωi

∂xj

)2

+ cd
∂ωj

∂xi

∂ωi

∂xj
+ ca

(
∂ωi

∂xj

)2

− ca
∂ωj

∂xi

∂ωi

∂xj

= c0 tr(ω)2 + (cd + ca)〈Dω,Dω〉R3×3 + (cd − ca)〈Dω,DωT 〉R3×3 (A.9)

Auch gilt mit (A.5):

〈W,W 〉R3×3 =
1

4

(
∂vi
∂xj
− ∂vj
∂xi

)(
∂vi
∂xj
− ∂vj
∂xi

)

=
1

4

[(
∂vi
∂xj

)2

− 2
∂vi
∂xj

∂vj
∂xi

+

(
∂vj
∂xi

)2
]

=
1

2

[(
∂vi
∂xj

)2

− ∂vi
∂xj

∂vj
∂xi

]

〈 curl v , curl v 〉 = ǫijkǫilm
∂vk
∂xj

∂vm
∂xl

= (δjlδkm − δjmδkl)
∂vk
∂xj

∂vm
∂xl

=
∂vk
∂xl

∂vk
∂xl
− ∂vk
∂xm

∂vj
∂xk

=

(
∂vi
∂xj

)2

− ∂vi
∂xj

∂vj
∂xi

= 2〈W,W 〉R3×3
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Damit können wir nun auch den letzten Term berechnen:

(3) 〈 symT ,D〉R3×3 + 〈 skewT ,W 〉R3×3 = 〈T, L〉R3×3

= 〈
[

− p+ λ trD
]

1+ 2µD + 2µv
c(W +W), L〉R3×3

=
[

− p+ λ div v
]

〈1, L〉R3×3 + 2µ〈D,L〉R3×3

+ 2µv
c (〈W,L〉R3×3 + 〈W , L〉R3×3)

=
[

− p+ λ div v
]

div v + 2µ〈D,D〉R3×3 + 2µv
c〈W,W 〉R3×3 − 2µv

cǫmji
∂vi
∂xj

ωm

= −p div v + λ(div v)2 + 2µ〈D,D〉R3×3

+ µv
c〈 curl v , curl v 〉 − 2µv

c〈 curl v , ω〉. (A.10)

A.2 Weitergehende Sätze

Bei der Untersuchung des Dirichlet’schen Randwertproblems für mikropolare Flüssigkei-
ten haben wir in Kapitel 4 insbesondere den Riesz’schen Darstellungssatz und das Lemma
von Lax-Milgramm auf separablen Hilberträumen eingeführt. Dabei hatten wir bereits be-
merkt, dass im Allgemeinen auf die Separabilität der Räume verzichtet werden kann. Zur
Bestätigung dieser Bemerkung werden wir in diesem Abschnitt eine allgemeine Formulie-
rung dieser Sätze geben.

A.2.1 Der Riesz’sche Darstellungssatz

Satz A.2.1 (Riesz’scher Darstellungssatz): Sei H ein Hilbertraum und L ∈ H ′. Dann
gibt es genau ein u ∈ H mit

L(v) = 〈u, v〉 ∀ v ∈ H. (A.11)

Beweis.

(1) (Existenz:) Sei N := {v ∈ H|L(v) = 0} der Kern von L. Da L : H −→ K stetig ist
gilt für (vn)n∈N mit vn −→ v:

0 = L(vn) −→ L(v),

d. h. v ∈ N und daher ist N ein abgeschlossener, linearer Teilraum von H. Ist
N = H, so ist L das Nullfunktional und wir können u = 0 wählen. Sei also N ein
echter Teilraum von H. Dann ist H = N ⊕ N⊥ und wir wählen ein z ∈ N⊥ mit
L(z) = 1. Für beliebiges v ∈ H gilt dann

L(v − L(v)z) = L(v)− L(v)L(z) = 0, d. h. v − L(v)z ∈ N.
Folglich ist

0 = 〈z, v − L(v)z〉 ⇐⇒ 〈z, v〉 = L(v)〈z, z〉 ⇐⇒ L(v) = 〈 z

‖z‖2
, v〉,

d. h. wir können
u =

z

‖z‖2
wählen.
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(2) (Eindeutigkeit:) Sei u′ ∈ H ein weiteres Element mit L(v) = 〈v, u′〉. Dann ist

0 = L(v)− L(v) = 〈u, v〉 − 〈u′, v〉 = 〈u− u′, v〉 ∀ v ∈ H

und wählen wir speziell v := u− u′ folgt daraus

‖u− u′‖2 = 0 ⇐⇒ u− u′ = 0 ⇐⇒ u = u′.

�

A.2.2 Das Lemma von Lax-Milgramm

Satz A.2.2 (Lax-Milgram): Sei H ein Hilbertraum, B : H ×H −→ K eine stetige und
koerzive Bilinearform, d. h. ∃ α > 0, sodass

|B(u, v)| ≤ α ‖u‖ · ‖v‖ und B(u, u) ≥ β ‖u‖2 ∀ u, v ∈ H. (A.12)

Dann gibt es für jedes stetige lineare Funktional L : H −→ R ein eindeutiges û ∈ H mit

B(û, v) = L(v) ∀ v ∈ H. (A.13)

Beweis. Wir zeigen zunächst die Existenz von û ∈ H. Für u ∈ H fest ist v 7−→ B(u, v)
ein stetiges lineares Funktional auf H. Nach dem Ries’zschen Darstellungssatz gibt es
daher für jedes u ein eindeutiges w ∈ H mit

B(u, v) = 〈w, v〉 ∀ v ∈ H.

Dies definiert eine lineare Abbildung T : H −→ H; u 7−→ Tu := w, denn für alle v ∈ H
ist

B(λu1 + µu2, v) = λB(u1, v) + µB(u2, v)

= λ〈Tu1, v〉+ µ〈Tu2, v〉 = 〈λTu1 + µTu2, v〉,

also nach Definition von T : T (λu1 + µu2) = λTu1 + µTu2. Ferner ist T beschränkt:

‖Tu‖2 = |〈Tu, Tu〉| = |B(u, Tu)| ≤ α ‖u‖ · ‖Tu‖ ⇐⇒ ‖Tu‖ ≤ α ‖u‖

und es gilt für alle u ∈ H:

β ‖u‖2 ≤ B(u, u) = 〈Tu, u〉 ≤ ‖Tu‖ · ‖u‖ ⇐⇒ β ‖u‖ ≤ ‖Tu‖ ,

d. h. T ist injektiv und stetig. Ist außerdem (wn)n∈N eine Folge in im{T} ⊂ H mit
wn = Tun und wn −→ w, so gilt nach obigem:

‖uj − uk‖ ≤ β−1 ‖T (uj − uk)‖ = β−1 ‖wj − wk‖ −→ 0 für j, k →∞,

d. h. (un)n∈N ⊂ H ist eine Cauchyfolge die gegen ein Element u ∈ H konvergiert. Dann
ist

w = lim
n→∞

wn = lim
n→∞

Tun = Tu ∈ im{T}
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und daher im{T} abgeschlossen. Es gilt sogar im{T} = H, denn für w ∈ im{T} ⊥ folgt
aus (4.2)

0 = 〈Tw,w〉 = B(w,w) ≥ β ‖w‖2 ≥ 0,

also w = 0 und damit im{T} ⊥ = {0} bzw.

im{T} = im{T} =
(
im{T} ⊥

)⊥
= {0}T = H.

Insgesamt folgt somit, dass T linear, beschränkt und bijektiv, also insbesondere invertier-
bar ist.

Sei nun L : H −→ K ein lineares stetiges Funktional. Nach dem Ries’zschen Darstellungs-
satz gibt es ein ŵ ∈ H mit 〈v, ŵ〈= L(v) für alle v ∈ H. Setze nun

û := T−1ŵ,

dann gilt für alle v ∈ H:

B(û, v) = 〈T û, v〉 = 〈ŵ, v〉 = L(v).

�
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