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 ELASTICITY BEYOND THE ELASTIC LIMIT.*

 By M. REINER.

 1. Theories of elasticity have so far presupposed the existence of what

 Love (Art. 76) called a " state of ease " of " perfect elasticity " in whieh

 " a body can be strained without taking any set "; that state ranging between

 an "initial," "unstressed" and "unstrained" state (Art. 64) on one hand

 and the " elastic limit ' on the other. Recent technological progress has

 gradually reduced, absolutely and, still more, relatively, the field in which

 this assumption holds good. Not only has increased accuracy of measure-

 ments of permanent sets lowered the elastic limit until in many cases as, for

 instance, annealed copper, it has nearly disappeared. More important, in

 materials which do show a definite elastic limit as, for instance, mild steel,

 deformations in most practical applications go beyond that limit. In addi-

 tion, one has to consider elastic materials such as bitumen or cement-stone

 showing creep: their elastic potential gradually disappears through relaxation.

 Finally, there are such materials as rubber which can be caused to undergo

 very large deformations, a certain part of which will always be non-recoverable.

 It therefore becomes necessary to consider elasticity beyond the elastic limit.

 If we define elasticity with Love as " the property of recovery of an original

 size and shape," there would in all these cases be no question of elasticitv

 because the original size and shape is not recovered. However, some of the

 deformation is always recovered: but which part of it is recoverable, becomes

 apparent only when all external forces, gravity included, have been removed.

 We may denote as the ground-position that position of the body which is then

 reached. To every deformation there corresponds a ground-position of its

 own, which generally will not be the initial position from which the deforma-

 tion started. Let us denote by deformation a change of size and of shape in

 general, whether recoverable or not, and by strain that part of it which is

 recovered when all external forces have been removed. Generally, the strain

 will differ from the deformation not only in magnitude, but also in the

 orientation of the principal axes.

 The ground-position is accordingly an unstrained and unstressed state,

 but it is not an undeformed state. A general theory of elasticity, then, has to

 relate the strain as now defined to (i) the stress produced by it and (ii) the

 * Received October 12, 1947.
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 434 M. REINER.

 external forces necessary to equilibrate the stresses in the body in accordance

 with d'Alembert's principle; while the classical theory of the " state of ease "

 refers to the special case when the strain is identical with the deformation.

 The considerations of the present paper are, however, also applicable in the

 latter case.

 2. The classical theory was brought to completion by Murnaghan when

 considering finite strain. He derived the relation between the stress tensor

 Trs and the strain tensor Ers from a formula connecting the elastic potential 4

 with the stress tensor.1 That formula itself was derived by considering the

 virtual work of the stresses across a closed boundary of a portion of the

 material. This method is inapplicable in our case. If we write the funda-

 mental law of thermodynamics for isothermal processes in the form of the

 Gibbs-llelmholtz equation

 (2. 1) Sw =- ps + ps.

 where w is the strainwork per unit volume, 4 the intrinsic free energy-density

 and V/ the bound energy-density (compare Weissenberg, 1931), not only will
 f in our general case not vanish, but what is more remarkable, as Taylor and

 Quinney have shown in a metal which is subjected to cold working, part of

 the free energy is "latent" and not recoverable mechanically. We therefore

 must apply that other method used in the classical theory for the derivation

 of the stress-strain relation (e. g. by Stokes) which is a generalization of

 Hooke's law, writing

 (2. 2) Tsr f(Esr)

 and developing the function f by means of tensor analysis, as was done by
 Reiner in the 'analogous case of viscosity. The equation will then express

 a law of elasticity if c indicates the strain defined above as the recovered part

 of the deformation and if the relation connecting Tsr and Esr is unequivocal.

 From the last condition there follows, that we can also write

 (2. 3) ESr =-(Tsr)

 In the experimental determination of the relation one would have in principle
 to proceed as follows: Subject a material to external forces and let it undergo

 a process of deformation of a certain type,2 arrest the deformation and record

 1 We shall use in the present paper wherever possible Murnaghan's notation.
 2 For " type " compare Love (Art. 73).
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 ELASTICITY BEYOND THE ELASTIC LIMIT. 435

 the magnitude of stress; 3mark a sphere of unit radius in the material around

 some selected point; remove all external forces: this will induce relative dis-

 placements in the material changing the sphere into an ellipsoid called the

 reciprocal strain ellipsoid; wait until this movement dies out; measure the

 axes of the ellipsoid: they will provide a measure of strain; repeat this

 experiment reaching different magnitudes of the same type of deformation

 in a gradually increasing or decreasing order; record the strain, as deter-

 mined, against the stress: provided the relaxation of the stress is negligible,

 the result is an empirical relation for (2. 3) depending upon the type of

 deformation.4 For instance, in the usual tensile test for metals in the work-

 hardening range, when the volume of an element of the material can be

 assumed as constant and the deformation has axial symmetry, only one axis

 of the ellipsoid need be measured viz., either along or across the test piece

 and the empirical formula relates the axial traction pzz to the axial strain .zz.

 3. In the first stage of our investigation we need not fix the measure

 of strain. Denoting the three axes of the above mentioned ellipsoid by It

 (i running over 1, 2, 3) or, what is sometimes more convenient, the axes of

 the strain ellipsoid by A =- I/1 "one may use (as Weissenberg (1946)

 pointed out) any function of the elongation ratios (Xi) in the direction of the

 main axes choosing the function to suit the particular field of investigation."

 One would, naturally, require that all these functions are reduced for infini-

 tesimal strain to the Cauchy measure At - 1. This is the case with the

 Kirchoff-measure which is based upon 1 [ (X ) 2 -1] and the Murnaghan-

 measure based upon 1 - (1l) 2]; it is also so with the measure In (xe)

 =- In (l,) originally proposed by Roentgen for rubber and, since syste-

 matically introduced by Hencky, now widely in use. We may also mention

 the measure (AX -l) proposed by Wall. All these measures comply also

 with a second requirement, viz. that the strain vanishes for At = 1 = i.

 It is clear that a linear stress-strain relation in one measure will be non-linear

 in every other and the desire for linearity is often one of the motives behind

 the introduction of one or the other of the measures mentioned, our enum-

 eration being far from complete.

 4. Starting from (2. 2) or (2. 3), we follow the reasoning applied by

 Reiner, as has already been mentioned, in the analogous case of viscous

 3 It is necessary first to arrest the deformation as, generally, part of the stress will
 be due to viscous resistance, depending upon the velocity of deformation.

 4 CC If . . . the stress-strain relations can be found experimentally, the strain-energy
 function can be calculated " (Sokolnikoff, p. 89).
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 436 M. REINER.

 resistance. We note that on the left side there stands a mixed tensor of

 rank two. Then in a development of either function f or f all terms on the
 right side must also be mixed tensors of rank two. The right side can

 therefore consist only of sums of mixed tensors of rank two multiplied by

 scalars and of inner products of such tensors which again are reduced to

 tensors of rank two. The general term of a development of the function f

 will therefore be of the form E .re . . *Es f(I), where f(I) is a function

 of the three invariants: and we can therefore write

 (4. 1) Tsr f0a8r + flEsr + f2 Ea r.sa + f3EarE,:Es0 +

 This would mean an infilnite number of such terms. However, in view of

 the Cayley-Hamilton equation of matrix theory, the following relation holds

 good 5

 (4. 2) EarEiaE3 =_ SrIII -Er + EaresaI

 where I, II and III are the first, second and third invariaints respectively.

 Therefore

 (4. 3) EarE.aEyfsE Sa rEs-III -'EarEsaII + ar,EctEaSfI
 Ssrl-I II+ Esr (III I * II) + erEsa (I2 II)

 and similarly with respect to higher terms. This enables us to write

 (4. 4) Tsr F0,3sr + FlES" + F2EarESa

 and analogously

 (4. 5) ESr _ 508sr + ,1Tsr + 522TarTsa

 where the F are functions of the three invariants E, IIE and IIIE of the strain-,

 and the f functions of the three invariants IT, IIT and IIIT of the stress-

 tensor. Prager has recently derived equations built up in a manner similar

 to (4. 4) and (4. 5), but subject to specializations due to certain simplifying

 assumptions. Our equations are general and express nothing more than that

 both stress and strain are tensors of rank two, the principal axes of which

 coincide; and that the functions F and a are scalars. We may call a material

 in such a state isotropic.

 However, we also require that in the ground-position, when the stress is

 removed, the strain should also vanish, and vice versa. Therefore

 6 These developments are entirely analogous to those of Reiner for the viscous

 liquids, but it was thought desirable to make the present paper self-contained.
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 ELASTICITY BEYOND THE ELASTIC LIMIT. 437

 (4. 6) Fo FolIe + F02IIE + F03IIIE

 (4. 7) C 5o1IT + 502IIT + f03IIIT

 where the new F and f are again, in general, functions of all three invariants

 I, II and III.

 The functions F are moduli of elasticity, the functions a coefficients of
 elasticity; the latter, generally, not the reciprocals of the former. There are

 therefore, generally, five of each kind, each one possessing so 3 values in

 accordance with the values which the invariants may have in every particular

 case. In the expressions for F and ? as functions of the invariants, there

 will appear a number of parameters, which are the elastic " constants " of the

 material. The F and a may, of course, themselves be constants; in special

 cases some of them may vanish, in other cases they may not be independent;

 and this would reduce their number from five to less.

 The F and 5 can be given physical interpretations only when a definite

 measure of strain is assumed and we shall examine what consequences the

 adoption of any such measure may have.

 5. Before dealing with the problem in a general way, it will be useful

 to examine the special case of simple shear dealt with by Love in Art. 37.

 This is given kinematically by the equations

 (5.1) X1 =x+sy; y =y; Z1 Z.

 Putting

 (5.2) s= 2 tan a,

 Love calculates

 (5. 3) 1 1- sin a A I + sin (Z A31
 cos a cos a

 and he proves that the directions of the principal axes of strain are the

 bisectors of the angle (iX/2) + a with the x-axis, and the angle through

 which the principal axes are turned is the angle a. The stress caused by the

 strain will have the principal components T1, T2, T3 which from (4. 4) and

 (4. 6) are

 (5. 4) T= F0ll + F02II + F03II1 + F1Ej + F2Ej2.

 The components of stress with respect to the system x, y, z will be from Love's

 equations, Art. 49:
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 438 M. REINER.

 T$$ = 7(T + T2)-I (T -T2) sin ac

 5 ) ~~Tvv = (Ti + T2) + 1 (T - T,) sin a

 Txv =- =(Ti-T2) COS ; Tvz==T=zx O.

 Introducing the expressions for the principal stresses from (5. 4) into (5. 5)

 gives

 Tx =Fo1l + F02IIT + F03III + 1{Fl [(El + E2) (El -E2) sin ,]

 + F2[ (El2 + E22) _ (E12 _ E22) sin a]}

 (5. 6) Tvv Fo1I + F02II + F03jII + 2 {1[ ('E + E2) + (E1 - E2) sin a]

 + F2 (E12 2+ --22) + (E12 - E22) sin ] }

 Tz= Fo1J + F0211 + F03III

 T$ 1 [Fl (,El - 'E2 )+ FT2(12 'E 22 ]csa

 We now assume definite measures of strain. If lo is a length extended in

 simple elongation by Al to 1, the measure of the extension may relate Al to

 either lo or 1, or it may relate an element of elongation dl to the instantaneous
 length 1. These three possibilities correspond to the Kirchhoff-measure.

 ( b 7 ) e *~~~~~K == 1 (AX .2_

 the Murnaghan-measure

 (5. 8) Ei M 2 (I _1,2) 2= (I_1/,X.2)

 and to the logarithmic or Hencky-measure

 (5. 9) Ei H -=InAt Inl.

 Introducing the expressions Ai from (5. 3), we find the principal strain-
 components, the strain-invariants and the stress-components in the x, y and z

 directions as entered in the following Table:
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 440 M. REINER.

 In infinitesimal strain we may neglect (tana ) 2 and introducing tana cZ

 s/2 all three measures give the same E2 - l s/2, Ty Fls/2, while
 normal tractions T, Tyy and T,, vanish. In this case simple shear is accom-
 panied by a shearing stress only. In finite strain such a simple relation is

 not possible, whatever the values of the elastic moduli. We may in the

 Kirchhoff measure make F02 2Fol and Tz, vanishes. We may in addition
 make F2 = 0 and T,y will vanish. But there must remain a tension in the
 direction x which is T. 2F, (tan cc)2 and we cannot put F1 0 because thell

 T,y also would vanish. Alternately, we may put F2 - 2F,/[1 + 4 (tan ) 2]
 which would make T, vanish, but leave a pressure Ty - 2F, (tana a) 2/[1
 + 4 (tan a) 2]. Conditions are similar in other measures. In an isotropic
 material finite simple shear is accompanied by either a tension in the direction

 of the displacement or compression in the direction of its gradient or both.

 Weissenberg (1947) has demonstrated the existence of such stresses in elastic

 liquids in a series of striking experiments.

 6. The present theory is distinguished from the usual theory of elasticity

 of finite strains mainly by the appearance of the modulus F2. In the usual

 theory, Equation (5. 4) would be

 (6. 1) Ti =F + FlE

 which constitutes three equations with two unknowns, viz., the moduli Fo

 and Fl. In order that these equations should be consistent, certain relations
 between Ti and E, must be satisfied. The matrix of the coefficients is of rank
 two. The augmented matrix

 1 ElT

 (6. 2) K3 1 E2 T2
 1 E3 T3

 must therefore also be of the rank two. This requires the determinant

 1 El T,

 (6.3) 1 C2 T2 0

 1 E3 T3

 or

 (6. 4) T 1- T2 T2- T3 - T3- T1 F(I, Ile, IIe IT, IIT, IIIT).
 E E2 E2 -E3 E3-E1

 Equation (6. 4) has been proposed by Weissenberg (1947) as a law of elas-

 ticity. As has, however, been shown here, it is not general enough and is not
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 ELASTICITY BEYOND THE ELASTIC LIMIT. 441

 independent of the measure of strain. For instance, should experiments

 show that simple shear is accompanied by a tension in the direction of dis-

 placement, the Murinaghan measure could not be used. On the other hand,

 should experimeits show that it is accompanied by compression in the direction

 of the gradient of the displacement, the Kirchhoff measure could not be used.

 In the form of Equation (5. 4) the law of elasticity is independent of the

 measure and does not prejudice the outcome of experiment.

 7. Consicleriiig that, by including the modulus P2 (or the coefficient 52),

 we are independenit of -the measure of strain, we may for our further investi-

 gation assume aiiy imieasure. We shall select the Hlencky-measure for two
 reasons:

 (i) Because of e l-nAi, = XA/A,. Denoting by ei the principal
 " velocity-extension" of hydrodynamics, we accordingly get es e, provided

 the principal axes do not rotate. Therefore in pure strain, in the Hlencky-

 measure, to use Murnaghan's words "the variation of the strain tensor

 (is equal) to the space derivative of the virtual displacement vector." This

 is of advantage, especially if we consider that it may be possible in many

 cases to arrange " the removal of the external forces " (compare 2 and 3 above)

 in such a way that the axes do not rotate and the strain is acordingly pure.

 (ii) Secondly, from

 (1.1) V/vo l * A2X3,
 there follows

 (7. 2) eV=- n(V/Vo) lnX1 + InA2 + InX3 E1 + C2 + C3 le

 Therefore, in the Hlencky measure, and only in that measure, the cubical
 dilation is equal to the first invariant of the strain tensor.6 Accordingly, only

 in this measure has the resolution of the tensor in an isotropic and a deviatoric

 component physical significance.

 8. By carying out the resolutions

 (8. 1) Tsr T8sr + Tjsr; csr 8sr + EtSr
 where

 (8. 2) T<a =3T, Eaa 3; Tfaa caa o

 we get from (4. 4) and (4. 6)

 " This is, of course, also the case in infinitesimal strain
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 442 1M. REINER.

 (8.3) T P0, + F02 + II'e + F03IIIre
 (8. 3) T'8r S Flg'sr + P2 (C'arl'sa + 211e/3 * 88

 and from (4. 5) and (4. 7)

 (8.4) e -o= T + 02II"T + 03II1T
 *- ,r 5 T'sr + 52(T'arT'sa + 2II'T/3 asr)

 where the accents indicate the deviator and the F and 5 are now functions

 of the invariants of the deviator, different from the functions IT and 5
 appearing in (4. 4) to (4. 7).

 If we introduce c1sr from, (8. 4) into (8. 3), considering that asr, T'sr

 and TfarT'sa stand for the zero, first and second powers in the stress com-
 ponents, we find

 (8. 5)~ F7= 5i ? LrIT/3 1] 2

 2 512+IIFT/34J22

 52
 1922= as above

 The moduli of elasticity F are therefore generally not the reciprocals of the

 coefficients of elasticity U.

 We now carry out in imagination a series of experiments such as men-

 tioned at the end of Section 2.

 (i) Firstly, we apply a uniform hydrostatic pressure; here the stress
 tensor is a scalar tensor

 (8.6) Tsr -ps8r

 where p is what is commonly called "pressure " and the stress invariants are

 (8. T) T_~- p, ll T 1l IIT-O

 T'8r and TtarT's a therefore, vanish and the second of (8. 4) gives E'sr = 0,

 while the first yields

 (8.8) e- pgo (T, O, 0).

 This defines a coefficient of volume elasticity

 (8.9) k = 3Elp=350ol

 7For the derivation compare Reiner.
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 Considering that IIF, and III'S vanish, the first of (8. 3) gives

 (8.10) T - p =eo.

 This defines the modulus of compression

 (8. 11) kl- p/3E Fol/3

 and k' = 1/k.

 (ii) In the second experiment we apply a tangential stress

 0 T, 0

 (8. 12) T,r= || 0 0 Tl,r
 0 0 0

 so that

 (8. 13) T 0; IITT -Tx2; IIIT =O

 and

 (8. 14) TarTfsa= TXV2 0 1 0

 This makes (8. 4)

 = - TXV2 2 (O, 'IIT, 0)

 (8.15) 0 1 T 2 1 ? 0

 Esr l(Op IIIT, O)Txv 1 0 0 + 2(Q"TIIfTp O) TX 0 1 0
 0 0 0 0 0 2

 and defines three coefficients of elasticity, viz.

 = - E/IIIT - 02

 (8. 16)

 a'-2 52/3.

 The coefficient 51 connects shearing stress with shearing strain and is

 accordingly a generalized coefficient of shear elasticity or of rigidity. The

 isotropic component of the strain, E, is a measure of the cubical dilation.
 If 8' does not vanish, a simple shearing stress will produce an ilncrease (or

 decrease for negative 8') of the volume measured by 8'TV2.8

 8 It is remarkable that Sir William Thomson (Lord Kelvin) should have foreseen in
 1875 the possible existence of such a phenomenon on purely theoretical grounds, vide the

 following quotation: " It is possible that a shearing stress may produce in a truly

 isotropic solid condensation or dilatation in proportion to the square of its value; and

 it is possible that such effect may be sensible in india-rubber or cork, or other bodies

 susceptible of great deformations or compressions with persistent elasticity." Footnote

 p. 34, Math. & Phys. Papers, Vol. III, London, 1890. Weissenberg has observed negative

 elastic dilatancy in porous rubber (not yet published).
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 444 M. REINER.

 Accordingly, 8' may be termed the coefficient of (elastic) dilatancy (com-
 pare Reiner). Should 8' vanish, but not a', then a simple shearing stress will
 produce (in the case of a positive a') an extension normal to the plane of

 shear (in our case the z-direction) which is equal to o&'TS,,2, together with two

 lateral contractions equal to a'/2 T~,V so that the volume is not changed.
 If S' should not vanish, there will be superposed a change of volume. We may

 call c the coefficient of cross-elasticity.

 (iii) If we force upon the material a tangential strain, we shall

 similarly find three moduli of elasticity

 S - F02/4

 (8. 17) 9 = F112
 a - F2/6

 of which ji is a generalized shear modulus or modulus of rigidity. 8, the

 modulus of dilatancy, will measure a hydrostatic tension necessary to maintain

 simple shear; and a, a modulus of cross-elasticity, measures a stress produced

 by simple shear, in the direction normal to its plane.

 (iv) Simple pull, in infinitesimal elasticity em'ployed to determine

 Young's modulus and Poisson's ratio, gives us

 0 0 0

 (8. 18) Tsr 0 0 0

 0 0 Tzz
 so that

 -1 0 0 1 0 0

 (8. 19) T= T.,/3; T,r 0 -1 0 |T'aTa= rT || 0 1 0
 0 0 2 1 0 0 4

 and

 (8. 20) II'T =- Tz2/3; II"T = 2T.3/27.
 This makes

 1 O O

 ESr = T.1/3(k'/3 + Tz,,' + (2T 2/9)503) 0 1 0
 O O 1

 (8.21) -1 0 0
 + (Tz,/6) (K!-a`T,) 0 -1 0

 0 0 2

 9 Note that a simple shear is measured traditionally by twice the tangential com-
 ponent of the strain-tensor.
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 ELASTICITY BEYOND THE ELASTIC LIMIT. 445

 and defines a generalized Youngs' modulus

 (8. 22) E-1=- Ez_/TTz - [k'/3 + + T2z ('-- -') + (2TZ 2/9 ) 03]

 and a generalized Poisson-ratio

 k'/3 - //2 + Tzz (8' + c'/2) + (2TTz2/9)503
 - /3 + -K-f + Tzz2S'- az) + (2TzZ2/9) 503

 Either E or a- can be used to determine a further coefficient of elasticity

 (8. 24) 1 3= 2503/9.

 Summarizing, we can now write (8. 4) as follows:

 (8.26) iEv k'P-38II'T + (27/2) j'III'T
 (2) Sr X( r-/2)T 3 (a'/2) (T'JT'8sa + 211T/3 * Ssr)

 and. (8. 3) as follows:

 p - kc, + 4IIe - ( 9A/2 ) III'e

 (8. 27) T'_r - 2,kE'Sr - 6ca(E 4E'. + 2II',/3 - Sr)

 where p is the hydrostatic pressure and E, the cubical dilatation, E'8r the

 deviator of strain and T',r the deviator of stress, k, X, /3, t, a: moduli of elas-

 ticity and k', S', /3', iv', a' coefficients of elasticity. These are generally func-
 tions of all three invariants of stress and strain respectively, but may also

 degenerate to constants. A hydrostatic tension will cause a cubical dilation

 and vice versa; but a cubical dilatation may also be caused in the absence of

 a hydrostatic tension by either simple shearing stress or traction. Likewise,

 a hydrostatic pressure may be required to maintain simple shear or a volume-

 constant simple extensioni. Finally, a simple shearing stress may not only

 produce a corresponding shearing strain, but also " sideways " a volume-

 constant extension. Likewise simple shear may require for its maintenance

 not only a corresponding shearing stress but also " sideways " a traction. The

 general elastic body has accordingly three additional properties absent in

 classical elasticity, namely dilatancy of two kinds, (shear- and tractional

 dilatancy) and cross-elasticity. It is not so much the property of dilatancy

 predicted by Kelvin as early as 1875 and observed as a permanent set by

 Reynolds as early as 1885, which is challenging, but the cross-elasticity, which

 is connected with the functions 52 and F2 respectively. We, therefore,

 consider this property again from a different aspect.

 9. Let n be the normal to an element of interface in the interior or of

 surface on the boundary of the body under consideration. Let the traction

 15
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 446 M. TREINER.

 Tn be resolved into three orthogonal components Tnq where q runs through n,

 t and c; t being the direction parallel to the face and c the direction cross-

 wise to n and t, so that

 (9 1) Tnc 0.

 Let En be resolved in the same directions. We find, then, from the second

 of (8.4)

 (9. 2) Efc = J2TTraTrac

 the term following within brackets disappearing because r #/ s (n # c). Now

 (9. 3) T = To T To Tannn nc + nt tc + T- necc.

 As (9. 2) is not affected by an isotropic stress component, T'n0 vanishes also

 and this reduces (9. 3) to

 (9. 4) T'naTrac =Tnty"tc

 Now on the right side of (9. 4) T,tn does not vanish, by definition; and if

 one imagines in the standard cube which defines T etc., x, y, z replaced by

 n, t, c, it is clear that T't, will, in general, not vanish. Therefore E'nc is finite.
 This brings out very strikingly a consequence of the existence of 5?2 and

 supports the designation "cross-elasticity." We have, however, shown that

 52 (or F2) can generally not be omitted without prejudicing experimental

 results.

 TEL Aviv, PALESTINE.
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