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Every invertible matrix F ∈ Rn×n can be uniquely decomposed into a product of a unitary matrix
R ∈ O(n) and a positive definite matrix U :

F = RU.

The roots of this “polar decomposition theorem” lie in Cauchy’s work on elasticity [6]. Finger gave it
as an algebraic statement and ideas for a proof [13, Eq (25)], the brothers E. and F. Cosserat proved it
[7, §6]. Matrix notation and extension to the complex case are due to Autonne [1], cf. [11, Sect. 43],
[34, Sect. 35-37]. (The result also holds for complex matrices and for non-square matrices (then upon
loosing the uniqueness property of R), see e.g. [16, ch. 8].)
The unitary polar factor R plays an important role in geometrically exact descriptions of solid materials.
In this case RTF = U is called the right stretch tensor of the deformation gradient F = ∇ϕ and serves as
a basic measure of the elastic deformation [2, 24, 28, 23, 22]. Indeed, it is known that the strain energy
density for isotropic materials must depend only on the stretch U in order to be frame-indifferent. Similar
reasonings on objectivity lead to the result that the strain energy for isotropic second gradient materials
must depend on the stretch U and on its spatial gradient (see [8, 10, 9]). For additional applications and
computational issues of the polar decomposition see e.g. [14, Ch. 12] and [21, 5, 19, 20].
The unitary polar factor can be characterized by its best-approximation property. For given F , it is the
unique unitary matrix realizing

inf
Q
‖F −Q‖2 = inf

Q
‖QTF − I‖2 = ‖

√
FTF − I‖2 = ‖U − I‖2 (1)

over all unitary matrices Q, where ‖ · ‖ is an arbitrary unitarily invariant norm [12].
Optimality of the unitary polar factor is presently shown even for the expression ‖LogQTF‖ in [17],
a distance measure arising from geometric considerations, connected with geodesic distances on matrix
Lie groups (see [31], [3], [25] and [26]). Here, Log is the (possibly multi-valued) matrix logarithm, i.e. a
solution of exp(X) = QTF . In contrast to ‖F −Q‖ (cf. [27]), in this logarithmic expression symmetric
and skew-symmetric part of the matrix norm can be weighted differently and the optimality of the polar
factor still holds:

min
Q∈SO(n)

(
µ‖ sym Log(QTF )‖2 + µc‖ skew Log(QTF )‖2

)
= µ‖ log

√
FTF‖2

for µ > 0, µc ≥ 0, whereas the unitary polar factor fails to minimize the weighted expression

µ‖ sym(QTF − I)‖2 + µc‖ skew(QTF − I)‖2, 0 < µc < µ
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in the Frobenius norm.
In this short note we would like to trace back the development on the optimality of the polar factor to its
presumable roots, the work [15] of G. Grioli, who shows the minimization property (1) in the important
special case of (some expression equivalent to) the Frobenius matrix norm and dimension 3.
This work seems to have gone nearly unnoticed (but [32], [18], [4] and [34]) and certainly the matrix-
analysis community seems not to be aware of it. For example, [16] refers to the work [12] of Fan
and Hoffman for the optimality property (this is quite natural when being concerned with all unitarily
invariant norms), who in turn seem to be nescient of Grioli’s work.
We will juxtapose Grioli’s original work [15], carefully translated from the original Italian paper by us,
to a version with current notation. It will become clear that Grioli is showing even more: He considers
Euclidean movements, not only linear transformations. Therefore, in his framework, it is not possible to
consider weighted expressions.
While our paper does not contain new original results it may serve a pedagogical purpose: fundamental
results are always older than it appears (see e.g. [33]).

Grioli starts by putting himself in the framework of finitely deforming bodies:

Let C∗ be the reference configuration of an arbitrary continuous material system S; C and C′ the current
configurations of S as a consequence of two different regular displacements S and S′, P∗ the generic point
ofC∗; P the corresponding of P∗.

We consider a domain C∗, an arbitrary point ~p∗ ∈ C∗ and diffeomorphisms

S : C∗ → C, S′ : C∗ → C ′

and denote ~p = S(~p∗), ~p ′ = S′(~p∗). We then restrict our investigation to a small ball c∗ = Bρ(~p∗), where
the affine approximation (by the first terms of the Taylor expansion)

S(~p∗ + h) ≈ ~p+∇S(~p∗).h (2)

is sufficiently good.

Let then c∗ be a sphere with center P∗ and radius ρ very small, which must be intended to be fixed indepen-
dently of P∗.
More precisely, we will consider ρ to be so small that (correspondingly to any P∗) the displacements S and
S′ in c∗ can be identified with the corresponding homogeneous displacements tangent in P∗. If the displace-
ments S and S′ were homogeneous, no limitation would exist for ρ.
With reference to the arbitrary point P∗ it is common to define "local distance" of the two displacements S
and S′ the integral:

dP∗ =

∫
c∗

|Q′Q|2 dC∗,

whereQ andQ′ are the corresponding points inC andC′ respectively to the arbitrary pointQ∗ of c∗.

The distance Grioli uses is

d~p∗(S, S
′) =

∫
x∈Bρ(~p∗)

|S(x)− S′(x)|2R3 dV =

∫
h∈Bρ(0)

|S(~p∗ + h)− S′(~p∗ + h)|2R3 dV.

To understand this distance measure better and demonstrate its connections to the Frobenius norm
‖Z‖F =

√
trZTZ, for the moment we assume Z and Z ′ to be linear. Then

d~p∗(Z,Z
′) =

∫
x∈Bρ(~p∗)

〈Z(x)− Z ′(x), Z(x)− Z ′(x)〉dx

=

∫
x∈Bρ(~p∗)

〈(Z − Z ′)T (Z − Z ′)x, x〉dx

=
4πρ5

15
tr((Z − Z ′)T (Z − Z ′)) =

4πρ5

15
‖Z − Z ′‖2F .
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Herein, the Frobenius-norm is obtained, since∫
h∈Bρ(0)

〈Zh, h〉dV =

∫
h∈Bρ(0)

3∑
i,j=1

zijhihj dV

=

∫
h∈Bρ(0)

z11h
2
1 + z22h

2
2 + z33h

2
3 dV = trZ

∫
h∈Bρ(0)

h21 dV (3)

= trZ

∫
h∈Bρ(0)

h21 + h22 + h23
3

dV = trZ

∫ ρ

r=0

∫
S2

r2

3
dS r2 dr = trZ

4πρ5

15
,

where the third equality holds since
∫
h
h2i dV =

∫
h
h2j dV, i, j = 1, 2, 3 and where we used that

∫
S2 1 dS =

4π.
The integration over the sphere/ball/... is a useful concept in order to average out (homogenize) direction
dependent response. For applications in gradient elasticity, see e.g. [30, 29]. It leads in a natural way to
an isotropization, at the expense, hovever, to oversimplify the material response in special cases. This is
e.g. the case in linear elasticity theory where it leads to a Poisson number ν = 1

4 :
Consider a linear elastic body, the strain energy of a small homogeneous sample in response to a dis-
placement u is to be obtained. Locally, the energy should be quadratic in the distance of neighbouring
particles. Let x and x + h be two such particles. The elastic interaction in the direction h is governed
by a quadratic spring with spring constant µ > 0. Hence, the directional energy is

Eh(x) =
µ

2
〈u(x+ h)− u(x), h〉2R3 . (4)

Since no direction is preferred in an isotropic body, the dependence on the direction can be averaged out
and the total energy is obtained as integral over a sphere

E(x) =
µ

2

∫
h∈S2

Eh(x) dS.

Assuming a Taylor expansion u(x+ h) = u(x) +∇u(x).h+ . . . and approximating (4) by 〈∇u(x).h, h〉2,
i.e.

E(x) ∼ µ

2

∫
h∈S2
〈∇u(x).h, h〉2 dS

and using (cf. [30]) ∫
h∈S2
〈Z.h, h〉2 dS =

4π

15

(
2‖ symZ‖2 + [trZ]2

)
,

one arrives at
E(x) =

4π

15

(
µ‖ sym∇u(x)‖2 +

µ

2︸︷︷︸
=:λ2

[tr∇u(x)]2
)
,

which corresponds to ν = λ
2(µ+λ) = 1

4 .

If one thinks the regular displacement S to be arbitrarily assigned, one can ask himself: corresponding to
arbitrary P∗, what is the rigid displacement which has the minimum local distance from S? What is, in other
words, the rigid displacement which, locally, best approximates S?

Grioli aims to find a rigid S′r(igid), such that d~p∗(S, S′r) is minimal. “Rigid displacement” means that S′r
is of the form S′r(x) = t′ +R′x for some t′ ∈ R3 and R′ ∈ SO(3), that is a constant rotation followed by
a constant translation:

inf
t′∈R3,R∈SO(3)

∫
h∈Bρ(0)

|S(~p∗ + h)− [R.h+ t′]|2R3 dV.

This problem becomes simpler if not rotations, but their infinitesimal version, represented by elements
of so(3), i.e. skew-symmetric matrices, are considered, and Grioli gives a reference:
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For an infinitesimal displacement S the answer has already been known for a long time1: decomposing the
displacement (homogeneous, infinitesimal) in a rigid displacement plus a pure deformation, one gets as rigid
displacement exactly the one which best approximates the effective displacement of the particle.

For W ∈ so(3) and for an arbitrary matrix ∇u (in linear elasticity theory, usually the displacement
gradient ∇u is of interest)

inf
t′∈R3,W∈so(3)

∫
h∈Bρ(0)

|~p+∇u.h− [W.h+ t′]|2R3 dV

= inf
t′∈R3,W∈so(3)

∫
h∈Bρ(0)

|~p− t′|2R3 + |(∇u−W ).h|2R3 + 2 〈~p− t′, (∇u−W ).h〉︸ ︷︷ ︸
=0, after integration (symmetry)

dV

choose t′:=~p
= inf

W∈so(3)

∫
h∈Bρ(0)

|(∇u−W ).h|2R3 dV

=
4πρ5

15
inf

W∈so(3)
‖∇u−W‖2F

=
4πρ5

15
‖ sym∇u‖2F , W = skew∇u.

This development shows one way which allows to motivate the small strain tensor ε = sym∇u of
linearized elasticity theory.

We want to show how an analogous theorem exists also if the deformation S is not infinitesimal, but which is
based on the requirement that the homogeneous displacement tangent toC in P∗ is decomposed (which is of
course possible) into the product of a pure deformationD∗ and a rigid displacement S∗r .

Using the left polar decomposition to express ∇S as a product of a rotation R ∈ SO(3) and a pure
deformation D with eigenvalues 1 + ∆1, 1 + ∆2, 1 + ∆3, that is

∇S = RD,

Grioli sets out to deduce a lower bound for d~p∗(S, S′r) in terms of ∆i, that is, in terms of the positive
definite polar factor of ∇S.

More precisely, if we indicate by ∆1,∆2,∆3 the principal coefficients of the linear dilatation in P∗, we will
show that (with reference to P∗) the local difference of S to any rigid displacement S′r is always such that

dP∗ ≥
4

15
πρ5 (∆2

1 + ∆2
2 + ∆2

3),

where equality holds if and only if S′r coincides with S∗r .

inf
t′∈R3,R∈SO(3)

∫
h∈Bρ(0)

|S(~p∗ + h)− [R.h+ t′]|2 dV =
4

15
πρ5 (∆2

1 + ∆2
2 + ∆2

3)

Also in the proof we will keep using the notations used by prof. SIGNORINI in different publications2 and in
his current course on finite elastic transformations held at the National Institute of High Mathematics.

***

Grioli starts his proof by choosing an appropriate coordinate system: the coordinate axes are the eigen-
vectors of the positive definite part in the polar decomposition of ∇S = RD.

1 Sobrero, Lezioni di Fisica Matematica, Roma, 1935-36
2 A. Signorini: Atti Accad. Naz. Lincei. Rendiconti 1930, vol. XII, p. 312: Sulle deformazioni finite dei sistemi continui.
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With reference to a specific but arbitrary pointP∗ we choose the Cartesian reference frame T = P∗i1, i2, i3
with the condition that it is a principal system for deformation (in P∗) and, with respect to this system, we
denote by y1, y2, y3 the coordinates of the genericQ∗ and by x1, x2, x3 those of the correspondingQ.

We also set

α ≡

∥∥∥∥∥∥∥
∂x1
∂y1

∂x1
∂y2

∂x1
∂y3

∂x2
∂y1

∂x2
∂y2

∂x2
∂y3

∂x3
∂y1

∂x3
∂y2

∂x3
∂y3

∥∥∥∥∥∥∥ ,
where all the ∂xr

∂ys
(r, s = 1, 2, 3) are meant to be calculated in P∗.

This mapping α corresponds to ∇S(~p∗) in our notation. As already announced, he then decomposes

∇S(~p∗) = RD :

By virtue of the regularity conditions for the displacement S, the α can be of course decomposed in the
left product of a dilatation αd with principal coefficients which are all positive and a rotation, αr: αd

characterizes (the dilatation) D while S∗r is the product of the rigid rotation characterized by αr and the
translation P∗P .

In other terms we have
P∗Q = P∗P + PQ = P∗P + αrαd(P∗Q∗),

that is
S(x)− ~p∗ = S(~p∗)− ~p∗ +∇S(~p∗)(x− ~p∗) = ~p− ~p∗ +RD(x− ~p∗)

(Of course, the first equality sign uses hypothesis (2).)
The substraction of ~p∗ is due to his notation for vectors as vectors from one point to another; we would
maybe rather write the equivalent

S(x) = S(~p∗) +∇S(~p∗)(x− ~p∗) = ~p+RD(x− ~p∗).

Also for the wanted rigid movement such an expression can be given: a rotation R′ centered in ~p∗ followed
by a translation by some t′:

S′r(x)− ~p∗ = t′ +R′(x− ~p∗)...

while if we consider also S′r as the product of a rigid rotation characterized by α′r and of a translation t′ we
can set

P∗Q
′ = t′ + α′r(P∗Q∗)

and hence
Q′Q = P∗P − t′ + αrαd(P∗Q∗)− α′r(P∗Q∗). (5)

... which leads to this representation of the difference between S and S′r.

S(x)− S′r(x) = ~p− ~p∗ − t′ +RD(x− ~p∗)−R′(x− ~p∗).

D is positive definite and, according to the choice of the coordinate system, diagonal:

D =

1 + ∆1

1 + ∆2

1 + ∆3

 . (6)

Moreover, for the way in which we chose T , we have

αd ≡

∥∥∥∥∥∥
1 + ∆1 0 0

0 1 + ∆2 0
0 0 1 + ∆3

∥∥∥∥∥∥ (7)

with
1 + ∆r > 0, (r = 1, 2, 3) (2’)

and also ∫
c∗

yr dC∗ = 0,

∫
c∗

yr ys dC∗ = 0,

∫
c∗

y2
r dC∗ =

4

15
πρ5, (8)

(r, s = 1, 2, 3; r 6= s).
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***

Since the local distance only depends on the length of the vectors Q′Q, dP∗ is not changed if we replace
Q′Q with α−1

r (Q′Q), since the invertible linear mapping α−1
r is also a rotation and hence does not affect

the distances.

Grioli then notes that d~p∗(S, S′r) = d~p∗(R
TS,RTS′r), since |y|R3 = |RT y|R3 and therefore obtains

d~p∗(S, S
′
r) = d~p∗(R

TS,RTS′r) =

∫
Bρ(~p∗)

|RT (~p− ~p∗ − t′)︸ ︷︷ ︸
=:t′′

+D(x− ~p∗)−RTR′︸ ︷︷ ︸
=:R̃

(x− ~p∗)|2R3 dV

where he defines (what we will call) t′′ and R̃.

We set
t′′ = α−1

r (P∗P − t′), α′′r = α−1
r α′r, (9)

so that also the invertible linear mapping α′′r turns out to be a rotation.

Using (5) we get

dP∗ =

∫
c∗

dC∗|t+ αd(P∗Q∗)− α′′r (P∗Q∗)|2. (10)

He then computes this integral d~p∗(S, S′r).

Using (7) and (8) and the trivial equality

|α′′r (P∗Q∗)|2 = |P∗Q∗|2,

equation (10) is easily simplified in

dP∗ =
4

3
πρ3t′′2 +

∣∣∣∣∣
3∑

s=1

(1 + ∆s)
2 + 3

∣∣∣∣∣ 4

15
πρ5 − 2

∫
c∗

dC∗ αd(P∗Q∗) · α′′r (P∗Q∗).

Here he has used

|t′′ +D(x− ~p∗)− R̃(x− ~p∗)|2R3

= |t′′|2R3 + |D(x− ~p∗)|2R3 + |R̃(x− ~p∗)|2R3

+ 2〈t′′, (D − R̃)(x− ~p∗)〉 − 2〈D(x− ~p∗), R̃(x− ~p∗)〉,

where the first scalar product term vanishes upon integration (because of symmetry) and as rotation and
therefore isometry R̃ in |R̃(x− ~p∗)|2 can be neglected.
What remains, is∫
Bρ(~p∗)

|t′′|2R3 dV +

∫
Bρ(~p∗)

|D(x− ~p∗)|2R3 dV +

∫
Bρ(~p∗)

|(x− ~p∗)|2R3 dV − 2

∫
Bρ(~p∗)

〈D(x− ~p∗), R(x− ~p∗)〉dV.

Herein, ∫
Bρ(~p∗)

|t′′|2R3 dV =
4

3
πρ3|t′′|2R3 ,

and (confer (3) and (6))∫
Bρ(~p∗)

|D(x− ~p∗)|2R3 dV = ‖D‖2F
4π

15
ρ5 =

3∑
s=1

(1 + ∆s)
2 4π

15
ρ5.

Analogously,
∫
Bρ
|(x − ~p∗)|2 = ‖I‖2F 4π

15 ρ
5 = 3 4π

15 ρ
5. Next we compute the value of the integral over the

scalar product term:
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On the other hand, if we call crs the coefficients of the invertible linear mapping α′′r with respect to T , we
have [cfr. again (7) and (8)]∫

c∗

dC∗αd(P∗Q∗)× α′′r (P∗Q∗) =

=

∫
c∗

dC∗

∣∣∣∣∣
3∑

s=1

(1 + ∆s)ysis ×
3∑

r,s=1

crsysir

∣∣∣∣∣ =
4

15
πρ5

3∑
s=1

(1 + ∆s)css,

We let R̃ =

r11 r12 r13
r21 r22 r23
r31 r32 r33

, where |rij | ≤ 1, because R̃ is orthogonal, (rij = cij in Grioli’s terminology)

and observe

−2

∫
Bρ(~p∗)

〈D(x− ~p∗), R̃(x− ~p∗)〉dV = −2

∫
h∈Bρ(0)

〈

(1 + ∆1)h1
(1 + ∆2)h2
(1 + ∆3)h3

 ,

r11h1 + r12h2 + r13h3
r21h1 + r22h2 + r23h3
r31h1 + r32h2 + r33h3

〉dV.
As Grioli has computed earlier (cf. (9)), the mixed terms h1h2 etc. yield 0. We are left with

−2

∫
h∈Bρ(0)

(1 + ∆1)r11h
2
1 + (1 + ∆2)r22h

2
2 + (1 + ∆3)r33h

2
3 dV =

4π

15
ρ5

3∑
s=1

(−2(1 + ∆s)rss).

Combining all these, up to now it is shown that

d~p∗(S, S
′
r) =

4

3
πρ3|t′′|2 +

4π

15
ρ5

(
3∑
s=1

(1 + ∆s)
2 + 3− 2

3∑
s=1

(1 + ∆s)rss

)
.

and hence we have the expression

dP∗ =
4

3
πρ3t′′2 +

4

15
πρ5|

3∑
s=1

(1 + ∆s)
2 + 3− 2(1 + ∆s)css|. (11)

This expression obviously becomes minimal if t′′ vanishes (t′ = ~p − ~p∗) and rss is maximal - that is, if
rss = 1. The conditions r11 = r22 = r33 = 1 is not only, as Grioli remarks, contained in but equivalent
to the condition that R̃ is the identity. (R̃ is orthogonal, so each column has to be a unit vector.)
The minimal value attained then is

d~p∗(S, S
′
r) =

4

3
πρ3|0|2 +

4π

15
ρ5

(
3∑
s=1

(
(1 + ∆s)

2 − 2(1 + ∆s)1
)

+ 3

)

=
4π

15
ρ5(∆2

1 + ∆2
2 + ∆2

3) =
4π

15
ρ5‖D − I‖2F .

Let us now consider (2’) and the fact that, since crs are all direction cosines it must be

css ≤ 1 (s = 1, 2, 3).

This is sufficient to deduce from (11)

dP∗ ≥
4

15
πρ5

∣∣∣∣∣
3∑

s=1

(1 + ∆s)
2 + 3− 2(1 + ∆s)

∣∣∣∣∣ ,
and hence

dP∗ ≥
4

15
πρ5|∆2

1 + ∆2
2 + ∆2

3|. (12)

The equality sign holds if and only if one simultaneously has

t′′ = 0, css = 1, (s = 1, 2, 3).
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It is evident that the three conditions css = 1(s = 1, 2, 3) are contained in the condition according to
which the rotation α′′r reduces to the identity.

Hence, simply recalling (9), we can conclude that in (12) the equality sign holds if and only if one has
simultaneously

t = P∗P, α′r = αr,

i.e. if and only if S′r coincides with S∗r , qed.

Thus, Grioli has shown that

inf
t′∈R3,R∈SO(3)

∫
h∈Bρ(0)

|S(~p∗) +∇S(~p∗).h− [R.h+ t′]|2R3 dV

=
4πρ5

15
‖D − I‖2F =

4πρ5

15
‖
√
∇ST∇S − I‖2F ,

where D is unitarily similar to the Hermitian polar factor
√
∇ST∇S of ∇S(~p∗).
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1 Appendix
Let Y = (Z − Z ′)T (Z − Z ′), then

dp∗ (Z,Z ′) =

∫
Bρ(p∗)

Yijxjxi

Y11

∫
Bρ(p∗)

x1x1 + Y22

∫
Bρ(p∗)

x2x2 + Y33

∫
Bρ(p∗)

x3x3

+Y12

∫
Bρ(p∗)

x1x2 + Y13

∫
Bρ(p∗)

x1x3 + Y21

∫
Bρ(p∗)

x2x1

+Y23

∫
Bρ(p∗)

x2x3 + Y31

∫
Bρ(p∗)

x3x1 + Y32

∫
Bρ(p∗)

x3x2

We know that to pass from cartesian to spherical coordinates one must set

x1 = r sinθcosφ

x2 = r sinθsinφ
x3 = r cosθ
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and that the Jacobian of the transformation is J = r2 sinθ, so that∫
Bρ(p∗)

x1x1 =

∫ ρ

0

r4dr

∫ 2π

0

cos2φ dφ

∫ π

0

sin3θ dθ =
ρ5

5
π

4

3
=

4πρ5

15

∫
Bρ(p∗)

x2x2 =

∫ ρ

0

r4dr

∫ 2π

0

sin2φ dφ

∫ π

0

sin3θ dθ =
ρ5

5
π

4

3
=

4πρ5

15

∫
Bρ(p∗)

x3x3 =

∫ ρ

0

r4dr

∫ 2π

0

dφ

∫ π

0

cos2θ sinθ dθ =
ρ5

5
2π

2

3
=

4πρ5

15

∫
Bρ(p∗)

x1x2 =

∫
Bρ(p∗)

x2x1 =

∫ ρ

0

r4dr

∫ 2π

0

sinφcosφ dφ

∫ π

0

sin3θ dθ =
ρ5

5
0

4

3
= 0

∫
Bρ(p∗)

x1x3 =

∫
Bρ(p∗)

x3x1 =

∫ ρ

0

r4dr

∫ 2π

0

cosφ dφ

∫ 0

0

sin2θcosθ dθ =
ρ5

5
0 0 = 0.

∫
Bρ(p∗)

x2x3 =

∫ ρ

0

r4dr

∫ 2π

0

sinφ dφ

∫ π

0

sin2θcosθ dθ =
ρ5

5
0 0 = 0

Hence, we finally have

dp∗ (Z,Z ′) = (Y11 + Y22 + Y33)
4πρ5

15

which is Eq. at the end of pag. 2.
A short version of this calculation can be found in (3).
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