[Papor prosonted nt the National Mechanies Meoting, of the American Scciety of b
Engineers, New Haveon, Corm..‘ Juro 22-285, 1032,] ¥ of Mosbanieal

The Elastic Behavior of
Vulcanized Rubber

H. Hencky
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Up to extensions of about 270 per cent the clastic behavior of vulesnized rubber
oin be represented snalytically by a very simple funetion. Tho stress-sbrain disgrams
for tension and compression are quite different; nevertheless this asymmetrical he-
havior is sntislactorily taken care o(} by employing only two elastic coefficients,

. The mental attitude of the engineer to an organic compound such as rubber
I8 & very skeptical one if its elastic behavior has to be compared with that of metals;
nevertheless experiments with rubber belts furnished by the Goodyear Tire and
Rubber Company to the Massachusetts Institute of Technology have convinced
the author of this paper that a comparison of the elastic properties of rubber with
those of metals is justified and at the same time very instructive as regards the
meehanics of finite deformations in general,

. Naturally rubber is more easily influenced by tomperature and by surrounding
liquid nnd gaseous substances which eventually causo chemical changes. How-
ever, vuleanized rubber ean now he manufactured of such excellent quality that the
way i8 opened to uses hitherto not exploited. Of these may be mentioned the use of
rubber tires for the wheels of steam locomotives, enabling the latter to elimb steep
grades, and the wide field of application on damping vibrations and changing un-
lavorable oritieal speeds, already oxemplified in the automotive industry,

Such applieations ean only be industrially exploited if the elastic stresses in rubber
obey a known, mathematically defined law. In this paper the author therefore
dovelops the law for Inrge deformations and shows its agreement with the results
of experiments made with the two rubber compounds that were furnished.

General Law of the Ideal Elastic Body

We call a'material ideally clastic if, even after a considerable deformation, it
Assumes its original shape after removal of the constraints introduced and if the
Process of loading and unloading is not nccompanied by transformations of mechani-
cal enrgy into heat (ef. J. Rheology, 2, No. 2, 169). Nearly all materinls are
ideally elastic if the deformation is infinitesimal, but in the ease of most substances
finite deformations are accompanied by losses of mechanieal enexgy. It is not
bhe aim of this paper to study these losses, but it may be me'nhoned that there is
6ven in the realm of ideal elasticity an unexplored region indieated by the experi-
mental fact that the law for infinitesimal elastic deformations does not hold good for
finite deformations. It is only necessary to subject o rubber eylinder to tension
and compression at comparatively small strains, when the lack of agreement be-
comes obvious. .

. At the foundation of all elastic theories ties the definition of strain, and before
lntrg ducing a new law of elasticity we must explain how finite strain is to be mes-
Sured.

Infinitesima strain is measured by the ratio of the increase in length to the length



itself. In defining a considerable strain A of a fiber we assume t.hiu‘ strain to be
divided into small portions d\. Each of these portions we define, as in the case of
an infinitesimal strain, by the ratio:

o =9 (1)
b H

where a: is the length of 2 fiber in 2 certain state of strain. Integrating and taukig
the length of the fiber before stressing as a and after stressing as b, we get

A = log, = (1n)

Our measure of finite strain is therefore the natural logarithm of the ratio of the two
lengths. :

On the basis of the general theory developed in the Appendix we obtain the law
of the simple unriazial tension and compression test of rubber in the foilowing two
forms:

Stress per Unit Arvea Referred to the Deformed Siale:
¢ = 26’?\(6)\. +ée*”2) (2a)

Stress per Unit Area Roferred to the Undeformed State:
oo = 26 (1 + %e‘f’m) (2b)

If P is the load, 4. the area of crogs section of the unloaded specimen, and 4 the
aren after the‘ lond is applied, we have, for incompressible material, 4 = A~
The stress o, is the observed stress, because all testing machines measure directly
the force applied and not the true physical stress ¢.

The coefficient @ is about 67 1b. per sq. in. for the material examined and is the
same as the modulus of shear for infinitesimal deformations. Tor sueh deforma~
tions both Equations (2a) and (2b) yield

¢ = ap = JGA

On the basis of Equations (2a) and (2b) and taking 26 = 134 ib 8. in., Table I
has been caleulated and the values plgtted in If‘igg. 1. . per 8q. in., Table

TabLp I
+2 &+ he™ a o § gV e oy

. : . 0.3348
0.4 1.901 0.7604 Igg gg
0.6 2,192 1.3152 176 o7
0.8 2,561 2.0488 276 124
1.0 3.021 3.021 405 140
1.2 3.504 4.82 580 174
1.4 4,303 8.03 ' 810 200
1.0 b.178 8.29 1110 224

An anslogous table for the negative values of \ i3 given in Tahle I1,



0.0 1.500 0.0 0 0
0.2 1.371 0.2742 37 45
0.4 1.281 0.5124 @9 102
0.8 1.224 0.7344 a8 179
0.8 1.195 0. 9560 128 285
1.0 1.192 1.192 160 435
1.2 1.212 1.485 105 845
1.4 1.253 1.780 236 051
1.6 1.316 2.100 282 1397
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Figure 1
Experlments

The rubber with which the experiments were made was delivered in form of closed
belts of 21n, % 0.32 in. cross section and 38 in, circumference. Two different, conn-
Pounds (Nog, 4183 and 4799) were used and there were 12 belts in all. The
velues of the elastic constants ate about the same for both compotnds, but slight
;’;er;ﬂif;om in the clastic constants oceur even at different parts of one and tho same

en. '



The Bulk Modulus,~—To measure the bulk modulus, rubber cylinders 1 in. in
diameter and 1.5 in, long were placed in a compression chamber and the distance
between the pressure heads measured with Ames dizls. The bulk modulus & was
found to be 387,000 lb. per sq. in. or 27,200 kg. per 8q. em. (average of three ox-
periments). This is somewhat larger than the modulus of water, which ix 23,000
kg. per sq, em., but agrees well with the fact that the specific gravity of rubber is
about the same as that of water. ~

Considering the great difference between the shear and bulk moduli {their ratio
i8G/K = 0.211 X 10-3), it is justifiable to consider rubber as incom pressible in the
range for which validity is claimed for the clastic law (2). The commmonly used
modulus of elasticity Z is in that case equal to 3G = 200 1h. PeT 8. In.

The Tensile Tesi—The tensile test under uniaxinl stress is teehniewl] ¥ Very casy
to carry out. However, by an increase in length of 200 per cent or more, thne
effeets and elastic strain hardening play an important role, The strain hardening
i8 due to the mierostrueture of rubber and can only be taken into aceount by em-
ploying o statistical theory. This strain hardening has in kome respects the char-
acter of internal frietion; therefore the unloading curve coincides noarly with the
author’s theoretical curve.
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The curves of Fig. 2 show the lozding and unloading at o constant rate of applyin
strain and removing stress (time of loading and unﬁading; 4 hrs, in all) ugtl.}hythg
stresses related to the original aven of oross gection. Table I1I gives the values of
the true stresses and strains for very slow loading and unloading. The observed
values of A are reduced to equal differencey by interpolation, because it woukl not
have been possible otherwige to take the avernge of the experiments with three

specimens,
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- The Compression Tes.—The compression test is very difficult to perform nnd

almost 1mgossibla to earry out for higher pressures if uniaxisl stress has to be used.

Not only is the state of uniform uniaxial stress unstable even for comparatively

short rubber eylinders, but it is even difficult to realize such = state of stress, De-

spite careful greasing of the planes of contact with the pressure heads of the test-

Ing machine, dry frietion was detected, Evidently the grease is removed under
oo much pressure. Teble IV gives the calculated and measured stresses.

TasLe IV
Caéoulatlf i Stszf “ Measured Strozx
L P11} a 5 0,
=A Lg.ugﬂrogql‘ ?ﬂ- Lb. par BQ! In,
0.0 0.0 0.0
0.2 36.8 37.3
0.4 08,7 72.7
0.6 98.5 103.7
0.8 128.0 120,8
1'0 16‘0.0 16204

The change in the elastic behavior in going from positive to negative strains is
very marked, but is satisfactorily represented by the theoretieal formula, Tigure 2
shows the deviations from the theoretieal curve at the larger strains.

Conclusions

. Asn consequence of the work deseribed the author arrives at the conclusion that
In the deformation range from 0 to 270 per cent only one elastic constant is needed
for & full mathematical description, and that this constant is the modulus of shear -

defined for infinitely small deformations.

If models could be made of rubber 2t less expense, this material could be used
for the integration of the equations of elasticity. The solutions could be easily
gﬂ‘scygd for the lack of compressibility and for the change in the common law of

40 (1} Y.

APPFENDIX
Mathematical Derivations

Taking an clement of a body and stressing it in three directions perpendicular {o
each other, 2, 2, 2;, we get the now lengths drs, dtz, dv: from the old ones dm, de,
dz,, If we denote the principal strains by e, €, ¢, the corresponding strains arc,
According to (1) and (1a),

q = log d-ﬂ) (3)
L

It is very convenient to take the average of these straing, namely,

E=3l‘(ﬂ+¢2+£x) (38)

whence

dz; dza Ay ayv
= — i ] P l el Ser
3e = log, ( T T OF ( v
€ atises from that part of the strain which is equal in all directions. Conse-
quently if we subtract e from €, €, &, and denote the result by 1, ¢z, s,
(3b)

o =g —¢
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will represent the pure deformation without the ehange in volume. Wae can resolve
the stresses acting at any point in the same manner. S = /3 (S: -+ Sz 4 8) is
that part of the stress which can exist in an ideal liquid. This hydrostatic part of
the stress 8 is connected with the change of volume, the remainder of the stress,
81—38, is connected with the change of form.

Now in the case of infinitely small strains it is not necessary to state that the
stresses in the deformed states are to be employed when we formulate the elastic
law. It does not make any difference for which state we give the stresses, With
finite deformations, however, only the true physical stresses after equilibrium is
attained ean be used, Ior any homogeneous and isotropic material we can write
down easily the simplest form the elastic energy can assume. We introduce into
this two moduli, the modulus of shear @ and the bulk modulus K, and clioose the
simplest possible analytical form, which becomes the expression of the classical
theory of elasticity when we ndsume infinitely small displacements:

2W = 2@ (p? + vt + s?) + OKe? (4)

W is the elastic energy per unit volume in the undeformed state. The energy
must be related to the undeformed atate because it is & physical entity connected
with the mass of the body. Equation (4) is naturally an assumption and has to be
checked by experiment.

But there ig yet another doubt. Must we not relate the formula for the energy
to the real bearer of the energy, the molecule? If the substance is built up from
such units, should we not assume expression (4) as the energy of the molecule?
Qur experimental results indeed point in this direction. But before we study this
question we shall formulate another expression for the work done which is inde-
pendent of any law of elasticity.

If dV is the volume before and dV the volume after the deformation,
SWAV = 81 dzs dzs 5 drv -+ Sp doy dzs § dza -+ Sy % A2 ds
or

W = ?llfi (Sider + Sidey + Sdes) = ¥ (Sidey + Sider -+ Sades) (6)

¢** is the relative volume, and will be denoted by ». Assuming now that Equation

(4) is applic_ed‘ to isotropic and continuous matter, we can immedintely derive the
law of elasticity.

By differentiating [4)],

SW = 2Gle; (b1 — be) + w2 (Se2 — B€) + g5 (Bes ~ 8e}] = 3Ke (8e; 4 8¢z -+ 3es)
= 34 (2G¢1 + 3Ke) + b6 (2Qps + 3Ke) -+ de; (268 + 3Ke)

Comparing this expression with Equation (5),
S = 260, 4 8Ke (6a)
or in another form,
2@
Sy -8 Sl

8b
§ = Igvlog. ) o)
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The apparent increase of the modulus of shear for high compression measured

by Bridgman is accounted for in Equation (6b), beenuse » is in that case less than

unity,

leor rubber » differs but little from unity so long as § i in the range of 0-4000
. per sq. in. . "
Under these cireumstances we can neglect the change in volume entirely, writing

S =20 + 8 {7

for an ideal incompressible material,

But having considered an element da;, das, di; of continuous matter which Jed
us to Equation (7), we now assume an element contoining thousends of molecules.
As it does ot matter which form we assume them to be in, let us take th em as small
spheres.  The true shape of the molscule of rubber is not known, but it probably
18 of & priematio form, We must keep clearly in mind, therefore, that we are
negleeting the true microstructure of rubber in assuming spheries] molecules,

Here we no longer apply Bquation (7) to the stresses, but to the forces with which

the molecules act on one another, writing
Pi P =20 {8)

where P = 1/y (P, + P, 4 Py), , »
If ¥ is the number of molecules lying in the unit of area of a cerain cross section

in the undeformed state, then after deformation there will be in the dz, dz; plane
the number Ne#t molecules since

d“x_ﬂ“(&;_d-;;:ﬁe_(ﬂ

dz; dzs  dm

fore = 0,
Multiplying BEquation (8) by Ne*! gives the true stresscs

Net'(Py = P) = 20'Nege”!
Ne?3(Py — P) = 20'Npw?*
NeP(P; — P) = 26‘Npy®
These stresses now comprise an amount of hydrostatic stress which has to be

subtracted, As the hydrostatic stresses in incompressible materinl are noft elasti-
°ﬁ1§: but statically determined, we can so determine them snd, putting ‘N = &,
obtam

w1 ¥ 4. a¥d
S -8 =92@ o Pl — (¢l¢‘- + Pz; 3 )] (9)
Putting oy = N, gy = ¢ = ~ ? /o, 8= e, and S = */3 ¢ in (9) we get Lquation

(20), and then, after dividing by ¢, Bquation (2b)

: g by ¢*, Bquation (2b). _

It s ensy 4o ’genemlize the law (‘5) so that it can be applied to other su!;flsﬁ;uétle&
& wish, however, to conserve under all circumstances the condition e

stresses can be derived from an elastie potential.
We put

v

S~ 8= 20 if(sax) - % Ues) A o) +f(‘°')lf} {10
s w3y
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the work done by the stresses, with ¢ = € 4 ¢, & = € + v, ¢ = € -+ ¢, will be,
according to (5),

W = [(81 — 8)opr + (82 — 8oz + (S — S)dps + 3Sse)y
Introducing the value of Si—S8 from (10),

W = 2¢ [j;wf (e)ben + J:;"f ()32 + j;mf (soa)ﬁm] 4 9K j: ¥(e)se  (11)

The functions f(¢) and ¥(€) must therefore be cbtained experimentally.

The use of IEquation (11) is more satisfactory than that of cxpressions which
can be considered only as interpolation formulas of the experiments, Lecause, ne-
cording c;:o (11), the work done is independent of the manner in which the material
is loaded.

In the study of the behavior of rubber under deformations grester than 270 per
cent we cannot neglect the influences of the time effects comprising relaxation and
creeping (see I'ig. 2). The shape of the rubber moleeules also plays an importani
part in the behavior under very large deformation.

The study of these deformations is not important for technieal purposes becausce
in practice such large strains are never used, hut the subjeet is very interesting from
the standpoint of physical chemistry, hecause it enables definite conclusions to be
drawn concerning the microstructure of rubber,
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