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THE LAW OF ELASTICITY FOR ISOTROPIC AND 
QUASI-ISOTROPIC SUBSTANCES BY FINITE DEFORMATIONS 

H. HENCKu MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CA1ViBRIDGE, MASSACHUSETTS 

Hooke's law, which is the foundation of the mathematical theory 
of elasticity, is unfit to describe satisfactorily the phenomena in elastic 
bodies even if we limit the scope of our research to ideal elastic deforma- 
tions. We call a deformation ideally elastic, if the deformations disappear 
completely and if the energy stored up in ' the body is given back without 
loss, when the load is removed. 

We exclude, therefore, in this research all relaxation and plasticity- 
phenomena, which are connected with such losses of energy. 

The physical bases of our study are the experiments of P. W. Bridgman 
(at Harvard)i  on the compressibility of matter, which are the first exact 
measurements of finite deformations. We will show that  these experi- 
ments, if interpreted theoretically, are the foundation of a new rational 
theory of elasticity comprising in itself the old law of Hooke for small 
deformations. 

With respect to hydrostatic compression our theory is in such agree- 
ment with the experiments of Bridgman, that  the interpretation of the 
experiments in the light of this theory promises to be of importance for 
insight into the repulsive mechanism of the molecules. 

We make the following assumptions: (1) The material is capable of 
being subdivided to any desired extent practically, but  is nevertheless 
built up of small units, so that  the elastic forces must be considered as the 
result of tile mechanism of an elastic micromachinery. (2) In  order to 
unveil this mieromachinery we t ry to evade all arbitrary assumptions 
choosing our stress-strain relations as simple as possible and so as to in- 
elude the common law of Hooke as a special case for small deformations. 
(3) The expression for the elastic energy must be independent of the 
way in which the body is loaded. 

I. The Measurement of Strain 

If we had never heard of the theory of elasticity and if all substances 
surrounding us had the elasticity of soft rubber so that  we could obtain 
finite deformations with very small forces, we could define strain as either 
the ratio of the change of length to the original length or as the ratio of 
the change of length to the length after equilibrium is attained. Such 
an ambiguity warns us that  we must revise our fundamental notions. 

1 Compare P. W. Bridgman, "Handbueh der t~xperimentalphysik," Vol. VIII, 
Part 2, pp. 247-395, where the original papers are cited. Tile author is indebted to 
Prof. Bridgman for valuable critical remarks and suggestions. 
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This  is easy in  the  case in  question,  if we define the  measure  of an  infini- 
tes imal  s t ra in  as the  rat io of the  increase in  length  to the  length  itself. 

I f  e is the  measure  of finite s t ra in  we will have  

dx 
d~ = - -  (1) 

x 

In t eg ra t i ng  and  tak ing  the  length  of the s t r ing a t  the  beg inn ing  as - a 

(at  the  end as - b) we get 

Our measure of finite strain is therefore  the natural  logarithm of the 
affine relation.  
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EXPERIMENT 
THEORETICAl. CURVE 
EXPERIHENTAL CUI~E 

0.10 0.~o O.3D O.40 

Taking now an element of the body and straining it in three perpendicu- 
lar directions, x l ,  x2, x , ,  we get the  new length dx l ,  d in ,  dx3 from the  old 
ones, dx~, dx2, dx3. The corresponding strains are 

~ = zn \ ~ x , - /  (i = 1,2,a) (2a) 

As we will present ly  see, i t  is very  convenien t  to take  the average of these 
principal strains 

1 
= ~- (~ + ~ + ~)  (2b) 

we find 

3~ = zn \~x~"  dx--~ " ~ = Zn U9 ('%) 
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e arises f rom tha t  pa r t  of the extension or compression which is equal 
in all directions. T he  same sort  of deformation is caused b y  a lowering or 
raising of the temperature .  I f  we subt rac t  e f rom the principal strains, 
we get a deformation wi thout  a change in the volume. 

This division of the  deformation into 2 parts,  one par t  (Ei - e) (i = 
1,2,3) leaving the  volume cons tant  and  another  par t  e equal in all direc- 
tions is of the  ou tmos t  importance,  if we wish to go from an elastic s tate  
of ma t t e r  to the  liquid s tate  s imply by  changing tile coefficients of elasticity. 
Moreover  this division suggests a ve ry  simple expression for the  elastic 
energy which we mus t  consider next. 

II. The Elastic Energy Stored Up in the Body 

The  normal  unit-stresses Si (i -- 1,2,3) act ing on the surfaces of the 
deformed element can be also averaged and divided into two systems, 
one being the average of these normal  stresses: 

1 ( & + S 2 + S ~ )  s = - ~ .  

and  the remaining stress sys tem St -- S (i = 1,2,3). 
We assume t h a t  the stress sys tem St - S does no t  cause any  change 

in the  volume. The  sys tem S is the only one possible in an ideal liquid. 
The  work done in the b o d y  is connected with the  mass and  mus t  therefore 
be related to  the  volume in the beginning. Assuming the energy of 
di latat ion and compression as independent  f rom the energy of the proper 
changes of form caused b y  the stresses S~ - S we have with the modulus  
of r igidity G and the compression-modulus K :  

2.W = 2.G.{(el -- e): + (e~ -- e) 2 + (e3 - e)2} + 2.9.K. f f ( e ) . de  (4) 

The  expression for the  energy of compression is perfect ly arbi t rary.  Wi th-  
out  special assumptions about  the mechanism of the  repulsive forces 
we cannot  deduce theoret ical ly the form of funct ion f(e). We m a y  choose 
this funct ion as simple as the  experiments suggest. 

The  first pa r t  of the  energy, however, cannot  be chosen otherwise 
or the  theory  would lose every  practical  interest b y  becoming too compli- 
cated.  

Differentiating Equa t ion  (4) we can compute  now the change in the elastic 
energy caused by  a vir tual  change in 6ei (i = 1,2,3) 

~W = 2G.{(el - e) ~ (e~ - e) + (E2 - e) 5 (E2 - e) + (e3 - e) ~ (e~ - e) l + 9K.f(e).~e 

This work can be also calculated as done by  the stresses, remember ing  
tha t  the  stresses are to be measured  with respect to uni t  areas in the s trained 
state. I n  t h a t  case we get 

~W.dxl dx2 dx3 = Sl.dx~'dx~.~dxl + S2.dx3 dxi.~dx~ + S~.dxl dx2.~dx3 
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dV 
Putt ing v = ~-~ (the relative volume) we can write for the last expression 

of the work done: 

~ w  = v. { ( &  - s )  ~ (~1 - ~) + (82 - s )  ~ (~  - ~) + ( &  - s )  ~ (~3 - 0 1  + v .3s .~ ,  

Putt ing the two expressions of ~W equal and considering tha t  the four 
variations ~(ei - e) (i = 1,2,3) and ~e are absolutely independent and 
arbitrary,  we get the generalized law of elasticity in the following form: 

s l  - s = 2._GG. (~i - ~) 
V 

s~ - s = 2.__qa. (~  _ ~) ( s a )  
V 

& - S = 2.__G. (~3 _ d 
73 

and 

S = 3.__KK. f(e) (5b) 
V 

Mathematical ly  the appearance of the relative volume, v, means tha t  the 
so-called stress-tensor is a tensor-density with respect to the t ransforma- 
tions of tile general affine group. 

By multiplying the stress-tensor Si with the t ransformation-determinant  
v, we get a real tensor v. Si = S / ,  which can be equalized to the compo- 
nents of the pure affine deformation ei in the manner  of our law (Equa- 
tions (5a) and (5b)). 

For this reduced tensor St' the law of superposition holds, if we choose 
f(~) = e in Equation (5b). By  "superposition-law" we mean tha t  the 
relation between the changes ill both  stress and strain as they are connected 
by  Equations (5a) and (5b) is absolutely independent of the stresses and 
strains already present. The extension and compression law 

S = ~ . l n v ,  (6a)  
v 

which gives for v = 0 S = - oo, and is the simplest law possible for finite 
deformations. Here we have an unlimited compressibility, because the 
volume can be reduced to an arbi t rary  small amount,  if we increase the 
stress. 

The  experiments of Bridgman show tha t  only a small number  of solids 
obey the law (6a). Most  of the experiments suggest another law, viz., 
tha t  there is a limiting relative volume ~ which cannot be reached by  a 
finite pressure. 
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Comparison with the experiments shows tha t  the formula 

1 -- ~ lnv 
S = K .  . (6b) 

v - -  ~, 7) 

reproduces most  of the experimental material,  with such a precision tha t  
it cannot  be considered as an accidental coincidence but  must  have a physi- 
cal meaning. 

III. The Experiments of Bridgman Concerning the Compressibility 
of Solids, Liquids, and Gases under High Pressures 

The measurements of Bridgman cover a range of stress from 0 to 15,000 
kg / em 2. Most  of the results are given by  a parabolic interpolation- 
formula, from which our constants K and ~ can be computed easily. 

Taking two corresponding stresses SP~o '~ and strains v r, v", respectively, 
we can eliminate K and get with (6b) 

S q v '  l o g v  ~' v 'r - -  q~ 
a,  

S~ ' . v  " " l o g  v '  v ~ - 

and therefore 
VCt __ a . V  t 

1 -- a (6c) 

For  most  of the materials examined by  Bridgman ~ turns out to be really 
a constant. 

Near  atmospheric pressures the formula does not give as good results 
as a t  higher pressures. Metallic caesium is remarkable in tha t  it is very 
irregular from 0 to 7500 k g / e m  2 but  follows the theoretical curve very  
closely for higher pressures. I t  seems tha t  the individual structure of 
the molecule has much more influence at  lower pressures. In  the following 
table we have taken those substances which Bridgman has marked out 
as very irregular, as particularly fit for a crucial test  of the proposed 
mathematical  description. I t  seems tha t  even gases acquire a constant  
modulus of compression at  pressures of 10,000-15,000 kg /em 2 and behave 
then elastically exactly as solids. 

The  fact tha t  the seemingly very  complicated results of Bridgman 
can be represented b y  the simple Formula (6b) using a constant modulus 
of compression K is of considerable importance for the theory of the re- 
pulsive forces in the molecules. 

T h e  assumption of a limiting volume as a characteristic feature of our 
mathemat ical  description and the confirmation of this assumption within 
certain limits b y  the experiments of Bridgman must  also have a mechanical 
meaning. 

For the t ime being, however, as it seems impossible to understand the 
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Substance 

Solids: 
Iron 30 0.8  170 
Sodium 30 Nearly inf. 6.46 
Potassium 45 Nearly inf. 3.09 
Caesium 50 0 1.706 

mechanism leading to Formula (6b) so we must consider this formula as 
empirical. 

Extreme deviations 
Limiting Modulus K in ~ in K 

Temperature,  relat, in kg /em 2 Range of stress, 
centigrade volume X 104 3000-15,000 atm, 

Rubidium 50 0.44 1.66 
Liquids: * 

Mercury 20 0.75 24.9 
Water  40 0.50 2 .34  
CS~ 20 0.56 1.29 
Methylalkohol 20 0.56 1.17 
Aethylalkohol 20 0.56 1.17 
Aether 20 0.52 0.87 

G a s e s  : 

Hydrogen 
Helium 

. . . . . . .  6 . 43 -6 .48  

. . . . . . .  3 , 03 -3 .14  
Irregular 1 .700-1.710 

from 0-7000 atm. 
0 .40-0 .45  1 .65-1 .68  

0 .68-0 .82  24 .6 -25 .3  
0 .49-0 .52  2 .33-2 .36  
0 .55-0 .57  1 .27-1 .31 
0 .55-0 .57  1 .15-1 .18  
0 .52-0 .59  1 .15-1 .18  
0 .48-0 .57  0 .83-0 .90  

65 Nearly 0 0.82 Only by 13,000-15,000 atm. 
65 Nearly 0 0.47 

* These liquids behave more or less irregularly a t  low pressures. 

Summary 

Hooke's law concerning the relation between stress and strain is not 
valid for finite deformations. A law of elasticity is developed which 
contains in itself the law of Hooke as a special ease and is theoretically 
incontestable. Specializing this law in a manner suggested by  the experi- 
ments of Bridgman concerning the compressibility of mat ter  it is possible 
to reproduce analytically most of the results of Bridgman. A table giving 
the two coefficients of compressibility--consisting of the modulus of com- 
pression K and a hypothetieal limiting relative volume ~- -and  a diagram 
show the coincidence of formula and experiment. 

Discussion 

DR. K.RAEMER: This is a little off the subject of rheology, perhaps, bu t  I listened 
with considerable interest to Dr. Heneky 's  allusion to allotropy in liquids at  high pres- 
sure, Not  long ago an announcement  was made tha t  the dielectric constants  of the 
ether change at  low temperatures  before freezing occurs, and the suggestion was made in 
t ha t  case tha t  allotropy may occur in liquids. I was wondering if .Dr. Hencky has any 
idea as to what  constitutes allotropy in terms of molecular s tructure in the  liquid. 

DR. I'IENCKu I have no ideas about  that .  
DR. KARRER: The question of what  length to choose has interested us in the rubber  

industry,  because the formulas, as Dr. Hencky has pointed out, are all r ight  as long as the  
changes in length are not  comparable with the original dimensions. Therefore we have  
for some years been using the logarithm for the actual length compared with the mean  
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length. I was interested in the plasticity and softness of rubber. In  both cases we have 
deformations which are great compared with the original dimensions, and in t ha t  ease 
we considered tile logarithm as Dr. Heneky has done. 

DR. Ns I wanted to ask Dr. Hencky several questions regarding the general 
suggestion to treat  large deflections, and also some questions regarding the definition of 
the elastic constants  under these conditions. Instead of using the ordinary definition 
you introduce a new definition here for strain and I feel t ha t  it is a very clever suggestion 
to treat  large deformations in rubber in this way. Bu t  may  I ask, is there a possibility 
of developing a general mathemat ical  theory similar to the theory for small deformations ? 
Obviously one has to combine the law of elasticity with the equilibrium equations and 
these have  to be written down for the changed shape of the body, not  for the original one. 

I t  is not  clear to me what  will happen if we do this. But  perhaps the  result will be 
very complicated. The  second question which interests me is this: I unders tand  tha t  
the elastic constants  are independent of hydrostat ic pressure. Now here arises a ques- 
tion in connection with certain phenomena as to the propagation of waves ill the interior 
of our earth. We know tha t  we have a large pressure in the interior of the earth, and 
we know tha t  we can measure an elastic constant  by sound vibrations. Ill the interior 
of the earth we have a pressure of several hundred thousands or millions of a tmospheres  
changing the relative volume as much  as 50%. Therefore we know the density and can 
measure the velocity of earthquake vibrations coming from the interior of the earth. 
As the period of the vibrations is equal to the square root of the elastic constant  over the  
density we can get the rigidity factor from this formula and I am inclined to th ink t ha t  
this rigidity factor will be other than  the constant  used in the law of finite elastic strain. 

We m u s t  therefore distinguish between two kinds of elastic constants,  those which 
are true to the actual s tate and a hypothetical  kind of elastic constants  appearing in the  
formula of the elastic energy. Perhaps Dr. Heneky can inform us as to what  he th inks  
about  this. 

DR. HENCKV: TO Dr. Kiarrer I can answer tha t  the logarithmic measure of de- 
formation was already used by the teehnologist, Ludwig.* I think everybody comes to 
the same idea automatically. And now the question of Dr. N~dai about the full equa- 
tions and tile elastic coefficients in general. 

The connection of finite deformations with the equations of equilibrium has been 
worked out by Duhem, and E. and F. Cosserat and is reproduced in an improved and 
elegant manner  in the "Elementare Meehanik"  by Hamel. ** 

Taking an already stressed body and studying the behavior of the equations of 
equations of equi!ibrium against  any small change in the stresses I myself have tried to 
prepare a way to the solutions of problems analogous to those suggested by Dr. Nfidai, 
but  I did not  think it useful to embody these researches in my  present paper which has 
only to do with the physical foundation of elasticity. Fur ther  work in this direction 
will show th a t  the  difficulties with the constants  are not  contradictions in the  theory. 
However, much depends on simple solutions of the equations and jus t  the problem of 
oscillation suggested by Dr. N~dai is very at tract ive and important ,  so tha t  I will store it 
in m y  memory.  (Laughter.) 

M~. PEEt~: I think the  theory should be completed concerning the  strains in 
different directions so tha t  problems of shear can be treated also. Can such a simple 
general t rea tment  be given? M y  second question relates to the connection between 
stress and strain. Is the relationship chosen by you the most  general for the case of an 

* Hut te ,  Des Ingenieurs Taschenbuch, 25, Auflage 1925. Pp. 324-331, by Dr. 

Siebel. 
** G. Hamel, Elementare Mechanik (1922), Teubner, Leipzig. 
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isotropic body? I t  seems to me that  there is no strict generality, however advisable the 
formulation may be practically. Am I correct about that? 

DR. HBNCKu I can answer Mr. Peek immediately on the first question. The 
assumed law is absolutely complete. With the law of elasticity once written down in the 
form connecting the principal strains with the equally directed principal stresses every 
question concerning the behavior in a certain direction is answered by geometry. 

Concerning the second question I should say that  the assumed independence of the 
changes of volume and the changes of form is arbitrary. Putting the question to nature 
in this manner it is possible tha t  the experiment will contradict the assumption as in- 
deed it does for very large deformations, but  not knowing for the time being the precise 
connection between change of form and change of volume, I am tactful and will not  an- 
ticipate. (Laughter.) 

!ViR. PB~I~: Well, then, if you make tha t  separation, it simply means tha t  there 
will be two relations between stress and strain but  not necessarily linear. 

DR. HENCKu : The equation connecting the changes of form with the stresses must  
be linear for the sake of simplicity; the equation for the changes in volume is empirical. 
The elastic energy should be deduced from the electric potential of the atoms but  as we 
are far from the possibility of doing this, I have simply assumed a convenient form. 
(Laughter.) 

MR. MOONEY: I should like to ask Dr. Heneky about the dimensions of this 
quanti ty ~ in his equations. I t  seems to have different dimensions in denominator and 
numerator. Is there no mistake there? 

DR. HENCKY: No, it is right. 
MR. 1V~ooN~u What  dimensions has ~? 
DR. HENCKY: 9 has no dimensions at all. I t  is a limiting relation between the 

volume at the end and at the beginning of the deformation. :For water it  is 0.5; for 
mercury 0.75. 

MR. ~V[OONEY : I think it is all right. Dr. N(~dai just  points out to me that  ~ is a 
relative volume. 

DR. HENCK'r Yes, that  is what  I said. (Laughter.) 


