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Author’s Abstract

A method of writing proofs is proposed that makes it much harder to prove
things that are not true. The method, based on hierarchical structuring, is
simple and practical.
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1 Mathematical Proofs

Mathematical notation has improved over the past few centuries. In the
seventeenth century, a mathematician might have written

There do not exist four positive integers, the last being greater
than two, such that the sum of the first two, each raised to the
power of the fourth, equals the third raised to that same power.

(1)

How much easier it is to read the modern version

There do not exist positive integers x, y, z, and n, with n > 2,
such that xn + yn = zn. (2)

Yet, the structure of mathematical proofs has not changed in 300 years.
The proofs in Newton’s Principia differ in style from those of a modern
textbook only by being written in Latin. Proofs are still written like essays,
in a stilted form of ordinary prose.

Formulas written in prose, like (1), are hard to understand and hard to
get right. Proofs written in prose are also hard to understand and hard to
get right. Anecdotal evidence suggests that as many as a third of all papers
published in mathematical journals contain mistakes—not just minor errors,
but incorrect theorems and proofs.

Statement (2) is easier to read than statement (1) for two reasons: vari-
ables are given names, and formulas are written in a more structured fashion.
The benefits of using names is obvious. The benefit of structure is less ob-
vious; we are so used to formulas like xn + yn = zn that we tend to take
their structure for granted, and to think they are easy to read just because
they are short. Although the brevity of the formula helps, it is primarily
its structure that makes it easier to understand than a prose version. The
expression

x raised to the power n
plus

y raised to the power n equals z raised to the power n

is quite long, but it is easy to read because of its structure.
The same principles that make formulas easier to understand can make

proofs easier to understand: proof steps should be referred to by name, and
the structure of the proof should be manifest.

The proof style I advocate is a refinement of one, called natural deduction,
that has been used by some logicians for almost a century. Natural deduction
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has been viewed primarily as a method of writing proofs in a formal logic.
What I will describe is a practical method for writing the less formal proofs of
ordinary mathematics. It is based on hierarchical structuring—a successful
tool for managing complexity.

A method for structuring proofs was presented by Leron [5]. However,
his goal was to communicate proofs better, not to make them more rigorous.
Despite their hierarchical structuring, the proofs Leron advocated are quite
different from the ones presented here. They do not seem to be any better
than conventional proofs for avoiding errors.

Avoiding mistakes when manipulating formulas requires careful, detailed
calculations. Avoiding mistakes when proving theorems requires careful, de-
tailed proofs. When first shown a detailed, structured proof, most mathe-
maticians react: “I don’t want to read all those details; I want to read only
the general outline and perhaps some of the more interesting parts.” My
response is that this is precisely why they want to read a hierarchically struc-
tured proof. The high-level structure provides the general outline; readers
can look at as much or as little of the lower-level detail as they want. How-
ever, until one gets used to them, structured proofs do look intimidating.

The ideal tool for reading a structured proof would be a computer-based
hypertext system. It would allow the reader to concentrate on a particular
level in the structure, suppressing lower-level details. In a printed version,
one can ignore lower-level details only by skipping over that part of the text.
While this is not ideal, the structure is displayed by the format, making such
skipping fairly easy—certainly much easier than in a prose-style proof, where
the format provides little clue to the logical structure.

2 An Example

I take as an example the classic proof that
√

2 is irrational. Letting Q denote
the set of rationals, the precise statement of the result to be proved is

Theorem There does not exist r in Q such that r2 = 2.

To illustrate hierarchical structure, the proof is carried out to a much lower
level of detail than necessary for a typical reader.

2.1 The High-Level Proof

The high-level structure of the proof—what one would see first with a hyper-
text system—appears in Figure 1. The proof assumes a lemma from which
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Theorem There does not exist r in Q such that r2 = 2.

Proof sketch: We assume r2 = 2 for r ∈ Q and obtain a contradiction. Writing
r = m/n, where m and n have no common divisors (step 1), we deduce from
(m/n)2 = 2 and the lemma that both m and n must be divisible by 2 (steps 2
and 3).
Assume: 1. r ∈ Q

2. r2 = 2
Prove: False
1. Choose m, n in Z such that

1. gcd(m, n) = 1
2. r = (m/n)

2. 2 divides m.
3. 2 divides n.
4. Q.E.D.

Figure 1: The highest level of a structured proof of the irrationality of
√

2.

one can deduce that, for any integer n, if 2 divides n2 then 2 divides n. The
set of integers is denoted by Z.

After the statement of the theorem comes a Proof Sketch, which is
an informal explanation of the following proof. The proof sketch serves as
a “road map” to the proof, helping the reader understand intuitively why
the proof works. This proof is so simple that the proof sketch is almost
superfluous—the only information it provides that is not obvious from the
high-level proof itself is that the lemma is used to prove steps 2 and 3.

Next comes the Assume and Prove clauses. They assert that to prove
the theorem, it suffices to assume the two hypotheses r ∈ Q and r2 = 2, and
to prove false.

Finally comes the proof. This is a sequence of statements that ends
with “Q.E.D.”, which denotes the assertion to be proved—in this case, false.
Think of this proof as the left half (the statements) of a high-school geometry
style proof, the right half (the reasons) being omitted.1

1In their introductory plane geometry course, students in the U. S. are taught to write
proofs in a two-column format, the left column containing a sequence of statements and
the right column containing their justifications.
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1. Choose m, n in Z such that
1. gcd(m, n) = 1
2. r = (m/n)
1.1. Choose p, q in Z such that q $= 0 and r = p/q.
Let: m

∆= p/ gcd(p, q)
n

∆= q/ gcd(p, q)
1.2. m, n ∈ Z
1.3. r = m/n
1.4. gcd(m, n) = 1
1.5. Q.E.D.

Figure 2: The proof of Step 1.

2.2 Lower Levels of the Proof

Let us now examine the proof of step 1, which appears in Figure 2. It is
clear enough what must be proved, so no Assume/Prove is needed. The
proof consists of five steps, numbered 1.1 through 1.5. There is also a Let
statement, which defines the required m and n. (I prefer ∆= to the more
common symbol ≡ for “equals by definition”, since ≡ can also mean logical
equivalence.)

Each of these five steps in turn has its proof. The proof of 1.1 is just

Proof: By assumption :1.

Assumption :1 is the first assumption (r ∈ Q) in the proof of the theorem.
(The numbering scheme for assumptions is explained below.) A hierarchical
proof must stop somewhere. The general question of where to stop is ad-
dressed in Section 4.2. In this proof, we assume the reader understands that
the definition of Q implies that r can be written as the requisite quotient of
integers. The proof of 1.2 is the equally simple.

Proof: 1.1 and definition of m and n.

Step 1.3 is proved by a string of equalities, each with a brief justification.

Proof: m/n =
p/ gcd(p, q)
q/ gcd(p, q)

[Definition of m and n]

= p/q [Simple algebra]
= r [By 1.1]
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1.4. gcd(m, n) = 1
Proof: By the definition of the gcd, it suffices to:
Assume: 1. s divides m

2. s divides n
Prove: s = ±1

1.4.1. s · gcd(p, q) divides p.
Proof: 1.4:1 and the definition of m.

1.4.2. s · gcd(p, q) divides q.
Proof: 1.4:2 and definition of n.

1.4.3. Q.E.D.
Proof: 1.4.1, 1.4.2, and the definition of gcd.

Figure 3: The proof of step 1.4.
.

This type of proof, consisting of a string of equalities, is simple and di-
rect; it works as well for proving any transitive relation, such as <, logical
equivalence, and implication. It should be used whenever possible.

Step 1.4 has the multistep proof shown in Figure 3, consisting of steps
1.4.1 through 1.4.3. The “1.4:1” in the proof of step 1.4.1 denotes assump-
tion 1 (s divides m) in the proof of step 1.4. The theorem itself is considered
to be a step having the null string as its number, which explains why “:1”
denotes assumption 1 of the theorem.

3 Further Details

3.1 A More Compact Numbering Scheme

The numbering scheme used in the example is fine for short proofs, with
few levels of nesting. However, long proofs can have many levels—I often
write proofs more than six levels deep. The number 3.1.1.1.1.2 takes a lot
of space, and having to distinguish it from 3.1.1.1.2 can soon lead to eye
strain.

We eliminate long step numbers by abbreviating 3.1.1.1.2, a five-part
step number ending in 2, as 〈5〉2. Figure 4 shows a fragment of a proof
written with the two numbering styles. To understand why abbreviated
numbers suffice, consider where step 3.1.1.1.2 can be used in this proof.
The step can be used only after it is proved, but it cannot be used just
anywhere after its proof. Step 3.1.1.1.2 cannot be used in the proof of step
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3.1.1.1. Assume: x ∈ S
Prove: . . .

3.1.1.1.1. . . .
3.1.1.1.2. . . .
3.1.1.1.3. Q.E.D.

By 3.1.1.1.1 and assumption 3.1.1.1.
3.1.1.2. Assume: x ∈ T

Prove: . . .
. . .

〈4〉1. Assume: x ∈ S
Prove: . . .

〈5〉1. . . .
〈5〉2. . . .
〈5〉3. Q.E.D.

By 〈5〉1 and assumption 〈4〉.
〈4〉2. Assume: x ∈ T

Prove: . . .
. . .

Figure 4: Part of a proof, with long and abbreviated step numbers.

3.1.1.2 because it was proved under the assumption of step 3.1.1.1, which is
different from step 3.1.1.2’s assumption. The step can be used only where
the assumptions under which it was proved hold, which means that it can
be used only within the proof of its parent, step 3.1.1.1. Step 3.1.1.1.2 is
the only one in the proof of its parent with a five-part number ending in 2.
Although there can be many proof steps with the same abbreviated number
〈5〉2, no two of them have the same parent, so at most one of them may be
used at any point in the proof. A reference to step 〈5〉2 always refers to the
most recent step with that number. Part 3 of the statement of step 〈5〉2 is
numbered 〈5〉2.3.

References to assumptions can be abbreviated even more. An assump-
tion can be used only in the proof of a step, or the proof of one of its
descendants. We let 〈5〉 denote the assumption of the level-five step that is
an ancestor of (or is) the current step, and 〈5〉:3 denote the third numbered
part of that assumption. Since the statement of the theorem has a zero-part
number, its assumption is number 〈0〉.

Figure 5 contains the complete proof of our example, written with the
abbreviated numbering scheme.

3.2 Proof by Cases

Proof by cases can be expressed with a Case step, where

Case: Statement of assumption.

is an abbreviation for

Assume: Statement of assumption.

Prove: Q.E.D.
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Theorem There does not exist r in Q such that r2 = 2.

Proof sketch: We assume r2 = 2 for r ∈ Q and obtain a contradiction. Writing
r = m/n, where m and n have no common divisors (step 〈1〉1), we deduce from
(m/n)2 = 2 and the lemma that both m and n must be divisible by 2 (〈1〉2 and 〈1〉3).
Assume: 1. r ∈ Q

2. r2 = 2
Prove: False
〈1〉1. Choose m, n in Z such that

1. gcd(m, n) = 1
2. r = (m/n)
〈2〉1. Choose p, q in Z such that q $= 0 and r = p/q.

Proof: By assumption 〈0〉:1.
Let: m

∆= p/ gcd(p, q)
n

∆= q/ gcd(p, q)
〈2〉2. m, n ∈ Z

Proof: 〈2〉1 and definition of m and n.
〈2〉3. r = m/n

Proof: m/n =
p/ gcd(p, q)
q/ gcd(p, q)

[Definition of m and n]

= p/q [Simple algebra]
= r [By 〈2〉1]

〈2〉4. gcd(m, n) = 1
Proof: By the definition of the gcd, it suffices to:
Assume: 1. s divides m

2. s divides n
Prove: s = ±1

〈3〉1. s · gcd(p, q) divides p.
Proof: 〈2〉:1 and the definition of m.

〈3〉2. s · gcd(p, q) divides q.
Proof: 〈2〉:2 and definition of n.

〈3〉3. Q.E.D.
Proof: 〈3〉1, 〈3〉2, and the definition of gcd.

〈2〉5. Q.E.D.
〈1〉2. 2 divides m.

〈2〉1. m2 = 2n2

Proof: 〈1〉1.1 implies (m/n)2 = 2.
〈2〉2. Q.E.D.

Proof: By 〈2〉1 and the lemma.

Figure 5: A proof of the irrationality of
√

2.
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〈1〉3. 2 divides n.
〈2〉1. Choose p in Z such that m = 2p.

Proof: By 〈1〉2.
〈2〉2. n2 = 2p2

Proof: 2 = (m/n)2 [〈1〉1.2 and 〈0〉:2]
= (2p/n)2 [〈2〉1]
= 4p2/n2 [Algebra]

from which the result follows easily by algebra.
〈2〉3. Q.E.D.

Proof: By 〈2〉2 and the lemma.
〈1〉4. Q.E.D.

Proof: 〈1〉1.1, 〈1〉2, 〈1〉3, and definition of gcd.

Figure 5 (continued)

The proof of the final “Q.E.D.” step explains why the cases considered are
exhaustive; it is usually simple. Figure 6 illustrates the use of the Case
construct to structure a proof by induction. Note how step 〈1〉1 is used in
the proofs of both cases, showing why Case steps provide more flexibility
than would a strictly hierarchical proof-by-cases construct.

4 How Good Are Structured Proofs?

4.1 My Experience

Some twenty years ago, I decided to write a proof of the Schroeder-Bernstein
theorem for an introductory mathematics class. The simplest proof I could
find was in Kelley’s classic general topology text [4, page 28]. Since Kelley
was writing for a more sophisticated audience, I had to add a great deal of
explanation to his half-page proof. I had written five pages when I realized
that Kelley’s proof was wrong. Recently, I wanted to illustrate a lecture on
my proof style with a convincing incorrect proof, so I turned to Kelley. I
could find nothing wrong with his proof; it seemed obviously correct! Read-
ing and rereading the proof convinced me that either my memory had failed,
or else I was very stupid twenty years ago. Still, Kelley’s proof was short
and would serve as a nice example, so I started rewriting it as a structured
proof. Within minutes, I rediscovered the error.

My interest in proofs stems from writing correctness proofs of algorithms.
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Theorem All natural numbers are interesting.
Assume: n a natural number.
Prove: n is interesting.

〈1〉1. A number is interesting if it is the smallest number not in an interesting set.
Proof: By definition of interesting.

〈1〉2. Case: n = 0
Proof: By 〈1〉1, since 0 is the smallest natural number not in ∅.

〈1〉3. Case: 1. n > 0
2. n − 1 is interesting

Proof: By 〈1〉1, since case assumption 〈1〉 implies that {k : k ≤ n − 1} is
interesting.

〈1〉4. Q.E.D.
Proof: Steps 〈1〉2 and 〈1〉3, assumption 〈0〉, and mathematical induction.

Figure 6: The Case construct.

These proofs are seldom deep, but usually have considerable detail. Struc-
tured proofs provided a way of coping with this detail. The style was first
applied to proofs of ordinary theorems in a paper I wrote with Mart́ın
Abadi [1]. He had already written conventional proofs—proofs that were
good enough to convince us and, presumably, the referees. Rewriting the
proofs in a structured style, we discovered that almost every one had seri-
ous mistakes, though the theorems were correct. Any hope that incorrect
proofs might not lead to incorrect theorems was destroyed in our next col-
laboration [3]. Time and again, we would make a conjecture and write a
proof sketch on the blackboard—a sketch that could easily have been turned
into a convincing conventional proof—only to discover, by trying to write
a structured proof, that the conjecture was false. Since then, I have never
believed a result without a careful, structured proof. My skepticism has
helped avoid numerous errors.

I have also found structured proofs very helpful when I need a variant
of an existing theorem, perhaps with a slightly weaker hypothesis. In a
properly written proof, where every use of an assumption or a proof step
is explicit, simple text searching reveals exactly where every hypothesis is
used.
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4.2 Writing Structured Proofs

A structured proof format by itself will not eliminate errors. Proofs must be
written carefully, with enough detail. Most errors come from not carrying
out the proof to enough levels. The lowest-level, paragraph-style proofs
should be short and completely transparent. One must be a skeptical reader
of one’s own proofs. My own rule of thumb is to expand the proof until the
lowest level statements are obvious, and then continue for one more level.
This takes discipline. But, unlike conventional proofs, in which adding more
detail can make a proof more confusing, structured proofs accommodate as
much detail as desired.

Structured proofs are longer than conventional ones. Although the for-
matting is partly responsible, structured proofs are longer mainly because
they include more detail. They make it obvious when steps have been for-
gotten or important details omitted. They make it hard to be sloppy. The
assertion “this case is similar to the previous one” is not acceptable; one
is forced to find the appropriate general step that makes the proof of both
cases easy. Writing a rigorous proof is harder than writing a sloppy one,
and lazy writers will find excuses to avoid doing it. A common excuse is
that structured proofs are too long. But, shorter proofs are not necessarily
better ones; the shortest proof is always “left as an exercise for the reader.”

When journals are distributed electronically, they can include proofs
down to the lowest reasonable level; the reader can suppress uninteresting
details when viewing the article on the screen or printing it locally. But, for
paper journals, extra pages mean killing extra trees. It may be inappropriate
for a journal to print a proof with so much detail. I recommend that authors
provide two versions of their proofs: a very detailed one for themselves,
the referees, and interested colleagues; and a less detailed one for paper
publication. It is quite easy to convert a detailed proof into a less detailed
one by compressing the lower levels into paragraph-style proofs. Although
the reader must fill in the low-level details, such proofs are much better than
unstructured ones, in which authors seem to choose randomly which details
to supply and which to omit.

4.3 Reading Structured Proofs

So far, readers’ reactions to structured proofs have been mixed. Skeptical
readers—ones who check for errors—like these proofs much more than con-
ventional ones. Readers who want to skim the proofs are less happy with
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the style. Part of the problem is that the length of the proofs and the unfa-
miliar format are intimidating. The best way to read a structured proof is
level by level—first reading the high-level steps 〈1〉1, 〈1〉2, 〈1〉3, . . . , then the
proofs of those steps, and so on. However, having to skip over the lower-level
steps makes reading the high-level ones inconvenient. With hypertext, this
is not a problem. With printed text, a layered presentation—the complete
higher-level proof followed by the lower-level proofs—may help [2, section
B.7 (page 48)].

These structured proofs do not seem ideal for someone who wants to
understand the important ideas of a proof without reading any of the details.
Satisfying such readers may just require better proof sketches. Or, perhaps
a better way of annotating a proof with comments is needed. Hypertext can
provide graphical aids for finding one’s way around a proof and highlighting
important steps. Maybe such aids can be developed for the printed page.

4.4 The Future

Modern mathematical notation has evolved over hundreds of years. Its proof
style is still stuck in the seventeenth century. Mathematicians tend to be
conservative, and many are unwilling to consider that there might be a better
way of writing proofs. But, I am told that mathematicians are embarrassed
to learn that they published incorrect theorems, so they are motivated to
avoid errors. I believe they will like structured proofs if they can be per-
suaded to try them.

Computer scientists are more willing to explore unconventional proof
styles. Unfortunately, I have found that few of them care whether they
have published incorrect results. They often seem glad that an error was
not caught by the referees, since that would have meant one fewer publica-
tion. I fear that few computer scientists will be motivated to use a proof
style that is likely to reveal their mistakes. Structured proofs are unlikely
to be widely used in computer science until publishing incorrect results is
considered embarrassing rather than normal.

The proof style described here has been developed over the past several
years. I have written many hundreds of pages of structured proofs, mostly
of algorithms. I consider the style to be a great improvement over conven-
tional, unstructured proofs. But, this is not the last word on the subject. I
look forward to seeing structured proof styles evolve as mathematicians and
computer scientists find better ways to write a proof.
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