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A constitutive inequality for hyperelastic materials in finite strain

J. B. LEBLOND *

ABSTRACT. — The inequality ¢ : D >0 (&: Jaumann derivative of the Cauchy stress tensor; D: Eulerian strain
rate), which is a variant of Hill’s “H, inequality”, appears as an « priori viable answer to the “Hauptproblem”,
proposed by Truesdell in 1956, of formulating a constitutive inequality for finitely strained hyperelastic bodies;
indeed it verifies the essential conditions of reducing to the usual restrictions p>0, 30 +2p>0 for an isotropic
elastic solid in the natural (stress-free) state, and dp/dp>0 for a perfect (non-viscous) fluid. The aim of this
paper is to confirm that this inequality is a possible solution, by considering various examples involving
materials with or without internal constraints and checking that it yields reasonable restrictions. Connections
with other inequalities are also investigated with special emphasis on Hill's H,, inequality, and also on Ball’s
“polyconvexity” property because of its mathematical importance.

1. Introduction

The problem of finding a “‘reasonable” constitutive inequality for hyperelastic bodies
in finite strain was first considered by [Truesdell, 1956]. (In fact Truesdell formulated
the problem more generally for elastic materials, which differ from hyperelastic materials
in that there may not exist a stored-energy function; only hyperelastic bodies will be
considered here.) This question arises in two contexts. The first one is the search for
phenomenological models of hyperelastic media; the role of the constitutive inequality is
then to place restrictions upon the envisageable stored-energy functions (see e. g. [Ogden,
1972a]). The second one is the investigation of such mathematical questions as the
existence of solutions; the inequality serves then as a hypothesis needed for the derivation
of certain theorems (see e. g. [Ball, 1977]).

Two essential criteria for appreciating the ‘interest of a proposed inequality, used
notably by [Wang & Truesdell, 1973], are as follows:

o It should reduce to the usual restrictions p>0, 31 +2 pu>0 (A and p being the Lamé
coefficients) in the case of an isotropic elastic solid in the natural (stress-free) state.

e It should also reduce to the equally classical condition dp/dp>0 (where p and p are
the pressure and mass per unit volume) in the case of a perfect (non-viscous) fluid.
Another, vaguer but equally important requirement is that it should yield “reasonable”
restrictions in some simple cases, like that of the Neo-Hookean material for instance.
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448 J. B. LEBLOND

Among all inequalities proposed so far, the most important ones are probably the
Coleman-Noll inequality, the Legendre-Hadamard strong ellipticity condition, Hill’s
inequalities and Ball’s “polyconvexity” property. The first one [Coleman & Noll, 1959]
states that

(M [28 (F*)— 28 (F)] : [F* T~ F"] >

In this inequality F is the gradient of the transformation, Z=7J¢ . (F7)~! (J: determinant
of F; 6: Cauchy stress tensor) the Boussinesq, or Piola-Lagrange, or first Piola-Kirchhoff
stress tensor, and F* a tensor differing from F by a pure deformation: F*=S . F, where
S is symmetric, positive-definite and not equal to 1. The corresponding (slightly stronger)
differential inequality is

@ o )

: ((FT . D)>0
OF OF

for all non-zero Eulerian strain rates D=(1/2)[F . F "1+ EFE YT, FT, where V is the
stored-energy per unit volume of the reference configuration. This inequality does reduce
to the conditions p>0, 3A+2pu>0 for an isotropic solid in the natural state; however it
yields dp/dp>2 p/3p in the case of a perfect fluid (see [W & T, 1973]), which is not true

presented by [Hill, 1968] but, as remarked by [W & T, 1973], the reasoning was based
on a debatable interpretation of inequality (2) in the case of materials subject to internal
constraints.)

The Legendre-Hadamard strong ellipticity condition states that

= 2l
3) (U®v)'aFaF'

U®v)>0

for all non-zero vectors U, v. It has often been considered as a constitutive restriction
(see e.g. [Antman, 1983] and [B, 1977)) but is too weak to be acceptable as an answer to
the “Hauptproblem”: indeed it reduces to p>0, A+2pu>0 (instead of 3A+2u>0) for
an isotropic elastic solid in the natural state [W & T, 19731,

The Hill inequalities [Hill, 1968, 1970] are defined as follows. Let 1=J¢ denote the
Kirchhoff stress tensor, ~the Jaumann derivative, m a real parameter and 9,,t/2,,t the
objective stress-rate given by

©
A

m

Dt

4) =;‘m(T.D+D.t).

Inequality H,, then stipulates that

9"'1::D>0

)

Wi

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 11, N° 4, 1992




CONSTITUTIVE INEQUALITY FOR HYPERELASTIC MATERIALS 449

for all non-zero strain rates. Hill also introduced a one-parameter family of strain
measures E,, in the following way: v,, v,, v; being the square roots of the eigenvalues of
the tensor C=F" . F (sometimes called the “singular values” of F), E, has the same
eigenvectors as C and eigenvalues given by fo (v1), fin (©,), [, (v3) Where

,u2m

(6) fu@)= G, if m#£0, Inv if m=0.
2m

He then showed that H,, is equivalent to demanding that the Hessian form of  with
respect to E,, be positive-definite at the reference configuration, whatever the choice of
the latter.

For m=1/2, H,, is identical to the strengthened version (2) of the Coleman-Noll
inequality [H, 1970]. Hill’s recommendation, however, was to adopt the value m=0. His
reasoning was based on the consideration of incompressible bodies. Since for such
constrained materials, an indeterminate Lagrange multiplier is involved in the expres-
sion(s) of the stress tensor(s), two interpretations of the constitutive inequalities are
possible according to whether one considers that the latter apply to the whole stress
tensor(s) or only to that part which is independent of the Lagrange multiplier. Hill
adopted the first interpretation and showed then that for an incompressible material,
inequality H,, places a restriction upon the Lagrange multiplier, except for the value
m=0. Since this multiplier then represents a hydrostatic pressure or tension for the
Cauchy stress tensor and typical incompressible materials like rubber are observed to
exist in nature without any apparent limitation on the trace of this tensor, such a
restriction is undesirable. This favours the choice m=0.

Hill’s conclusion was criticized by [W and T, 1973] on the following grounds. First,
his reasoning does not apply if one adopts the second interpretation mentioned above,
no restriction being then placed, by definition, on the Lagrange multiplier. Second, and
more importantly, whereas inequality H,, reduces to u>0, 3A+2u>0 for an isotropic
solid in the natural state, as desired, it yields

@) mp>0; _d_1_7><1_2_m)g
dp Bt /e

for a perfect fluid [H, 1968]. Hence H,, implies that dp/dp > p/p, which is not satisfactory.

It should be remarked that according to Eq. (7), m=3/2 is the only value for which
H,, yields dp/dp>0 for a perfect fluid (plus the restriction p>0, which is reasonable). In
view of this, the author’s opinion is that inequality H; , has received insufficient attention
(in fact, it seems to have attracted no attention at all). Tt will be studied incidentally in
this paper. Unfortunately, it will be seen to yield unsatisfactory consequences in some
simple cases (other than an isotropic solid in the natural state and a perfect fluid).

Ball’s “polyconvexity” condition [B, 1977] states that there exists a convex function
@ (A, B, 5) such that

(8) Y (F)=®(F, adjF, detF)
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where adj F denotes the adjoint of F[=(detF)F~! since F is invertible]. (The function
itself cannot be convex with respect to F, because this would contradict the objectivity
principle: see e.g. [C and N, 1959].) This property is of considerable mathematical
interest: indeed [B, 1977] showed that together with some additional assumptions, it
implies the existence of a displacement field which minimizes the energy integral. It is
not known, unfortunately, whether the corresponding stresses do satisfy the equilibrium
equations, even in the weak sense. Still, this seems to be the first existence theorem in
non-linear elasticity established under realistic hypotheses.

With respect to the two criteria mentioned above, the situation is the following. As
shown in Appendix A, the polyconvexity property “almost” reduces to the condition
dp/dp>0 for a perfect fluid in the sense that

©) @>0 = polyconvexity = @;0.
dp dp

On the other hand, it is shown in Appendix B that for an isotropic solid in the natural
state,

(10) pu>0, A+2u>0 = polyconvexity = u=0, K2z

The polyconvexity condition is therefore too weak in this case to be acceptable as a
solution to the “Hauptproblem’. This conclusion is also supported by the consideration
of some other examples, as will be seen below.

The aim of this paper is to study the inequality
(11) 6:D>0

(for all non-zero D’s) where ~ denotes the Jaumann derivative as above. It is a variant
of Hill’s inequality H, [see Egs. (4), (5)]; in particular the two are equivalent in the
incompressible case (J=Const.). Inequality (11) has been considered elsewhere in the
context of plasticity theory, but does not seem to have been proposed as a constitutive
restriction for hyperelastic materials. It satisfies the two criteria mentioned above and
thus appears as an a priori viable proposition. Indeed, for a perfect fluid, 6= — pl,
6=-pl and ¢:D= —pJ/I=pp/p; hence inequality (11) is equivalent to dp/dp>0
(provided it is exceptionally required to be strict only for those D’s which have a non-
zero trace; this restriction is natural since a perfect fluid offers a resistance only to
solicitations involving a volume change). For an isotropic solid in the natural state, one
gets, taking the latter as the reference configuration, 6:D=6:£=¢: (3> \/ds dc) : ¢ where
& denotes the linearized strain; hence (11) is equivalent to the requirement that the
Hessian form of | with respect to € be positive-definite, which is identical to the
conditions u>0, 3A+2p>0.

The paper is organized as follows. First, the Lagrangian expression of inequality (11)
is derived for both unconstrained and constrained materials. The important particular
case of isotropic materials is envisaged next. We then study connections with some other
constitutive restrictions, namely the H,, inequality [because it was that recommended by
Hill, and also because of its strong resemblance with (11)] and the polyconvexity condition
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CONSTITUTIVE INEQUALITY FOR HYPERELASTIC MATERIALS 451

(because of its mathematical importance). Illustrative examples are finally provided,
paying again attention to the comparison with respect to the H, inequality and the
polyconvexity condition (and also incidentally the H, , inequality, for the reason explai-
ned above).

2. Lagrangian expression of the inequality ¢:D>0

2 a. CASE OF UNCONSTRAINED MATERIALS

First, ¢ can be expressed in terms of objective quantities by using the relations
s=6+0.0-Q.6 and o=(/NF.x.F, where Q=12)F .F1-F H . ¥
denotes the rotation rate of the matter’s comoving frame and m the second Piola-
Kirchhoff stress tensor:

6=%|:F.1'1:.FT+D.F.n.FT+F.n.FT.D—%F.n.FT].

Second, the inequality o:D=tr(c.D)>0 can be formulated in terms of m and the
conjugate Green-Lagrange, or Green-Saint Venant strain tensor e=(1/2)(C— 1) with the
aid of the equations J/J=trD and D=F H".e.F !

(12) Jo:D=n:e4+2tr(C1.e.m.e)—(C ':e)(n:e)>0

for all non-zero €’s. Since m=0d\/de, this is equivalent to requiring that the quadratic
form

- e ->_ (g@)
(13) Q(fa) e.aeae.e+2tr<C .e.ae.e {2 6) ae.e

°

be positive-definite over the space of second rank symmetric tensors.

Just like Hill’s inequalities H,,, this condition is equivalent to demanding that the
Hessian form of \ with respect to a certain strain measure be positive-definite in the
reference configuration, whatever the choice of the latter; but this strain measure is not
of the type considered by Hill [Eq. (6)]. Indeed let the current state be taken as the
reference configuration (such a choice is possible since the condition Q (e)>0, which
derives from inequality (11), is obviously independent of the reference configuration).
Furthermore, let E be any strain tensor such that

(14) E=e—e2+%(tre)e—i—O(HelP).
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(The first two terms of the right-hand side are the same as for the logarithmic strain
involved in the H, inequality, but the last one is new.) Using the obvious relations

e=E+E2—%(trE)E+O(HE”3)

ASEE trE
fkjl % EKI 5 _2—>(5ik 851+ 8 8,)

+8; Ejl +38; Ejk » 8jk E,+ 8;’1 Ey—38y, EijJ+ O( ” E ”2)’

one readily calculates the second derivatives of Y with respect to the E;/’s in the reference
configuration (E= 0):
2 2
o* 0%y +1<6 o o o Sﬂﬂ,—S o ﬂ)

- > 7 R AT Sl S S SN Wi A
T (3eﬂ g e o Oe; Oey, Uéek, klﬁe,-j

0E,; 0E,, Oe;;0e, 2

It follows that in this configuration,

E:ﬂ:E=é: az\":é+2tr<é ) a—"’.é)—(tré)<@:é>,
J0E OE Oe de Oe de

which is identical to the right-hand side of Eq. (13) (with C=1). Hence it is equivalent
to require the positive-definiteness of Q(e) or that of the Hessian form of s with respect
to E, provided that the current state is taken as the reference configuration.

2 b. CASE OF CONSTRAINED MATERIALS
We now consider materials subject to internal constraints of the form
(15) ?@=0 (p=1,...,n)

where the ¢,’s are given functions. Then all envisageable strain rates obey the restrictions

(16) Sy, et A
de

and the constitutive law reads

n

o (30}
1y n=— + —L2
AL de p; e Oe

where the 1 » S are Lagrange multipliers.

As mentioned in the Introduction, there are two possibilities for such materials: the
constitutive inequality (12) can be considered to be applicable either directly to =, or
only to its first term dy/de. Examples provided below show that restrictions on the
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CONSTITUTIVE INEQUALITY FOR HYPERELASTIC MATERIALS 453

Lagrange multipliers are desired in general (the case of incompressible materials represent-
ing an exception). This favours the first possibility, which will therefore be adopted here,
in conformity with Hill’s choice [H, 1968, 1970] and in conflict with that suggested by
Wang and Truesdell [W and T, 1973]. This leads to demanding that the quadratic form

s N e Ok o .
(18) Q(e)—-e.aeae.eJthr(C .e.ae.e> (C .e)(ae.e>

2
é:a—ipﬁzé+2tr<C_1 . e .%.é
de 0e de

be positive-definite over the subspace of strain rates verifying conditions (16).

In the case of the incompressibility constraint, the above condition is, exceptionally,
independent of the Lagrange multiplier. This can be deduced either from the fact that it
is then equivalent to inequality H, which does satisfy this property (this was even, as
explained in the Introduction, the reason that motivated Hill’s choice of the value m=0),
or from a direct calculation using Eq. (18) and the expression of the incompressibility
constraint, i.e. ¢ (e)=det(1+2e)—1=0.

3. Isotropic materials

We shall now investigate the important special case of (unconstrained) isotropic
materials. The results derived below offer strong similarities with those obtained by [H,
1970] for the H, inequality, but the treatment is somewhat different.

Provided that isotropy is preserved in the reference configuration chosen (this means

that the corresponding stress state must be hydrostatic), the stored-energy is an isotropic
function of e and = is given by

(19) n= ZgYUi(@U,.

i

where the ¢;’s and U;’s denote the eigenvalues and (unit) eigenvectors of e. To obtain the
expression of =, that of the U,’s is needed. The latter can be derived by differentiating
the expression of e: ;

e=)eU®U, = e=Y (¢;U;® U;+¢,U;,@ U;+¢,U;® U)),

and contracting both sides between U; and Uy; since Uj LU+ ;. U, =0, the result is
ejk=e'j8jk+(ej—ek) Uj .Uy

where the indices are not summed and the éjk’s denote the components of e in a fixed
basis coincident with the basis (U,, U,, Us) at the instant considered. This implies that

€
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(where the e;’s are assumed to be distinct). It follows that

U=Y@U.U)u=y Gy

i#i FRLFLENE

and hence that

eU®U+ZM ;U@ U,

j Oe; Oe; izj &—e;

= Z
Contracting both sides with e= )" ¢,, U, ® U,, one gets
k, 1

2 —
ket PV év 3 N0 0Uide,
i3

.j 0e; Oe; i%j e;—e;

Furthermore,

HC™ e n' = Z
i3 U 5'

1 & Loy 1o,
@ttty

2
v? 6e v Oe;

(where v;= \/ 1+2e;) and

5 : oy . 1 1 1 1
(c—x;e)(n;e)=<z_§g>(Z%ejj>=276_“‘ 2 2;<v_a_"’ _Za_"’) -+

i

thus the quadratic form defined by Eq. (13) is the sum of two independent quadratic
forms, each of which must therefore be positive-definite:

(20) Q(é)=Q1 (éu, ézz, é33)+Q2 (é12a ézsa é31)

where

R IRp & T O Y _1/1 oy 1 ayY]. .
e R B L Cop e oL

J i

09/0e,—dYjde; 1 oV, i_‘V) 5
2 0

1] 2 ij
e;rey v; Oe;

Q. (612, ezsa e31 g Z (
i#j

The expressions of Q; and Q, can be simplified by noting that by Eq. (19),

I ov ov
=-F. U,®U —
i <Za i ) J;ae,"(’b"
where u;=F . Uj; since || ;|| =, this implies that the eigenvalues o, of ¢ are given by
2
z 1
T 9 1 8(lnv)
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It is then easy to show that

2
s 1<1 @+lg—\l’>— : ( e ) for i#j;
€

de,0e, 2\0? de; v? Oe;) 20fvi\d(nv) d(nv)

it follows that

: ! : J 00; 00; Py
22 €is €ho; € == g J il g
( ) Ql( 1% 22 33) 5 g(@(lnvj) a(lnvi)> ‘L7i2 ‘U})'

and hence that Q, is positive-definite if, and only if, the same is true of the tensor A of
components

(23) Aij=l< 60‘,‘ e aO'j >
2\d(nvy) d(lnvy)

Furthermore Q, is reduced, after a few manipulations, to the form

0 anse, o= 1 1 -
(24) Qz(exzsezs»em):]z 2 ;<_2+_2>eizj:

i#zj Ui _'Uj Ui i

and is thus seen to be positive-definite if, and only if, the ordering of the principal
Cauchy stresses is the same as that of the principal strains. Now [H, 1970] has shown in
a very elegant way that this second condition is automatically satisfied provided that the
first one is (it suffices to replace the e;’s and #;’s in Hill’s reasoning by the Inv,’s and
c;’s). Hence, for an isotropic material, inequality (11) is equivalent to the requirement
that the tensor A be positive-definite. It is recalled that the o;’s in the expression (23) of

this tensor are given by Eq. (21).

In contrast, Hill's H, inequality ¥:D>0 (t: Kirchhoff stress tensor) is satisfied if,
and only if, the tensor of components 0dt;/0(Inv)) [which is symmetric since
1,=J5,=0y/d(Inv,)] is positive-definite [H, 1970]. Hill also established the equivalence
of this condition and the positive-definiteness of the Hessian form of { with respect to
the logarithmic strain (1/2)In(1+2e). (The latter condition differs from that mentioned
in the Introduction for arbitrary, non-isotropic materials in that here the reference
configuration is not the current state but any configuration corresponding to a hydrostatic
stress). It does not seem possible, however, to put inequality (11) under a similar form
(the difficulty being that the A;;’s cannot be expressed as second derivatives of \, because
of the factor 1/J in the expression (21) of o;).

In the case of a hydrostatic stress (6= —p1), the diagonal terms of A are all equal to
95,/0(Inv,) and the off-diagonal ones to do,/0(Inv,). A is therefore identical to the
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¥ e T A A
Hessian matrix [ A At2p A :] of the stored-energy function of an isotropic
A A A+ 20

material in the natural state with Lamé coefficients

_ ey i =1< ég, . daoy )
o (Inv,) 2\ o(nv,) d(nv,) )

Using the well-known conditions for such a matrix to be positive-definite, one concludes
that inequality (11) reduces to the restrictions

do, 43 0o, >0; do, ey e
o(lnv,) d(Inv,) d(lnv,) d(Inv,)

These inequalities are easily seen to be equivalent to (with obvious notations)

25) g S
ap dey,

>0

this means that the bulk and shear moduli must be positive. For the H, inequality, the
result is the same for the shear modulus but the bulk modulus must verify dp/dp>p/p
[H, 1970]. Thus this inequality tolerates negative bulk moduli in tension (p<0). This
feature is plainly undesirable; it means for instance that the material can be unstable
when subjected to a constant hydrostatic Cauchy stress, which is a pretty singular
behaviour. Also, in rubbery materials for which the ratio of bulk to shear moduli is very
large, the speed of longitudinal waves is almost equal to the square root of the former
modulus; thus a negative value for this modulus means that no such waves exist.

4. Connections with other constitutive restrictions

4 a. THE H, INEQUALITY

Elements of comparison between inequalities (11) and H, have already been provided
in the Introduction and Section 3, and can be summarized as follows:

Arbitrary materials (the current state is taken as the reference configuration):
H,: t:D>0
< The Hessian form of  with respect to (1/2)In(1+2e), or more generally any

strain tensor of the form e—e?+O(||e?||), is positive-definite in the reference
configuration

(11): 6:D>0
< The Hessian form of { with respect to any strain tensor of the form
e—e2+(1/2)(tre)e*+O (]| € ||) is positive-definite in the reference configuration
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Incompressible materials:

The two inequalities are equivalent

Isotropic materials (a hydrostatic stress state is taken as the reference configuration):
Hy:

<> The tensor of components dt,/0 (Inv;)= 6% /d (Inv;) & (Inv ;) is positive-definite

<> The Hessian form of | with respect to (1/2)In(1+2e) is positive-definite

o Byl ES oy s
ap P dey,
(11):
<> The tensor of components (1/2) (dc,/d (Inv;)+ 00;/d (Inv))) is positive-definite
o« Pog  Pughrieg ol
op de;,

4 b. THE POLYCONVEXITY PROPERTY

We shall show here that neither inequality (11) nor polyconvexity entails the other
property in general. To prove that polyconvexity does not imply inequality (11), it suffices
to consider an isotropic solid in the natural state with Lamé coefficients such that p>0
and A+2pu>0 but 3A+2u<0: then polyconvexity holds but inequality (11) does not
(see the Introduction).

Since polyconvexity implies the weak form (with “>") of the Legendre-Hadamard
condition (3) [B, 1977], proving that inequality (11) does not entail the latter is sufficient
to establish that it does not imply polyconvexity. Proving this requires to know the
Lagrangian form of the weak Legendre-Hadamard condition, which is easily found to
be

¥ ’(U®V)+<U } ﬂ 2 U)(V SCTY N =0
e de

(26) U®V): 3k

(the vectors v in Eq. (3) and V here are connected by V=FT . v).

Before proving that (11) does not imply (26), it is worth noting that it does, however,
entail the following “symmetrized” variant of this inequality:

PR
dede

UV)+ l[(U : a—"’.U)(V el .V)+<V.@ p V)(U & o=l U)]go.
2 de de

U®V):

This follows at once from application of the condition Q(e)>0 to the tensor
e=(1/2)(U® V+VRU).
We shall consider some \’s with first and second derivatives given by
o >V

—=gaq; if i=}, 0 otherwise;

=bif i=j=k=1, 0 otherwise
de;;

e;; Oy,
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in the reference configuration, in some orthonomal basis. (Such a choice is possible since
these formulae respect the symmetries under exchange of i and j, k and /, and (i, j) and
(k, 1)). Then, in this configuration,

,
ae 6e o

Pl
tr<C 1 e e ) Zeu a;e;= Zal "+2 Y (e, *a)ées

i#tj

(c” e)< ) Z‘—’u%en“zaz u+ Z(a-f—a)eu Ji?

1#]
so that the quadratic form defined by Eq. (13) can be written as
Q(e)=Q1 (éu, ézza é33)+Q2 (é12: é23, é31),

2 . . , 1
Q; (e11; €2, €33)= z(ai+b)ei2i—5 Z (a;+a )eu P

i#Fj
Q, (€12, €23, €31)= Z (ai+aj) eizj'

i#j

Q, is positive-definite for sufficiently large values of b. On the other hand, Q, is positive-
definite if, and only if, @;+a;>0 for i#j. Hence there exists a function b, (a,, a,, a;)
such that the conditions

(27) b>b(a),45,.d3); agtdr=0: Qo Gz =0 Q5 =0

ensure the positive-definiteness of Q (e).
On the other hand,

2
¢ \lll = ,'V,'Z; <U-@-U>(V-C—I-V)=ZaiUizvf
de de i 0

(J i, j

so that inequality (26) reads

Y. (bVit+ay V) UZ20;
i j

this requires

bVi+a,y Vi=(a;+b)Vi+a; Y Viz0
j

P ES]
or equivalently

28) { a; =0; a;=0; a,=0;

= 0: a,+b=0; u;Fb=0.
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There exist some ay, a,, as, b satisfying (27) but not (28) (take a,, a,, a; such that
a;+a,>0, a,+a;>0, a;+a,; >0 but a, <0, and b sufficiently great). For those para-
meters, inequality (11) holds but polyconvexity does not.

Incidentally, the same kind of proof can be used to show that Hill’s inequality H,
does not imply polyconvexity either. Indeed it is easy to see that this inequality is
equivalent to requiring the positive-definiteness of a quadratic form identical to that
defined by (13) except for the final term —(C~':e)((0y/de):e); this reduces to the
conditions

2a, t5>0; Za, to=>0; 2a, b >0;
a, +*a,>0; a, +ta>0; azt+a; >0

for the {’s considered above. It is easy to find some a,, a,, a;, b satisfying these
inequalities while violating (28).

5. Examples

We shall first give three simple examples involving materials with internal constraints,
then two more complex examples of unconstrained media.

Sa. THE NEo-HOOKEAN MATERIAL

This is the simplest prototype of an incompressible isotropic material; the natural state
being taken as the reference configuration, the stored-energy function is given by

VY=pntre,

where p is the shear modulus [Treloar, 1975].

For such an incompressible medium, inequality (11) is equivalent to H,, and reduces
to the requirement p>0 [H, 1968], which is reasonable enough. Writing tre under the
form (1/2) (v} +v3+v3—3) and using Ball’s Theorem 5.2 [B, 1977], one sees that the
(again reasonable) condition p=>0 ensures polyconvexity. On the other hand, inequality
H;,, yields unsatisfactory consequences. Indeed, if it is supposed to be applicable to =
itself, an undesired restriction is put on the Lagrange multiplier [H, 1968]; if, conversely,
it is applied only to that part of & which is independent of the Lagrange multiplier, it
can be verified to reduce to p<0 in the natural state, which is absurd.

5b. A PERFECTLY FLEXIBLE, INEXTENSIBLE THREAD

We shall now consider a material made of parallel, perfectly flexible, unstretchable
fibers (a thread or a rod for instance). The stored-energy function is zero and the internal
constraint is described by

¢o(e)=U.e.U=0,
where U is a unit vector parallel to the fibers in the reference configuration.
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The quadratic form defined by Eq. (18) is given by
Q@E=2ntr[C™!.e.(URU).¢l=2n(@.U).C . (. U)=2n|[FH.e.U|?

where n is the Lagrange multiplier associated to the internal constraint. The condition
Q<(e)>0 (for all non-zero strain rates verifying (16), i.e. U . e . U=0) implies n>0. This
necessary condition is also sufficient provided that the inequality is required to be strict
only for those €’s verifying (16) and such that ¢ . U#O: this restriction is analogous to
that made for perfect fluids (see the Introduction) and is natural since ¢ . U=0 means
that the material is deformed only in the plane orthogonal to the fibers, which is a
solicitation to which it offers no resistance. The meaning of the condition >0 is easily
elucidated by evaluating n and o:

1=qUQU = a=?F.(U®U).FT=?u®u, u=F . U.

Since u is collinear to the fibers in the present configuration, n>0 means that the fibers
must be under tension, which is a sensible result.

Inequality H, can be verified to be again equivalent to (11) in the case considered,
provided that it is assumed to apply to m itself and not only to that part of this tensor
which does not depend on the Lagrange multiplier. Concerning polyconvexity, it is not
clear what precise property of \ should be required for a material subject to the internal
constraint considered here; however this property will surely be satisfied for the zero \
which corresponds to a perfectly flexible rod. Hence “polyconvexity” of | (whatever it
may be) is certainly too weak to forbid compressive states. Finally inequality H;,, again
yields unsatisfactory consequences: if applied to = itself, it can be checked to reduce to
n<0; if applied to that part of = which is independent of 7, it does not prohibit
compressive stresses.

In view of the fact that this example and the preceding one have clearly evidenced the
inadequacy of inequality H, /2 the discussion will be restricted from now on to inequalities
(11) and H,, and the polyconvexity property.

5c¢. A PERFECTLY FLEXIBLE, INEXTENSIBLE MEMBRANE

As an interesting extension of the preceding example, we shall now study an initially
plane membrane, perfectly flexible but undeformable in its plane (a very thin metallic
foil for instance). This is described by

V=0  0,©)=U,.e.U;=0; ¢,()=U,.e.U,=0;
¢3()=U,.e.U,+U,.e.U,=0,

where (U,, U,) is an orthonormal basis of the membrane plane in the reference configur-
ation.

The condition Q(e)>0 is readily put under the form

1'11“"1 ”2+T]2||V2“2+2n3v1 < ¥3 >0,
vw=FHY.e.U,, w=F"HY.e U,
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To find necessary conditions for this to be true, let us consider an e with matrix

1)
[0 0 l:l in the basis (U, U,, U;), where x is an arbitrary real number and
x TR

U;=U,;xU,. Then conditions (16) are fulfilled, ie. U,.e.U,=U,.e.U,=
U,.e.U,+U,.e.U;=0, and the preceding inequality reads

[T . UslP(My x*+n;42n30)>0 <= 1,>0; NN~ N3>0.
To show that these necessary conditions are also sufficient, let us note that
Nl va [P+ |2 [P+ 2na vy vozm v [P+ ma vz [P =2 ms - v - [l vz

The above conditions ensure the positive-definiteness of this quadratic form of the
variables ||v, ||, ||v.]l; Q(e) is then positive for all e’s verifying (16) and such that
e.U,#0 or e.U,#0. This restriction is again natural since e . U, =e . U,=0 implies
that e is proportional to U; ® U,, and the material offers no resistance to such solicita-
tions.

The seemingly strange conditions 1, >0; n, N, —n%>0 possess an appealing interpret-
ation. Indeed calculation of « and ¢ yields

=1 U;®U;+n, U, ®U,+n;(U; ®U,+U,®U,)

= Joe=nu,Q@u;tNu, Qu,+ N3 (u; Qu,+u, @uy),
u,=F.U,, u,=F . U,.

Hence these conditions mean that the quadratic form n . ¢ . n must be positive-definite
over the tangent plane to the membrane in the present configuration; in other words, all
directions of the membrane must be under tension.

With regard to other constitutive restrictions, the conclusions are the same as for the
preceding example: H,, is equivalent to (11), and the polyconvexity property is automati-
cally satisfied and thus tolerates compressive stress states.

5d. THE cOMPRESSIBLE NEO-HOOKEAN MATERIAL

This is probably the simplest realistic model for compressible isotropic materials. The
stored-energy function is

y=ptre+AJ—(A+p)inJ

where A and p are the Lamé coefficients [Blatz, 1971].

For simplicity, we consider only hydrostatic stress (and strain) states (e=e1). Inequa-
lity (11) reduces to conditions (25), which are easily explicited as follows:

3A+p)—p(l+2e)>0; p(l+2e)>0.
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Since 1+2e>0, the second condition is equivalent to p>0; the first one reduces then to

e<l+ﬁ.

2u

In contrast, inequality H, is easily seen to be equivalent to the conditions pu>0;
30 _/T+2e+2p>0. If, for instance, A is supposed to be positive, inequality H, is
automatically satisfied (provided of course that p>0) whereas inequality (11) is not: this
is because the former tolerates negative compressibilities (for e>1+3A/2 ), in contrast
with the latter. Concerning polyconvexity, it is easy, using Ball’s Theorem 5.2, to see
that the conditions p>0, A+ p> 0 are sufficient to warrant this property. These conditions
are weaker than the usual restrictions in the natural state, p>0, 3A+2 pn>0; hence here
again polyconvexity appears to be too weak to guarantee physically reasonable behaviour
in all circumstances.

5e. THE MODEL OF BLATZ AND KO

This model is interesting in that it was specifically designed to describe the behaviour
of a highly compressible material, namely a foam rubber. The stored-energy function is
[Blatz & Ko, 1962]

V= E‘(i il i 14 l>+ u(1‘2")_]2\;/(1—“)
2

pvergl T o} 2v

where p and v are the shear modulus and Poisson ratio (in fact Blatz and Ko’s original
model contained an additional parameter f; the expression given here corresponds to the
value of f which they finally adopted, namely 0); this form fits into a general class of
models introduced by [Ogden, 1972 b].

For a hydrostatic stress, inequalities (25) yield the conditions p>0 and

sy-55 432V Lyev-nia-2v5
125

Since highly compressible materials are in question here, it is natural to demand that
this inequality be satisfied for all values of J. If 1/4<v<1/2, this is true; indeed
(4v—1)/(1—2v)=0 so that the second term is non-negative. On the other hand, if v<1/4
or v>1/2, it is not; indeed if v# — 1, (4v—1)/(1—2V) is negative and not equal to — 5/3
so that the second term is negative and dominates over the first one for J - 0 or J - + o0,
and if v= — 1, the whole left-hand side is zero. Hence the above inequality holds for all
values of J if, and only if,

On the other hand, inequality H, is satisfied provided that p>0 and 0=v<1/2 [O, 1970];
here again, this inequality tolerates negative bulk moduli (for 0=v<1/4). In contrast,
the sufficient conditions for polyconvexity provided by Ball’s Theorem 5.2 are violated
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since the function of v, v,, v; involved in the expression of Y is decreasing with respect
to each variable (but this does not, of course, prove that polyconvexity is violated).

The value of v which provided the best fit with Blatz and Ko’s experimental results
for a foam rubber was 1/4; it is compatible with both inequalities (11) and H,.

6. Conclusion

In no case has inequality (11) been observed to yield unreasonable restrictions. Hill’s
inequality H, also appears to be reasonable in a number of cases; however it presents
the major drawback of not prohibiting negative bulk moduli, which lead to a number of
unwanted consequences (some of which were mentioned in Section 3). In no case has
Ball’s polyconvexity property been remarked to be over-restrictive; but it is often weaker
than desired (e. g., for the compressible Neo-Hookean material).

On the other hand, the polyconvexity hypothesis has mathematical power, as was
shown by [B, 1977], whereas nothing is known about the mathematical consequences of
inequality (11) (nor about those of Hy). It is precisely the aim of this paper to suggest
that in view of the apparent physical relevance of this inequality. a thorough investigation
of the said consequences would be worthwhile.
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APPENDIX A
The polyconvexity condition for a perfect fluid

A perfect fluid is a particular type of hyperelastic material for which the stored-energy
function  depends on F only through its determinant J. The Cauchy stress tensor
reduces to a hydrostatic pressure given by p= —d\y/dJ. The inequality dp/dp>0 is
equivalent to dp/d) <0 or d?\y/dJ?*>0; hence it implies that s is convex with respect to
J, and consequently polyconvex.

To show that conversely polyconvexity implies dp/dp=0, let us consider, for any

Juse==0
positive real number J, the tensors A (J) and B (J) with respective matrices \:0 1 0:\
=07

{ B
and [0 J 0:\ in a given orthonormal basis. Then adj A (J)=B(J) and detA(J)=1J so
0% 057

that
VADI=V (D) =2[A0), B(J),J]

where @ is the function associated to ¥ by Eq. (8). Using the convexity of ® and the
fact that A (J) and B(J) are affine functions of J, we then get, for any J,J and 0€[0, 1]:

YOI+(1-0)J1=0{ARI+(1-OT], B[OJ+(1—-0)J], 07 +(1-0)J'}
—®[pAQ)+(1-0)AQ), OB () +(1—0)B(), 8J+(1-0)J]
<0®[A(J), B(), N+(1-0)@[AJ), BJ), y=0y @)+ (1 -0 v

Thus  is convex with respect to J. This implies that d*\y/d)* =20, or equivalently
dp/dp 2 0.

APPENDIX B
The polyconvexity condition for an isotropic solid in the natural state

It was shown in [B, 1977] that polyconvexity implies a weaker property termed ‘‘quasi-
convexity”’, which in turn implies the weak form (i.e., with “2” instead of “>") of the
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Legendre-Hadamard ellipticity condition [Eq. (3)]. This condition is known to be equiva-
lent to the inequalities p=0, A+2p=0 for an isotropic solid in the natural state. Thus
polyconvexity implies these inequalities for such a solid.

Let us now show that, conversely, the conditions p>0, A+2p>0 imply polyconvexity
in (the vicinity of) the natural state. This state being taken as the reference configuration
and the square roots of the eigenvalues of C=FT . F being denoted v,, v,, v3, let the
stored-energy function be written under the form

Y (F)=0, (v;, vy, v3) t @, (v, 0, 03)
where the functions ®, and ®, are defined by (a being a parameter)
@, (vy, 03, v3) =V (vy, V2, v3)+avy v, v3; ®,(8)=—ad.

By Ball’s Theorem 5.2 [B, 1977], showing that ®, and ®, are convex and ®, non-
decreasing with respect to each variable is sufficient to establish polyconvexity. The
convexity of ®, is obvious. Furthermore the expression of { near the natural state

[(vl’ Vs 03)=(1’ 13 1)] iS

V= %(el+e2+e3)2+u(ef+e§+f-’§)+0(“e“3)

where e;=(2—1)/2, e;=(@3—1)/2, e3=(v3—1)/2 are the eigenvalues of the Green-
Lagrange, of Green-Saint Venant strain tensor e; it follows that the first and second
derivatives of ®, in this state are given by

0D, 0* o

—= (L, D=a; el Dkt Tl desy, Ata if i#j.
oy, 0v; 0v;

Thus the condition

a>0

ensures that @, is non-decreasing with respect to each variable. To find conditions
guaranteing the positive-definiteness of its Hessian matrix, one just needs to write the
latter under the form

S 2 A Y %
[ I e ]
Y Kool A2

where M=A+a, M+2p =A+2p<p' =p—a/2; this is the Hessian matrix of a stored-
energy function with Lamé coefficients A and p’, which is well known to be positive-
definite under the conditions

1
W>0 < a<2y IN+2u' >0 < a>—5(37\,+2u).
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There exists an a satisfying the three above inequalities if, and only if, the conditions

1
0<2p = p>0; —5(3)»+2u)<2u < A+2p>0

are fulfilled. This concludes the proof.

Remarks

1. The use of Ball’s Theorem 5.2 can be avoided by writing
V (F) = @, (F) + @, (det F)
with
®, (F)=\ (F) +adetF; ®,(8)=—ad,

and directly checking that the Hessian form of @, with respect to F is positive—deﬁnite
at the point F=1 under the same conditions as above.

2. It was shown by [Ciarlet & Geymonat, 1982] that for any positive constants Aol
there exists an Ogden-type stored-energy function which is polyconvex and admits A and
p as Lamé coefficients in the natural state. This shows in particular that the inequalities
A>0, p>0 ensure polyconvexity in (the vicinity of) this state. These conditions are more
restrictive than those above; it does not seem feasible, unfortunately, to adapt Ciarlet
and Geymonat’svproof so as to weaken them. (In this respect, the result established here
is stronger than that of Ciarlet and Geymonat. However it is also weaker in that
polyconvexity is established only in (the vicinity of) the natural state, whereas Ciarlet and
Geymonat’s stored-energy function is polyconvex everywhere.)
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